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Fuzzy logical connectives in approximate

reasoning. Dual operations

Józef Drewniak
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35–310 Rzeszów, ul. Rejtana 16a, Poland

jdrewnia@univ.rzeszow.pl

Abstract

This paper concerns applications of Duality Principle in fuzzy algebra, fuz-

zy logics and approximate reasoning. Usually dual definitions, theorems,

proofs and examples are neglected, omitted or left as a simple exercise.

They are treated as an image in mirror. However, such opinion can be quite

false, because duality is an equivalence relation. Thus both dual objects are

equally important or non important. It can be easy seen in the case of linear

programming: one handbook describes mainly maximization of linear func-

tionals, while another concentrates on minimization. We tray to fill up this

gap in treating of dual objects by presentation of examples of important dual

notions and properties from lattice theory to relation theory and from fuzzy

logic to fuzzy relational equations. In particular we describe properties of

dual connectives of multivalued logic and summarize properties of dual re-

lation compositions. Finally, a similarity between fuzzy coimplication and

poset difference is analyzed.

Keywords: Duality Principle, lattice duality, dual negation, dual conjunc-

tion, coimplication, dual relation composition, dual relation equation, dif-

ference.

1 Introduction

Approximate reasoning in fuzzy environment initiated by Zadeh [26] is a moti-

vation of many algebraical and logical researches. In particular, algebra of fuzzy
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relations [15], fuzzy relation equations [23] or algebra of fuzzy numbers [14], pro-

vide answers for diverse questions of fuzzy reasoning. Similarly, axiomatizations

of fuzzy connectives by Baldwin and Pilsworth [2] or Magrez and Smets [24]

were based on needs of inference rules. Duality is a fundamental notion of lat-

tice theory [3]. However, another versions of duality appears in linear algebra,

Fourier analysis, linear programming, nonlinear optimization, mathematical lin-

guistic, relation theory, category theory, graph theory, game theory or quantum

field theory. Recently, approximate reasoning with interval-valued fuzzy sets [16]

and intuitionistic fuzzy sets [4] needs attention to dual operations and properties in

fuzzy algebra and fuzzy logic. This paper is concentrated around precise formu-

lation of diverse consequences of Duality Principle. We pay special attention to

applications of Duality Principle in fuzzy algebra, fuzzy logics and fuzzy relation

algebra. At first, we describe basic consequences of Duality Principle in com-

plete and infinitely distributive lattices (Sections 2, 3). Next, dual algebraic and

functional properties of unary and binary connectives of fuzzy logic are examined

(Sections 4 -7). Then, dual relation algebras based on dual relation compositions

are presented. Finally, axioms of difference are compared with axioms of coim-

plication.

2 Duality in lattices

Let (L,6) be a partially ordered set (poset). It is called a lattice if there exist

extremal bounds

a ∨ b = sup{a, b}, a ∧ b = inf{a, b} ∈ L.

Thus (cf. [3], Chapter I), the lattice (L,6) is an algebraic structure (L,∨,∧) with

substructures: a join semilattice (L,∨) and a meet semilattice (L,∧). Lattice

operations ∨ and ∧ are idempotent, commutative, associative and fulfil the ab-

sorption laws:

a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a for a, b ∈ L.

The lattice is bounded if there exist 1 = maxL, and 0 = minL, i.e.

a ∨ 0 = 0 ∨ a = a, a ∧ 1 = 1 ∧ a = a for a ∈ L.

The lattice is complete if every nonempty subset A ⊂ L has bounds supA,

inf A ∈ L. The lattice is called distributive if its binary operations are mutually

distributive, i.e.

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for a, b, c ∈ L.
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The lattice (L,∨,∧, ′, 0, 1) with a unary operation ′ : L → L is called comple-

mented if

(a′)′ = a, a 6 b⇒ b′ 6 a′ for a, b ∈ L.

At first, let (L,∨,∧, 0, 1) be a bounded lattice. Because of symmetry in the alge-

braic lattice properties we get an isomorphism between semilattices (L,∨, 0,6)
and (L,∧, 1,>). Thus every property from one semilattice has its dual property

in the other semilattice. For example

a 6 a ∨ b⇔ a > a ∧ b, a ∨ 0 = a⇔ a ∧ 1 = a,

(a 6 c, b 6 c⇒ a ∨ b 6 c)⇔ (a > c, b > c⇒ a ∧ b > c)

for a, b, c ∈ L. Now, if (L,∨,∧, ′, 0, 1) is a complemented lattice (or Boolean

algebra), then we also have

(a ∨ b)′ = (a′ ∧ b′)⇔ (a ∧ b)′ = (a′ ∨ b′),

a ∨ a′ = 1⇔ a ∧ a′ = 0, a→ b = a′ ∨ b⇔ a← b = a′ ∧ b

for a, b ∈ L. The above properties can be summarized in a general rule called

‘Duality Principle’.

