

INSTYTUT BADAŃ SYSTEMOWYCH
POLSKIEJ AKADEMII NAUK

TECHNIKI INFORMACYJNE
TEORIA I ZASTOSOWANIA

Wybrane problemy

Tom 5 (17)

poprzednio

ANALIZA SYSTEMOWA W FINANSACH
I ZARZĄDZANIU

Pod redakcją
Andrzeja Myślińskiego

Warszawa 2015

iBS PAN

Wykaz opiniodawców artykułów zamieszczonych
w niniejszym tomie:

Dr inż. Tatiana JAWORSKA

Dr inż. Jan OWSIŃSKI

Dr hab. inż. Andrzej MYŚLIŃSKI, prof. PAN

Prof. dr hab. inż. Piotr SIENKIEWICZ

Prof. dr hab. inż. Andrzej STRASZAK

Dr hab. Dominik ŚLĘZAK, prof. UW

Prof. dr hab. inż. Stanisław WALUKIEWICZ

Copyright © by Instytut Badań Systemowych PAN
Warszawa 2015

ISBN 83-894-7558-8

4KB PRESENTATION OF SELECTED 3D GRAPHICS

RENDERING ALGORITHMS AS AN EXAMPLE OF

OPTIMAL IMPLEMENTATION

Cezary Nalborski

Systems Research Institute, Polish Academy of Sciences

Ph.D. Studies, Warsaw, Poland,

e-mail: cnalborski@gmail.com

Abstract. Progressive miniaturization of devices running programs imposes such

requirements as more rapid execution or less resource consumption, for example,

memory or battery. The size of the executable program should also be taken into

account, especially regarding embedded systems that have programs built into their

memory. In this paper, a brief description of the computer software optimization

problem is given. A broad definition of the process of optimization and some gen-

eral aspects are presented by example of a program written in Motorola 68k as-

sembler whose size of the executable file does not exceed 4 kilobytes. The program

implements two popular 3D graphics rendering algorithms.

Keywords: 3D graphics, rendering algorithms, optimal implementation, assembler,

embedded systems

1 INTRODUCTION

1.1 Program optimization

In the software development process, we sometimes face the problem of

optimization. In some cases, requirements regarding optimization appear

at the beginning of the development process and are given directly, so that

the program developed has to meet them, or the target platform imposes

the requirements. For example, in embedded systems with built-in pro-

grams, because of the high memory cost the maximum available program

size is often given. Sometimes, at the final stage of the development pro-

cess, it appears that the program under development has to be optimized,

e.g. in terms of more rapid execution, especially in programs implement-

ing graphics rendering algorithms, or resource consumption e.g. memory

usage or computer network usage.

Depending on the moment optimization is considered - whether it is

the initial phase of the process of program creation, when we start from

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 83

the top level design moving to more details, or the final phase when we

have a running program, or a phase in the middle when we started without

any particular requirements related to performance, power consumption or

other resources which may imply that program optimization must be done,

the following aspects shown in Table 1 should be considered:

Table 1. The program creation process stack

Layers of program creation process

ARCHITECTURE

ALGORITHMS

DATA STRUCTURES

PROGRAMMING LANGUAGE

COMPILATION

RUN-TIME

1.2 Related work

In recent years, computers have dramatically evolved from big, station-

ary and isolated structures to sleek and small and portable devices fre-

quently connected to the Internet. Today, we speak about devices running

programs, not only computers, as we used to say, which include smart-

phones, tablets, smartwatches and many others that may be used to bring

AI and automation to our lives. A group separate consists of embedded

systems.

This progressive miniaturization, portability and inter-networking gen-

erates new requirements for modern appliances in which such parameters

as program performance, memory usage or resource consumption, such

as power or network usage in terms of the volume of transferred data are

crucial. In some applications such as embedded systems, the size of the

executable program is also important.

The performance of a program is one of the most important aspects

discussed here. Depending on the end user to which a program is directed,

it may refer to the graphics rendering performance where the graphical

user interface is responsible for fast delivery of back-end computations or

where it plays the main role, e.g. in computer games entertainment. It may

also apply to back-end program computation efficiency in general.

