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Some basic solutions in strain gradient elasticity theory 
of an arbitrary order 

D. ROGULA CNARSZAWA) 

THE LINEAR theory of elastic materials based on a differential equation of an arbitrary order is 
discussed. In the case of an isotropic material, the general form of solutions, as well as some 
special solutions are given in an explicit analytic form. The latter include the three-dimensional 
and two-dimensional fundamental solutions, the isotropic dilatation centre, and the straight 
dislocation line. For anisotropic materials, the one-dimensional fundamental solution is given 
which, after integrating over all directions, yields an integral representation of the three-dimen
sional fundamental solution. In the case of classical anisotropic elasticity, the corresponding 
range of integration reduces to a unit circle. The regularity and the asymptotic properties of the 
solutions are investigated. 

W pracy rozpatruje si~ liniow~ teori~ material6w spr~zystych, w kt6rej r6wnanie podstawowe 
jest r6wnaniem r6miczkowym dowolnego ~du. Dla material6w izotropowych podano w jawnej 
postaci analitycznej og6ln~ form~ rozwi~n, jak r6wniez niekt6re rozwi~nia specjalne. Roz
wHlza,nia specjalne obejmuj~ tr6j- i dwuwymiarowe rozwi~ia podstawowe, izotropowe centrum 
dylatacji oraz dyslokacj~ prostoliniow~. Dla material6w anizotropowych podano jednowymia
rowe rozwi~nie podstawowe, kt6re, po scalkowaniu wzgl~em kierunk6w, daje calkowe przed
stawienie tr6jwymiarowego rozwi~nia podstawowego. W priypadku klasycznego materialu 
anizotropowego przedstawienie to sprowadza si~ do calki po okr~gu jednostkowym. Przedysku
towano stopien regulamoSci oraz asymptotyczne wlasnoSci uzyskanych rozwi~n. 

B pa6ore paCCMOTpeHa mmeiiHWI TeopHH ynpyrH.X MaTepHaJIOB, B KOTOpoH OCHOBHoe ypaBHe
HHe HBJUleTCH .lUI<l><f:>epe~HbiM ypaBHeHHeM upOH3BOJibHOI'O nopH,AKa. )L1:ul H30Tp0WibiX 
MaTepHaJIOB rouiO B HBHOM aHaJIHTHtleCKOM BH,D;e o6~ee peweHHe, a TaiOKe HeKOTOpbie CIIe
UWlJII>Hbie peweHHH. 3TH cne~am.Hbie peweHHH co~ep>KaT Tpex- H ~yMepHbie OCHOBHbie 
peweHHH, H30TpollHbiH qeHTp Jni,JlaTai.(HH H npHMOIDUieiiHylo ,lUICJIOKSUWO. )L1:ul aHH30Tpon
HbiX MaTepHaJIOB rouiO O,lUIOMepHOe OCHOBHoe peWeHHe, KOTOpoe nOCJie HHTerpHpoBaHHH no 
:wmpaBJieHHHM ~ HHTerpam.Hoe npe~CTasJieHHe TpeXMepHoro oCHOBHoro peweHHH. B CJiy
qae KJISCCHQ:eCKOrO aHH30Tp0nHOrO MaTepHaJia ~aHHoe npe~CTaBJieHHe CBOAHTCH K mrrerpa.ny 
no e~oH OKpy>KHOCTH. 06cy>l<~eHa CTenem. peryJIHpHOCTH H aCHMIITOTHQ:eCKHe CBOH
CTBa noJIYlleHHhiX peweiiHH. 

Introduction 

IN RECENT years, a number of modified continuum theories have been developed with 
a view to improving the results of classical elasticity, mainly in regions of concentrated 
stresses. One of the simplest ways of improving the classical theory consists in introducing 
higher order derivatives into the equations of elastic equilibrium. In that way the classical 
equations of elasticity are replaced by more general differential equations of higher order. 
This approach will be referred to here as the strain gradient theory. A thorough formul~
tion of the basic principles of this theory was given by TOUPIN (1962) and MINDLIN & 
TIERSTEN (1962). The strain gradient theory can be especially useful in considering crystal 
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44 D. ROGULA 

lattice defects in the framework of the theory of continuous media. Classical elasticity, 
being widely used in such cases, frequently gives results which are unsatisfactory in many 
respects. 

Better results can be obtained by applying the strain gradient theory, even in the lowest 
order approximation, which consists in considering the elastic energy dependent on the 
first strain gradient in addition to its classical dependence on the strain itself. Then, instead 
of Lame equation, we have to deal with an equation corrected by a fourth order term. 
However, by an appropriate choice of a particular form of strain gradient theory with 
higher order terms, we can obtain a more suitable modelling of the mechanical properties 
of a crystal including some non-local effects. 

In the present paper, the general form of the medium is considered. We are concerned 
here mainly with estimating general possibilities of the theory rather than with calculations 
based on any particular form of it. 

The fundamental equation of an arbitrary order is discussed and some basic solutions 
to it are given. 

1. The fundamental equation 

The general linear fundamental equation of the strain gradient theory can be written 
in the form: 

(1.1) 

where P11(a) represents a tensor-operator which is a polynomial in the partial derivative 
operators a= (o1 , o1., o3); ui is the displacement field and Ji an external force field. 

The usual tensor notation is not convenient in dealing with quantities of unspecified 
order. It can be simplified by the following convention. 

Consider an arbitrary tensor quantity of an arbitrary order which is symmetric in a cer
tain group of s indices: 

a ... ftiz··· '···· 

Instead of specifying the value of every index in the group, it suffices to state how many 
indices take the values 1, 2 and 3, respectively. Thus, an arbitrarily large group of symmetric 
tensor indices can be replaced by three non-negative integers t-t 1 , t-t 2 , t-t 3 • Such a triple will 
be denoted by a single letter, e.g. t-t = {t-t1 , t-t 2 , t-t 3). The quantity 

df 

(1.2) lt-t 1 = /-tl + l-'2 + l-'3 

equals the number of tensor indices which correspond to the multi-index 1-'· For gradient 
operators of arbitrary orders the above convention allows us to write: 

(1.3) 

We can consider quantities with arbitrary numbers of multi-indices and/or usual tensor 
indices. 
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The operator PiJ (n) in Eq. (1.1) can be conveniently written as: 

(1.4) Pii(8) = 2; aijpo~', 
0<11-'l~r 

where the coefficient aiiJt has two tensor indices i, j and one multi-index p,. For any speci
fied value of l,ul, the quantity aiiJt is equivalent to a tensor · of order 2 + lfll symmetric in 
the last lt-tl indices. 