Theorem 1 (Duality Principle, cf. [5], p. 76). Let (L,∨,∧, 0, 1) be a bounded

lattice. Replacing 6 by >, ∨ by ∧, 0 by 1, and conversely in a lattice statement,

we obtain the equivalent one.

This principle is a very useful tool in mathematical considerations because

many proofs can be omitted as dual. In extremal thrift whole chapters can be

omitted as dual results (an exercise for the reader). Simultaneously, in applica-

tions we need precise definitions, theorems and examples, and many people try to

deduce omitted statements.

Example 1. Besides primary dual pairs (6,>), (∨,∧), (0, 1) from Duality

Principle, we have many secondary dual pairs such as: (above, below), (left,

right), (maximum, minimum), (full, empty), (positive, negative), (odd, even),

(supremum, infimum), (maximal element, minimal element), (upper bound, lower

bound), (the greatest element, the least element), (convex, concave), (contraction,

expansion), (restriction, extension), (limes superior, limes inferior), (upper semi-

continuity, lower semicontinuity), (left continuity, right continuity), (minimiza-

tion, maximization), (closure, interior), (closed, open), (ideal, filter), (subdistribu-

tivity, superdistributivity), (real, imaginary), (abscissa, ordinate), (perpendicular,

parallel) etc.
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3 Duality in infinitely distributive lattices

Now we consider more general case: a lattice with additional binary operation

∗ : L2 → L.

Definition 1. Let (L,∨,∧, ∗, 0, 1) be a complete lattice with an additional binary

operation ∗ : L2 → L.

• The operation ∗ is infinitely distributive with respect to supremum (infinitely

sup−distributive) if it fulfils

∀
a,bt∈L

a ∗ (sup
t∈T

bt) = sup
t∈T

(a ∗ bt), ∀
a,bt∈L

(sup
t∈T

bt) ∗ a = sup
t∈T

(bt ∗ a). (1)

for arbitrary index set T 6= ∅.
• The operation ∗ is infinitely distributive with respect to infimum (infinitely

inf −distributive) if it fulfils

∀
a,bt∈L

a ∗ (inf
t∈T

bt) = inf
t∈T

(a ∗ bt), ∀
a,bt∈L

(inf
t∈T

bt) ∗ a = inf
t∈T

(bt ∗ a). (2)

for arbitrary index set T 6= ∅.
• The complete lattice L is called infinitely sup−distributive if the operation

∗ = ∧ is infinitely sup−distributive and it is infinitely inf −distributive if the

operation ∗ = ∨ is infinitely inf −distributive.

• The complete lattice L is called infinitely distributive if it is infinitely sup− and

inf −distributive.

Corollary 1. Let L be a complete lattice with an additional binary operation ∗.

• If the operation ∗ is infinitely sup−distributive, then it is distributive with re-

spect to ∨.

• If the operation ∗ is infinitely inf −distributive, then it is distributive with re-

spect to ∧.

• In both the above cases the operation ∗ is increasing.

Proof. Let a, b, c ∈ L. Putting T = {1, 2}, b1 = b, b2 = c in (1) we get

a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c), (b ∨ c) ∗ a = (b ∗ a) ∨ (c ∗ a). (3)

Thus the operation ∗ is distributive with respect to ∨. Dually, using (2) we get

distributivity with respect to ∧:

a ∗ (b ∧ c) = (a ∗ b) ∧ (a ∗ c), (b ∧ c) ∗ a = (b ∗ a) ∧ (c ∗ a). (4)
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Now, if b 6 c, then b ∨ c = c. Using (3) we have

(a ∗ b) ∨ (a ∗ c) = (a ∗ c), (b ∗ a) ∨ (c ∗ a) = (c ∗ a)

which proves that (a ∗ b) 6 (a ∗ c) and (b ∗ a) 6 (c ∗ a), i.e. the operation ∗ is

increasing. Similarly, it is increasing in the case of (4).

According to [19] (Proposition 1.22), in the case L = [0, 1] we have a char-

acterization of infinite distributivity.

Lemma 1. An operation ∗ : [0, 1]2 → [0, 1] is infinitely sup−distributive if and

only if it is increasing and left-continuous. Dually, it is infinitely inf −distributive

if and only if it is increasing and right-continuous.

