Tом 2

I KRAJOWA KONFERENCJA圆同回同閶 OPRRREMJNYEル 밈 SMSTEMOWMCM Ksigeg i

BOS188

InstyTut badañ systemowych polskiej akademil nauk

- Krajow K Konferencja

Badan operacyjongek
i. Sgstemowgeh

Organizator Konferencii
Polskie Towarzystwo Badań Operacyjnych i Systemovych przy wspótpracy
Instytutu Badań Systemowych PAII

Komitet naukovy konferencii

Jerzy Hołubiec, Andrzej Kafuszko, Jerzy Kisielnicki, Henryk Kowalowski, Roman Kulikowski, Franciszek Marecki, Zbigniew Nahorski, Stanisłam Piasecki, Jarosłay Sikorski, Jan Stachowicz, Jan Stasierski, Andrzej Straszak, Maciej Sysio, Wradystar Śmitalski

Redaktorzy naukovi materiałóv
 Andrzej Straszal, Zbigniev Mahorski, Jarostay Silorski

honf. \quad H $1841 \frac{11}{1}$
6. Formalizacja modeli decyzyjnych

ENTRY PROBLEM IN ONE DIMENSION UNDER APPROVAL VOTING FOR $n=2+1$ CANDIDATES

Jacek W. Mercik
Instytut Drganizacji i Zarządzania Politechnika Wrocławska Wybrzeże Wyspianskiego 27

50-370 WrocIaw

The entry problem in a political race for a two-party system is considered in the paper. We assume that two parties are displayed along one ideological dimension and the approval voting is used. We discuss chances for winning of any new enterer. We formulated necessary and sufficient condition for win of any new enterer in terms of expected value of number of
 preferation order.

1. The basic assumption and properties of the model.

The entry problem in a political race is considered under the following assumptions about the model:

1. There is a single left - right ideological dimension along which the candidates $L(=1 e f t)$ and $C(=c o n s e r v a t i v e)$ take positions.
2. Each voter has most-preferred position on this dimension.
3. Preferations are generated by distance metrics along ideological dimension.
4. Each voter casts sincerely his or her votes according to the rules of approval voting (Brams and Fishburn, 1978).
5. The candidate with the most number of votes wins.

We assume that voters are distributed over the normalized interval $[0,1]$ according to the distribution function $F(x)$. It is obvious that for only two candidates (L and C) the approval voting is single plurality voting. The enter of a new candidate X changes this situation: for three candidates there is sincere approval voting.

We assume that according to the rules of approval voting choosing for three candidates one from two possibilities of voting system \{1,2\} (i.e. the decision of cast one vote or two votes made by every voter) is equally probable. Generaly, we assume that the every element of the voting system \{1, 2, ...,n-1\} may be uniformly choosen.

Our following considerations are based upon the definition of an elementary support.

Definition. Let $\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$ be a partition of n voters in which E_{k} is a subset of all voters having the same order over the set of candidates, E_{i} r $E_{k}=\emptyset$ for $i \neq k$. We call E_{k} the $k-t h$ elementary support.

Let us divide interval $[0,1]$ into disconnected intervals $I_{1}, I_{2}, \ldots, I_{m}$ such that ${\underset{k}{k}}^{k} I_{k}=[0,1]$. Those intervals arise between all subsequent midpoints found between every pair of candidates' positions. It is easy to see that positions of all voters from one elementary support belong to one and only one such constructed interval and there is no voter from any other elementary support whose position may be found inside this interval. If n is number of candidates we have $m=\left(\frac{n}{2}\right)+1$ such intervals.

Let n_{i} for $i=1,2, \ldots, m$ be a number of voters who belong to the elementary support $E_{i}, n_{i}=F\left(a_{i}\right)-F\left(a_{i-1}\right)$ where $I_{i}=$ $\left[a_{i}, a_{i-1}\right]$.

We assume that for all $i n_{i}>0$.
Let X be a position of a new enterer such that $L<X<C$. One may find in fig. 1 a peculiar position of L, C and X fulfilling above condition together with elementary supports E_{1}, E_{2}, E_{3}, E_{4} (in fact I_{1}, I_{2}, I_{3} and I_{4} respectively) connected with them. For those positions of L, C and X there are the following orderings given by voters. Letrik - describes the position given by a voter from elementary support E_{k} for i-th candidate in this voter preferation order (Table 1).

Fig.1. Elementary supports for L < X < C candidates positions.

	E_{1}	E_{2}	E_{3}	E_{4}
L	1	2	3	3
C	3	3	2	1
x	2	1	1	2

Table 1. Matrix π_{k}^{i} of orders over $L_{,} C$ and X for voters from
el ementary support $E_{i}, i=1,2,3,4$.

