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Abstract

An efficient and general method for calculating an exact value of relative

cardinality of Atanassov’s intuitionistic fuzzy sets (IFSs) is still an open

problem. In this paper we make a step towards the solution of this problem

by proposing an algorithm for computing relative cardinality of IFSs based

on algebraic t-norm.

Keywords: Atanassov’s intuitionistic fuzzy sets, relative cardinality, sub-

sethood measure, similarity measure .

1 Introduction

Intuitionistic fuzzy set (IFS) theory was proposed by Atanassov [2] as an intuitive

and straightforward extension of Zadeh’s fuzzy sets theory [16]. An assertion that

is assumed in fuzzy set theory claims that from the fact that an element x ∈ X

belongs to a given degree A(x) to a fuzzy set A, follows naturally that x should

not belong to A to a degree 1 − A(x). On the contrary, an IFS A = (A+, A−)
assigns to each element x both a degree of membership A+(x) and a degree of

non-membership A−(x) such that A−(x) ≤ 1−A+(x). Such an approach has the

virtue of complementing fuzzy sets, that are able to model vagueness, with an abil-

ity to model uncertainty as well. A measure of this uncertainty (non-determinacy,

hesitation) is given by 1−A+(x)−A−(x).
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Adding the possibility of modeling uncertainty poses new challenges that do

not occur in classical fuzzy set theory, concerning proper definition of IFSs oper-

ations and relations. In general it is not true that operating on an IFS A is nothing

more than operating separately on each of the fuzzy sets A+ and A−. As an exam-

ple of such operation that is not a straightforward extension of its fuzzy analogue,

and desires a deeper insight into the nature of uncertainty of IFS, we discuss a

relative cardinality of IFSs. The main objective of this paper is to introduce an

efficient and exact algorithm that allows for calculating this value.

To this end, in the second section we indicate motivation showing why it is

worth to address the problem of relative cardinality and we consider approaches

existing so far. In the main, third section, we present a new algorithm for deter-

mining the value of relative cardinality of IFSs based on an algebraic t-norm. We

finish with some concluding remarks.

It must be noted that IFS theory is equivalent to some other concepts like

interval-valued fuzzy sets or interval type-2 fuzzy sets theories ([1, 7]). All of

these approaches have given rise to an extensive literature covering their respec-

tive applications, proving their maturity and usefulness in solving real-life prob-

lems. Consequently, all the results presented in this paper are valid as well under

interval-valued and interval type-2 fuzzy sets theories.

2 Relative cardinality of IFSs

The notion of relative cardinality, denoted as σ(A|B), undoubtedly deserves an

attention, regardless of A,B being crisp, fuzzy or intuitionistic fuzzy sets. This

is because it provides a theoretical basis for many important concepts that are

discussed below.

• Inclusion measure (subsethood)

Primarily, relative cardinality σ(A|B) can be interpreted as the degree of

truth of a sentence: ”B is a subset of A” (cf. [3, 5, 6]):

JB is a subset of AK = σ(A|B)

• Implication

Relative cardinality σ(A|B) may form a basis for implication operator:

J If B then AK = σ(A|B)
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• Similarity

One of the most common approach to measure similarity between A and B

may be formulated on the basis of relative cardinality measure ([4]):

JA is similar to BK = σ(A ∩B|A ∪B)

• Quantified sentences

As a means of obtaining the degree of truth of linguistically quantified sen-

tences of a form: ”Q B x’s are A” (e.g. ”Most of my friends trust John”,

”About half of important experts prefers option i”), relative cardinality is

applied in a large number of applications such as data mining, fuzzy ex-

pert and recommender systems, decision making processes, fuzzy queries

in databases and linguistic summarization of databases (see e.g. [15, 17]):

JQ B x are AK = Q(σ(A|B)).

In a fuzzy set theory, a relative cardinality of fuzzy sets A and B is calculating

according to the following formula:

σt(A|B) =
σ(A ∩t B)

σ(B)
(1)

where cardinality of fuzzy set σ(A) is typically defined by so-called sigma-count

([10, 13]):

σ(A) =
∑

x∈X

A(x). (2)

Moreover, an intersection A ∩t B is defined as:

(A ∩t B)(x) = A(x) t B(x) (3)

where t is a t-norm, i.e. an increasing, commutative and associative mapping

[0, 1]2 → [0, 1] satisfying t(1, x) = x for all x ∈ [0, 1]. The most common

examples of t-norms are: t-norm minimum t∧(a, b) = a ∧ b , algebraic t-norm

ta(a, b) = a · b and Łukasiewicz t-norm tL(a, b) = 0∨ (a+ b− 1). Additionally,

by Ac we denote a complement of A defined as 1−A(x) for each x.