4 Duality in fuzzy logics

Diversity of fuzzy logic connectives was described in details in monographs [11]

and [17]. Connectives of fuzzy logics are unary and binary functions: U : [0, 1]→
[0, 1], B : [0, 1]2 → [0, 1]. Unary operations can be continuous, monotonic,

convex, idempotent (involutive) or has fixed points. ¿From the algebraic point of

view, binary operations can be commutative, associative, cancellable, invertible,

idempotent, with zero element (null), with zero divisors or with neutral element

(identity). ¿From the point of view of mathematical analysis, binary operations

can be continuous, monotonic, Lipschitz or Archimedean. In particular we deal

with simple Lipschitz condition (B is C−Lipschitz)

∃
C>0
|B(x, y)−B(u, v)| 6 C(|x− u|+ |y − v|) for x, y, u, v ∈ [0, 1] (5)

and Archimedean conditions for continuous operations (cf. [17], Proposi-

tion 5.1.12)

∀
x∈(0,1)

B(x, x) < x or ∀
x∈(0,1)

B(x, x) > x. (6)

The standard concept of duality in fuzzy logics is connected with the Łukasiewicz

negation

x′ = 1− x, x ∈ [0, 1]. (7)

The dual operations have the form:

U ′(x) = 1− U(1− x), B′(x, y) = 1−B(1− x, 1− y), x, y ∈ [0, 1]. (8)

Since ([0, 1],max,min, ′, 0, 1) is a complemented lattice, then we can use Duality

Principle for describing properties of dual operations. By direct verification of

equations and inequalities for unary operations in real domain we get
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Lemma 2. Let U : [0, 1]→ [0, 1], A ⊂ [0, 1], 1−A = {1 − a : a ∈ A}.

• U is increasing, if and only if U ′ is increasing.

• U is decreasing, if and only if U ′ is decreasing.

• U is continuous, if and only if U ′ is continuous.

• U is upper (lower) continuous, if and only if U ′ is lower (upper) continuous.

• U is left- (right-) continuous, if and only if U ′ is right- (left-) continuous.

• U is convex (concave), if and only if U ′ is concave (convex).

• U(x) 6 x, x ∈ A⇔ U ′(x) > x, x ∈ 1−A.

• U(x) > x, x ∈ A⇔ U ′(x) 6 x, x ∈ 1−A.

• U has a fixed point s, if and only if U ′ has a fixed point 1− s.

• U(x) > 0, x ∈ A⇔ U ′(x) < 1, x ∈ 1−A.

• U(x) < 1, x ∈ A⇔ U ′(x) > 0, x ∈ 1−A.

• U(U(x)) 6 x, x ∈ A⇔ U ′(U ′(x)) > x, x ∈ 1−A.

• U(U(x)) > x, x ∈ A⇔ U ′(U ′(x)) 6 x, x ∈ 1−A.

• U is an involution, if and only if U ′ is an involution.

• Boundary values:

x 0 1

U ′(x) 1− U(1) 1− U(0)

Remark 1. Let us observe the difference between properties of monotonicity and

convexity. For example let us assume that operation U is increasing, i.e. x 6 y ⇒

U(x) 6 U(y). By Duality Principle we obtain the condition x > y ⇒ U ′(x) >
U ′(y), which describes the same kind of monotonicity. Now let U be a convex

function, i.e. U(tx+ (1− t)y) 6 tU(x) + (1− t)U(y). By Duality Principle we

obtain U ′(tx+(1− t)y) > tU ′(x)+ (1− t)U ′(y), which describes the dual kind

of convexity.

In the case of binary operations the function (7) is an example of isomorphism

between ([0, 1], B) and ([0, 1], B′). Thus it saves typical algebraic properties of

binary operations (cf. [13]) and we obtain

Lemma 3. Let B : [0, 1]2 → [0, 1].
• B is associative, commutative or idempotent, if and only if B′ has the same

properties.

• B has neutral element e, if and only if B′ has neutral element e′ = 1− e.

• B has zero element z, if and only if B′ has zero element z′ = 1− z.

• B is cancellable, if and only if B′ is cancellable.

• B is invertible, if and only if B′ is invertible.

• B has divisors of zero z , if and only if B′ has divisors of zero z′ = 1− z.
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Lemma 4. Let B : [0, 1]2 → [0, 1].
• B′ has the same monotonicity as B from (↑, ↑), (↑, ↓), (↓, ↑) or (↓, ↓).
•B is left (right) continuous with respect to one variable, if and only if B′ is right

(left) continuous with respect to the same variable.

• B is continuous and Archimedean, if and only if B′ is continuous and Archi-

medean.

• B is C−Lipschitz, if and only if B′ has the same property.

• Boundary values:

B′(x, y) 0 1

0 1−B(1, 1) 1−B(1, 0)

1 1−B(0, 1) 1−B(0, 0)

Proof. Results for monotonicity are consequences of composition of monotonic

functions. Similarly, continuity is a consequence of composition of continuous

functions If B(x, x) < x for x ∈ (0, 1) , then B′(x, x) = 1−B(x′, x′) > 1−x′=

x. Thus B′(x, x) > x for x ∈ (0, 1) and we obtain the dual Archimedean condi-

tion from (6). Assuming that B is C−Lipschitz we obtain |B′(x, y)−B′(u, v)| =
|1−B(x′, y′)−1+B(u′, v′)|= |B(x′, y′)−B(u′, v′)| 6 C(|x′−u′|+|y′−v′|) =
C(|x − u| + |y − v|) for x, y, u, v ∈ [0, 1]. So B′ is also C−Lipschitz. Finally,

the boundary values are direct consequence of (8).

