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Abstract. Heisenberg uncertainty principle is defined for the economic world. We

want to find out why there are difficulties in forecasting stock and option prices

at the basis of historical data. We will consider stochastic noise that is determined

by human based psychological inclinations. As a improvement of our last, linear

based Schrödinger model, we would like to propose new model based on nonlin-

ear Schrödinger equation. Model was calibrated using market data. Calibration was

performed using Levenberg-Marquardt algorithm.

Keywords: European option pricing, Black-Scholes equation, linear and non-linear

Schrödinger equation, Heisenberg’s uncertainty principle, econophysics.

1 INTRODUCTION

Options are usually priced using Black-Scholes equation. This non-linear

parabolic equation is based on geometric Brownian motion model of the

stock price stochastic process. Similar processes appear also among quan-

tum particles and are described by time-dependent Schrödinger equation.

In this paper, we would like to consider non-linear Schrödinger equation

in terms of option pricing.

1.1 Option pricing using linear Schrödinger equation

In our previous papers [27] we made assumption that option price is given

by equation below:

ψ(y(t), t) = exp(−kt−
2
√
(r/2− k)

σ
y(t) + g), (1)

with y(t) defined as:

y(t) = ln(S(t))− (r −
σ2

2
)t, (2)
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where S(t) is an onset price, k stands for particle expected energy and σ

is the asset price (stock) volatility [5]. Constant r is the rate of return [22]

and parameter g is a constant (obtained by data calibration). Our previ-

ous calculations showed that Black-Scholes [2] equation for economy is

the same as Schrödinger [26] equation for free particle that interacts with

constant potential [15]. From physical point of view, this gives interesting

interpretation on the basis of quantum physics.

The assumption that free particle (for example electron in hydrogen

atom) reacts with external environment by a constant potential is a rough

approximation. We know that constant potential, is reserved for interacting

free particle with barrier potential. Thus we think that Schrödinger equa-

tion that stands for the option pricing, needs to have more complicated

form, especially the potential energy that describes relation between par-

ticle and the entourage. Nevertheless, if described Schrödinger equation

varies from real form, it gives additional information about market fore-

casting. Especially about trader leverage for the market. We think that one

of the reasons that we cannot predict stock or option price at the basis of

historical data, is the influence of measuring impact (trader or market par-

ticipant) on measured object (stock, option). In physics this is well known

as Uncertainty principle [1].

1.2 Econphysics uncertainty principle

The uncertainty principle appeared in a paper byWerner Heisenberg [16], a

German physicist who was working at Neils’s institute in Copenhagen. He

wrote a paper ”On the Perceptual Content of Quantum Theoretical Kine-

matics andMechanics”. The more familiar form of the equation came a few

years later when he had further refined his thoughts in subsequent lectures

and papers. The position and momentum of a particle cannot be simultane-

ously measured with arbitrarily high precision. There is a minimum for the

product of the uncertainties of these two measurements. There is likewise

a minimum for the product of the uncertainties of the energy and time. It

can be described as follows:

∆x∆p ≥
h̄

2
(3)

or:

∆E∆t ≥
h̄

2
, (4)

where ∆x is measurement uncertainty for position, ∆p is measurement

uncertainty for momentum,∆E is measurement uncertainty for energy and

∆t is measurement uncertainty for time.
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The uncertainty principle says that we cannot measure the position x

and the momentum p of a particle with absolute precision. The more accu-

rately we know one of these values, the less accurately we know the other.

Multiplying together the errors in the measurements of these values, has

to give a number greater than or equal to half of h̄ [11] reduced Planck

constant. This is not a statement about the inaccuracy of measurement in-

struments nor a reflection on the quality of experimental methods; it arises

from the wave properties inherent in the quantum mechanical description

of nature. Even with perfect instruments and technique, the uncertainty

is inherent in the nature of things. In physics the Heisenberg uncertainty

principle asserts a limit in our ability to simultaneously know certain facts,

such as the position and speed of a particle. The theory that captures this

idea is a probabilistic theory. In quantum mechanics only the probabilities

of outcomes can be known in advance. However, from economy point of

view, much is made of the inability to forecast the current economy crisis.