Being evidently local, the differential Eqs. (1.1) might, at first sight, seem to have little 
relevance to any non-local physical effects. Let us, however, note the following features of 
the classical theory of elasticity: 

a) it is governed by differential equations, 
b) it involves no material constants which would have the dimension of length. 
In fact, the elastic properties of a material are completely determined by the tensor of 

elastic constants ciikh which has the dimension of stress. Even in the dynamical theory 
where one may combine the elastic constants with the mass density it is impossible to form 
a material constant of the dimension of length. In other words, the classical elastic medium 
has no intrinsic scale of length. 

The locality property expressed by (a) is here considerably strengthened by the property 
(b). It is (a) and (b) together which render the classical theory of elasticity unable to 
describe any non-local physical effects. This is no longer true for a theory corrected by high
er order terms in the equations of ~quilibrium. Being local in the weaker sense (a), such 
a theory introduces intrinsic scales of length in a material medium. The appropriate para
meters can be expressed e.g., as ratios of coefficients of derivatives of different orders. 
Those intrinsic length parameters create a possibility for the strain gradient theory to de
scribe certain effects resulting from the non-zero range of the real interatomic forces. 

2. Energy 

As in the classical theory of elasticity, we assume that the energy of a material body is 
entirely determined by its displacement field. The exact thermodynamic nature of this "ener
gy", not necessarily the same in various cases, is irrelevant to our theme. 

The above energy assumption imposes an important restriction on possible forms of 
the operator Pil (o). To obtain this restriction let us discuss the case of an unbounded me
dium. In this case the work done in an elementary process 

(2.1) u(x)-. u(x)+~u(x) 

is given by the formula 

(2.2) 

Making use of the linearity of the relation between forces and displacements given by Eq. 
(1.1), we can easily integrate this formula. For the energy corresponding to a displacement 
field u(x) produced by the forces f(x), we obtain 

(2.3) 
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46 D. ROGULA 

Now let us consider a cyclic process: 

(2.4) 0 --. u< 1>(x) --. u< 2 >(x) --. 0. 

According to the assumption, the work done in this process has to be zero. On the other 
hand, this work can be expressed as 

(2.5) 0 = W0 1 + Wu + W2o = ~ J d3xu(2>f< 1> + ~ J dx(u(2>- u(l>) (f<2> + f< 1 >) 

- ~ J d3xu<2>f(2> = ~ J d3x(u<2>r(l>- u<t>f(2>). 

Making use of Eq. (1.1), we obtain 

(2.6) 

which holds for arbitrary fields u< 1 > and u< 2>. After some integration by parts, we obtain 
from it: 

(2.7) Pij(o) = Plj(o), 

where P1j( o) is the operator conjugate to Pil( o): 

(2.8) Pij(o) = ~ ( _ )l"la"al'"· 
O<IPIEO;r 

Thus, in order not to contradict the energy principle, the operator P11(o) has to be self-con
jugate. 

As equation (2.3) shows, the global energy of an infinite medium for a given displace
ment field is uniquely determined by the form of the operator P11(o).lt does not, however, 
allow us to determine the energy density uniquely. In fact, introducing an energy density 
fD so that 

(2.9) 

we obtain an expression equivalent to (2.3), provided that the equation for ~ W resulting 
from (2.9) agrees with Eq. (2.2). The necessary and sufficient condition is (2.10) 

~w 
(2.10) P11 (o)u1 = ~, 

UUJ 

where the last symbol denotes the functional derivative 

(2.11) 

In this case, the energy density fD differs from ~ u ·f in (2.3) by a divergence-type terms which 

does not affect the global energy. 
The energy density fD can be subjected to further requirements, such as invariance with 

respect to rigid translations and rotations of the medium or, for homogeneous deformations, 
correspondence to the classical theory of elasticity. With no initial stress present, the inva-

http://rcin.org.pl
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riance requirement eliminates dependence w on u1 and w;1 so that the energy density depends 
only on e;1 and the derivatives of u; of second and, possibly, higher orders: 

(2.12) l,ul > 2; 

the symbols w;1 and eiJ have the standard meaning: 

1 
(2.13) W;j = 'f(U;,j-Uj,J), 

(2.14) 
1 

E;j = 'f(Ui,j + Uj t). 

The gradients of any non-zero order of the rotation tensor w11 can be entirely expressed by 
the gradients of the corresponding order of the strain tensor eu. In fact, we can easily check 
that the equation 

(2.15) Wij,k = Eilc,j- Ejlc, i 

holds identically. Making use of this equation, we can write: 

(2.16) 

which enables us to express the second order gradients of the displacement, vector u1 by the 
first order gradient of the strain tensor e11 • By differentiating Eq. (2.16), the analogous 
equations for higher order gradients can be obtained. This leads us to the conclusion that 
energy density (2.12) can be expressed as a function of the strain tensor and its gradients 
of different orders: 

(2.17) 

Given an expression for the energy density, the form of the operator Pl)(o) is determined 
uniquely by Eq. (2.10). Therefore, in phenomenological formulation of the strain gradient 
theory, it is often convenient to begin with consideration of the energy density. 

The energy of a finite body cannot be unambiguously determined without further 
investigation. This is because the surface energy may contain terms non-equivalent to any 
volume integrals. For our purposes, knowledge of the energy of an unbounded medium 
will suffice. 