5 Duality of fuzzy negations

Definition 2 (cf. [7]). A decreasing function N : [0, 1] → [0, 1] is called a fuzzy

negation if N(0) = 1, N(1) = 0. A fuzzy negation N is called

• a strict negation if it is a bijection;

• a strong negation if it is an involution;

• a non-vanishing negation if N(x) > 0⇔ x < 1;

• a non-filling negation if N(x) < 1⇔ x > 0;

• a contracting negation if

x 6 N(N(x)) 6 N(x) or N(x) 6 N(N(x)) 6 x, x ∈ [0, 1]; (9)

• an expanding negation if

N(N(x)) 6 x 6 N(x) or N(x) 6 x 6 N(N(x)), x ∈ [0, 1]. (10)

Corollary 2 ([1], pp. 14-15). • Every strong negation is strict, contracting and

expanding.

• Every strict negation is non-vanishing and non-filling.
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Example 2 ([1], p. 15). Sugeno negations Nλ, λ > −1 is a parametric family of

strong negations, where

Nλ(x) =
1− x

1 + λx
, x ∈ [0, 1], N ′

λ = Nλ′ , with λ′ =
−λ

1 + λ
.

As a particular case for λ = 0 we get the Łukasiewicz negation (7). Formulas

Np(x) = 1 − xp, N ′(x) = (1 − x)p, p > 0, x ∈ [0, 1] gives families of strict

negations. They are contracting for p 6 1 and expanding for p > 1. Now let us

consider a three valued negation

N(x) =











1, if x < 0.5

0.5, if x = 0.5

0, if x > 0.5

, N2(x) =











0, if x < 0.5

0.5, if x = 0.5

1, if x > 0.5

, x ∈ [0, 1], N ′ = N.

It is neither strict nor non-filling or non-vanishing negation. However, it is an

expanding negation.

Theorem 2. • If N is a negation, strict negation or strong negation, then the same

is N ′.

• If N has a fixed point s, then N ′ has a fixed point s′ = 1− s.

• If N is a non-vanishing (non-filling) negation, then N ′ is a non-filling (non-

vanishing) negation.

• If N is a contracting (expanding) negation, then N ′ is a contracting (expanding)

negation.

Proof. We consider only the case of contracting (expanding) negations, and an-

other cases are direct consequence of Lemma 2. Let

A = {x ∈ [0, 1] : x 6 N(N(x)) 6 N(x)}.

If 1−x ∈ A, then 1−x 6 N(N(1−x)) 6 N(1−x), i.e. x > 1−N(N(1−x)) >
1 − N(1 − x). Thus N ′(x) 6 N ′(N ′(x)) 6 x for x ∈ 1 − A, which is the dual

part of condition (9). Another conditions from (9), (10) can be check in a similar

way.

6 Duality between fuzzy conjunctions

and disjunctions

Definition 3 (cf. [7]). An operation C : [0, 1]2 → [0, 1] is called a fuzzy conjunc-

tion if it is increasing with respect to each argument and

C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0.
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A fuzzy disjunction is an operation D : [0, 1]2 → [0, 1] which is increasing with

respect to each argument and

D(0, 0) = 0, D(0, 1) = D(1, 0) = D(1, 1) = 1.

A fuzzy conjunction C is called

• a weak triangular norm if C(x, 1) 6 x, C(1, y) = y;

• a semicopula (triangular seminorm) if it has the neutral element e = 1;

• a pseudo triangular norm if it is associative with e = 1;

• a triangular norm if it is associative, commutative with e = 1;

• strict if it is continuous and strictly increasing in (0, 1]2.

• a quasi-copula if it is 1-Lipschitz with e = 1;

• a conjunctive uninorm if it is associative, commutative with e ∈ (0, 1].
A fuzzy disjunction D is called

• a weak triangular conorm if D(x, 1) > x, D(0, y) = y;

• a triangular semiconorm if it has the neutral element e = 0;

• a pseudo triangular conorm if it is associative with e = 0;

• a triangular conorm if it is associative, commutative with e = 0;

• strict if it is continuous and strictly increasing in [0, 1)2.

• a disjunctive uninorm if it is associative, commutative with e ∈ [0, 1).

