

INSTYTUT BADAŃ SYSTEMOWYCH
POLSKIEJ AKADEMII NAUK

TECHNIKI INFORMACYJNE
TEORIA I ZASTOSOWANIA

Wybrane problemy

Tom 5 (17)

poprzednio

ANALIZA SYSTEMOWA W FINANSACH
I ZARZĄDZANIU

Pod redakcją
Andrzeja Myślińskiego

Warszawa 2015

iBS PAN

Wykaz opiniodawców artykułów zamieszczonych
w niniejszym tomie:

Dr inż. Tatiana JAWORSKA

Dr inż. Jan OWSIŃSKI

Dr hab. inż. Andrzej MYŚLIŃSKI, prof. PAN

Prof. dr hab. inż. Piotr SIENKIEWICZ

Prof. dr hab. inż. Andrzej STRASZAK

Dr hab. Dominik ŚLĘZAK, prof. UW

Prof. dr hab. inż. Stanisław WALUKIEWICZ

Copyright © by Instytut Badań Systemowych PAN
Warszawa 2015

ISBN 83-894-7558-8

BOOSTING APPROXIMATE REDUCTS

Sebastian Widz

Systems Research Institute, Polish Academy of Sciences

PhD Studies, Warsaw

Poland

e-mail: widz@infovision.pl

Abstract. We consider classifiers ensembles constructed using boosting method-

ology. Each weak classifier is based on rough set inspired approach to deriving at-

tribute subsets from data organized in a form of a decision system. We focus on ap-

proximate decision reducts calculated over universe of weighted objects. We show

how methods derived in our previous research integrate smoothly with boosting ap-

proach. Two different approaches for approximate reduct calculation are analyzed.

We discuss how our framework can be utilized for deriving meaningful attribute

subset ensembles. Finally we test our methods on the benchmark data.

Keywords: Boosting, Classifier Ensembles, Rough Sets, Approximate Reducts,

Feature Subset Selection

1 INTRODUCTION

Attribute selection plays an important role in knowledge discovery. It es-

tablishes the basis for more efficient classification, prediction and approx-

imation models. Attribute selection methods originating from the theory

of rough sets put a special attention on providing users with a better in-

sight into data dependencies [26]. There are numerous rough set based

algorithms aimed at searching for so called decision reducts – irreducible

subsets of attributes that satisfy predefined criteria for keeping enough in-

formation about decision classes [1]. Those criteria reflect more or less

explicitly a chance of misclassification of objects by if-then decision rules

with their antecedents referring to the values of attributes and their conse-

quents referring to decisions.

Original definition of a reduct is quite restrictive, requiring that it should

determine decisions or, if data inconsistencies do not allow for full de-

terminism, provide the same level of information about decisions as the

complete set of attributes. However, there are a number of formulations

of approximate reducts, which almost preserve original decision informa-

tion [22]. Such approximate criteria usually rely on functions measuring

130 Sebastian Widz

degrees of decision information induced by subsets of attributes and the

corresponding thresholds specifying which subsets of attributes are good

enough. Those degrees are usually computed from the training data, which

makes the whole rough set based framework an example of a filter attribute

selection approach [27].

Approximate decision reducts usually include less attributes than clas-

sical reducts. On the other hand, they may generate if-then rules that make

mistakes even within the training samples. For noisy datasets it is to some

extent desirable. Nevertheless, some methods for controlling those mis-

takes should be considered. For example, if the goal is to construct a clas-

sification model based on several approximate decision reducts, then – by

following ideas taken from machine learning [13] – one may wish to as-

sure that if-then rules generated by different reducts do not repeat the same

mistakes on the training data. For this purpose, we can consider a mech-

anism aiming at diversification of importance of particular objects while

searching for different approximate reducts.

The same mechanisms are used in classifier ensemble methods. These

methods perform usually better than their components used independently

[2, 12]. Combining classifiers is efficient especially if they are substantially

different from each other. One of the approaches is to construct many dif-

ferent classifiers based on possibly least overlapping subsets, which goes

along perfectly with the above observations on the rough set based fea-

ture subset selection methods [24]. In fact, the feature subsets applied in

ensembles can be relatively smaller than in case of a single feature sub-

set approach, if we can guarantee that combination of less accurate clas-

sifier components (further referred as weak classifiers) will lead back to

satisfactory level of determining decision or preserving information about

decision. It is important because the outcomes of even most complicated

non-symbolic data mining methods become better understandable if com-

puted over smaller subsets of features. Another approach is to create a

family of weak classifiers where each consecutive classifier is trained on

data where importance of previously unclassified objects was increased.

This way one can guarantee that each weak classifier is trained to recog-

nize specific and different objects. This way each weak classifier is diverse

from other members of the ensemble.

In our previous work [28], we discussed computing approximate reducts

using datasets where objects were labeled with non-negative weights. We

showed that attribute subset quality functions used during the process of

reduct derivation can be employed in the same way for weighted and non-

BOOSTING APPROXIMATE REDUCTS 131

weighted objects. In this article we show how this idea can be incorpo-

rated into classifier ensemble construction algorithms. We base our exper-

iments on well known Adaptive Boosting (AdaBoost) algorithm [8, 7]. We

introduce an AdaBoost version which use decision rules derived from ap-

proximate decision reducts. We use voting mechanisms described in [23].

Introduced version can be used for multi-class data. We analyze two differ-

ent approaches for approximate reduct calculation. The first based on user

preference related to reduct size and the second based on approximation

threshold. Our experiments are based on benchmark data.

2 APPROXIMATE REDUCTS

Let us introduce basic framework for representing qualitative datasets. By

a decision system we mean a tuple A = (U,A ∪ {d}), where U is a finite

set of objects, A is a finite set of attributes and d /∈ A is a distinguished

decision attribute. We refer to elements of U using their ordinal numbers

i = 1, ..., |U |. We treat attributes a ∈ A as functions a : U → Va, where Va

denotes the a’s domain. Values vd ∈ Vd correspond to decision classes that

we want to describe using the values of attributes in A.

Each subset of attributes B ⊆ A yields a set of decision rules based on

all combinations of its values in U . Rules’ left sides correspond to equiv-

alence classes E ∈ U/IND(B) where IND(B) = {(i, j) ∈ U × U :
∀a∈B a(i) = a(j)} is so called indiscernibility relation. For simplicity, we

will write U/B instead of U/IND(B). Rules’ right sides can be defined

using various methods, e.g., as the following decision classesXE ∈ U/{d}

occurring most often within particular blocks E ∈ U/B:

XE = argmax
X∈U/{d}

|X ∩ E| (1)

The elements of U/{d} correspond to the values of d. The ratio of objects

in U , which are correctly classified by if-then rules produced by B, takes

the following form:

M(B) =
1

|U |

∑

E∈U/B

|XE ∩ E| (2)

We say that B ⊆ A is a decision reduct for A, iff it is an irreducible subset

of attributes such that each pair i, j ∈ U satisfying inequality d(i) 6= d(j)
is discerned by B, i.e., i and j belong to different elements of U/B. In

inconsistent decision systems, where even the whole A is not enough to

132 Sebastian Widz

determine decisions, the constraint for B can be modified, e.g., subject to

only those pairs i, j ∈ U , d(i) 6= d(j), that can be discerned by A. Further-
more, one can consider irreducible subsets that discern almost all pairs of

objects from different decision classes. In general, there is a great variety

of criteria that can be followed while searching for meaningful subsets of

attributes.