84 Cezary Nalborski

In software optimization at the application level [12] the aim is to in-

crease the performance of a program which, according to the researchers,

may be directly affected by power-consumption and heat generated by the

processors. The authors studied thermally optimized software where en-

ergy and temperature-related optimizations were taken into account. Non

optimal software may thermally affect the processor running programs

whose optimal temperature is necessary to maintain the expected perfor-

mance.

As mentioned above, the speed of program execution is affected by

power consumption. The direct consequence of miniaturization is smaller

power storage efficiency because of the size of the battery that must match

the size of a particular device. The evolution of batteries does not go hand

in hand with device miniaturization. The smaller the device is, the less

power it can deliver without recharging. So it is better for such devices

to run programs faster to consume as little power as possible. In [6] some

source code-level optimization techniques are examined. The results achie-

ved showed that not all optimizations had significant effect on power con-

sumption, moreover, some platform dependent techniques were found. In

[15] new innovative algorithms co-design techniques, architectures and

technology for efficient implementation are presented.

Memory usage is also considered an important factor of optimization.

Memory size does not necessarily imply greater efficiency. Sometimes

memory resources are strictly limited to some portion that may be used

by running programs. Under such conditions a running program must be

optimized to use less memory. In [14] software optimization techniques

for the optimal use of memory were explored. The authors pay attention

to memory-aware architecture of the resulting code which may help to re-

duce power usage. Optimization techniques based on real-life benchmarks

report significant reduction of energy consumption and performance im-

provements.

In many cases the size of the executable program is an important factor.

Especially in embedded systems which were described in [9]. Storing pro-

grams on chips of embedded systems is interesting from the cost efficiency

perspective. The authors considered techniques of code compression which

helps to produce smaller executable files. The smallest possible size seems

also worth considering if we look at those devices from a perspective of

inter networking. Fast access to a program from the Internet in some con-

ditions may be a big advantage. Smaller size may also reduce the costs of

transfer of the program over the Internet especially in cellular networks.

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 85

2 IMPLEMENTATION

2.1 Assumptions

For this paper, we assumed that we will create a computer program that

will be a real-time presentation of two selected 3D graphics rendering al-

gorithms, such as texturemapping [11] and Gouraud shading [8] with static

light source. The size of the executable file cannot be greater than 4kb. It

has to render graphics in real time (50 frames per second). As a destina-

tion device, the Motorola 68EC020 32-bit platform [4] was selected. It has

strictly limited hardware capabilities in terms of the processor computing

speed set at 10 MIPS and available RAM memory, set at 2MB. The device

was emulated on the WinUAE [19] application running Amiga 1200 stan-

dard configuration. The base environment for WinUAE [19] was Intel Core

2 Duo P9400 2,4 GHz PC with 4 GB RAM working on the Windows XP

operating system. It allowed WinUAE to emulate Amiga 1200 in real-time

conditions.

As a programming language for the program [16], Motorola 68k assem-

bler [13] was selected with AsmOne [2] as a programming IDE. To make

the source code and the resulting binary machine code comprehensible

and unequivocal in every aspect, no support of Amiga 1200 internal GPU

or any internal Amiga operating system framework was used. Only basic

arithmetic assembler instructions were used with direct access to video and

RAM memory. Thanks to the fact that there is one-to-one correspondence

between the instructions called mnemonics and the binary device code that

will be produced in the final step of the program creation process, we ex-

pect to achievemaximum available rendering performance and the smallest

size of the executable program.

The whole program - starting from data preparation at the initial phase,

later data transformation such as rotations, 3D points to 2D observer scene

projection and then triangular rendering algorithms with linear interpola-

tion were implemented according to the results presented in [3,8,11].

2.2 Aspects of optimization

2.2.1 Architecture This is the top aspect of optimization with the biggest

impact on the program creation process. At this step fundamental structural

choices of the program have to be made. Especially, we have to decide

about other layers of the program creation process lying below in the stack.