Example 3. The most important dual pairs of fuzzy conjunctions and disjunctions

are known as triangular norms T and triangular conorms S, where T ′ = S:

TM (x, y) = min(x, y), TP (x, y) = xy, TL(x, y) = max(x+ y − 1, 0),

SM(x, y) = max(x, y), SP (x, y) = x+ y − xy, SL(x, y) = min(x+ y, 1),

TD(x, y) =











x, if y = 1

y, if x = 1

0, otherwise

, SD(x, y) =











x, if y = 0

y, if x = 0

1, otherwise

,

TFD(x, y) =

{

min(x, y), x + y > 1

0, otherwise
, SFD(x, y) =

{

max(x, y), x + y < 1

1, otherwise
,

for x, y ∈ [0, 1], where TP , SP are strict and TL, SL, TD, SD are nilpotent.

A good example of fuzzy conjunction and disjunction gives geometric mean

G(x, y) =
√
xy, G′(x, y) = 1−

√

(1− x)(1− y), x, y ∈ [0, 1].
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Useful examples of triangular seminorms and semiconorms can be obtained by

convex combination of triangular norms (conorms)

C(x, y) = λxy+(1−λ)min(x, y), C ′(x, y) = λ(x+y−xy)+(1−λ)max(x, y),

where λ, x, y ∈ [0, 1]. As examples of conjunctive and disjunctive uninorms

for fixed e ∈ (0, 1) we consider the least uninorm Ue and the least idempotent

uninorm Ue
min (cf. [12]) with their duals (the greatest uninorm and the greatest

idempotent uninorm with neutral element 1− e), where

Ue =











0 in [0, e)2

max in [e, 1]2

min otherwise

, Ue
′ = U1−e =











1 in (1− e, 1]2

min in [0, 1− e]2

max otherwise

,

Ue
min =

{

max in [e, 1]2

min otherwise
, (Ue

min)′ = Umax
1−e =

{

min in [0, 1 − e]2

max otherwise
.

For the boundary case e = 1 we obtain U1 = TD , U0 = SD and U1
min = TM ,

U0
max = SM .

Duality properties of fuzzy conjunctions and disjunctions are commonly known

(de Morgan Triples). Directly from Lemmas 3, 4 we get

Theorem 3. The dual operation of a fuzzy conjunction, weak triangular norm,

triangular seminorm, pseudo triangular norm, triangular norm, strict triangu-

lar norm or conjunctive uninorm is a fuzzy disjunction, weak triangular conorm,

triangular semiconorm, pseudo triangular conorm, triangular conorm, strict tri-

angular conorm or disjunctive uninorm, respectively.

Moreover, a fuzzy conjunction is continuous, strict, Archimedean or 1-Lipschitz,

if and only if its dual operation is continuous, strict, Archimedean or 1-Lipschitz

fuzzy disjunction.

7 Duality between fuzzy implications

and coimplications

Definitions and examples of fuzzy implications are based mainly on the recent

monograph by Baczyński and Jayaram [1].

Definition 4 (cf. [1]). Let functions I, I∗ : [0, 1]2 → [0, 1] be decreasing with

respect to the first variable and increasing with respect to the second one.
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• I is called fuzzy implication if I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0;

• I∗ is called fuzzy coimplication if

I∗(0, 0) = I∗(1, 0) = I∗(1, 1) = 0, I∗(0, 1) = 1.
A fuzzy implication I is said to satisfy:

• (NP), the left neutral property, if I(1, y) = y, y ∈ [0, 1],
• (EP), the exchange principle, if I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1],
• (IP), the identity principle, if I(x, x) = 1, x ∈ [0, 1],
• (OP), the ordering property, if I(x, y) = 1⇔ x 6 y, x, y ∈ [0, 1],
• (CP), the law of contraposition, if I(x, y) = I(1− y, 1− x), x, y ∈ [0, 1].

Example 4. List of important fuzzy implications (cf. [1]) with their coimplica-

tions (dual operation in this case is denoted by I∗, because I ′ is usually used for

reciprocal fuzzy implications as in [1], Definition 1.6.1):

ILK(x, y) = min(1− x+ y, 1), I∗LK(x, y) = max(0, y − x)

IGD(x, y) =

{

1, if x ≤ y

y, if x > y
, I∗GD(x, y) =

{

0, if x ≥ y

y, if x < y
,

IRC(x, y) = 1− x+ xy, I∗RC(x, y) = (1− x)y,

IKD(x, y) = max(1− x, y), I∗KD(x, y) = min(1− x, y),

IGG(x, y) =

{

1, if x ≤ y
y
x
, if x > y

, I∗GG(x, y) =

{

0, if x ≥ y
y−x
1−x

, if x < y
,

IRS(x, y) =

{

1, if x ≤ y

0, if x > y
, I∗RS(x, y) =

{

0, if x ≥ y

1, if x < y
,

IWB(x, y) =

{

1, if x < 1

y, if x = 1
, I∗WB(x, y) =

{

0, if x > 0

y, if x = 0
,

IFD(x, y)=

{

1, x ≤ y

max(1−x, y), x>y
, I∗FD(x, y)=

{

1, x≥y

max(1−x, y), x<y

for x, y ∈ [0, 1].