3. Conditions for the coefficients a11p 

The coefficients a11P are, in general, functions of the coordinates x = (x1 , x 2 , x 3). We 
shall restrict ourselves to considering here a medium which is homogeneous, 

(3.1) 

and centrosymmetric 

(3.2) a11P = 0 for odd l,u I· 
Othervise, the anisotropy considered is arbitrary. For any particular material, these coeffi· 
cients are subject to the restrictions resulting from point symmetry. 
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According to (3.2), the operator PiJ(o) contains only derivatives of even orders and, 
in particular, its order is even, r = 2n. 

In the case of a homogeneous and centrosymmetric medium, the condition (2. 7) can be 
written as 

(3.3) 

Thus the tensor Pij{iJ) has to be symmetric. This symmetry is equivalent to the symmetry 
of all aiJ1/ s: 

(3.4) 

Further important conditions for the aiJp.'s follow from stability considerations. For the 
medium to be stable, the energy (2.3) must be positive for non-vanishing fields u(x). In fact, 
a stronger condition is needed-namely, the energy density must be everywhere positive. 
According to KUNIN (1968), this is equivalent to the condition that the characteristic 
equation 

(3.5) 

has only positive roots: 

(3.6) whk) > 0, wi{k) > 0, wi(k) > 0, 

for any real k =F 0. The matrix Pi1(ik) is defined as 

(3.7) 
1 

Pii(ik) = }; (- )2aiJp.kP., 
2~1t~l~2n 

and according to the above condition must be positive-definite. 
Making use of the Fourier transform 

(3.8) 

we can express the energy as 

(3.9) 

4. The operator PiJ(o) and length parameters for an isotropic medium 

Now we shall investigate the question as to what effect the higher order terms have on 
solutions to Eqs. (1.1). We shall begin with an isotropic medium. 

In that case, the most general form of the operator Pii(o) is 

(4.1) 

where a(L1) and b(L1) are polynomials in the Laplace operator L1. Equation (1.1) takes 
the form 

(4.2) -a(L1)L1u- [b(L1)-a(L1)Jgraddivu =f. 
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From correspondence with the classical theory, we have 

(4.3) a (0) = p,, b (0) = ). + 2p,, 

where p, and ;. represent Lame constants. 

Let p and q be the orders of the polynomials a(Lf) and b(Lf) respectively, and 

(4.4) 
{3~' {3~ ' ... ' p;' 
{312 {3'2 {3'2 
1' 2' ... ' q 

their roots, each taken according to its multiplicity. Then we can write: 

a (Lf) = const · ({3~- Lf) ({3~- Lf) ... ({3;,- Lf), 

b (Lf) = const. ({3?- Lf) ({3~2 - L1) ... ({3~2 - Lf). 
(4.5) 

The roots (4.4) are, in general, complex. They obey, however, the following restrictions: 
(a) none of them is equal to zero; 
(b) none of f3? or p; is a real negative number; 
(c) non-real roots of a(Lf), as well as those of b(Lf), occur in mutually conjugate pairs. 
The restriction (a) follows from correspondence with the classical theory of elasticity. 

In fact, from (4.5) we have 

a (0) = const · {3~ {3~ ... p; 
b(O) = const·f3?{3;2 

... {3~2 • 
(4.6) 

If one or more of the roots were zero, then, according to ( 4.3), one or both Lame constants 
would be zero; this contradicts the classical theory. 

The restriction (b) is a consequence of the stability condition. According to Eq. (4.1), 
the matrix (3.7) for an isotropic medium can be written as 

(4.7) 

Thus, this matrix is positive-definite only when 

(4.8) 

If a real negative root of any of the two polynomials existed, it would contradict the ine
qualities ( 4.8) for certain real wave vectors k. 

The conditions (a) and (b) imply that {3's themselves can be so chosen that 

(4.9) Ref3r > 0, Re{3~ > 0 

for any rand s. 
The condition (c) is an immediate consequence of the fact that the coefficients of 

the polynomials a(Lf) and b(Lf) are real. 
All the {3's have the dimension of inver~,e length and therefore can be used as a conve

nient set of length parameters. The number of independent real length parameters equals 
the total number of the roots {31 and {3): a real root determines one, and a pair of mutually 
conjugate complex roots determines two such parameters. 

The classical elastic constants and the roots ( 4.4) determine completely the polynomials 
a(Lf) and b(A), and, consequently, the detailed form of Eq. (4.2). 

4 Arch. Mecb. Stos. nr 1/73 
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50 D. ROOULA 

In fact, according to Eqs. (4.5) and (4.3), we have the following representations 

a (L1) = {Ji{J~~ .. p; ({Ji- .1) ({3~- .1) ... ({3; - .1) 

(4.10) = p(1-f312 L1) (1-f3i2LI) ... (1-f3i 2L1), 

b(L1) = {3'2;,~2p {3'2 ({J~2-L1) ({3~2-Lf) ... ({J~2-L1) 
1 2 .•• q 

= (A+ 2p) (1- {Jt 2 Ll) (1- p;-2 Ll) ... (1- p~-2 L1). 

5. The general form of solutions to homogeneous equations for isotropic media 

Let us consider Eq. (4.2) in a region where f = 0: 

(5.1) a(LI)Liu+(b(LI)-cx(LI))graddivu = 0. 

The displacement field can be decomposed into two parts 

(5.2) 

so that 

(5.3) 

u = v+w, 

divv = 0 and curl w = 0. 

Then the fields v and w have to satisfy the equations 

(5.4) a(LI)Liv = 0 and b(L1)Liw = 0. 

In the classical theory of elasticity, where a(L1) and b(L1) are simply constants, the fields 
v and w (and u, in consequence) have to be harmonic: 

(5.5) Lfyclass = 0 and L1wclass = 0. 