For a classical decision reduct B ⊆ A in a consistent decision system,

there is always equality M(B) = 1. However, it is not the case once we

allow rules generated by B to be not necessarily deterministic. In [21], it

was proposed to useM explicitly for the formulation of the conditions for

approximate attribute reduction:

Definition 1. [21] Let ε ∈ [0, 1) and A = (U,A ∪ {d}) be given. We say
that B ⊆ A is an (M, ε)-approximate decision reduct, iff it is an irre-

ducible subset of attributes satisfying the following condition:

M(B) ≥ (1− ε)M(A) (3)

The problem of finding the smallest (M, ε)-approximate decision reducts

is NP-hard, for each ε ∈ [0, 1) treated as a constant in the problem’s spec-

ification [21]. On the other hand, M is monotonic, i.e. M(C) ≤ M(B)
for any C ⊆ B, which makes it possible to adapt some classical reduct

search heuristics discussed, e.g., in [1]. Surely, M is not the only possible

attribute subset quality function that could be employed in the above in-

equality. Nevertheless, in the rest of this paper, we concentrate on function

M as one of the most natural and generic choices, showing that it can be

actually utilized to model quite many strategies of attribute selection and

classifier construction.

2.1 Object Weighted Reducts

Attribute subset quality functions provide good basis for evaluating de-

grees of determining decision classes. However, the original approximate

reduct criteria do not allow for controlling which parts of data are problem-

atic for particular reducts. They do not provide the means for expressing

importance of objects in a dataset either. Let us propose a general mech-

anism for expressing objects’ importance, based on an arbitrary weight

function ω : U → [0,+∞). Let us reformulate the notion of cardinality of

a subset of objects Y ⊆ U according to the following simple definition:

|Y |ω =
∑

u∈Y

ω(u) (4)

BOOSTING APPROXIMATE REDUCTS 133

We rephrase the formula for function M from the previous section as fol-

lows, with implicit assumption that there is at least one u ∈ U such that

ω(u) > 0:

Mω(B) =
1

|U |ω

∑

E∈U/B

|Xω

E
∩ E|ω (5)

where

Xω

E
= argmax

X∈U/{d}

|X ∩ E|ω (6)

For a trivial constant function denoted as 1 : U → {1} we haveM1(B) =
M(B). Also, for a classical decision reduct B ⊆ A in a consistent decision

system there is always Mω(B) = 1. More specific characteristics can be

formulated for the cases of ω : U → [0,+∞) and ω : U → (0,+∞).
Letting ω(u) = 0 for some objects u ∈ U may be actually compared to

operations on bireducts considered in [25].

Let us formulate several basic properties ofMω. We start by noting that,

for a given E ∈ U/B, there may be several decision classes satisfying (6).

Thus, we propose to consider function ∂ω : U/B → 2U/{d} defined as

follows, for E ∈ U/B:

∂ω(E) =
{
X ∈ U/{d} : ∀X′

∈U/{d}|X ∩ E|ω ≥ |X ′

∩ E|ω

}
(7)

Definition 2. Let ε ∈ [0, 1), A = (U,A ∪ {d}) and ω : U → [0,+∞) be
given. We say that B ⊆ A is an (ω, ε)-approximate decision reduct, iff it is
an irreducible subset of attributes satisfying the following condition:

Mω(B) ≥ (1− ε)Mω(A) (8)

Let us once again denote that the problem of finding an (ω, ε)-approximate

decision reduct with minimum number of attributes for an input decision

systemA = (U,A∪{d}) and ω : U → [0,+∞) is NP-hard. For fast calcu-
lation of approximate reducts we need to use heuristic methods. Algorithm

1 presents a variation of REDORD algorithm a bit modified compared to

its original form [22].

There can be an exponential number of (ω, ε)-reducts for a givenA and

ω. Moreover, different object weights can yield different (ω, ε)-reducts for
the same data. Modern rough set approaches to knowledge representation

and classifier construction are usually based on ensembles of heuristically

found reducts and the corresponding if-then rules with coefficients calcu-

lated from the training data. Those coefficients are then used while voting

134 Sebastian Widz

Algorithm 1 Permutation-based (Mω, ε)-REDORD (a bit modified comparing to [22])

Input: ε ∈ [0, 1); A = (U,A ∪ {d}); σ : {1, ..., n} → {1, ..., n}; n = |A|

Output: B ⊆ A

1: B ← A

2: for i = 1→ n do

3: ifMω(B \ {aσ(i)}) ≥ (1− ε)Mω(A) + εMω(∅) then

4: B ← B \ {aσ(i)}

5: end if

6: end for

7: return B

Table 1. Six options of weighting decisions by if-then rules, corresponding to the consequent

coefficient types plain, ω-confidence and ω-coverage, and antecedent coefficient types single and

ω-support. |E|ω denotes the support of a rule’s left side. Xω

E is defined by formula (6).

single ω-support

plain 1 |E|ω/|U |ω

ω-confidence |Xω

E ∩E|ω/|E|ω |Xω

E ∩E|ω/|U |ω

ω-coverage (|Xω

E ∩E|ω/|X
ω

E |ω)/(|E|ω/|U |ω) |X
ω

E ∩E|ω/|X
ω

E |ω

about new objects. – A new object is assigned to a decision class with the

highest sum of coefficients produced by rules which match its values.

Table 1 illustrates six examples of coefficients that can be assigned by

an if-then rule with its left side supported by indiscernibility class E ∈

U/B to a decision class Xω

E
∈ U/{d} identified by formula (6) and used

in our previous research [23]. They are analogous to some of other voting

strategies already discussed in the rough set literature [1]. Precisely, we

consider three possibilities to assign a voting degree to a given decision

class: plain, ω-confidence and ω-coverage. We can additionally multiply

the rule’s vote by its normalized left side’s support |E|ω/|U |ω (antecedent

voting type ω-support) or not (single). In our experiments each weak clas-

sifier was fixed with single ω-confidence voting method to point to a single

output decision.

2.2 Generalized decision and approximate reducts

Let us formulate several basic properties of Mω. We start by noting that,

for a given E ∈ U/B, there may be several decision classes satisfying

(6). Thus, we propose to consider function ∂ω : U/B → 2U/{d} defined as

follows, for E ∈ U/B:

∂ω(E) =
{
X ∈ U/{d} : ∀X′

∈U/{d}|X ∩ E|ω ≥ |X ′

∩ E|ω

}
(9)

Let us note that ∂ω is a simple modification of so called generalized deci-

sion function introduced within the classical rough set framework [18]. For

I I I

BOOSTING APPROXIMATE REDUCTS 135

a givenB ⊆ A andE ∈ U/B, the choice of specificXω

E
∈ ∂ω(E) does not

influence the quantity ofMω(B). However, function ∂ω analogously to the

original rough set discernibility criteria is also monotonic, i.e. Mω(B) ≥

Mω(C), for B,C ⊆ A such that C ⊆ B and ω : U → [0,+∞). Moreover,

the equality Mω(B) = Mω(C) takes place, iff for each E ∈ U/C the in-

tersection of all sets ∂ω(E
′) such that E ′

∈ U/B and E ′
⊆ E is not empty.

Algorithm 2 explains how one can compute approximate reducts based on

concept of generalized decisions. From the user perspective it is different

from the method described in the previous section. We do not need to spec-

ify the approximation threshold ε. Instead, we specify the maximum size

m of a reduct, this might be more suitable when during model construction

we need to consider number of attributes used in the model.