Theorem 4. Let I : [0, 1]2 → [0, 1].
• The dual of a fuzzy implication is a coimplication and vice versa.

• Fuzzy implication fulfils (EP) or (CP) if and only if its dual has the same prop-

erty.

• If fuzzy implication fulfils (NP), then I∗(0, y) = y, y ∈ [0, 1].
• If fuzzy implication fulfils (IP), then I∗(x, x) = 0, y ∈ [0, 1].
• If fuzzy implication fulfils (OP), then I∗(x, y) = 0⇔ x > y, x, y ∈ [0, 1].
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Proof. Using monotonicity and boundary values from Lemma 4 it is evident that

I∗ fulfils the definition of coimplication. Let us observe, that I∗(x, y) = 1 −
I(x′, y′). Thus, if I fulfils (EP), then

I∗(x, I∗(y, z)) = 1− I(x′, I(y′, z′)) = 1− I(y′, I(x′, z′)) = I∗(y, I∗(x, z)),

for x, y, z ∈ [0, 1], i.e. I∗ also fulfils (EP). Similarly, if I fulfils (CP), then

I∗(y′, x′) = 1− I(y, x) = 1− I(x′, y′) = I(x, y), x, y ∈ [0, 1],

which proves, that I∗ fulfils (CP). In the case of other properties from Definition 4

we obtain new conditions:

if I fulfils (NP), then I∗(0, y) = 1− I(1, y′) = 1− y′ = y,

if I fulfils (IP), then I∗(x, x) = 1− I(x′, x′) = 1− 1 = 0,

if I fulfils (OP), then I∗(x, y) = 0 ⇔ 1− I(x, y) = 0 ⇔ I(x, y) = 1 ⇔ x 6 y

for x, y ∈ [0, 1], what finishes the proof.

8 Dual relation compositions

Fuzzy relations generalize characteristic functions of binary relations. Let X,Y 6=
∅ and L = (L,∨,∧, 0, 1) be a complete lattice. An L−fuzzy relation between sets

X and Y is an arbitrary mapping R : X×Y → L (a fuzzy relation for L = [0, 1]).
In the case X = Y we say about L−fuzzy relation on a set X. The family of all

L−fuzzy relations on X is denoted by LR(X) (FR(X) for fuzzy relations). For

R,S ∈ LR(X) we use the induced order and the lattice operations:

R 6 S ⇔ ∀
x,y∈X

(R(x, y) 6 S(x, y)), (11)

(R∨S)(x, y) = R(x, y)∨S(x, y), (R∧S)(x, y) = R(x, y)∧S(x, y), x, y ∈ X.

(12)

Usually these operations are considered as the simplest version of inclusion, sum

and intersection of fuzzy relations, respectively (cf. [25]). However, the most

important operation on fuzzy relations is their composition.

Definition 5 ([15]). Let L be a complete lattice with a binary operation ∗ : L2 →

L. By sup−∗ composition of L−fuzzy relations R,S we call the L−fuzzy rela-

tion R ◦ S, where

(R ◦ S)(x, z) = sup
y∈X

(R(x, y) ∗ S(y, z)), x, y ∈ X. (13)

Similarly, inf −∗ composition (dual composition) is defined by

(R ◦′ S)(x, z) = inf
y∈X

(R(x, y) ∗ S(y, z)), x, y ∈ X. (14)
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Properties of composition ◦ depends on properties of operation ∗, what was

examined in details in the paper [8] in the case L = [0, 1]. We recall here some of

these results.

Theorem 5 ([8]). Let ∗ : [0, 1]2 → [0, 1].
• Monotonicity of the operation ∗ (it is increasing or decreasing with respect to

the first or to the second argument) is equivalent to suitable property of the com-

position ◦.

• The operation ∗ has (left, right) zero element z ∈ [0, 1] if and only if the compo-

sition ◦ has suitable zero element Z(x, y) = z, x, y ∈ X.

• If the operation ∗ is increasing, then the composition ◦ is distributive over ∨

and subdistributive over ∧, i.e.

T ◦ (R∨S) = T ◦R∨T ◦S, (R∨S) ◦T = R ◦T ∨S ◦T, R, S, T ∈ FR(X).

T ◦ (R∧S) 6 T ◦R∧T ◦S, (R∧S) ◦T 6 R ◦T ∧S ◦T, R, S, T ∈ FR(X).

• The operation ∗ is infinitely sup−distributive if and only if the composition ◦ is

infinitely sup−distributive, i.e.