We have to decide about the algorithms that will be used for all necessary

computations, data structures that will store all the data, the programming

86 Cezary Nalborski

language that will be used for implementation, the usage of tools in the

construction of the executable file phase and all necessary or additional

computations that may or will be made at the execution stage.

The basis for considerations related to the architecture is the require-

ments that the program must fulfill. If there is a strong need in the perfor-

mance layer, we have to use some low level programming language such an

assembler. Some requirements affecting the overall architecture are hidden

to the process, e.g. a target device and its hardware architecture, forcing

some architectural aspects such as the maximum available memory or the

use of some dedicated platform dependent developing tools and languages.

It is always worth taking into account such aspects as scalability or

maintainability of the program. Depending on the requirements, the easiest

way to increase the performance of the program in terms of its speed and

computing power is to run its multiple instances or modify the code to

run parallel some threads. On the other hand, maintainability is important

if there are no strong opimization requirements but some effort and cost

aspects are mentioned

2.2.2 Algorithms This aspect occurs right after the architecture. The choice

of efficient algorithms and optimal implementation of these algorithms af-

fects performance more than any other aspect. Selected algorithms should

always meet the following: available resources, given requirements, con-

straints and expected load. Sometimes, if the available environment and

given requirements meet the constraints, it is worth selecting less complex

algorithms. It will increase readability of the source code and make the

maintenance easier or cheaper. In some cases we have to do it that way to

be able to meet the expected change request time during the maintenance

of the program.

2.2.3 Data structures Data structures are directly connected to previous as-

pect mentioned in paragraph ‘Algorithms‘. They are as important for the

program as wheels are for the car. On the one hand, they must ensure stor-

age of all necessary data for selected algorithms. On the other hand, they

must meet the storage constraint given directly or indirectly by the device

platform. For example, one of the fastest sorting algorithms called bucket

sort or bin sort, mentioned in [17] uses a huge amount of memory. For

small data sets, it would be better to use some slower algorithms, consum-

ing less resources such as bubble sort [17], and giving lower complexity or

better code readability.

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 87

2.2.4 Programming language The choice of the programming language used

during the implementation phase is significant but depends more on given

requirements. If the requirements specify the target device or family of de-

vices, we may be limited to a sub-set of programming languages available

to that device family. Next, if there is a requirement related to program

performance in terms of the execution time or executable file size, it is al-

ways better to use as low level a programming language as possible, e.g. an

assembler. The main feature of the assembly language is that its mnemon-

ics instruction language stands in one-to-one correlation to the executed

binary code. There are also executable file size benefits. The output pro-

duced will match exactly the source code, with no extra instructions written

in the code. Higher level languages, depending on the compiling options

often produce executable file much greater in size than those written in as-

sembler. This happens in the translation phase from higher level language

to the binary code level. Those extra add-ons often affect the performance

by executing an unnecessary code, however, the higher level the program-

ming language has, the more readable the code is. The time needed for

development, especially on the maintenance level is much shorter. Finally,

sometimes if the portability of the source code is not so important, a good

solution is to use an assembly language that can run only on a particular

device but with optimal execution performance. However, where the ex-

ecution time or the executable file size is not the most important factor,

using a higher level language gives us the ability to write a portable code

that once written can be compiled for many different platforms.

2.2.5 Compilation During the compilation phase, the compiler tries to trans-

late the written source code to output the executable file. In case of the

assembly language, it is always done in correlation between one source

code instruction called mnemonic and one binary device code. In case of

higher levels, the translation process is carried out using algorithms imple-

mented in the compiler and what is worth mentioning - compiler options.

Many compilers, as default compile a less aggressive code in terms of its

proper execution or platform specific code, e.g. the same code of a sim-

ple ‘while(1)‘ or ‘for(;;)‘ loop may be translated to a binary machine code

differently, depending on the selected destination platform for which the

binary machine code may be executed. Some of the devices use built-in

memory cache which speeds up the repeated portion of code. It may gen-

erate errors during the execution phase.

88 Cezary Nalborski

Algorithms built into compilers are very complex multi-pass translators

and in some way often try to ‘guess‘ the intention. Especially in case of

huge blocks of code written in a high level language, it is worth reconfig-

uring the compiler according to the expected optimization level. Using an

assembly language, we write a code dedicated to a particular device with

no extra logic during the translation phase in terms of the produced binary

executable.