Thus, according to Eqs. (5.4), any classical solution is acceptable as a particular solution 
to the equations of the strain gradient theory. The non-classical solutions in which we are 
interested can be found by considering the equation 

(5.6) Llu = {J2 u, 

where {32 is a constant. Taking into account Eqs. (5.3) and (5.4), we see that if either 

(5.7) a({32 ) = 0 and div u = 0, 
or 

(5.8) b({J2
) = 0 and curl u = 0, 

then the solution u to Eq. (5.6) satisfies Eq. (5.1). In that case, the constant {32 in Eq. (5.6) 
must be equal to one of the roots (4.4). We may conclude that a sum of the form 

(5.9) u = gclass + 2 u<s>' 

where uclass is a classical solution and the u<•>'s satisfy either 

(5.10) 

http://rcin.org.pl
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or 

(5.11) 

is always a solution to Eq. (5.1). 
In the case in which the polynomials a( A) and b(.d) have no multiple roots, the inverse 

statement is also true: any solution to Eq. (5.1) is of the form (5.9). This can be proved 
by induction with respect to the number of factors in the representations (4.10). Thus, 
in that case the formula (5.9) represents the most general form of solution to the equations 
of the strain gradient theory. 

If any of the polynomials a( .d) and b(.d) has a multiple root, the solution given by the 
formula (5.9) is not of the most general form. In this case, for any multiple root we have 
a family of particular solutions to Eqs. (5.1) 

a a•- 1 

u, ap u, ... ' apm-1 u' 

where u satisfies Eqs. (5.10) or (5.11), and m represents the multiplicity of the root {3. This 
follows from the observation that if u is a solution to Eq. (5.6), then 

(5.13) ({32- L1)'+1 :;, u = 0 

for an arbitrary/. The particular solutions of the form (5.12) for all multiple roots should 
be taken into account. 

In further paragraphs, we shall discuss briefly a few special solutions which are of some 
interest. Throughout this discussion we assume that none of the polynomials a(.d) and 
b(.d) in Eq. (4.2) has multiple roots. From the formulae directly valid under the above 
assumption, we can obtain expressions valid in the case of multiple roots by applying an 
appropriate limiting procedure. 

6. The three-dimensional fundamental solution for an isotropic medium 

We consider first the fundamental solution G11 (x) defined as the solution of the equation: 

(6.1) 

submitted to the condition of vanishing at infinity. The symbols t5< 3 >(x) and t5iJ denote the 
three-dimensional Dirac delta and K.ronecker delta, respectively. This solution can easily 
be found by making use of the Fourier transformation. It can be represented by the follow
ing F ourier integral 

1 J [ k2~tj- k,kj k,kj J e'kx 
(6.2) GiJ(x) = (2n)2 d3k a( -k2 ) + b( -k2) --p;-' 

where k-4 is to be understood in the following sense 

(6.3) 1 1[ 1 1 J 
F = 2 (k+ i0)4 + (k -i0)4 · 

4* 
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After performing angular integrations, we obtain the expression 

(6.4) 

This integral can be computed conveniently by passing to the complex k-plane. Because 
r > 0, the integration contour can be closed in the upper half-plane. Then the contribu
tions to the integral (6.2) arise from: 

1) the pole at k = 0; according to the formula (6.3) this contribution is given by only 
a half of the residuum; 

2) the poles at the roots of the polynomials a( -k2) and b( -k2) with lmk > 0. These 
poles are at the points 

(6.5) 

and 

(6.6) 

k = ifJr, r = 1, 2, ... ,p, 

k = ;p;, s = 1, 2, ... 'q 

with P's restricted by inequalities (4.9). 
The above procedure is equivalent to evaluating the integral (6.4) as 

(6.7) ~ f dk ... + f dk ... , 
Co Ct 

where the contours C0 and C 1 are chosen as in Fig. 1. The contour C 1 encloses all the 

Fio.l. 

poles (6.5) and (6.6) and the contour C0 encircles only the pole at k = 0. Summing up the 
above-mentioned contributions, we obtain 

(6.8) Gl} = 4~ ~"I}(~ -}; oc, e-:··)- 4~ ~a, a;( ; +}; ;: ( ~ - oc, e-;")) 
a s 

+ 4~ A:2p a, a;(;++ p~• ( ~ -oc: e-:;,) ). 
where the symbols ex.~ and ex~ are defined as 

(6.8) 
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By making use of the identities 

a,ajr = ~IJ - XiXj 
r r3 

' 

(6.10) 

S3 

the angular dependence of GiJ can be demonstrated. From the point of view of behaviour 
as r--. oo, three types of terms in the fundamental solution (6.8) can be distinguished 

1) the terms of order 1/r; these terms form the classical fundamental solution: 

(6.11) Gclass = _1 _ _!_ ~~1 - _1_ (_!_- 1 ) a, a .!_ 
11 4n p r 4n p .l + 2p 1 2 

2) the terms of order l/r3 

(6.12) 

3) the exponential terms which, by inequalities (4.9), decrease at infinity. 
Hence, we can write~ 

(6.13) 

+a finite number of exponentially decreasing terms. 
For r -4 0, the classical fundamental solution exhibits a singularity of order 1 fr. This no 
longer holds in the case of the strain gradient theory. Taking into account the identities 

(6.14) 

and 

(6.15) 

it can be seen from Eq. (6.8) that the terms of order 1/r cancel each other. Thus, the funda
mental solution in the strain gradient theory is continuous at r = 0. 

The actual form of the singularity at r = 0 depends on p and q, the orders of the poly
nomials a( A) and b(LJ). If p > 1 and q > I, the gradients of G11 up to second order, o"GiJ 
and o1o~cGiJ, are continuous. If p > 2 and q > 2, then the gradients up to fourth order 
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are continuous, and so on. In fact, if p > 1 and q > 1, the following equations -are iden
tically valid: 

~ p;ma., = 0 for m = 1, 2, ... , p- 1, 

(6.16) .2 {J~2ma.8 = 0 for m = 1, 2, ... , q- 1, 
6 

so that sufficiently low odd powers of r in the series representing the solution (6.8) are 
cancelled. Specifically, the following asymptotic expression is valid for small r: 

G· = _1 _ _!_(LM - o o) ~ (.!!:!__ sh {J,r - {J~"ds 2p+1) 
•J 4n f' 11 t k .L.J {J; r (2p +2)! r , 

(6.17) 

It follows from the above expression that up to order 

(6.18) 2min(p, q) -2, 

the gradients of the fundamental solution G11 are continuous. 