On the contrary, it is a fundamental principle that there can be no reliable

way of predicting a crisis. The analogy with physics is instructive.

The Heisenberg uncertainty principle arises because the observer inter-

feres with the system. This is more pronounced in economics: an analyst

whose forecasts are believed in will have an impact on the behaviour of

the people he is analysing. This can be called uncertainty principle in eco-

nomics. There exists a maligned theory of rational expectations. It is the

tool that economists use to account for the relationship between analyst

and analyzed. A reliable method of predicting a crisis must require that

anyone (or at least anyone with the requisite technical expertise) can ap-

ply and reach the same correct conclusion using the same method. The

uncertainty principle in economics arises from the fact that we are all ac-

tors in the economy and the models we use determine our behavior. If a

model is discovered to be correct, then we will change our behaviour to

reflect our new understanding and when enough number of us does so, the

original model stops being correct. We assume that human behaviour bears

the markings of uncertainty. Forecast made by analyst will have an impact

on the decisions made by the other traders. We want to determine which

factors taken from the market can show us how to measure that impact.

Then we want to apply it in our theoretical model to predict asset price and

related option price.

Some major fluctuations related to asset price can be determined by

natural hazards like volcano eruption, floods, tornadoes. But in that case
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humans don’t have any control on that. Other example that has huge impact

on market are political events like the Ukrainian crisis.

In this paper we want to concentrate on the impacts that are rather ana-

lyst related than related to politics or natural hazards.

Analysts can give recommendation, suggestion that can be used to make

decision if trader should keep, sell or buy selected trade. We can say that

their decisions has huge impact on trader’s decisions and on the whole mar-

ket. Analyst can give few recommendations. Typical recommendations are:

positive, negative and neutral. We have provided similar to above princi-

ple which occurs in Econophysics. We performed our calculations using

atomic units (so where h constant is equal to 1). As we said before, Black-

Scholes transformation to Schrödinger equation gave additional interpre-

tation, that k can be treated as system energy. We can give Econophysic’s

uncertainty principle definition:

∆k∆t ≥
1

4π
(5)

Equation (5) explains why it is so difficult to forecast option or stock price.

We understand that market participants have impact on the prices that are

forecasted. This happens because market participants are communicating

(so sending and receiving information) with other market participants. Par-

ticipants try to predict the stock or option price. We also know that stock

prices are described by stochastic processes, we would like to know if this

stands behind Econophysic’s uncertainty principle.

1.3 Stochastic processes

In probability theory, a stochastic process (random process) [18], is the

counterpart to a deterministic [6] process. Instead of obtaining with only

one possible reality of how the process might evolve under time, in a

stochastic or random process there is some indeterminacy in its future evo-

lution described by probability distributions. This means that even if the

initial condition (or starting point) is known, there are many possibilities

the process might go to, but some paths may be more probable and others

are less.

In the simplest possible case, a stochastic process amounts to a se-

quence of random variables known as a time series. One approach to sto-

chastic processes treats them as functions of one or several deterministic

arguments. Those values are random variables: non-deterministic quanti-

ties which have certain probability distributions. Random variables corre-
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sponding to various times may be completely different. The main require-

ment is that these different random quantities all have the same type. Ran-

dom values of a stochastic process at different times may be independent

random variables, in most commonly considered situations they exhibit

complicated statistical correlations.