2.2.6 Run-time In some cases, there is a possibility to optimize at the run-

time phase. Especially in case of very high level languages, using virtual

machines as the run-time environment, it may be executed by tuning the

virtual machine parameters according to our needs.

In case of high level languages, there is a possibility to generate a self-

modifying code adopted relative to the requirements. But, this has to be

done carefully and with correlation to the target device architecture and

such aspects as code caching. The same self-modifying code that runs

properly on one device without a built-in code caching will generate er-

rors running on a device equipped with a code cache.

There is always a possibility of generating some data at the run-time.

It particularly concerns the memory usage constraints and the size of the

executable file. For example, in some 3D graphics programs, textures may

be pre-calculated at the run time. It is also possible to pre-generate some

back-end data used for computations in mathematical transformations.

Good results are often obtained with the use of the overlay feature of

executable files. This feature helps to reduce the amount of RAM needed

to run a program. At the run-time phase, only part of the executable, called

the root, is loaded into the memory and executed. The rest of the executable

file is split into smaller parts loaded or unloaded, according to the situation.

3 IMPLEMENTATION

Based on the assumptions described in point 2.1 the following architecture

was designed (Fig. 1):

To describe objects in 3D space, polygonal 3D mesh modeling was

used. In this model, objects are represented as a set of points in 3D space

(called vertices) and a set of triangular surfaces. As shown in Fig. 2, the

front surface of the cube constructed by four vertices V0,V1,V2,V3 is repre-

sented by two triangular surfaces.

According to the selected 3D objects description model, data structures

that are part of the program contain the following information:

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 89

Fig. 1. Program architecture

General pre-calculations at the run-time

RENDERER for the texture mapped object

Pre-calculations for the texture mapped obJect

MAIN LOOP

3D Points transformation module (rotations ab out all axes)

3D points to 2D points projection module (in the observer set)

2D triangular surfaces visibility calculation module (includes sorting
according to the observer)

Tri an gul ar surfaces texture mapping rendering module (surfaces are
drawn in one of the buffers-double buffering)

Switching buffers m odule (double buffering)

RENDERER for the Gouraud shaded obj ect

Data sh1.1chues

Pre-calculations for the Gouraud shaded object

MAIN LOOP

3D Points transformation module (rotations ab out all axes)

3D points to 2D points projection module (in the observer set)

2D triangular surfaces visibility calculation module (includes sorting
according to the observer and light calculation)

Triangular surfaces Gouraud shading rendering module (surfaces are
drawn in one of the buffers -double buffering is used)

Switching buffers module (double buffering)

90 Cezary Nalborski

Fig. 2. Polygonal mesh model based on triangular surfaces

– definitions of objects in 3D space
• vertex list, every vertex described by three numbers

• in case of the texture mapped object, there is additional information

ascribed to each vertex - the u,v coordinates in the texture space

• in case of the Gouraud shaded object, there is additional informa-

tion ascribed to each vertex - the color and calculated light intensity

value

• list of triangular surfaces (every surface described as a set of three

vertex indexes constructing it)
– partial texture used for texture mapping of object 1 (Fig. 3)

– partial sine table (pre-calculated first 90 degrees with 16 bit precision)

– two rendering buffers for rendered objects (only one buffer is used at a

time)

– buffers for 3D points after rotations

– buffer for 2D points after projection from 3D

– buffer for average z values for every triangular surface (calculated as

arithmetic average from z values of vertices constructing the surface)

– buffer for sorted surfaces indexes (the sorting is based on calculated

average z value for the surface)

– buffer for light intensity values for every vertex of the rotated object

(used for Gouraud shading [8])

– colour palette

In the next step, algorithms for particular components of the architec-

ture were selected. At the bottom, before the rendering all necessary trans-

formations must be made. These transformations are rotations about all

three axes X, Y, and Z used in the same way for both objects presented

in the program. The only difference is that in the second rendering mod-

ule for Gouraud shaded [8] object, after the transformations, light intensity

for each vertex of the object is calculated. First, the points were rotated

v, f'---+---------r f{

V3 ~---~ V,

f{
V,~---~

f{

v,
v,-~-----<v,

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 91

an angle θ for the X axis using equations described in (1). Then, the re-

sult of rotation about the X axis became the input for rotation about the Y

axis using equations described in (2). Finally, the result of rotation about

the Y axis became the input for rotation about the Z axis using equations

described in (3).