Algorithm 2 Permutation based algorithm for calculating approximate reducts with con-

cept of generalized decisions

Input: A = (U,A ∪ {d}), σ : {1, ..., n} → {1, ..., n}, m <= |A|

Output: B ⊆ A

1: B ← ∅

2: for i = 1→ m do

3: B ← {aσ(i)}

4: end for

5: for i = 1→ m do

6: if CHECKREMOVEATTRIBUTE(B, aσ(i)) = true then

7: B ← B \ {aσ(i)}

8: end if

9: end for

10: return B

11: function CHECKREMOVEATTRIBUTE(B, a)

12: for all E ∈ U/B \ {a} do

13: DEC ← Vd

14: for all E′

∈ U/B,E′

⊂ E do

15: DEC ← DEC ∩ argmax
X∈U/{d}

|X ∩E′

|

16: end for

17: ifDEC = ∅ then

18: return 0

19: end if

20: end for

21: return 1

22: end function

136 Sebastian Widz

3 CLASSIFIER ENSEMBLES

In machine learning, the term ensemble refers to multiple instances of al-

gorithms that work together to improve the decision model’s performance

[3, 19]. Outputs of each of algorithms in the ensemble, further referred as

base or weak classifiers, are combined using various techniques into one

common result. The rationale for such approach is that it is more difficult to

optimize the design of a general model than in case of combination of rel-

atively simpler classifiers focusing on particular aspects of data. Using the

classifier ensembles as decision models offers a simple yet efficient tech-

nique for obtaining increased levels of final accuracy. Figure 1 illustrates a

high-level architecture of the ensemble decision model.

����������	����

��
����
�

��

�

��������

���

��������

��	�����

��������

��	�����

��������

��	�����

�
����������

�
����������

�
����������

����
����

����
���

����
���

����
���

�
�	�����
�

��� ��� ���

����
���������
�

Fig. 1. Prediction model based on the ensemble of feature subsets.

Ensemble accuracy depends both on the quality of the problem decom-

position and individual accuracies of base classifiers. Decomposition refers

to the way base classifiers are trained. Individual accuracies are very im-

portant but, as shown in [14, 11], in order to improve final accuracy there

must exist some form of diversity among base classifiers. Indeed, if all base

classifiers behave in nearly the same way, little is achieved by combining

their mechanisms.

In machine learning, diversity is usually considered by means of classi-

fiers’ output. Classifiers are regarded as different from output perspective,

if they address different, mutually complementary classification aspects or

subspaces of instances. A popular method based on diversity of classifi-

cation aspects is to decompose a multi-class classification problem into a

set of two-class sub-problems, each of them handled by a different base

classifier [4]. Another example relates to a usage of domain knowledge to

decompose the nature of decisions into a hierarchy of layers that can be

BOOSTING APPROXIMATE REDUCTS 137

addressed more easily [17]. On the other hand, among a number of rough

set inspired methods based on the output diversity understood by means of

subspaces of instances, there are ensembles of decision bireducts – families

of irreducible feature subsets determining decisions subject to minimally

overlapping sets of outliers [25].

Diversity can be expressed also in terms of the algorithms’ design and

classifiers’ input [12]. Both aspects can strengthen the above-discussed

output complementarity, although they may have different implications for

interactions with humans. The design aspect of diversity relates to the types

of algorithms used to train base classifiers. Although it may highly improve

the overall model’s accuracy, the model’s clarity may decrease, making

interactions harder. The case of the input aspect of diversity is quite op-

posite. From this perspective, classifiers are considered as different when

they produce their predictions based on different feature subsets or differ-

ent instance subspaces.

Out of a number of methodologies of classifier ensemble construction,

let us focus on boosting [6] and bagging [2]. Both algorithms are based on

manipulating the training set samples. Boosting method works by repeat-

edly running a learning algorithm on variously distributed training data.

In each iteration, the number of instances misclassified by a previously

produced classifier is used to prepare the training set for the next itera-

tion in such a way that misclassified cases are prioritized. The classifier

constructed in the next iteration is focused on instances with higher prior-

ity value. In case of bagging (bootstrap aggregating), the datasets created

from the original training set may be mutually disjoint or overlapping. The

base classifiers are trained over the sample of instances. Classifiers are

built independently, while in boosting each classifier is influenced by the

performance of those that were built prior to its construction.

Boosting has been a very successful technique for solving classification

problems. We present the AdaBoost algorithm in listing 3. AdaBoost was

originally designed to solve two-class classification problems but since its

first publication many algorithm modifications have been made, mainly

restricted to reducing the multi-class classification to multiple two-class

problems [9, 20]. There exist however AdaBoost based algorithms that are

able to deal with multi-class classification problems directly. In [30] an

algorithm called SAMME was discussed. We follow the same suggestions

related to calculation of weak classifier confidence α (line 8) and setting

the error level threshold (line 5). Let us draw reader attention to the fact

we set the error threshold ǫ < (1 − Mω(∅)) where Mω(∅) is the quality

138 Sebastian Widz

measure discussed in previous section calculated for an empty reduct. The

original version of AdaBoost use ǫt = 1/2. By using this threshold we

make sure that each weak classifier performs better that a classifier pre-

dicting decision class only considering a priori decision class distribution.

Algorithm 3 Algorithm AdaBoost

Input: sequence of n examples 〈(x1, y1), ..., (xn, yn)〉 with labels yi ∈ Y = {1, ..., k}; weak

learning algorithm WeakLearn; integer T specifying number of iterations;

Output: the final hypothesis hfin(x) = argmax
y∈Y

∑

t:ht(x)=y

αt

1: Initialize: ωi = 1/n for i = 1, 2, 3, ..., n

2: for t = 1→ T do

3: CallWeakLearn, providing it with object weights ωi

4: Get back a hypothesis ht : X → Y

5: Calculate the error of ht : ǫt ←
∑

i:ht(xi) 6=yi

ωi

6: if ǫt > (1−Mω(∅)) or ǫt = 0 then

7: Break

8: end if

9: Set αt ← ln(ǫt/(1− ǫt)) + ln(k − 1)

10: Update weights: ωi ← ωi ×

{

exp(−αt) ht(xi) = yi

exp(αt) ht(xi) 6= yi
11: Normalize ωi

12: end for

13: Normalize α

4 ENSEMBLES OF APPROXIMATE REDUCTS

Let us now explain how rough sets can be used in classifier ensemble con-

struction. First of all, rough set techniques allow for producing many fea-

ture subsets in form of decision reducts, which determine predefined deci-

sion classes according to some specified criteria. This assures the quality

of feature subsets used as inputs in further learning process. Strongly cor-

related features are then expected to occur exchangeably in the discovered

decision reducts. The same happens for subsets of features that enable to

reason about decisions from different angles. This results in the ensembles

consisting of complementary yet simple feature subset based classifiers.

Discovered feature subsets can later be used as an input to different clas-

sifier methods or directly projected onto training data to product decision

rules. We follow the later approach, mainly we calculate approximate de-

cision reducts in an iterative manner. Each reduct is then used to produce

decision rules which form a single classifier, member of the ensemble.

BOOSTING APPROXIMATE REDUCTS 139

���������	�
�

�� �

��

��

����

��

��

�

��

����

Fig. 2. A dataset with nine features and exactly three decision reducts: R1, R2, and R3. For

permutation-based algorithm proposed in [22, 24], almost 43% out of 11! feature permutations re-

sult with R1, while slightly over 28.5% of permutations result with each of R2 and R3.

Certainly, as already mentioned in Section 2, extraction of the most in-

teresting decision reducts from data is not easy. There are a number of

theoretical results emphasizing the complexity of search for minimal (op-

timal) or generating all (almost all) decision reducts (see e.g. [16, 18]).