Familiar examples of processes modeled as stochastic time series in-

clude stock market and exchange rate fluctuations. Wiener process is de-

fined as continuous-time stochastic process. It is observed that stock price

follows Wiener process with drift. It can be visualized as a particle sus-

pended in water which is being bombarded by water molecules. The tem-

perature of the water will influence the force of the bombardment, and thus

we need a parameter σ to characterize this. Moreover, there is a water cur-

rent which drives the particle in a certain direction, and we will assume a

parameter µ to characterize the drift [17]. To describe the displacements of

the particle, the Wiener process can be generalized to the process:

dSt = µdt+ σdWt, (6)

with solution given by:

St = S0 + µt+ σWt, (7)

where:Wt is Wiener process [7], and St = S(t) is trade price observed in

the market. In next part of this article, we would like to approximate the

realization of St function using deterministic function. As it is stated in (7),

St consists from deterministic part:

S0 + µt, (8)

and non-deterministic (stochastic) part:

σWt. (9)

That is why St function can be written in additive form:

S(t) = Sd(t) + Ss(t). (10)

We define Sd(t) as function that is corresponding to drift so determinis-

tic process, and Ss(t) as part related to stochastic process. We assume that

S(t) is a product of Sd(t) (signal) and Ss(t) (noise). Before we go through
our model, we would like to understand what process is behind that noise.
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1.4 Noise and signal separation

We have estimated stock price taken from Polish market by analysing

bankier.pl website. This website contains daily trading for stocks and op-

tions. We used n-polynomial approximation to estimate stock price:

S(t) ∼W (t) (11)

where W (t) is n-degree polynomial that is used to fit market data, n is a

parameter that is often between 3 and 5, as it gives satisfied approxima-

tion. Mentioned approach is not to approximate stochastic process, but to

approximate the realization of S(t). Approximation level is measured at the

basis of Pearson correlation coefficient [14] and also at the basis of residual

sum (rest) of squares factor. The parameter n is acceptable if correlation

tends to 1 and residual sum of squares [9] tends to 0. Our mathematical

model is modified to the following form:

S(t) = W (t). (12)

Approximating realization of S(t) with deterministic function doesn’t give

accurate results, however we can compare approximated results with mar-

ket data. At the basis of that comparison, we can say, that better view of

the S(t) function can be given by equation bellow:

S(t) = W (t) + n(t), (13)

where n(t) is time dependent noise function and is representing stochastic

part of (10) equation.W (t) is n-degree polynomial that was calculated in

previous iteration. We assume that n(t) function corresponds to analysts

recommendations and to the uncertainty principle. We want to designate

this function for selected trade and check what is its nature. To figure out

that, we have analyzed over 20 trades. We chosen those trades that are sta-

ble, and haven’t reached any huge fluctuations. On Fig 1, we showed noise

and signal separation for KGHM trade. Additionally, we have created ta-

ble that contains comparison for S(t), W (t) and n(t). Now we want to

show how Ss(t) was changing in time. It is presented in the table below.

As it was showed in Table 1, difference between measured data, and ap-

proximated data are equal to (max) ±10% with naverage = 0.99. We think

that disorders made by n(t) function came from investor’s psychological

background. In case of a stock price we know that it is determined by de-

cisions made by market members and it stands behind the Econophysic’s

uncertainty principle. Those decisions are dependent from market analysis

using technical and fundamental analysis but also are based on emotions,

psychological state and psychological inclinations.
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Fig. 1. KGHM stock price. Noise and signal separation.

Table 1. Comparison for stock price - S(t), approximated price - W (t) and noise function n(t).

Date S(t) W (t) n(t) naverage

2014-03-24 101.80 93.339 1.091

2014-03-25 102.80 98.035 1.049

2014-06-09 119.25 124.605 0.957

2014-06-10 119.50 125.801 0.950

0.990

1.5 Psychological background

Most of the investors are capable to predict future stock price using techni-

cal [12] and fundamental analysis [20]. Technical analysis is used to fore-

cast the changes of prices through the study of past market data, especially

stock price. Investors are using different factors to obtain information if

current stock price tends to increase or to decline. One of the example is

overbought/oversold [8] factor which is also called stochastic price oscilla-

tor. Fundamental analysis is the examination of the underlying forces that

affect the well being of the economy, industry groups, and companies. The

investor wants to consider the overall growth rate, market size, and analyze

it’s importance to the economic system. Both methods are crucial in stock

pricing, but are impaired by other psychological influences. We can say

that financial market is efficient if changes in prices reflect the incoming

information. We can distinguish three types of market’s efficiency. Week

120 

~ 115 

w 

;f_ 
w 
'g 110 
F 

105 

l000!----~20a-----,"40,--------60~-------;t80,-----------,l-,.OO 

Time (days] 