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (1)

Ry(θ) =

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (2)

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (3)

Then, 3D points were projected to 2D viewer plane. Assuming that the

normal vector of the viewing plane was parallel to one of the axes, the

projection of 3D point (vx,vy,vz) to 2D point (px,py) with scale vector s

and offset vector t was made using the equation described in (4).

[
px
py

]

=

[
sx 0 0
0 0 sz

]

vx
vy
vz

+

[
tx
tz

]

. (4)

After that calculation, additional information such as the average Z

value for every triangular surface was computed. It was calculated as an

arithmetic average of all vertices constructing the triangular surface. This

information was then used for surface sorting, but only surfaces visible

to the observer are taken to sort. The visibility was calculated using the

Back-face culling algorithm described in [7]. The dot product (5) of each

triangular surface‘s normal vector and the vector from the camera to the

surface is checked. If it was greater than or equal to zero, the analyzed

surface was removed from the sorting and rendering process.

(V0 − P) ·N ≥ 0. (5)

P is the point of view and V0 is the first vertex of a triangular surface.

N is the normal of the analyzed triangular surface and was calculated using

the equation described in (6).

92 Cezary Nalborski

N = (V1 − V0)× (V2 − V0). (6)

The point of view was assumed to be (0,0,0), if points were already

in the view space. For the Gouraud shaded object, additionally, for each

vertex constructing the analyzed triangular surface, the color and the light

intensity value, were calculated. To calculate the light intensity value for

a given vertex, the dot product of its normal vector and the vector from

camera to the vertex was calculated. All vectors were normalized before

calculations. The colour at a given vertex was calculated as the product

of the colour ascribed to this vertex and, earlier calculated light intensity.

Objects consisting of triangular surfaces were drawn from the farthest to

the closest relative to the observer.

4 RESULTS

The first object (Fig. 3) was rendered using the texture mapping algorithm

[11]. The renderer worked for every visible triangular surface. The render-

ing algorithm rasterized the whole triangular surface, beginning from the

top-most vertex and moving down to the bottom-most one. At every raster

line, it started from the far-left edge constructing the rendered surface, and

stopped at the far-right edge constructing the surface. At the edges, the tex-

ture coordinates (u,v) were calculated by linear interpolation of texture co-

ordinates assigned to the vertex constructing the edge. Then, texture (u,v)

values calculated at the edges were interpolated through the whole raster.

Each pixel of the raster was taken from the texture at the calculated u,v

coordinates. The following process is illustrated in Fig. 4.

To obtain a smooth animation, at the end of each iteration of the ren-

derer the rotation angle θ was increased by value 1 until it reached 360

degrees. Then the value was zeroed. The results of the following rendering

process are illustrated in Fig. 3.

The second object (Fig. 5) was rendered using the Gouraud shading

[8] algorithm. The renderer worked for every visible triangular surface.

The rendering algorithm rasterized the whole triangular surface beginning

from the top-most vertex and moving down to the bottom-most one. At

every raster line, it started from the far-left edge constructing the rendered

surface, and stopped at the far-right edge constructing the surface. At the

edges, the colour of the pixel was calculated by linear interpolation of pixel

colour intensity assigned to the vertex constructing the edge. Then, colour

values calculated at the edges were interpolated through the whole raster

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 93

Fig. 3. The texture mapped object with leopard pre-rendered texture

and were taken as colours of pixels constructing the raster. The following

process is illustrated in Fig. 6.

To obtain a smooth animation at the end of each iteration of the renderer,

the rotation angle θ was increased by value 1 until it reached 360 degrees.

Then the value was zeroed. The results of the following rendering process

are illustrated in Fig. 5.