We should also remember that it is highly desirable to create easy inter-

pretable and easy understandable decision or classification models. In [22,

24], in order to search for decision reducts ensembles, we used a heuristic

algorithm based on randomly generated permutations of features. For each

tested permutation, the procedure analogous to well-known backward fea-

ture elimination (see e.g. [10]) was applied to construct the corresponding

decision reduct. Features were tested in the reversed order of appearance in

permutation, with (approximate) decision determination criteria examined

every time. Algorithm 4 describes in detail our method.

Figure 2 shows a potential of the above technique to promote ensembles

with high input diversity with respect to the subsets of features. It illustrates

a dataset with only three existing decision reducts (R1, R2, R3). As R1 and

R2 are overlapping, it should be preferred to include either R1 and R3, or

R2 and R3 into the ensemble. The discovery process can be optimized by

intelligent search operators (see e.g. [29]) or adding optimization criteria

reflecting other types of ensemble diversity (see e.g. [23]).

Feature permutation based methodology can be also generalized onto

discovery of other forms of data based knowledge representation, such as

approximate functional dependencies [22] or already mentioned decision

bireducts [25] that can be, actually, treated as a rough set inspired adap-

tation of the ideas of bagging and boosting. Another important aspect of

o

o o

Oo
o

140 Sebastian Widz

Algorithm 4 AdaBoost with (ω, ε)-Approximate Reducts as Weak Classifier

Input: A = (U,A ∪ {d}), n = |A|, ε ∈ [0, 1)

integer T specifying number of iterations

Output: Approximate Reduct Ensemble S = {r1, ..., rs}, s <= T

Initialize: ωi = 1/n for i = 1, 2, 3, ..., n

1: Calculate error threshold ǫ0 = 1−Mω(∅);

2: for t = 1→ T do

3: Generate permutation σ

4: Create Approximate Reducts rt based on permutation σ

5: Generate decision rules based on conditional attributes from reduct rt
6: Classify training examples using voting mechanisms identifying training labels

7: Calculate the error ǫt
8: if ǫt > ǫ0 or ǫt = 0 then

9: Break

10: end if

11: Calculate weak classifier confidence αt

12: Update and normalize object weights ω

13: end for

14: Normalize α

using a generic mechanism based on permutations is its ability to take into

account domain expert preferences. Let us note that features occurring in

front of a permutation are more likely to get included into the resulting de-

cision reduct. We use this fact and try to construct permutations in such a

way that attributes already existing in the model (occurring in reducts cal-

culated in previous iterations) are less likely to be selected at the beginning

of the permutations.

5 EXPERIMENTS

We conducted our experiments on a collection of benchmark datasets avail-

able from the University of California at Irvine (UCI) Repository [15]. The

summary of datasets is given in Table 2. Some datasets were already parti-

tion onto train and test sets, for others we used 5-fold cross validation. We

also included data with missing values. For the training sets the missing

values were replaced with the most frequent value within a particular class

label. For the testing set the missing values were not replaced and were

treated as unknown value. This way when an object with an attribute with

missing value needs to be classified, only rules not including this particu-

lar attribute could be applied. All results have been averaged over at least

20 runs. In case of cross validation procedure that means at least 100 runs

for each algorithm on each dataset. We tested each algorithm against the

number of iterations i where i = 1, 2, 5, 10, 20, 50, 100.

BOOSTING APPROXIMATE REDUCTS 141

Table 2. UCI Benchmark datasets used in the experiments.

dataset # examples # # attributes class distribution missing

name train test classes disc. cont. train (test) values

soybean-small 47 - 4 35 - 10:10:10:17 -

heart-spect 80 187 2 22 - 54:26 (103:84) -

zoo 101 - 7 17 - 41:20:5:13:4:8:10 -

promoters 106 - 2 57 - 53:53 -

monks-3 122 432 2 6 - 62:60 (204:228) -

monks-1 123 432 2 6 - 62:62 (216:216) -

monks-2 169 432 2 6 - 105:64 (289:142) -

audiology.stand 200 26 24 69 - 1:1:46:18:1:2:16:48:2:6:1:4:2:2:5:3:1:2:20:4:1:4:8:2 X

(0:0:11:4:0:0:4:0:0:0:1:0:0:0:4:0:0:0:2:0:0:0:0:0)

soybean-large 307 376 19 35 - 10:10:10:40:20:10:10:40:10:10:10:20:10:40:40:6:6:1:4 X

(10:10:10:48:24:10:10:52:10:10:10:24:10:51:51:9:8:15:4)

house-votes-84 435 - 2 16 - 267:168 X

breast-cancer-w 699 - 2 - 9 458:241 X

semeion 1593 - 10 257 - 161:162:159:159:161:159:161:158:155:158 -

dna (splice) 2000 1186 3 20 - 464:485:1051 (303:280:603) -

kr-vs-kp (chess) 3196 - 2 36 - 1527:1669 -

optdigit-recogn 3823 1797 10 - 64 376:389:380:389:387:376:377:387:380:382 -

(178:182:177:183:181:182:181:179:174:180)

pendigit-recogn 7494 3498 10 - 16 780:779:780:719:780:720:720:778:719:719 -

(363:364:364:336:364:335:336:364:336:336)

agaricus-lepiot 8124 - 2 22 - 4208:3916 -

nursery 12960 - 5 8 - 4320:2:328:4266:4044 -

letter-recogn 15000 5000 26 - 16 594:567:554:598:565:565:547:538:567:575:572: -

560:607:605:574:597:594:568:563:599:606:581:576:583:602:543

(195:199:182:207:203:210:226:196:188:172:167:201:185:

178:179:206:189:190:185:197:207:183:176:204:184:191

The first bunch of experiments we conducted was to check the results

obtained for approximate reducts derived using described generalized deci-

sion approach, referenced as Approximate Reduct Ensemble (ARE). We

fixed the initial permutation size to ⌊log2(m + 1)⌋, where m is the total

number of conditional attributes. We set such small number of attributes in

order to be able to compare this results with the other described methods

utilizing approximation threshold. The thresholds used in later experiments

led to comparable reduct sizes. However, the reader should be aware that

usually weak classifiers combined into ensembles use more attributes when

calculating classification models. The results of the first experiment bunch

are presented in Table 3. Table presents error rates obtained for differ-

ent datasets and number of iterations. Additionally, we tested a procedure

for diversifying attributes when constructing attribute permutations which

takes into account attributes already selected for classification model, ref-

erenced as Approximate Reduct Ensemble with Diversity (AREwD). This

procedure was described in section 4. For results comparison we include a

single classifier error rate encoded as iteration i = 1, in which case there is

142 Sebastian Widz

no difference if ARE or AREwD method is used. We bold out the result

with lower error rate on the test set. The last row sum up number of wins

for a particular method.

In general AREwD method seems to perform a bit better than ARE.

The win-tie-lose numbers forAREwD were 65-6-43. However both meth-

ods have some drawbacks. First of all for datasets like promoters, audi-

ology.stand, optdigit-recogn and pendigit-recogn the results where even

worst than the blind guess. In each case the results on training set were

good which might suggest that the learning algorithm developed a model

that was overfitted with training data. Another drawback for both meth-

ods is that there is no direct relation between attribute selection and the

obtained classification error. In each iteration the attributes are selected

randomly based on drawn permutation. There is no mechanism that would

allow to select meaningful attributes over the redundant and unimportant

ones except the step of reduct reduction which in this case happens rather

rarely.