Stochastic part 
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efficiency means that information taken from the past have no effect on

stock prices, and stock price meets the random walk criteria. Average ef-

ficiency means that all public informations are reflected in current stock

prices. Strong efficiency means that all public and confidential informa-

tions are reflected in current stock prices. If decisions are made on the

basis of technical and fundamental analysis then market is at least average

efficient, but if investors are making decisions only at the basis of their

emotions and psychological inclinations, then we can observe that prices

are capable with random walk process. There are few exceptions [28] that

occur on markets:

– On Mondays there is lower rate of return than in other days.

– Similar situation is in January - rate of return is often lower than in

other months.

– Rate of returns depends on financial size of the company (higher rate

for smaller companies).

– Information drift rates - rates are moving in the same direction in which

they were changed.

There is also multiple heuristics that are causing to lower market efficiency:

– Overconfidence heuristics that is described as illusion of control and

excessive optimism.

– Availability heuristics - assigning a higher probability for the better-

known items.

– Anchoring heuristic - recognition of insignificant values as those who

are important.

– Representativeness heuristics - inference on the basis of too few trials.

– Conservatism - underestimation of the importance of the new informa-

tion due to strong attachment to the opinions.

– Positive effect of freshness - forecasting the continuation of the ob-

served trend.

– Negative effect of freshness - forecasting the reversal of the observed

trend.

The above mentioned rules affect the decisions made by the investor. In-

vestor rationality thus depends on the normative layer (often described by

technical and fundamental analysis) and also depends on descriptive layer

described by behavioural processes. In the light of psychological inclina-

tions it is difficult to consider that the investor behaves rationally, but on

the other hand it seems that discovered anomalies have fragile nature and

it is quite impossible to achieve over average rate of return. That is why we
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should interpret n(t) as function that corresponds with behavioural pro-

cesses and should be treated as noise that is disturbing signal.

Econophysic’s uncertainty principle explains why it is so difficult to

predict stock/ option price. We also can say that stochastic noise is be-

hind of that. We assume that this noise is determined by trader’s psy-

chological inclinations. We know that it will never be possible to predict

stock/option price with high accuracy, however we can always try to find

better results by using more complicated potential energy that is described

in Schrödinger equation. We want to find Schrödinger equation that bet-

ter reflects option price than it was given in our previous calculations. Our

phenomenological assumption is that non-linear Schrödinger equation can

extend linear model. In particular, non-linear model can be simplified into

linear form. That is why, we want to apply non-linear Schrödinger equa-

tion into option pricing. We want to check if it can describe option price

more precisely than linear model.

2 CREATING THE NEW MODEL

2.1 Option pricing using non-linear Schrödinger equation

We want to present another option pricing model based on Schrödinger

equation. As a result of our previous digressions we want to propose,

more difficult model based on non-linear Schrödinger equation. Non-linear

Schrödinger equation [4] describes two identical particles having the same

state. We can say that microword contains two types of particles: fermions,

and bosons. Fermions [25] particles follow the Pauli exclusion principle.