For the sorting algorithm, bucket sorting [17] was selected because of

a relatively small amount of data to be sorted (a few average Z axis values

for a visible triangular surface), low complexity, fast implementation and

a small volume of the executable code produced. Double buffering [10,5]

mentioned in the architecture model, was a simple solution for providing

a stable picture of drawn objects. The aim was to show to the user already

rendered surface and hide the process of rendering surface by surface. This

was achieved by using two rendering buffers. While one was used for pre-

senting the final rendering results, the other was used for current rendering

operations. They were switched after every rendering iteration. At the final

stage of the implementation, to reduce size of the executable file an over-

lay feature, combined with compression, was used. A special program was

used to reduce the size of the original executable file by compressing it. But

the compressed file could not be executed without a special small header

(root) responsible for launching. During the run-time, only the root header

loads into memory and executes. Then it loads the rest of the executable

file which is compressed original executable file. After decompression in

memory, it is executed. This process is illustrated in Fig. 7.

It is worth mentioning that some pre-calculations at the run-time were

prepared (Fig. 8). First, to achieve the biggest possible and acceptable size

94 Cezary Nalborski

Fig. 4. Single surface rasterization of the texture mapped object

Fig. 5. The 3D Gouraud shaded object (Axe) with constant light source

of the texture used for texture mapping [11] a set of copy-paste and mirror-

reverse transformations was performed. Second, for the rotation transfor-

mations about the three axes, the calculation for 360 degrees was made

based on the source data, calculated only for the first 90 degrees of the sine

function. The above pre-calculations allowed us to reduce the size of the

original executable file.

The resulting executable file size was 3996 bytes [20] which gives over

80% of efficiency. The rendering frame rate per second did not exceed 50

frames per second which is a very good result. Although the selected ren-

r~ c.-o, Yo· 41 , 11o· 1'o)

Single raster line

(110-1 • 1'0-1)

•

Textm·e space

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 95

Fig. 6. Single surface rasterization of the Gouraud shaded object

Fig. 7. Executable file size reduction with overlay feature

dering algorithms were quite complex, it was done smoothly, in real-time

with nice presentation for the end user [18]. The above results were, for

sure, best possible, thanks to use of assembler language, pre-calculations

at the run-time and compression of the executable file with overlay fea-

ture. The development of this program including the design phase took

320 working hours.

5 CONCLUSIONS

The aspects of optimization presented in this article and the results achieved

by the sample optimal implementation bring us close to a conclusion that

01iginal
lmcompressed
exccutablc file

File size: 7234 bytes

l!xecut1ble root huder

Original compressed
cxecutablc filc

Sin gle raster line

} N ew executable file
File size: 3996 bytes

96 Cezary Nalborski

Fig. 8. Pre-calculations of texture

it is rare to produce an optimal program that ‘fits all‘. It is rare to produce

one program that will be optimal with regard to execution and fulfillment

of all requirements.

Many conditions have to be considered at the stage of program opti-

mization. On the one hand, the program must meet all requirements given

at startup. On the other hand, it often transpires at a different stage of

program development or even at the maintenance phase that it has to be

optimized. The inclusion of all aspects of optimization, such as platform

dependence or independence, potential bottlenecks or ‘in-return‘ solutions
does not mean that we obtain a truly optimal program that works on any

platform under any conditions. Sometimes, it may not even be possible.

In some cases, it is better to optimize only selected aspects of program

implementation to fulfill given constraints.

It is always worth considering optimization aspects in terms of the ac-

cepted effort which encompasses the time that is consumed by program

optimization and/or later in the maintenance phase. The effort may be in-

creased by an unreadable but highly optimized code. The above aspect

is important if we look at the process bearing in mind cost-effectiveness,

which may increase if the effort spent on optimization or maintenance is

also significant.

References

1. Agner Fog, (2014) Optimizing subroutines in assembly language, Technical University of Den-

mark.

2. Rune Gram-Madsen, AsmOne macro assembler for the Amiga computer and Motorola 680x0

processor, http://www.amigacoding.com/index.php/680x0:AsmOne, 1991.