In our first theorem we show that for all position of x such that $0 \leq L<X<C \leq 1$ the above matrix $\left\{\pi_{k}^{i}\right\}$ is constant.
Theorem 1. Let L, C and X are positions of candidates. If $L<X<C$ then preferations of voters from particular elementary support do not depend from the position of X inside of [L,C] and they are given by the above matrix $\left\{\pi_{k}^{i}\right\}$.
Proof. Constructing elementary supports one may notice that

$$
a_{0}=0, a_{1}=(L+X) / 2, a_{2}=(L+C) / 2, a_{3}=(X+C) / 2, a_{4}=1
$$

and $a_{0}<a_{1}<a_{2}<a_{3}<a_{4}$.
Let Y be position of a voter Y from E_{1}, i.e. $Y<a_{1} \in Y<$ $(L+X) / 2$. From the matrix $\left\{\pi_{k}^{i}\right\}$ we may find Y 's preferation, what means that the following inequalities must be fulfilled:

$$
\left\{\begin{align*}
|Y-L| & <X-Y \tag{1}\\
X-Y & <C-Y
\end{align*}\right.
$$

The above leads to two following cases

$$
\left\{\begin{array}{l}
Y-L<X-Y \tag{2}\\
X-Y<C-Y
\end{array} \quad \text { for } Y-L \geq 0\right.
$$

and

$$
\left\{\begin{array}{l}
L-Y<X-Y \tag{3}\\
X-Y<C-Y
\end{array} \quad \text { for } Y-L<0\right.
$$

or equivalently

$$
\left\{\begin{array}{l}
Y<(X+L) / 2 \tag{4}\\
X<C
\end{array} \text { for } Y-L \geq 0\right.
$$

and

$$
\left\{\begin{array}{l}
L<X \tag{5}\\
X<Y
\end{array} \quad \text { for } Y-L<0\right.
$$

It is evidently noticeable that for $Y \in E_{1}$ there is no
position $X: L<X<C$ which may change any of inequalities
or (5) what means there is no position which may change the order (given by a voter from E_{1}) over the set of candidates.

Analogical considerations may be done for the rest of elementary supports: $E_{2^{\prime}}, E_{3}$, and $E_{4^{*}}$ Q.E.D.
2. The conditions of win of new enterer X.

The conception of evaluation of new enterer X^{3} s chances for winning in political race with two other candidates is based on the expected value of number of X^{3} s votes. The necessity of such a way follows from the fact that the approval voting lets each voter cast $j \in\{1,2, \ldots, \ldots, n-1\}$ votes - one vote for one candidate.

For the uniform probabilistic distribution over the set $\{1,2, \ldots, n-1\}$ it was found (Mercik, 1986) that an expected number of votes $-S^{i}$ - received by the i-th candidate is a random variable with the following expected value and variations, respectively:

$$
\begin{equation*}
E\left(S^{i}\right)=1 /(n-1)\left(n-\sum n_{k} \pi_{k}^{i}\right) \tag{b}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(s^{i}\right)=\sum_{k}\left(n-\pi_{k}^{i}\right)\left(\pi_{k}^{i}-1\right) n_{k} /(n-1)^{2} \tag{7}
\end{equation*}
$$

where n denotes number of candidates and number of voters is normalized, i.e. $\sum_{k} n_{k}=1$.
X entering into political race with other two candidates may take the following positions: (a) more left then L, (b) more right then C, and (C) between L and C. It was shown Mercik, 1988) that for X only the position between L and C may give him or her the largest possible number of votes. So, in our further consideration we will omit the cases (a) and (b).

Let s^{L}, s^{C} and s^{X} are random variables describing a number of votes received under approval voting by L, C and X, respectively.

Let n_{i} are defined for all i as on page 2.
Theore 2. If X is expected to be a winner then number of voters giving him or her the first position in their order over the set of candidates must be greater then zero.
Proof. Expression "If X is expected to be winner" is equivalent to the following inequalities:

$$
\begin{align*}
& E\left(S^{L}\right)<E\left(S^{x}\right) \tag{8}\\
& E\left(S^{C}\right)<E\left(S^{x}\right) \tag{9}
\end{align*}
$$

From (6) and the matrix $\left\{n_{k}^{i}\right\}$ given in Table 1 one may receive the following

$$
\begin{align*}
n_{1}-n_{2}-2 n_{3}-n_{4} & <0 \tag{10}\\
-n_{1}-2 n_{2}-n_{3}+n_{4} & <0 \tag{11}
\end{align*}
$$

and then

$$
\begin{equation*}
n_{2}+n_{3}>0 \tag{12}
\end{equation*}
$$

From the matrix $\left\{\pi_{k}^{i}\right\}$ we find that X takes first position for voters from E_{2} and E_{3}. In view of (12) the theorem is proved.