The second bunch of experiments we conducted was to test AdaBoost

with the second method of deriving approximate reducts introduced in this

paper. Table 4 shows the results of experiments with (ε, ω)-approximate

decision reducts calculated over universe of weighted objects, referenced

as epsilon-Approximate Reduct Ensemble (eARE). Similarly to the pre-

vious experiment we also evaluate two types of attribute permutation con-

struction, random permutation selection and selection that favours attributes

that are not yet selected in the classification model. This second type is en-

coded as eAREwD. We calculated ε using the following formula: ε0.5 =
(1−M(∅))/2. Compared toARE andAREwD the results were improved

for several datasets. In few cases error rates were increased which is due

to the fact that the approximation threshold was too high. Similarly to the

previous bunch of experiments eAREwD performs slightly better. The

win-tie-lose numbers for eAREwD were 82-10-22.

In the last bunch of experiments we set the approximation threshold

to εK = (1 − M(∅))/k, where k is the number of decision classes. Ta-

ble 5 presents the obtained error rates. The datasets with only two deci-

sion classes were eliminated from the table as the results for these cases

are already presented in Table 4. The win-tie-lose numbers for eAREwD

method were 36-3-21. The obtained results compared to the second exper-

iment bunch were improved in few cases.

Table 6 presents average reduct length in ensemble obtained for eARE

and eAREwD methods for approximation thresholds ε0.5 and εk. In both

BOOSTING APPROXIMATE REDUCTS 143

Table 3. Error rates obtained for ARE and AREwD methods.

iterations 1 2 5 10

method - ARE AREwD ARE AREwD ARE AREwD

dataset train test train test train test train test train test train test train test

soybean-small 20.7 32.2 21.9 34.1 18.9 26.7 4.4 15.5 7.8 18.3 1.5 7.8 1.6 8.6

heart-spect 24.5 41.0 44.9 47.9 38.3 44.6 21.8 41.2 21.7 38.5 34.9 43.0 28.5 41.7

zoo 20.1 25.1 24.2 30.6 26.1 31.0 11.6 18.5 9.8 17.5 2.8 8.8 2.4 8.9

promoters 1.8 90.5 1.2 88.7 1.2 91.2 0.0 91.8 0.0 93.2 0.0 91.7 0.0 93.9

monks-3 29.9 30.0 40.5 42.9 31.8 34.2 17.3 18.1 17.8 17.8 15.6 17.5 15.5 18.9

monks-1 32.8 39.5 35.4 41.0 33.6 39.4 30.5 34.5 28.3 33.9 27.2 29.0 26.1 30.9

monks-2 36.8 35.3 43.9 47.4 47.1 51.0 36.7 38.8 37.2 40.1 38.8 41.1 39.2 41.3

audiology.stand 64.7 74.4 63.4 68.3 65.8 78.3 63.8 76.3 59.1 71.0 56.7 68.1 52.0 66.2

soybean-large 47.4 64.6 47.9 63.4 40.9 59.6 31.5 58.0 30.3 56.4 13.2 45.7 12.1 44.3

house-votes-84 9.5 23.0 16.7 28.0 13.1 26.8 8.7 25.6 7.3 24.1 5.7 23.3 5.1 21.5

breast-cancer-w 2.0 23.7 7.8 28.8 4.5 25.8 0.9 23.3 0.3 22.7 0.0 21.8 0.0 22.1

semeion 48.5 59.7 48.8 60.2 49.3 60.8 29.4 49.3 28.3 48.0 14.7 40.7 13.7 39.8

dna (splice) 26.5 32.0 31.3 35.7 27.7 31.9 17.1 26.8 13.9 23.5 7.9 20.4 6.2 18.4

kr-vs-kp (chess) 36.9 37.7 36.8 37.3 35.8 36.1 28.8 29.7 27.6 28.3 23.0 23.7 22.6 23.4

optdigit-recogn 10.9 84.5 14.0 81.2 9.2 85.7 0.9 87.4 0.9 87.9 0.0 90.0 0.0 91.9

pendigit-recogn 0.7 95.5 0.8 94.8 1.1 94.8 0.0 99.4 0.0 99.7 0.0 99.9 0.0 100.0

agaricus-lepiot 9.1 12.4 12.6 17.3 13.2 16.9 3.5 5.9 4.0 6.1 0.8 2.5 0.9 1.1

nursery 43.0 43.5 43.8 44.0 42.1 42.3 32.7 32.8 31.5 32.0 25.9 26.2 25.9 26.5

letter-recogn 40.6 58.2 34.5 51.8 35.5 52.3 13.1 41.0 12.4 41.3 3.0 31.8 2.8 32.2

wins - 7 11 7 12 11 8

iterations 1 20 50 100

soybean-small 20.7 32.2 0.0 4.2 0.2 4.0 0.0 5.5 0.0 3.5 0.6 7.1 0.0 4.5

heart-spect 24.5 41.0 24.1 41.4 21.6 40.6 20.9 37.5 19.9 38.5 21.2 39.5 20.3 37.9

zoo 20.1 25.1 0.2 4.7 0.6 5.0 0.9 4.4 0.0 3.7 0.3 2.7 0.5 4.3

promoters 1.8 90.5 0.0 93.6 0.0 93.1 0.0 93.7 0.0 94.4 0.0 92.2 0.0 93.1

monks-3 29.9 30.0 9.0 14.2 9.9 13.7 3.5 9.7 3.5 9.2 0.3 6.7 0.6 7.1

monks-1 32.8 39.5 17.3 20.0 16.4 18.9 0.4 1.4 0.4 1.5 0.0 0.5 0.0 0.5

monks-2 36.8 35.3 38.1 40.8 41.0 43.4 38.5 40.5 38.9 41.9 39.6 42.0 36.1 39.8

audiology.stand 64.7 74.4 49.5 64.2 51.9 69.2 38.0 66.9 52.7 70.2 35.2 58.7 47.1 59.0

soybean-large 47.4 64.6 5.9 38.4 5.6 37.8 2.1 32.0 1.8 32.4 0.9 31.3 0.7 30.9

house-votes-84 9.5 23.0 2.9 21.8 2.6 20.5 1.0 20.8 0.8 19.2 0.7 19.5 0.4 19.4

breast-cancer-w 2.0 23.7 0.0 21.2 0.0 21.4 0.0 20.5 0.0 21.5 0.0 21.1 0.0 21.5

semeion 48.5 59.7 2.7 29.7 2.3 28.5 0.0 17.4 0.0 16.8 0.0 12.2 0.0 11.5

dna (splice) 26.5 32.0 1.6 13.8 1.5 14.1 0.0 10.0 0.0 9.5 0.0 6.9 0.0 6.6

kr-vs-kp (chess) 36.9 37.7 17.0 18.1 16.3 17.6 9.5 10.8 9.4 10.8 5.3 6.8 5.2 6.7

optdigit-recogn 10.9 84.5 0.0 95.9 0.0 94.6 0.0 97.8 0.0 93.8 0.0 98.4 0.0 92.7

pendigit-recogn 0.7 95.5 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0

agaricus-lepiot 9.1 12.4 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

nursery 43.0 43.5 19.8 20.2 18.3 18.6 10.9 11.3 10.4 10.8 7.0 7.4 6.7 7.2

letter-recogn 40.6 58.2 0.2 24.9 0.1 23.8 0.0 19.9 0.0 19.9 0.0 18.8 0.0 18.4

wins - 5 14 7 8 6 12

144 Sebastian Widz

Table 4. Error rates obtained for eARE and eAREwD methods and ε0.5

iterations 1 2 5 10

method - eARE eAREwD eARE eAREwD eARE eAREwD

dataset train test train test train test train test train test train test train test