R ◦ (sup
t∈T

St) = sup
t∈T

(R ◦ St), (sup
t∈T

St) ◦R = sup
t∈T

(St ◦R),

where R,St ∈ FR(X), t ∈ T for arbitrary index set T 6= ∅.
• Let the operation ∗ be infinitely sup−distributive. The operation ∗ is associative

in [0, 1] if and only if the composition ◦ is associative in FR(X).
• Let z = 0 be the zero element of the operation ∗. The operation ∗ has (left,

right) neutral element e ∈ (0, 1] if and only if the composition ◦ has suitable

neutral element E ∈ FR(X), where

E(x, y) =

{

e, x = y

0, x 6= y,
, x, y ∈ X. (15)

Directly from Theorem 5 and Lemma 1 we get

Corollary 3. Let an operation ∗ : [0, 1]2 → [0, 1] be increasing.

• If the operation ∗ is left-continuous in [0, 1], then the composition ◦ is infinitely

sup−distributive in FR(X).
• If the operation ∗ is left-continuous and associative in [0, 1], then the composi-

tion ◦ is associative in FR(X).
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Definition 6 ([18]). Let the composition ◦ be associative. Powers of fuzzy relation

R are defined by the recurrence:

R1 = R, Rm+1 = Rm ◦R, m = 1, 2, . . .

Additionally we consider the closure R∨ and kernel R∧ of R:

R∨ = sup
k∈N

Rk, R∧ = inf
k∈N

Rk.

Dual powers, closure and kernel will be denoted by R•n, R•∨ and R•∧, respec-

tively.

Theorem 6 ([9]). Let R,S ∈ FR(X). If the operation ∗ is left-continuous in

[0, 1], then

(R ∨ S)n > Rn ∨ Sn, (R ∧ S)n 6 Rn ∧ Sn,

(R ∨ S)∨ > R∨ ∨ S∨, (R ∨ S)∧ > R∧ ∨ S∧, (R ∧ S)∨ 6 R∨ ∧ S∨,

(R ∧ S)∧ 6 R∧ ∧ S∧, Rn ◦R∨ = R∨ ◦Rn = (R∨)n+1,

(R∨)n =

∞
∨

k=n

Rk
> (Rn)∨, (R∧)n+1

6

{

Rn ◦R∧

R∧ ◦Rn 6

∞
∧

k=n+1

Rk
6 (Rn+1)∧.

(R∨)∨ = R∨, (R∧)∧ 6 R∧, (R∧)∨ 6 (R∨)∧, n = 1, 2, . . .

Using Duality Principle, the above results can be reformulated also for dual

composition ◦′ in FR(X). By direct verification we get

Theorem 7 (cf. [10], Theorem 2). Compositions sup−∗ and inf −∗′ are con-

nected by the formula

R ◦′ S = 1− (1−R) ◦ (1− S) for R,S ∈ FR(X).

Moreover, if the operation ∗ is increasing, left-continuous and associative, then

R•n = 1−(1−R)n, R•∧ = 1−(1−R)∨, R•∨ = 1−(1−R)∧ for R ∈ FR(X).

Theorem 8. Let ∗ : [0, 1]2 → [0, 1].
•Monotonicity of the operation ∗ is equivalent to suitable property of the compo-

sition ◦′.

• The operation ∗ has (left, right) zero element z ∈ [0, 1] if and only if the compo-

sition ◦′ has suitable zero element Z ′(x, y) = 1− z, x, y ∈ X.

• If the operation ∗ is increasing, then the composition ◦′ is superdistributive over

∨ and distributive over ∧.
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• The operation ∗ is infinitely inf −distributive if and only if the composition ◦′ is

infinitely inf −distributive.

• Let the operation ∗ be infinitely inf −distributive. The operation ∗ is associative

in [0, 1] if and only if the composition ◦′ is associative in FR(X).
• Let z = 1 be the zero element of the operation ∗. The operation ∗ has (left,

right) neutral element e ∈ (0, 1] if and only if the composition ◦′ has suitable

neutral element E′ ∈ FR(X), where

E′(x, y) =

{

1− e, x = y

1, x 6= y,
, x, y ∈ X.

Corollary 4. Let an operation ∗ : [0, 1]2 → [0, 1] be increasing.

• If the operation ∗ is right-continuous in [0, 1], then the composition ◦′ is in-

finitely inf −distributive in FR(X).
• If the operation ∗ is right-continuous and associative in [0, 1], then the compo-

sition ◦′ is associative in FR(X).

Theorem 9. Let R,S ∈ FR(X) If the operation ∗′ is right-continuous in [0, 1],
then

(R ∨ S)•n > R•n ∨ S•n, (R ∧ S)•n 6 R•n ∧ S•n,

(R ∨ S)•∨ > R•∨ ∨ S•∨, (R ∨ S)•∧ > R•∧ ∨ S•∧, (R ∧ S)•∨ 6 R•∨ ∧ S•∨,

(R ∧ S)•∧ 6 R•∧ ∧ S•∧, R•n ◦′ R•∧ = R•∧ ◦′ R•n = (R∧)•(n+1),

(R•∧)•n =

∞
∧

k=n

R•k
6 (R•n)•∧,

(R•∨)•(n+1)
>

{

R•n ◦′ R•∨

R•∨ ◦′ R•n >

∞
∨

k=n+1

R•k
> (R•(n+1))•∨.