Fermions include all quarks and leptons, as well as any composite particle

made of an odd number of these, such as all baryons and many atoms and

nuclei. A fermion can be an elementary particle, such as the electron, or

it can be a composite particle, such as the proton. only one fermion can

occupy a particular quantum state at any given time. If multiple fermions

have the same spatial probability distribution, then at least one property

of each fermion, such as its spin, must be different. It means that we can-

not have two fermions in the same state. Bosons [21] are different from

fermions, because they can occupy the same state. An important character-

istic of bosons is that their statistics do not restrict the number of them that

occupy the same quantum state. Since bosons with the same energy can oc-

cupy the same place in space, bosons are often force carrier particles. Thus

fermions are sometimes said to be the constituents of matter, while bosons

are said to be the particles that transmit interactions (force carriers), or the
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constituents of radiation. The properties of lasers and masers [24], super-

fluid helium-4 [23] and Bose-Einstein condensates are all consequences of

statistics of bosons. We would like to use Schrödinger equation for boson

gas to forecast option price. Bose-Einstein condensate is described with

following non-linear Schrödinger equation:

i
∂ψ(x, t)

∂t
= −

1

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t), (14)

with initial condition : ψ(x, t = 0) = ψ0(x),
where, x denotes position, t denotes time, V (x)+β|ψ(x, t)|2 stands for

potential energy for condensate. Coupling constant β is proportional to the

scattering length of two interacting bosons. In this form this equation is

also known as Gross-Pitaevskii [10] equation. We assume that V (x) = 0.
After substituting V (x) = 0 into equation (14) we get:

i
∂ψ(x, t)

∂t
= −

1

2m

∂2ψ(x, t)

∂x2
+ β|ψ(x, t)|2ψ(x, t). (15)

From our previous calculations, we know that in our linear model, particle

mas m is ∼ 1

σ
. Also we remember that position x can be interpreted as

stock price S. When β tends to 0, non-linear Schrödinger equation turns

into linear. Our new option pricing model is based on the following:

i
∂ψ(S, t)

∂t
= −

1

2
σ
∂2ψ(S, t)

∂S2
+ β|ψ(S, t)|2ψ(S, t), (16)

where: S is the asset price, t is time, σ is the asset price volatility and β is

the parameter that denotes market impact on option. We will find solutions

for equation (16) by using following function:

ψ(S, t) = φ(ξ) exp i(kS − ωt), (17)

where φ(ξ) is unknown function and ξ = S−σkt. Function exp i(kS−ωt)
is solution of linear Schrödinger equation for free particle. After substitut-

ing (17) into (16) we obtain following equations:

i
∂ψ(S, t)

∂t
= ei(kS−tω)

(

ωφ(ξ)− ikσ
∂φ(ξ)

∂ξ

)

, (18)

−

1

2
σ
∂2ψ(S, t)

∂S2
=

1

2
ei(kS−tω)σ

(

k2φ(ξ)− 2ik
∂φ(ξ)

∂ξ
−

∂2φ(ξ)

∂ξ2

)

, (19)

β|ψ(S, t)|2ψ(S, t) = ei(kS−tω)−2Im(kS−tω)β|φ(ξ)|2φ(ξ), (20)
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where Im denotes imaginary part. We assume that: k, S, ω, t are real:

Im(kS − tω) = 0. (21)

For sake of simplicity, we also assume that:

|φ(ξ)|2φ(ξ) = φ(ξ)3. (22)

Substituting (21) and (22) into (20), we get:

β|ψ(S, t)|2ψ(S, t) = ei(kS−tω)βφ(ξ)3. (23)

After inserting (18), (19) and (23) into equation (16), we get final equation

to solve:
∂2φ(ξ)

∂ξ2
+ (ω −

1

2
σk2)φ(ξ)− β(ξ)3 = 0. (24)

We expect to find solutions in the following form:

φ(ξ) = a0 + a1sn(ξ), (25)

where a0 and a1 are constants, and sn(ξ) is defined as Jacobi elliptic [3]

function:

sn(ξ) = sn(ξ,m), (26)

where m ∈ (0, 1) is a real parameter. Jacobi elliptic functions properties

are given below:

sn(ξ, 0) = sin(ξ), (27)

sn(ξ, 1) = tanh(ξ), (28)

cn(ξ, 0) = cos(ξ), (29)

dn(ξ, 0) = 1, (30)

d

dξ
(sn(ξ)) = cn(ξ)dn(ξ), (31)

d

dξ
(cn(ξ)) = −sn(ξ)dn(ξ). (32)