soybean-small 15.9 29.6 59.2 56.9 57.5 59.4 36.2 41.6 32.2 39.5 15.8 21.9 11.6 17.2

heart-spect 16.2 59.6 50.9 41.9 44.1 35.2 15.4 44.8 15.6 44.1 38.8 27.9 36.4 28.5

zoo 15.1 21.3 49.4 51.5 45.7 49.4 24.3 30.9 25.1 34.9 17.0 24.6 13.7 21.7

promoters 7.4 71.4 43.9 49.2 43.9 47.3 6.1 42.5 6.0 40.9 36.0 46.1 33.0 44.0

monks-3 7.5 19.1 55.2 60.5 62.0 67.5 7.7 25.6 7.5 19.8 26.6 32.3 24.0 28.9

monks-1 5.8 22.4 16.6 18.5 11.0 12.6 2.7 10.0 5.0 9.7 12.0 15.1 9.0 12.0

monks-2 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9

audiology.stand 28.5 67.5 54.5 79.6 51.2 72.1 50.2 72.9 48.2 75.2 19.5 52.9 20.5 62.5

soybean-large 36.0 58.7 39.7 62.5 45.2 64.7 46.5 65.9 46.7 65.2 36.1 57.6 35.5 59.2

house-votes-84 5.7 21.1 30.5 40.6 27.7 38.5 5.4 17.7 5.6 15.9 15.1 21.9 13.2 18.7

breast-cancer-w 4.4 10.9 17.0 25.6 11.3 20.1 2.9 8.8 3.0 8.2 6.6 10.5 5.0 9.2

semeion 38.4 58.5 44.0 62.0 43.2 61.1 33.3 51.8 33.2 51.8 28.2 47.4 28.6 47.5

dna (splice) 9.1 59.6 17.5 51.8 17.8 50.7 7.7 30.1 8.2 31.2 6.3 24.8 5.1 20.7

kr-vs-kp (chess) 11.0 25.0 27.7 32.6 23.3 27.7 8.9 16.8 8.4 15.7 15.4 18.5 14.2 17.6

optdigit-recogn 33.6 68.6 34.2 70.5 35.4 70.4 25.4 61.3 27.1 61.9 20.7 56.1 20.7 54.4

pendigit-recogn 29.5 68.6 31.1 71.4 30.9 68.7 17.4 63.6 17.1 62.9 12.0 57.0 12.4 57.0

agaricus-lepiot 7.8 11.2 28.2 29.6 26.5 28.9 5.9 7.0 5.3 6.5 24.5 25.1 19.1 19.3

nursery 18.6 18.9 39.9 40.0 42.1 42.1 32.0 32.5 28.8 29.6 29.6 29.9 29.5 29.9

letter-recogn 39.2 57.3 39.8 57.9 41.0 61.2 19.8 42.9 18.4 41.8 20.1 41.5 19.4 41.2

wins 5 13 4 13 4 12

iterations 1 20 50 100

soybean-small 15.9 29.6 5.6 9.9 3.7 8.1 0.0 2.6 0.1 1.0 0.0 0.3 0.0 0.1

heart-spect 16.2 59.6 32.6 27.5 36.4 27.3 39.9 29.3 40.2 27.1 35.6 29.3 35.1 27.7

zoo 15.1 21.3 5.3 14.3 3.6 11.2 0.9 8.6 1.1 8.4 0.1 5.8 0.1 6.5

promoters 7.4 71.4 36.0 45.4 33.5 45.1 38.0 47.4 34.2 44.7 36.2 47.1 36.8 46.3

monks-3 7.5 19.1 19.6 27.6 30.7 36.2 20.7 27.2 17.3 23.0 29.2 35.2 19.6 25.7

monks-1 5.8 22.4 12.3 14.2 9.2 10.9 5.8 7.8 14.4 15.7 8.6 12.0 11.8 13.2

monks-2 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9 0.0 60.9

audiology.stand 28.5 67.5 10.4 52.9 9.9 50.8 5.6 41.9 4.3 42.9 3.0 36.5 2.9 37.3

soybean-large 36.0 58.7 20.5 49.1 21.1 49.1 11.2 41.1 10.8 40.8 7.3 36.7 7.9 37.2

house-votes-84 5.7 21.1 15.7 19.5 10.5 15.6 13.6 17.4 8.0 12.0 13.8 17.9 10.0 14.0

breast-cancer-w 4.4 10.9 6.3 10.2 4.9 8.6 5.9 9.5 4.8 8.8 6.9 11.2 5.4 9.3

semeion 38.4 58.5 20.2 40.5 20.0 40.1 9.2 31.3 9.0 30.1 3.6 23.3 3.3 22.2

dna (splice) 9.1 59.6 3.4 18.8 3.3 16.5 1.7 12.8 1.6 12.0 0.7 9.5 0.6 9.2

kr-vs-kp (chess) 11.0 25.0 12.4 16.2 12.2 15.4 12.5 15.4 10.1 12.9 12.1 15.6 10.8 14.2

optdigit-recogn 33.6 68.6 13.2 47.1 12.1 45.9 3.6 35.0 3.7 34.2 0.8 26.1 0.9 25.9

pendigit-recogn 29.5 68.6 7.3 48.3 6.7 46.1 2.9 35.1 2.7 33.7 1.2 26.9 1.2 26.6

agaricus-lepiot 7.8 11.2 21.6 21.6 20.5 20.3 23.4 23.7 18.6 18.9 24.6 24.0 21.0 20.9

nursery 18.6 18.9 23.0 23.5 21.8 22.6 15.3 15.6 14.9 15.4 11.4 11.8 11.7 12.1

letter-recogn 39.2 57.3 8.6 30.9 8.1 31.1 2.8 23.1 2.9 22.7 1.2 17.7 1.2 17.5

wins 2 15 2 16 5 13

I I li li I I I

BOOSTING APPROXIMATE REDUCTS 145

Table 5. Error rates obtained for eARE and eAREwD methods and εk

iterations 1 2 5 10

method - eARE eAREwD eARE eAREwD eARE eAREwD

dataset train test train test train test train test train test train test train test

soybean-small 6.2 23.3 58.7 59.1 62.1 63.7 16.0 20.5 22.5 28.3 9.4 13.4 12.5 18.4