3. Bresenham, J. E., (1965) Algorithm for computer control of a digital plotter, IBM Systems

Journal, vol. 4, no. 1, p. 1-29.

4. Commodore Business Machines, (1991) The AmigaDOS Manual Third Edition, Bantam

Books, United States.

5. Daniel Sánchez-Crespo Dalmau, (2004) Core Techniques and Algorithms in Game Program-

ming, New Riders, vol. 1, no. 1, p. 64-98.

V V

u

4KB PRESENTATION OF SOME 3D GRAPHICS RENDERING ALGORITHMS 97

6. Rainer Leupers, (2013) Code Optimization Techniques for Embedded Processors: Methods,

Algorithms, and Tools, Springer Science & Business Media, Dordrecht, Netherlands.

7. David H. Eberly, (2006) 3D Game Engine Design: A Practical Approach to Real-Time Com-

puter Graphics, p. 69., Morgan Kaufmann Publishers, Boca Raton, United States.

8. Gouraud, Henri, (1971) Continuous shading of curved surfaces, IEEE Transactions on Com-

puters, vol. C-20, issue 6, pages 623-629.

9. Robert Oshana, Mark Kraeling, (2013) Software Engineering for Embedded Systems: Methods,

Practical Techniques, and Applications, Elsevier, Waltham, United States.

10. JungHyun Han, (2011) 3D Graphics for Game Programming, CRC Press, Boca Raton, United

States.

11. Marek Domaradzki, Robert Gembara, (1993) Tworzenie realistycznej grafiki 3D, LYNX-SOFT,

Warsaw, Poland.

12. Florin Balasa, Dhiraj K. Pradhan, (2011) Energy-Aware Memory Management for Embedded

Multimedia Systems: A Computer-Aided Design Approach, CRC Press, Boca Raton, United

States.

13. Motorola Inc., (1992) MOTOROLA M68000 FAMILY Programmer‘s Reference Manual, Den-

ver, United States.

14. M. Verma, P. Marwedel, (2007) Advanced Memory Optimization Techniques for Low-Power

Embedded Processors, Springer, Dordrecht, Netherlands.

15. Robert Fasthuber, Francky Catthoor, Praveen Raghavan, Frederik Naessens, (2013) Energy-

Efficient Communication Processors: Design and Implementation for Emerging Wireless Sys-

tems, Springer Science & Business Media, New York, United States.

16. Cezary Nalborski, Source code of the 4kb presentation, http://www.czarek.nalborski.

com/pliki/4kb_intro.lzx, 2010.

17. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, (2009) Intro-

duction to Algorithms, Second Edition., MIT Press and McGraw-Hill, United States.

18. Recorded video of the 4kb presentation, https://youtu.be/zYElGwE6ewY, 2010.

19. WinUAE Amiga computer emulator, http://www.winuae.net/, 1995.

20. Cezary Nalborski, 4kb executable file, http://ftp.amigascne.org/pub/amiga/Groups/F/Freezers/

Freezers-4kIntro, 2010.

4KB PREZENTACJA WYBRANYCH ALGORYTMÓW

RENDEROWANIA GRAFIKI 3D JAKO PRZYKŁAD

OPTYMALNEJ IMPLEMENTACJI

Streszczenie. Postępująca miniaturyzacja urządzeń narzuca takie wymagania jak większa szybkość

lub mniejsze wykorzystanie zasobów (np. pa-mięci lub baterii). Rozmiar pliku wykonywalnego

programu także powinien zostać wzięty pod rozwagę, w szczególności w przypadku systemów, w

których programy są wbudowane w pamięć. W pracy przedstawiono krótki opis optymalizacji pro-

gramu komputerowego. Główne definicje procesu optymalizacji i pewne podstawowe aspekty za-

prezentowano na przykładzie programu napisanego w asemblerze Motorola 68k, o rozmiarze pliku

wyko-nywalnego nie przekraczającym czterech kilobajtów. Program implementuje dwa popularne

algorytmy renderowania grafiki 3D.

Słowa kluczowe: grafika 3D, asembler, system wbudowany, optymalna implementacja