7. A centre of dilatation in an isotropic medium 

Now we consider a spherically symmetric field u which has a singularity at r = 0, 
satisfies Eq. (5.1) for r :F 0, and vanishes at infinity. The spherical symmetry implies that, 
in spherical coordinates, such a field has only the radial component which does not depend 
on angular variables: 

(7.1) u, = u,(r), u6 = u91 = 0. 

Consequently, we have curl u = 0. The classical solution of this problem [ESHELBY (1956)] 
is of the form: 

(7.2) 
c 

uclaas = --
r 4:7tr2 ' 

and is completely determined by specifying the value of the constant c. The meaning 
of this constant is as follows: it equals the increase of volume of the infinite medium 
caused by the centre under consideration. 

To obtain non-classical particular solutions, we shall consider Eq. (5.11) which in the 
present case takes the form: 

(7.3) 0 1 0 2 {3'2 
-~-~~r u, = s u,. vr r vr 

Hence, the particular solutions we are seeking can be written as 

~ -fJ'r v e s 
(7.4) 

or r 
s = 1, 2, ... 'q. 
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Taking into account the classical term, we obtain the following general solution of our 
problem: 

(7.5) 
c a e-P;r 

u,=-4 2 + ~A,-a --, 
nr L.J r r 

where c and A, are arbitrary constants. This solution can also be represented as 

(7.6) 

with 

(7.7) 

u = -gradqJ 

c e-P~r 
qJ=-- ~A,-. 

4nr L.J r 

The non-classical terms in (7.5) decrease exponentially at infinity. Hence the constant 
c retains its classical meaning. But the coefficients of the exponential terms remaining unde
termined, the total volume change no longer determines the complete solution. 

In order to explain this indeterminacy, let us write the solution (7.5) in a somewhat 
different form. First of all, we construct a solution with singularity at r = 0 as weak as 
possible. Manipulating with q the constants A, enables us to eliminate q singular terms 

(7.8) 1 3 2q-3 r' r, r ' .... r 

in the expansion of the potential (7.7). According to Eqs. (6.15) and (6.16), this requires 
the constants A, to have the values ca.;/4n, so that 

c ( 1 e-P;r ) 
u = grad 4n --,+~a.~-,-

, 
(7.9) 

is the least singular solution. 
Next, we consider more singular solutions. Note that, because all the roots {3;2 are 

different, the Vandermonde determinant 

(7.10) 
[ 

1 {3~2 ... f312(q-1) l 
1 {3'2 {3'2(q-1) 

2 ... 2 

1 {3~2 ... p~2(q-1) . 

differs from zero. 
Thus, instead of A 1 , A 2 , ... , Aq, we can introduce a new set of arbitrary constants 

cl, c2 , ... , Cq such that 

(7.11) 
, {J'2 

A _ __:_ I a., I ( {J'2 {J'2(q-l)) , - 4n a.,+~ c1 +c2 s + ... + Cq • 

Then we have 

(7.12) 

where 

(7 13) u< 0 > = grad- -- + ~a.'--1 ( 1 e-P~r ) 
4n r L.J ' r 

If 
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and 

(7.14) 
1 e-P~r 

u<1> = grad 
4
n 2; <X~{J~2"-7-, k = 1, 2, ... , q. 

It follows from Eq. (6.16) that the greater is k the more singular is the solution u<1>. Moreo
ver, we have 

(7.15) 

and 

(7.16) 

u<"+ 1 > = Lfu<1> for k = 0, 1 ... q -1 

where G is the fundamental solution (6.8). Thus, by Eq. (6.1), solution (7.12) corresponds 
to the following singular forces 

(7.17) 

The classical term 

-(A.+ 2p.) c grad ~< 3>(x) 

in (7.17) represents an isotropic distribution of forces of the type shown in Fig. 2. The 
remaining terms represent isotropic distributions of multipole forces up to order q. The case 
of dipole forces is illustrated in Fig. 3. 

FIG. 2. FIG. 3. 

In classical elasticity, multipole distributions of forces at the centre make no contribution 
to the solutions at r :I= 0. 

8. lbe two-dimensional fundamental solution for an isotropic medium 

As the next example, we shall discuss the plane fundamental solution which corresponds 
to the forces uniformly distributed along the z-axis. The appropriate equation is 

(8.1) 

where ~<2 > (x) is the two-dimensional Dirac delta ~(x)~(y). The solution FiJ can be calcu
lated in a systematic way-e.g., by making use of the procedures of Sec. 6 or 7. However, 
we can obtain it more easily by analyzing the form of the fundamental solution (6.8). 
The factors responsible for GiJ being the solution of Eq. (6.1)-apart from algebraic prop
erties of the coefficients-can be stated in the form of the equations 

(8.2) L1A=B, L1B=~, (L1-{J2)C=~, 
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where ~stands for 6< 3>(x) and 

(8.3) 

r 
A=-8n' 

1 
B _ 7 = ~lx2 +y2 +z2, 

- - 4nr ' V 

e-fJr 
C=--. 

4nr 

S1 

Therefore, if we solve Eq. (8.2) with two-dimensional 6 and put these solutions into the 
expression (6.8) in place of the terms (8.3), we obtain the solution Fii. The appropriate 
solutions for A, B, C are 

(8.4) 

A = _!_ r 2 (log r- 1) , 
8n 

1 
B = 

2
n log r, r = y' x 2 + y 2

, 

where K0 denotes the modified Hankel function. Therefore, 

(8.5) 

F33 = - -~!-' {logr +}; a.sKo(P,r)), 
8 

and for a., fJ = 1, 2, 

The corresponding classical expressions are 

(8.7) 

and 

(8.8) 

1 
F~r· = - --log r 

2p,n 

possible constant terms being disregarded. 
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The modifications of F11 introduced by the strain gradient theory are quite similar 
to these of G,1. From the inequalities (4.9), we have 

(8.9) largfJ.rl < ~, largp;rl < ; , 

so that the terms containing K 0 decrease exponentially at infinity. Therefore, for large 
values of r we have 

(8.10) F 33 = F~1:S1 +a finite number of exponentially decreasing terms 

and 

cl as• 1 ( 1 ~ 1 1 ~ 1 1 ) ( Xa.XfJ ) 
(8.13) Fa.fJ = Fa.fJ + 2nr2 /i LJ p; - A+ 2,u L.J p;2 lJa.fJ-2-,-

s 

+ a finite number of exponentially decreasing terms. 