zoo 4.1 14.8 76.2 77.9 74.4 76.1 12.3 17.8 12.5 18.5 2.9 10.4 2.6 10.4

audiology.stand 2.0 73.1 75.3 81.9 79.5 85.8 2.3 62.1 4.0 69.2 2.0 64.6 0.8 63.3

soybean-large 3.8 72.4 58.3 76.8 55.4 75.0 5.5 65.1 7.1 62.9 3.7 58.2 4.8 55.2

semeion 7.6 74.3 24.5 66.5 25.3 66.2 7.1 58.0 7.2 59.5 1.8 51.7 1.9 51.0

dna (splice) 4.7 70.4 9.4 66.4 11.3 66.2 8.0 40.4 8.0 35.5 4.7 25.4 4.5 23.9

optdigit-recogn 6.3 85.6 10.0 82.9 20.3 77.2 4.4 75.1 5.2 76.1 1.3 65.1 1.7 66.3

pendigit-recogn 5.0 87.0 15.4 81.5 14.4 80.5 4.8 77.7 4.4 74.9 0.7 66.8 0.9 64.3

nursery 8.0 8.5 46.9 47.8 49.1 49.6 21.3 22.3 21.7 22.6 16.7 17.5 16.8 17.8

letter-recogn 2.8 64.1 6.0 62.4 11.7 56.5 1.5 55.3 1.8 54.6 0.2 50.6 0.2 49.8

wins 3 7 6 4 3 6

iterations 1 20 50 100

soybean-small 6.2 23.3 3.6 9.2 1.9 5.6 0.1 1.4 0.0 1.6 0.0 0.5 0.0 0.2

zoo 4.1 14.8 0.6 6.6 0.8 6.7 0.1 4.6 0.0 5.1 0.0 3.7 0.0 4.9

audiology.stand 2.0 73.1 0.0 55.4 0.3 55.6 0.0 43.3 0.0 47.5 0.0 40.2 0.0 43.3

soybean-large 3.8 72.4 0.7 53.3 0.6 50.9 0.1 46.6 0.1 43.6 0.1 39.6 0.1 36.3

semeion 7.6 74.3 0.4 36.9 0.4 36.1 0.0 22.5 0.0 21.1 0.0 15.3 0.0 14.1

dna (splice) 4.7 70.4 2.3 18.6 2.3 17.2 0.9 12.9 0.7 11.5 0.3 9.8 0.3 8.8

optdigit-recogn 6.3 85.6 0.1 52.1 0.3 50.5 0.0 31.0 0.0 28.6 0.0 21.3 0.0 20.1

pendigit-recogn 5.0 87.0 0.1 54.6 0.1 52.5 0.0 38.2 0.0 35.3 0.0 26.7 0.0 25.0

nursery 8.0 8.5 12.0 13.3 10.1 11.5 7.9 9.1 7.4 8.4 5.6 6.7 5.7 6.8

letter-recogn 2.8 64.1 0.0 42.0 0.0 41.1 0.0 30.3 0.0 30.2 0.0 21.2 0.0 21.9

wins 2 8 3 7 4 6

cases the average length decreases when number of iterations increases,

which means that with every consecutive iteration we need to provide in-

formation based on less attributes. This is somehow coherent with intu-

ition. Having constructed a classification model with a number of attributes

in case we need to improve it we do not expect to add more information

based on the same number of attributes but we would expect only a por-

tion. In case ofARE and AREwD methods there was no length reduction

for reducts selected in the ensemble, no matter what number of iterations

was selected.

6 CONCLUSIONS AND FUTUREWORK

Boosting methods combined with approximate reducts calculated on the

universe weighted objects can provide tools for constructing efficient clas-

I I I li I li I I

I

146 Sebastian Widz

Table 6. Average reduct size in the ensemble for eARE and eAREwD methods

iterations 1 2 5 10

threshold ε0.5 εk ε0.5 εk ε0.5 εk ε0.5 εk
method - - eARB eARBwD eARB eARBwD eARB eARBwD eARB eARBwD eARB eARBwD eARB eARBwD

soybean-small 2.03 2.82 1.29 1.28 1.68 1.69 0.97 1.02 1.48 1.45 0.82 0.81 1.24 1.13

heart-spect 6.90 - 5.43 5.68 - - 3.59 3.51 - - 2.06 2.14 - -

zoo 3.10 5.22 2.88 2.77 3.11 3.10 1.88 1.94 2.77 2.89 1.59 1.65 2.19 2.28

promoters 3.75 - 2.28 2.22 - - 1.34 1.27 - - 0.67 0.72 - -

monks-3 2.98 - 2.10 1.78 - - 1.73 1.76 - - 1.25 1.33 - -

monks-1 3.70 - 3.18 2.95 - - 2.41 2.58 - - 2.05 2.19 - -

monks-2 6.00 - 6.00 6.00 - - 6.00 6.00 - - 6.00 6.00 - -

audiology.stand 13.40 8.85 9.53 9.73 8.98 9.38 4.87 5.02 9.59 10.28 4.70 5.12 7.43 7.79

soybean-large 5.23 15.50 5.15 4.73 6.95 7.03 3.20 3.30 7.01 7.02 2.63 2.65 5.44 5.72

house-votes-84 3.47 - 3.38 3.27 - - 2.35 2.15 - - 1.64 1.43 - -

breast-cancer-w 2.05 - 2.14 2.12 - - 1.33 1.29 - - 0.74 0.72 - -

semeion 9.51 16.12 9.10 9.18 13.61 13.57 7.40 7.39 10.52 10.48 6.12 6.07 8.49 8.49

dna (splice) 5.95 6.75 5.43 5.35 5.65 5.60 4.25 4.22 4.21 4.18 3.68 3.54 3.71 3.55

kr-vs-kp (chess) 14.64 - 11.05 10.42 - - 8.17 7.34 - - 5.41 5.48 - -

optdigit-recogn 3.26 4.85 3.13 3.15 4.23 4.20 2.55 2.46 3.29 3.21 2.08 2.10 2.71 2.65

pendigit-recogn 2.00 3.03 2.00 2.00 2.53 2.60 1.61 1.57 2.08 2.11 1.38 1.35 1.86 1.74

agaricus-lepiot 1.29 - 1.88 2.09 - - 1.11 1.11 - - 0.60 0.60 - -

nursery 2.81 5.03 2.80 2.64 4.57 4.47 2.14 2.17 3.48 3.41 1.85 1.90 2.83 2.92

letter-recogn 3.98 6.83 3.85 3.83 6.08 5.98 3.69 3.53 4.89 5.01 2.83 2.85 4.33 4.32

iterations 1 20 50 100

soybean-small 2.03 2.82 0.72 0.72 1.04 1.07 0.64 0.64 0.93 1.04 0.59 0.60 0.90 0.91

heart-spect 6.90 - 1.21 1.20 - - 0.50 0.46 - - 0.27 0.20 - -

zoo 3.10 5.22 1.44 1.51 1.93 1.99 1.32 1.38 1.68 1.78 1.27 1.33 1.63 1.71

promoters 3.75 - 0.35 0.38 - - 0.13 0.15 - - 0.07 0.06 - -

monks-3 2.98 - 0.95 0.73 - - 0.40 0.43 - - 0.17 0.21 - -

monks-1 3.70 - 1.79 1.96 - - 2.41 1.30 - - 1.72 1.68 - -

monks-2 6.00 - 6.00 6.00 - - 6.00 6.00 - - 6.00 6.00 - -

audiology.stand 13.40 8.85 3.91 4.23 6.85 7.57 3.04 3.45 5.85 6.58 2.61 3.15 4.75 5.81

soybean-large 5.23 15.50 2.29 2.32 4.96 5.09 1.93 1.98 4.18 4.35 1.82 1.86 3.54 3.73

house-votes-84 3.47 - 0.88 0.89 - - 0.38 0.36 - - 0.18 0.19 - -

breast-cancer-w 2.05 - 0.41 0.34 - - 0.15 0.14 - - 0.08 0.07 - -

semeion 9.51 16.12 5.15 5.12 7.20 7.17 4.52 4.50 6.60 6.61 4.33 4.31 6.41 6.44

dna (splice) 5.95 6.75 3.16 3.06 3.28 3.25 2.81 2.75 2.96 2.90 2.66 2.60 2.76 2.72

kr-vs-kp (chess) 14.64 - 4.35 4.04 - - 2.00 1.79 - - 1.00 1.01 - -

optdigit-recogn 3.26 4.85 1.88 1.92 2.48 2.46 1.70 1.76 2.20 2.29 1.62 1.68 2.18 2.28