(R•∨)•∨ > R•∨, (R•∧)•∧ = R•∧, (R•∧)•∨ 6 (R•∨)•∧, n = 1, 2, . . .

9 Duality in fuzzy relation equations

Let A ∈ [0, 1]m×n and b ∈ [0, 1]m. Dual fuzzy systems of equations A ◦ x = b

and A ◦′ x = b has dual properties.

Theorem 10. Let ∗ : [0, 1]2 → [0, 1], ∗ 6 min and x ∗′ y = 1− (1−x) ∗ (1− y)
for x, y ∈ [0, 1].
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• If the system A ◦ x = b is solvable, uniquely solvable or unsolvable, then the

dual system has the same properties.

• If the system A ◦ x = b has the greatest solution u, then the dual system has

the least solution u′ and these solutions has dual formulas using fuzzy implication

and coimplication:

uj =

m
∧

i=1

(aij
∗

→ bi), u
′

j =

m
∨

i=1

(aij
∗
′

← bi), j = 1, . . . , n. (16)

• If the system A◦x = b has minimal solutions, then the dual system has the same

number of maximal solutions.

• If the system A ◦ x = b has the least solution, then the dual system has the

greatest solution.

For example we have

Theorem 11 (cf. [6], Theorems 4.1, 4.2). If an operation ∗ with neutral element

e = 1 is increasing and left-continuous, then the greatest solution u of the in-

equality A ◦ x 6 b is given by (16).

Dually we obtain

Theorem 12. If an operation ∗ with neutral element e = 0 is increasing and

right-continuous, then the least solution u′ of the inequality A ◦′ x > b is given

by (16).

10 Coimplication and difference axioms

In set theory we have two equivalent formulas for set difference:

B \ A = A′ ∩B = inf{C|B ⊂ A ∪ C}.

These formulas from Boolean algebra can be used in the complemented lattice

([0, 1],max,min, ′) in order to define two differences in [0, 1]

y⊖1x = min(1− x, y), x, y ∈ [0, 1],

y⊖2x = inf{t ∈ [0, 1]|y 6 max(x, t)} =

{

y, x < y

0, otherwise
, x, y ∈ [0, 1].

We also have the bounded difference y ⊖ x = max(0, y − x), x, y ∈ [0, 1]. After

change of variables it is easy to check, that we obtain examples of coimplications

from Example 4: I∗KD(x, y) = y⊖1x, I∗GD(x, y) = y⊖2x, I∗LK = y⊖x. This

leads to consideration of axiomatic systems for difference. For example we have
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Definition 7 ([20]). Bydifferenceposet(D-poset) we calla structure(P,6,⊖, 0, 1),
where (P,6, 0, 1) is a bounded partially ordered set and the operation ⊖ : P 2 →

P fulfils conditions:

D1) y ⊖ x 6 y,

D2) x 6 y ⇒ z ⊖ y 6 z ⊖ x,

D3) (z ⊖ y)⊖ x = (z ⊖ x)⊖ y,

D4) x 6 y ⇔ y ⊖ (y ⊖ x) = x,

for x, y, z ∈ [0, 1].

Example 5. Let ϕ be an increasing bijection in [0,1]. Then

y⊖x = ϕ−1(max(0, ϕ(y)−ϕ(x))) = max(0, ϕ−1(ϕ(y)−ϕ(x))), x, y ∈ [0, 1]

defines a difference in [0, 1], i.e. ([0, 1],6,⊖, 0, 1) is a D-poset, because ⊖ fulfils

axioms D1) - D4).

Another axioms of difference were presented in [21].

Definition 8. A function F : [0, 1]2 → [0, 1] is a difference in [0, 1], if it fulfills

conditions:

F1) F (x, 0) = x,

F2) F is increasing with respect to the first argument,

F3) F is decreasing with respect to the second argument,

F4) F (0, x) = 0,

where x ∈ [0, 1].

By comparison with Definition 4 we have

Corollary 5. If F is a difference from Definition 8, then function I(x, y) =
1 − F (x, y) is a fuzzy implication and I∗(x, y) = F (1 − x, 1 − y) is a fuzzy

coimplication dual to I .

11 Concluding remarks

We listed here diverse consequences of Duality Principle which have applications

in fuzzy logic, fuzzy algebra, soft computing, discrete mathematics, artificial in-

telligence, approximate reasoning and decision making. Such survey of duality

properties can be useful during considerations of the above domains. Simultane-

ously, the presented properties and notions can be a subject of further examination,

specification or generalization. For example, paper [22] describes interval exten-

sions of fuzzy coimplications generated from aggregation functions. In particular,

this paper contains a list of 19 properties of fuzzy implications and coimplications

with their interval generalizations.
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