To investigate the behaviour of FiJ for r-+ 0, we make use of the following expansion 
of K0 (TRANTER, 1968): 

(8.12) Ko(xl = - (r+Iog ~)I.(xl + ,i\.z;;l2 ( 1 + ~ + ! + ... + ! )· 
k=l 

where y is Euler's constant and / 0 is the modified Bessel function of the first kind. 
We obtain 

(8.13) F 33 =~I' 4'(p!)2 ~ <X,p:•r2
'( -logr+ 1 + ~ + ... + ~) 

- ~I' ~ <X, ( y +log ~ ) lo(P, r) + O(r
2'+2

Jog r) 

and 

(8 14) F - -
1
-(a a - [ 1 ~ R

2
P 

2
P+

2 x 
• a.{J - ln,U a. {J 4P+l[(p+ 1) !jl LJ fXsps T 

s 

1 ~ ~ [ 1 ~ I R'2q 2q+2 ( 1 1 + 2n(A+ 2,u) ua.ufJ 4q+1f(q+ 1)!}2 LJ fXsps r - ogr+ 
s 

Therefore, F33 is continuously differentiable up to order 2p- 1, and .Fa.fJ-up to order 
2min(p, q) -1. 
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9. A dislocation line in an isotropic medium 

As the last example, we consider an infinitely long straight dislocation line. We shall 
assume that the z axis coincides with the dislocation line and make use of polar coordi
nates in the x, y plane: 

(9.1) 
y-

(j = arc tg-, r = y x2 + y2 • 
X 

A dislocation is defined by the following condition: for any complete circuit around the 
dislocation line, the displacements at the end and starting point, respectively, must differ 
from each other by the Burgers vector b. Thus, for the displacement field u of a dislocation, 
we can write 

(9.2) u = - b ~ +a single-valued displacement field. 

The single-valued part of the displacement field should be determined from the condi
tion that the medium remains in static equilibrium with no external forces acting on it. 
Putting f = 0, we can safely make use of Eq. (4.2) throughout the medium except the 
dislocation line. This, however, is not sufficient: considering the equation of equilibrium 
at r =I= 0 does not enable us to get rid of possible terms arising from distributions of forces 
concentrated at the dislocation line. Therefore, it is necessary to consider equations of 
equilibrium for arbitrary values of r, including r = 0. On the other hand, we cannot 
make direct use of Eq. (4.2) atr = 0. This equation is valid for single-valued displacement 
fields, because in deriving it we made use of the fact that the second order derivatives 
commute: 

(9.3) 

For (} we have 

(9.4) 

o oO y2 -x2 

-- = -- -n6(x)6(y), 
ox oy r4 

so that relation (9.3) is not valid at the dislocation line. In order to obtain the equation 
valid for multivalued dislocation fields, we shall write the expression for the symmetric 
stress tensor which, for single-valued displacement fields, should be compatible with 
Eq. (4.2): 

(9.5) 

Then, the equation CJik,k = 0 takes the form: 

(9.6) 

Let the Burgers vector of the dislocation be b = (b 1 , b2 , b3) and the displacement vector, 
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which does not depend on z, be u = (u, v, w). In place of Eq. (9.6) we can now write 

a(LI)Liu+ fb(LI) -a(LI)] :x diva+a(LI) ( a:;x - a:;y )v ~ 0, 

(9.7) a(LI)Liv+fb(LI) -a(LI)] ~ divu+a(LI) (a:;y - a:;x )u = 0, 

a(L1)L1w = 0, 

with 

a2 a2 
(9.8) L1 = ax2 + ay2 ' 

. au av 
dtvu = -+-. ax ay 

Taking into account the fact that 

(9.9) 

in the entire x, y plane, we see that the classical solution for the screw dislocation 

(9.10) 
() 

fO = - b3 2n ' u = 'V = 0' 

remains valid. 
With the two-dimensional permutation symbol 

(9.11) 

the first two Eqs. (9.7) can be written as 

(9.12) ( 
a2 a2 ) 

a(L1)ucx,~JJ + [b(Li) -a(L1))up,1Jcx +a(L1) ay ay - faxay EcxpUp = 0. 

For the edge dislocation it is convenient to put 

(9.13) 

where 

(9.14) 

Then, making use of the following equations 

L1Iogr = -2nt5<2 >(x), 

(9.15) !!!.._ = - a logr' 
ax ay 
ao a logr 
-=--, ay ax 

together with Eqs. (9.4) and (9.9), we see that 

(9.16) up,tJ = 0 

and 

(9.17) 
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Hence, putting the expression (9.13) into Eq. (9.12), we obtain the following equation 
for u~: 

(9.18) 

The solution of this equation can be represented as 

(9.19) u~ = - 2efJ1b1a(L1)F afJ' 

where FafJ is the plane fundamental solution (8.6). 
To calculate a(LJ)FatJ, let us note that for r ::1= 0 the following equations hold: 

a(LJ) logr = p logr, 

r2 r2 ~ 1 
a(LJ) 4 (logr-1) = p 4 (logr-1)-p L.J Pt logr, 

s 

(9.20) 

a(J)K0 ({3r) = a(f32 )K0 ({3r). 
Then we obtain 

(9.21) 

where 

(9.44) 

Finally, we have 

(9.23) - uclass + 1 I' b ~ ~ 111 Uoc - oc ---.,---2 e{Jy yCJocCJ{J T' n ~~o+ I' 
where 

(9 24) Uclasa - 1 (b t:J I' b 1 A+p b XocX{J) t 
• ex - - m a:v+ tA+ 2p Ea{J y ogr- A+ 2p Epy "I~ +cons 

represents the classical solution for the edge dislocation. 
Let us note that when the polynomials a(LJ) and b(LJ) have the same roots-i.e., 

(9.25) 

then 1p = 0 and the whole solution for the edge dislocation becomes classical. 
In general, the classical solution is modified. For large values of r, the general features 

of this modification are quite similar to those previously discussed. In this case, apart 
from the classical terms, we have the term proportional to 

(9.26) 

which is O(l/r2
), and a finite number of terms which decrease exponentially at infinity. 