The above condition (12) is not sufficient for X to expect him or her to be winner. We try to solve this problem in the following theorem.

Theorem 3. If X is winning under plurality voting then X is also expected to be winner under approval voting.
Proof. Let (8) and (9) not be held. Then from (10) and (11)

$$
\begin{equation*}
n_{1}-n_{2}-2 n_{3}-n_{4} \geq 0 \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
-n_{1}-2 n_{2}-n_{3}+n_{4} \geq 0 \tag{14}
\end{equation*}
$$

From (13) and for $\sum_{k} n_{k}=1$ one may receive

$$
\begin{equation*}
n_{1} \geq 1 / 2+n_{3} / 2 \tag{15}
\end{equation*}
$$

or from (14)

$$
\begin{equation*}
n_{4} \geq 1 / 2+n_{2} / 2 \tag{16}
\end{equation*}
$$

The win of x under plurality voting is equivalent to the following inequalities

$$
\begin{equation*}
\mathrm{n}_{2}+\mathrm{n}_{3}>1 / 2 \tag{17}
\end{equation*}
$$

or, because $\sum_{k} n_{k}=1$

$$
\begin{equation*}
n_{1}+n_{4}<1 / 2 \tag{1日}
\end{equation*}
$$

Hence (15) and (16) are contraditions to (18). Q.E.D.
3. Conclusions.

From theorem 3 one may obtain also, so called "1/2 separation opportunity" because the condition (18) $n_{2}+n_{3}>1 / 2$ means also that (in the sense of number of votes) the minimal distance (between L and C) giving for X the opportunity to be expected winner under approval voting is equal to $1 / 2$. This is necessary but not sufficient condition.

It is also noticeable that "1/2 separation opportunity" under approval voting is slitly less rigorus then "2/3 separation opportunity of Brams and Straffin (1982) under plurality voting。

4. Acknowl edgement.

Those results were partialy received with support of System Research Institute of Polish Academy of Science Grant no.02.15.

5. References.

Brams S.J.s Fishburn P.: Approval voting. The American Political Science Review 72 (1978), 831-847.

Brams S.J.s Straffin P.D.: The entry problem in a political race
[in:] Political Equilibrium. P.C.Ordeshook and K.A.Shepsle (eds), Boston, Kluwer-Ni jhoff, 1982. Mercik J.W.: The probability characteristics of approval voting in one dimension, Report PRE 50 (1986), Inst.of Ind. Enng. and Mngt. Technical University of Wroclaw. Mercik J.W.: Computer simulations of approval voting: positional in one dimension candidates, characteristic .i forthcoming in Europ. J.Political Economy, 1988).

Zarzad
 Polskiego Towarzystwa Badaí Operacyinych i Systemowych

Prezes prof.dr hab.inz. Andrzej Straszas Instytut Badaí Systemowych PAR

Wiceprezes prof.dr hab.iǹ̇. Jan Stasierski
Wojstowa Akademia Techniczna

5ekretarg generalmy dr inz. Zbigniew Nahorski Instytut Badaí Systemowych PAI

5 ¢kretarg
dr inz. Jarosłav Sikorski
Instytut Badań Systemowych PAI

5karbmils
dr inż. Andrzej Katuszko Instytut Badaí Systemowych PAI

Czfonkowic
prof.dr hab. Jerzy Kisielnicki
Wydzial larzadzania 0
doc.dr hab.inż. Jan Stachowicz
Zakfad hant Zarzadzania PAת
doc.dr hab.inż. Bohdan Korzan
Wojstowa Akademia Techniczna
doc.dr hab.inż. Maciej Sysło lastytat Informatyki DWr.

> K®omisjoa 『ewizyjina
> PR2ETODHICZACI

dr Wradystaw Świtalski Iatedra Cybernetyki i Badaí Operacyjnych ow

CZKOHIOTIE

dr inż. Janusz Kacprzyk
Instytut Badaí Systemowfch PAB
doc.dr hab.Henryk Sroka
Akademia Ekonomiczna w Ratowicach
dr inż. Marek Malarski
Instytat Iransporta PW
dr inż. Leon SYomiński
lnstytut Badaí Systemowych PAII

IBS

Konf.
41284/II