First and second order derivatives for (25) equation are below:

∂φ(ξ)

∂ξ
= a1cn(ξ)dn(ξ), (33)

∂2φ(ξ)

∂ξ2
= −a1

(
sn(ξ)[1−m2sn2(ξ)]

)
+m2sn(ξ)[1− sn2(ξ)]. (34)
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Few graphical examples of Jacobi elliptic functions (for different parame-

ters ξ andm) are given below:

Fig. 2. Elliptic functions: sn(ξ,m), cn(ξ,m), dn(ξ,m), for different parameters m and ξ.

After substituting (25) into (24), we get:

φ(ξ) = ±m

√

(
σ

β
)sn(ξ), m ∈ (0, 1), (35)

and

φ(ξ) = ±

√

(
σ

β
)tanh(ξ), m = 1. (36)

Solution (35) is an general solution, and solution (36) is given for m = 1.
Substituting (35) and (36) into (17), we get the full analytical solution for

equation (16):

ψ(S, t) = ±m

√

(
σ

β
)sn(s−σkt) exp i(kS−

1

2
σ(1+m2+k2)), m ∈ (0, 1),

(37)

and

ψd(S, t) = ±

√

(
σ

β
)tanh(s−σkt) exp i(kS−

1

2
σ(2+k2)), m = 1. (38)

Where ψd(S, t) denotes dark-soliton solution. Equation (37) is a general

solution for equation (16), however its special form presented in (38) is

Eliptic function for modulus m = 0.051 
i.o ,--, --c=r = ""<"'i==-- ---;::=========s"I 

sn eliptic function 

value en eliptic function 

- 0.5 
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called dark soliton.We expect that ψ(S, t) function to be real. This function
presented in equation (37) contains also imaginary part. Keeping in mind

that any complex function can be split into real and imaginary part:

exp ix = cos x+ i sin x. (39)

Considering that β < 0, we see that real part of equation (37) is given by:

ψr(S, t) = ±m

√

(
σ

β
)sn(s−σkt) cos(kS−

1

2
σ(1+m2+k2)), m ∈ (0, 1)

(40)

and ψd

r
(S, t) denotes the real part of equation (38):

ψd

r
(S, t) = ±

√

(
σ

β
)tanh(s− σkt) cos(kS −

1

2
σ(2 + k2)), m = 1. (41)

Equations (40) and (41) will be calibrated with market data. We will check

correlation between the model that uses abowe equations and compare it

to the market data.

2.2 Numerical computations

In this chapter we want to fit equation (40) with market data. We have cho-

sen OW20F3280 option that is based on WIG20 asset (stock). Calibration

was performed using Levenberg-Marquardt [13] algorithm that was imple-

mented using within Python application. It was included in scipy.optimize

package. The Levenberg-Marquardt algorithm is an iterative technique that

locates the minimum of a function that is expressed as the sum of squares

of non-linear functions. It has become a standard technique for non-linear

least-squares problems and can be thought of as a combination of steepest

descent and the Gauss-Newton [19] method. Pearson correlation coeffi-

cient was calculated using scipy.stats package. Charts were performed

usingmatplotlib library. Few examples of usage are below:

def func_s(t, p1, p2, p3):

return p1 + p2*t+ p3*t*t

popt, pcov = curve_fit(func_s,tdata,sdata,p0=(1.0,0.8,0.2))

where func s(t, p1, p2, p3) is one variable function (t) with three con-

stants (p1, p2, p3).
Function curve fit(funcs, tdata, sdata, p0 = (1.0, 0.8, 0.2)) fits sdata

(values for function) and tdata (values for variable t) using func s func-

tion. The initial values for parameters p1, p2, p3 are defined in p0 parame-

ter.