Both of these terms can vanish identically in certain particular cases: the O(lfr2
) term 

vanishes when 

(9.27) 
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and the exponential terms vanish when all {:1~2 are roots of a(A), i.e. when 

(9.28) a(L1) = b(L1)c(L1), 

where c(L1) is another polynomial in L1. 
In the previous sections we have seen that the solutions corresponding to given forces f 

are more regular than the classical ones. This no longer holds for dislocations: the solution 
for the screw dislocation, being entirely classical, retains its classical singularity at r = 0. 
The situation may be even worse for the edge dislocation. 

The type of singularity depends mainly on the relation between p and q, the orders 
of the polynomials a(L1) and b(L1). Consider first the case p < q. Then, according to Eqs. 
(6.14), (6.15) and (6.16), the following equation holds: 

(9.29) 

Putting expansion (8.12) into Eq. (9.22), we see that the log terms in 1p cancel each other, 
so that 

(9.30) 
r2 

1p = - 4 (logr-1) + O(r2 +2
t-

2Plogr) +a regular part. 

Thus, 

(9.31) a.ap'P = - ~ (~ ... logr+ ~p)) + O(r'<•-•>Jogr) +a regular part, 

- 1 (b () 2p b 1 ;. b x«x ) 2(q-p) 1 (9.32) u« - - 2n cz + ;. + ,u e«., , og r- ;. + 2,u ep, ,---,.,:- + 0 (r og r) 

+ a regular part. 

Hence, in the case of p < q, the singularity of the edge dislocation field at r = 0 is, with 
different numerical coefficients, of the classical type. 

In the case of p = q, Eq. (9.29) is still valid, but instead of (9.30) we obtain 

( 
{J' 2 {J' 2 {J' 2 ) ,2 

(9 .33) 1Jl = PtfJ~ . ~ ~ · p{ - 1 4 (log r- 1) + 0 (r' log r) +a regular part. 

Thus, also in this case the singularity remains classical, the modification of the numerical 
coefficients being different from that in the case of p < q. 

In the case in which p > q, Eq. (9.29) is not valid. Then, 

'\' a.' a({J'2) 
1p = - ..,6 {3'11

2 cut--s-logr+const+O(r2 logr), 
11 ,u 

(9.34) 

where cut a(ft~2) denotes the part of the polynomial a({J~2) consisting of terms of orders 
higher than q. The 1p-term in the solution (9.23) now has a singularity of the type 

(9 35) a a ~ a.~ a({J;2) 1 ( 2xcxXp) l ) 
• cz p'P = - ..,6 p;2 cut-p-fl 6a.fJ-~ + 0( ogr , 

which is 0(1/r2
), and thus stronger than the classical one. 
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10. The one dimensional fundamental solution 

From the computational point of view, the case of anisotropic media is far more com
plicated than the isotropic. In particular, the analysis carried out in Secs. 4--9 does not 
apply here. Nevertheless, although in the general case of anisotropy we are not able to 
obtain corresponding solutions in an elementary analytic . form, we shall discuss some 
of their important features. 

We begin with the one-dimensional fundamental solution which, apart from being 
of considerable interest as regards certain problems of plane defects or plane boundaries, 
will be useful in further considerations of the three-dimentional case. 

Let us consider the <5-type forces uniformly distributed on a certain plane with the normal 

unit vector v. Let Ilj(~) be the solution of the equation 

(10.1) 

subjected to the condition that the corresponding deformations remain bounded at infi
nity. The symbol ~denotes the coordinate perpendicular to the plane considered, 

(10.2) ~ = vx. 

According to the assumption (3.2), in place of Pil( o) we can write in the present case 

{10.3) P11 (8) = PiJ(Y, L1) = - L1a11 (v, L1), 

where 

(10.4) 

PiJ (v, Lt) and a1j(v, L1) being polynomials in LJ. From the correspondence with classical 
elasticity we have 

(10.5) Otj(Y, 0) = Ctkjl"k"h 

where c'"'i is the classical tensor of elastic moduli. According to the positive-definiteness 
condition (3.6), the inverse Pij 1 (ik) exists for any real k ::1: 0. Therefore the solution of 
Eq. (10.1) can be represented as the Fourier integral 

00 

(10.6) 11}(~) = ~ J dkP,-/(v, -k2)e11~ 
-oo 

with the procedure at k = 0 described in Sec. 6. 
Consider now the values of L1 at which the matrix P11 (v, L1) becomes singular. With 

the exception of L1 = 0 these values are the roots of the equation 

(10.7) detau{v, L1) = 0. 

The matrix aii(v, LJ) being polynomial, Eq. (10.7) has a finite number of roots: 

(10.8) fJ~ (v), fJ~ (v), ... , p: (v), 

which are algebraic functions of the direction v. The same reasons as in the isotropic case 
enable us to accept inequalities (4.9) for {Js(v) with arbitrary v and s. 
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For the sake of simplicity we introduce also an assumption concerning the multiplicity 
of the roots (10.8). 

We define the rank 711 of a root fJ:(v) as 

(10.9) rll = 3-rankaiJ(v, {J~(v)). 

The multiplicity of any root fJ:(v) cannot be smaller than its rank r 11 and we assume that 
it exactly equals r 11 (in the particular case of isotropy this assumption means that each 
of the polynomials a(LI) and b(L1) has single roots only). 