Lately, some attempts have been made to define a relative cardinality of IFSs.

One approach that draws on interval calculus, was mentioned for example in [6],

where a relative cardinality was used to define inclusion measure, and in [12] in

the context of linguistic summarization:

σIF (A|B) =

[

σ(A+ ∩B+)

σ((B−)c)
,
σ((A−)c ∩ (B−)c)

σ(B+)

]

.
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The second idea, adapted from the definition of conditional probability of

intuitionistic fuzzy events proposed in [8], is a straightforward generalization of

the fuzzy case to the IFS case. It assumes that σIF (A|B) is an interval estimated

by lower and upper bounds of IFSs A and B:

σIF (A|B) =
[

σ(A+|B+), σ((A−)c|(B−)c)
]

.

Another method is taken from [9], where two indicators of inclusion measure

for I-fuzzy sets were considered - a necessary and a possible one. Adapting this

approach we obtain:

σIF (A|B) =
[

σ(A+|(B−)c), σ((A−)c|B+)
]

.

All of the above-mentioned methods use only A+ and A−, B+ and B− in cal-

culations, and consequently, they only approximate a value of relative cardinality

of IFSs. Such approximation is easy to compute, however, it can be vitiated by

an error that is unacceptable in practical applications. Our goal therefore was to

find a relatively easy but exact method to determine a value of σIF (A|B). We

claim that, in order to find an exact value of σIF (A|B), it is necessary to consider

some other fuzzy representations of given IFSs A and B, i.e. A∗ ∈ Rep(A) and

B∗ ∈ Rep(B) where:

Rep(A) = {A∗ ∈ F | ∀x∈XA+(x) ≤ A∗(x) ≤ 1−A−(x)}

and

Rep(B) = {B∗ ∈ F | ∀x∈XB+(x) ≤ B∗(x) ≤ 1−B−(x)} .

This leads to the following definition of relative cardinality σIF (A|B).

Definition 1 The relative cardinality of two IF-sets A = (A+, A−) and B =
(B+, B−) is an interval defined as:

σIF (A|B) =



 min
A

∗

∈Rep(A)
B

∗

∈Rep(B)

σ(A∗|B∗), 1− max
A

∗

∈Rep(A)
B

∗

∈Rep(B)

σ(A∗|B∗)



 . (4)

The main aim of this paper is to find an efficient method for calculating a value

of σIF (A|B) given by (4). Our inspiration was a work by Mendel and Nguyen. In

[11] and then in [14] they proposed an efficient algorithm of calculating relative

cardinality of interval type-2 fuzzy sets with a basic t-norm, minimum. In the next

section we present how this idea can be adapted to IFS theory and we propose an

algorithm of calculating σIF (A|B) with an algebraic t-norm.

184



3 A new method for computing relative

cardinality of IFSs with algebraic t-norm

Although Definition 1 is simple and intuitive, there is no easy and general - i.e.

t-norm independent - method to calculate the final interval σIF (A|B). Algorithms

proposed by Nguyen and Kreinovich [11] and Wu and Mendel [14] solve the prob-

lem for minimum t-norm with a complexity: O(n logn) and O(n1+α), respec-

tively. Algebraic t-norm is as well a popular t-norm commonly used in practical

applications. In this section we propose and discuss an algorithm for computing

relative cardinality of IFSs based on this t-norm.