162 Marcin Wróblewski

Correlation is calculated at the basis of estimated function and market

data comparison:

corr = pearsonr(sdata,func_s(tdata,p1,p2,p3))[0]

2.3 Calibrating the model - stock price (WIG20)

We have created python script to estimate 3-order polynomial parameters

for approximating WIG20 trade using Levenberg-Marquardt algorithm.

Our calculation are presented on Figure 3:

Fig. 3.WIG20 stock approximation using 3-order polynomial.

As we see on Fig. 3, we have achieved correlation coefficient equal to

0.97 when did fit market data (WIG20 stock) using 3-order polynomial.

Now we will perform similar probes with fitting dark soliton (41). Then

we will perform similar calibration but for the general solution given by

(40) equation. We will perform computations for differentm values.
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2.4 Calibrating the model - option price (OW20F3280)

We have used Levenberg-Marquardt algorithm to calibrate equation (40),

however we have simplified (40) and (41) equations to the following form:

ψr(S, t) = mzsn(s−σkt) cos(kS(t)−
1

2
σ(1+m2+k2)), m ∈ (0, 1) (42)

where,

z = ±

√

(
σ

β
). (43)

and S(t) is stock price (WIG20), approximated using 3-order polynomial.

The same simplicity is proposed for (41) equation:

ψd

r
(S, t) = ztanh(s − σkt) cos(kS −

1

2
σ(2 + k2)). (44)

Calibrating (44) equation with market data, gives results presented on fig-

ure below. We see that calibrating dark soliton solution (44) with the mar-

Fig. 4. Calibrating dark soliton equation (44) with OW20F3280 option market data.
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ket data, gives correlation coefficient equal to 0.57. Now, we will check

if calibration of (42) equation can give different results. We have created

a set of values (sequence from 0.01 to 0.99 with 0.01 step) for parameter

m, and for each value, we have calculated parameters: z, σ and k. Stock

price (WIG20) S(t) was approximated using 3-order polynomial. The re-

sult of calibration are presented on the figure below: On the Fig. 5 we have

Fig. 5. Calibrating equation (42) with OW20F3280 option market data, for different parameter m.

presented computations for four cases. We see that highest correlation was

achieved for point c, where parameter m was equal to 0.69. For that case,
correlation is equal to 0.68 and is higher than it was for dark soliton solu-

tion.

3 CONCLUDING REMARKS

We have defined Econophysic’s uncertainty principle, and identified psy-

chological processes that determine its nature. To understand it on the

ground of social behaviour, we made research related to psychological in-

clinations and also to stochastic processes. We have impression that it is
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not possible to predict option price at the basis of historical data, however

it is always possible to invent mathematical model to find better option

price prediction. That is why we have proposed new model, based on non-

linear Schrödinger equation. We have tested its general and special solu-

tion, and performed computations to test correlation between the model,

and the market data. We also think that due to lack of market data (we

gathered stock/option data for the period of three months), we could not

perform reliable computations. In the future, we would like to compare

our results with full numerical computations for non-linear Schrödinger

model.
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WYCENA OPCJI EUROPEJSKICH ZWYKORZYSTANIEM

RÓWNANIA SCHRÖDINGERA

Streszczenie. Zasada nieoznaczoności Heisenberg’a została rozszerzona na zagadnienia świata

ekonomii. Stochastyczny szum, spowodowany psychologicznymi reakcjami inwestorów powoduje,

że prognozowanie trendów ekonomicznych na podstawie danych historycznych obarczone jest du-

żym błȩdem.W pracy zaproponowano nowy, ulepszony model wyceny opcji, oparty na nieliniowym

równaniu Schrödingera i uwzglȩdniaja̧cy różnego typu perturbacje. Model został skalibrowanu przy

użyciu rzeczywistych danych giełdowych. Do kalibracji danych użyto algorytmu Levenberg’a -

Marquardt’a.

Słowa kluczowe:wycena opcji europejskich, równanie Blacka-Scholesa, liniowe i nieliniowe równa-

nie Schrdingera, zasada nieoznaczoności Heisenberga, ekonofizyka