Under the above assumption, introducing the following symbols: 

(10.10) 

and 

(10.11) 

11 

Q11 = - resPi/{v, Ll) at Ll = p: (v) 

we can express the integral (10.6) as 

s 

(10.12) 1 o 12 Qij(V) 
Iij(~) = - -Q,·(v) 1~1 +- ---e-P•<v>l~l 

2 J 2 fls(v) ' 
s 

where the summation runs over all different roots fJ ( v ). Thus, apart from the classical 
term, the one-dimensional fundamental solution contains only terms which decrease 
exponentially at infinity. To explain the behaviour of this solution for ~ ~ 0, let us note that 

• (10.13) Q11 p:m(v) = -res[P1j
1(v, L1)L1m] at Ll = fJ:(v). 

Then, making use of the theorem that the sum of the residues of the matrix-function 

(10.14) P;/(v, z)zm 

equals zero, we obtain 

(10.15) 

In order not to be involved in algebraic details, we assume here that the highest order term 
of the polynomial PiJ( v, L1), 

}; aiJpvP, 
lal=2n 

(10.16) 

is not only positive semi-definite, as follows from the stability condition, but also positive
-definite. (In the case of an isotropic medium, the corresponding assumption is p = q.) 
Then we have 

s 0 J: Q,1(v) = - Q(v) (n ~ 2), 

s 
(10.17) }; QfJ(v){J:m(v) = 0 for m = 1, 2, ... , n-2, (n ~ 3), 

s 
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~ QiJ(v) p:m(v) = - ( ~ a11, .... ,) -t ~ -Ru(v) for m = n-1, (n ~ 3). 
IJJI=2n 

Hence we have for ~ -+ 0 

(10.18) 

11. The three-dimensional fundamental solution for an anisotropic medium 

The three-dimensional fundamental solution can be easily obtained from the one-dimen
sional solution by making use of the following equation: 

(11.1) ~<2>(x) = - 8~2 J da~"(vx)' 
where the integration runs over the unit sphere (v)2 = 1. Then we have 

(11.12) 

with~ given by Eq. (10.2). 
In the classical case, when the solution (10.12) contains its first term only, expression 

(11.2) takes the form 

( 11.3) 

Introducing a spherical system of coordinates such that 

( 11.4) vx = r cos () , da = sin ()dO dqJ , 

we can write 

(11.5) 

and 

( 11.6) 

where we integrate over the unit circle in the plane perpendicular to the vector x (Fig. 4). 
ln the non-classical case, (n ~ 2), we make use of the following equation: 

( 11. 7) 

Then, by the first Eq. (10.17), the ~-terms cancel each other and we obtain 

(11.8) 

5 Arch. Mech. Stos. nr 1/73 
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To obtain the asymptotic expansion of GiJ(x) for r-+ 0, we put the expansion (10.18) 
into the expression (11.2). Then we have 

(11.9) 

where() denotes the angle between x and v. 
Thus the most singular term of GiJ(x) at r = 0 is of order 2n- 4, so that the gradients 

of Gij(x) up to order 2n- 4 are continuous. 
Now let us briefly examine the behaviour of Gii(x) at infinity. Note that a slowly 

decreasing contribution to the integral (11.8) can arise only from an immediate neighbour
hood of these points for which the exponent p,(v)lvxl equals zero. The contribution from 

FIG. 4. 

the remaining area decreases exponentially as r-+ oo. Since p,(v) =1: 0, the exponent 
equals zero only for v j_ x-i.e., on the circle C. 

Making use of the fact that p,(v) and Q1j{v) are even functions of v, the integral (11.8) 
can be rewritten as 

(11.10) 

where 

(11.11) q = cosO. 

Integrating this by parts, by means of the equation 

(11.12) e-fJ.(v)qr = - B,(v) _!!_e-fJ-<v)qr 
r dq • 

where 

(11.13) 
1 

B,(v) = , 
d(p,(v)q) 

dq 
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we obtain: 

1 2n s lq=l 
(ll.I4) Gii(x) = 8n2r f dqJ 2 B11 (v)P11 (v)Q;J(v)e-fJ.<v)qr q=O 

0 11 

The first term gives the classical fundamental solution at q = 0 and an exponential term 
at q = I . The second term can . again be integrated by parts. This time, the subintegral 
function being odd, it gives another exponential term at q = I but no slowly decreasing 
term at q = 0. Therefore, 

(11.15) 

where 

( 
1 ) 2n 

1 
d d 

(11.16) 0 (3 = = f drp f dq(2 dq B,(v) dq B,(v)fi,(v)(21i(v) )e-M•lf' 
0 0 s 

+exponential terms. 

The main contribution to 0(1/r3
) can be calculated by further integration by parts. 

In this way, we obtain 

(11.17) 

11 

G ( ) Gclus( ) 1 f .z d
2 '\1 Qij(V) o( 1 ) 

ij X = ij X - 8n:r3- U(/J Jq2 L.J p:(v) + TS • 
c • 11 

This procedure can be continued, yielding terms 0(1/r'") with arbitrary odd m plus expo
nentiaJiy decreasing ones. 

Conclusion 

For isotropic materials of an arbitrary order, the basic solutions corresponding to point 
or line sources, including a dislocation line, are given in an analytic form. Apart from the 
classical terms, they contain a certain number of exponentially decreasing short-range 
terms and, usually, a long-range term which descends a little more rapidly than the clas
sical one. 

As the discussion of the three-dimensional fundamental solution shows, the asymp
totic properties of solutions for anisotropic materials are similar, but instead of a single 
long-range non-classical term there occurs a series of terms of different order. 

All the solutions corresponding to force-type sources are more regular than the classi
cal ones. 

Even in the case of the lowest order of the strain gradient theory, the fundamental 
solutions are continuous. For the higher order theories, these solutions become continu
ously differentiable an appropriate number of times. This fact, in particular, creates the 

5* 

http://rcin.org.pl



68 D. ROOULA 

possibility of obtaining non-singular interactions of point defects within the framework 
of the strain gradient theory. On the other hand, the solutions corresponding to disloca
tion-type sources retain at least classical singularity. In some particular cases, this singular
ity can even be stronger than the classical one. 
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