A formula (4) for algebraic t-norm takes a form:

σIF (A|B) =



 min
A

∗

∈Rep(A)
B

∗

∈Rep(B)

σta(A
∗|B∗), 1− max

A
∗

∈Rep(A)
B

∗

∈Rep(B)

σta(A
∗|B∗)



 =

=



 min
A

∗

∈Rep(A)
B

∗

∈Rep(B)

σ(A∗ ∩ta B
∗)

σ(B∗)
, 1− max

A
∗

∈Rep(A)
B

∗

∈Rep(B)

σ(A∗ ∩ta B
∗)

σ(B∗)



 =

=



 min
A

∗

∈Rep(A)
B

∗

∈Rep(B)

∑

x∈X

A∗(x) ·B∗(x)

∑

x∈X

B∗(x)
, 1− max

A
∗

∈Rep(A)
B

∗

∈Rep(B)

∑

x∈X

A∗(x) ·B∗(x)

∑

x∈X

B∗(x)





Lemma 1 For any two IFSs A and B following two properties are satisfied:

• min
A

∗

∈Rep(A)
B

∗

∈Rep(B)

σta(A
∗|B∗) is attained when A∗ = A+,

• max
A

∗

∈Rep(A)
B

∗

∈Rep(B)

σta(A
∗|B∗) is attained when A∗ = (A−)c,

Proof Let us notice that σta(A
∗|B∗) is a non-strictly increasing function of A∗

so its minimum (maximum) is attained when A∗ takes minimal (maximal) values.

Lemma 2 For any two IFSs A and B:

min
B∗∈Rep(B)

σta(A
+|B∗) and max

B∗∈Rep(B)
σta((A

−)c|B∗)

are attained when ∀x∈X B∗(x) ∈ {B+(x), (B−)c(x)} .
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Proof We will prove first part. The proof of the second is analogous. Let us state

relative cardinality formula in following form

σta(A
∗|B∗) =

A+(x)B∗(x) +mx

B∗(x) +Mx
,

where mx =
∑

z∈X
z 6=x

A+(z)B∗(z) and Mx =
∑

z∈X
z 6=x

B∗(z). By making further trans-

formations we obtain

σta(A
∗|B∗) = A+(x)−

A+(x)Mx −mx

B∗(x) +Mx
.

From this form it is easy to see that, if A+(x) > mx

Mx
then relative cardinality

attains its smallest value when B∗(x) is the smallest. Otherwise smallest value is

attained when B∗(x) is the largest.

From Lemmas 1 and 2 we know that for any x ∈ X we have only two possible

states (both for minimum and maximum case). This yields total complexity of

O(2|X|) which is not satisfactory for practical applications.

Intuition behind our algorithm for computing the minimum is as follows. As-

sign high values of B∗(x) whenever A+(x) is low, thus elements with ”low po-

tential” have greater weight. In case of maximum, assign high values of B∗(x)
whenever (A−)c is also high to assure that ”high potential” elements have largest

weight. Algorithms 1 and 2 implement this intuition. Elements of domain X are

iterated in ascending order of their ”potential”. Thanks to this it is possible to

avoid backtracking. In case of minimum, B+(x) is changed to (B−)c(x) as long

as it lowers total ratio. Conversely, in case of maximum (B−)c(x) is changed to

B+(x) as long as it increases total ratio.

Computing sums in lines 1 and 2 takes O(n). Each iteration of the loop (lines

4–9) takes constant amount of time thus the whole loop takes O(n). In line 3 set

X is iterated in ascending order thus sorting is needed – O(n logn). This yields

total complexity of O(n logn) for both of algorithms.

4 Conclusions

An efficient and exact algorithm for computing relative cardinality for IFSs based

on an algebraic t-norm has been introduced. As we have shown, it can be effec-

tively used in many practical application, among others for determining inclusion

measure and similarity measure. Our further work will be focused on extend-

ing the proposed method on other t-norms and finally on constructing a universal

algorithm for computing relative cardinality for wide range of t-norms.
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Algorithm 1 Calculate min
B∗∈Rep(B)

σta(A
+|B∗)

1: n←
∑

x∈X A+(x) ·B+(x)
2: d←

∑

x∈X B+(x)
3: for all x ∈ X in ascending order of A+(x) do

4: r ← n
d

5: n← n+A+(x) · ((B−)c(x)−B+(x))
6: d← d+ (B−)c(x)−B+(x)
7: if r ≤ n

d
then

8: return r

9: end if

10: end for

Algorithm 2 Calculate max
B∗∈Rep(B)

σta((A
−)c|B∗)

1: n←
∑

x∈X(A−)c(x) ·B+(x)
2: d←

∑

x∈X B+(x)
3: for all x ∈ X in ascending order of A−(x) do

4: r ← n
d

5: n← n+ (A−)c(x) · ((B−)c(x)−B+(x))
6: d← d+ (B−)c(x)−B+(x)
7: if r ≥ n

d
then

8: return r

9: end if

10: end for
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