pendigit-recogn 2.00 3.03 1.23 1.22 1.56 1.53 1.14 1.13 1.40 1.40 1.09 1.10 1.35 1.35

agaricus-lepiot 1.29 - 0.30 0.27 - - 0.13 0.12 - - 0.06 0.06 - -

nursery 2.81 5.03 1.79 1.90 2.64 2.77 1.72 1.83 2.50 2.58 1.72 1.78 2.42 2.48

letter-recogn 3.98 6.83 2.64 2.63 3.89 3.79 2.47 2.47 3.43 3.45 2.42 2.44 3.28 3.31

sification models. On one hand we can traditionally consider both tech-

niques as classification methods. On the other hand rough sets and approx-

imate reducts provide methodology to analyze dependencies in the data,

reduce its dimensionality and construct models that are easy understand-

able and follow well known principles e.g. Occam’s razor [5]. Approxi-

mate reducts ensembles provide additional layer in analyzing these depen-

dencies, yet keep the model simple. We showed how approximate reducts

can be easily integrated into boosting algorithm. It is very interesting to

analyze what rules apply during reduct calculation when object weights

are changed in iterative manner as in AdaBoost algorithm. We tested our

methods on different benchmark datasets but we did not focus much on

BOOSTING APPROXIMATE REDUCTS 147

parameter setup. We will focus in future on finding methods to tune these

parameters, but as more important task, we also find to search for methods

to automatically adjust them. For example what is the best level of approx-

imation to start with, or should it be adjusted during training procedure.

We are also interested in minimizing number of iterations neccessary to

build good quality classification models.

References

1. Jan G. Bazan and Marcin S. Szczuka. The Rough Set Exploration System. In James F. Peters

and Andrzej Skowron, editors, Transactions on Rough Sets III, volume 3400 of Lecture Notes

in Computer Science, pages 37–56. Springer, 2005.

2. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

3. Thomas G Dietterich. Ensemble methods in machine learning. In Multiple classifier systems,

pages 1–15. Springer, 2000.

4. Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-

correcting output codes. arXiv preprint cs/9501101, 1995.

5. Pedro Domingos. The role of occam’s razor in knowledge discovery. Data mining and knowl-

edge discovery, 3(4):409–425, 1999.

6. Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation,

121(2):256–285, 1995.

7. Yoav Freund, Robert Schapire, and N Abe. A short introduction to boosting. Journal-Japanese

Society For Artificial Intelligence, 14(771-780):1612, 1999.

8. Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

Lorenza Saitta, editor, Machine Learning, Proceedings of the Thirteenth International Con-

ference (ICML ’96), Bari, Italy, July 3-6, 1996, pages 148–156. Morgan Kaufmann, 1996.

9. Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

10. Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal

of Machine Learning Research, 3:1157–1182, 2003.

11. Peter Sollich Anders Krogh. Learning with ensembles: How over-fitting can be useful. In

Proceedings of the 1995 Conference, volume 8, page 190, 1996.

12. Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley, 2014.

13. Ludmila I. Kuncheva, Juan José Rodríguez Diez, Catrin O. Plumpton, David E. J. Linden, and

Stephen J. Johnston. Random Subspace Ensembles for fMRI Classification. IEEE Transactions

on Medical Imaging, 29(2):531–542, 2010.

14. Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier ensembles

and their relationship with the ensemble accuracy. Machine Learning, 51(2):181–207, 2003.

15. M. Lichman. UCI machine learning repository, 2013.

16. Mikhail Ju Moshkov, Marcin Piliszczuk, and Beata Zielosko. Partial covers, reducts and deci-

sion rules in rough sets: theory and applications, volume 145. Springer, 2009.

17. Sinh Hoa Nguyen, Jan Bazan, Andrzej Skowron, and Hung Son Nguyen. Layered learning for

concept synthesis. In Transactions on Rough Sets I, pages 187–208. Springer, 2004.

18. Zdzislaw Pawlak and Andrzej Skowron. Rudiments of Rough Sets. Information Sciences,

177(1):3–27, 2007.

19. Robi Polikar. Ensemble based systems in decision making. Circuits and Systems Magazine,

IEEE, 6(3):21–45, 2006.

20. Robert E Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated

predictions. Machine learning, 37(3):297–336, 1999.

148 Sebastian Widz

21. Dominik Slezak. Normalized Decision Functions and Measures for Inconsistent Decision Ta-

bles Analysis. Fundamenta Informaticae, 44(3):291–319, 2000.

22. Dominik Slezak. Rough Sets and Functional Dependencies in Data: Foundations of Association

Reducts. In Marina L. Gavrilova, Chih Jeng Kenneth Tan, Yingxu Wang, and Keith C. C. Chan,

editors, Transactions on Computational Science V, volume 5540 of Lecture Notes in Computer

Science, pages 182–205. Springer, 2009.

23. Dominik Slezak and Sebastian Widz. Is it important which rough-set-based classifier extraction

and voting criteria are applied together? In Rough Sets and Current Trends in Computing, pages

187–196. Springer, 2010.

24. Dominik Slezak and Sebastian Widz. Rough-set-inspired feature subset selection, classifier

construction, and rule aggregation. In Rough sets and knowledge technology, pages 81–88.

Springer, 2011.

25. Sebastian Stawicki and Sebastian Widz. Decision bireducts and approximate decision reducts:

Comparison of two approaches to attribute subset ensemble construction. In Computer Science

and Information Systems (FedCSIS), 2012 Federated Conference on, pages 331–338. IEEE,

2012.

26. Roman W. Swiniarski and Andrzej Skowron. Rough set methods in feature selection and

recognition. Pattern Recognition Letters, 24(6):833–849, 2003.

27. Sebastian Widz and Dominik Slezak. Rough set based decision support - models easy to in-

terpret. In Rough Sets: Selected Methods and Applications in Management and Engineering,

pages 95–112. Springer, 2012.

28. Sebastian Widz and Dominik Slezak. Attribute subset quality functions over a universe of

weighted objects. In Rough Sets and Intelligent Systems Paradigms, pages 99–110. Springer,

2014.

29. Jakub Wroblewski. Adaptive aspects of combining approximation spaces. In Rough-Neural

Computing, pages 139–156. Springer, 2004.

30. Ji Zhu, Hui Zou, Saharon Rosset, and Trevor Hastie. Multi-class adaboost. Statistics and its

Interface, 2(3):349–360, 2009.

WZMACNIANIE KLASYFIKATORÓWOPARTYCH NA

PRZYBLIŻONYCH REDUKTACH

Streszczenie. W niniejszej pracy rozważono konstrukcję grup klasyfikatorów konstruowanych w

oparciu o przybliżone redukty decyzyjne i teorię zbiorów przybliżonych. Szczególna̧ uwagȩ poświȩ-

cono reduktom wyliczanym na zbiorach danych, w których każdemu obiektowi przyporza̧dkowana

jest pewna waga (wartość rzeczywista). Pokazano, w jaki sposób takie redukty moga̧ zostać użyte

do konstrukcji grup klasyfikatorów w oparciu o algorytmy wzmacniania tzw. słabych klasyfika-

torów (ang. boosting). Przeanalizowano dwa podejścia do wyszukiwania reduktów. Nasze metody

przetestowano na danych benchmarkowych.

Słowa kluczowe:wzmacnianie klasyfikatorów, zbiory klasyfikatorów, zbiory przybliżone, aproksy-

macyjne nieredukowalne zbiory atrybutów, wybór podzbiorów cech

