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The rigidity of gases 

M. REINER (HAIFA) 

MAXWELL's kinetic theory of gases assumes that gases possesses an elasticity of shape measured 
by a modulus of rigidity. In the present paper expressions are derived in accordance with his 
theory for pure shear. It is shown that for the elastic strains the Hencky measure must be used. 
This is applied to the problem of simple shear. In this case there appear in addition to the first
order tangential stresses also second-order cross-stresses. They can be demonstrated in a centri
petal pump designed by REINER. 

Kinetyczna teoria gaz6w Maxwella przyjmuje, ze gaz ma sztywnosc postaciowCl mierzonCl mo
dulem sztywnosci. W niniejszej pracy wyprowadzono wyraienia na napr~zenia dla przypadku 
czystego scinania. Wykazano, ze nalezy korzystac z miary sp~zystej deformacji Hencky'ego. 
Miara ta zostala zastosowana do problemu prostego scinania. W tym przypadku obok napr~zeti 
stycznych pierwszego ~du wyst~puj<l poprzeczne napr~zenia rz~du drugiego. Napr~ienia te 
moma zaobserwowac w pompie centropetalnej, zaprojektowanej przez REINERA; 

KlmeTHqecKaH TeopiDI rasoB MaKcBenna npHHHMaeT, tiTO ra3 o6na~aeT ynpyroCTI>ro <PopMhi, 
H3MepHCMOH MO~JieM >KCCTKOCTH. B HaCTOHIIl;eH pa6oTe Bhme~eHbi Bbipa>KeHHH Ha HanpH
>KeHHH ~ ~CTOro c~ma cornacHo ero TeopHH. lloKasaHo, qTo cne~eT noJib30BaTbCH 
Mepoii XeHKH ~ ynpyrHX ~e<PopMai.lHH. 3Ta Mepa npRMeHeHa K npo6neMe npoCToro c~ma. 
B 3TOM cnyqae HapH~ c TaHre~aJibHhiMl{ HanpH>KeHIUIMI:I; nepBoro nopH~a noHBJIHIOTCH 
nonepe~xe HanpH>KeHIDI BToporo nopH,W<a. Mx MO>KHO HarJIH;::tHO YB~eTb B QeHTpone
TaJibHOM Hacoce cnpo3KTHPOBaHHOM PEHHEPoM. 

1. Introduction 

THE PRESENT investigation deals, as indicated in the title, with "gases" and their property 
named "rigidity". 

To define these two terms, we may say that "a gas is a volume of matter which cannot 
maintain a free surface", where a free surface is one on which no stresses act. 

"Rigidity" is the elastic response to a change of form of an elastic material. Elasticity 
is the property of a material to have the deformation, caused by certain forces, entirely 
or partly reversed, when these forces are removed. Such recovered deformation, which 
may be called strain, will consist in either a c h a n g e o f v o 1 u m e or a change of 
shape, the distortion, or a combination of both. The voluminal deformation is elastically 
opposed by an effort measured by the "bulk modulus", the elastic distortion is measured 
by the "moduls of rigidity". 

These terms have originally been conceived to describe the elasticity of s o I i d m a -
t er i a Is, following Hooke's law. This is formulated in the classical theory of elasticity 
as 

(1.1) 

Where mlS is the stress tensor, mle the strain tensor, mlB its deviator, " the bulk modulus, 
ft the modulus of rigidity, v as an index indicates volume and 6 is Kronecker's delta. The 
indices I and m are tensor indices, the sign o over the symbol denotes the deviator. 
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716 M. REINER 

Through the deformation the coordinates 1x of the particles of the initial state are 
transformed to the final coordinates x, where an index on the left refers to the initial 
state, one on the right refers to the final state. The displacement vector is defined by 

(1.2) 1u = x1- 1x 

and the strain by 

(1.3) 

In "classical" elasticity it is assumed the 1u is "infinitesimal" and so are the gradients 
,.,1u, where the comma indicates the derivative. 

Of fluids it is usually supposed that they exhibit a viscous resistance to r a t e of 
change of shape, following Newton's law, but have an elasticity of volume only. Their 
constitutive equation is formulated in the classical theory of hydrodynamic viscosity as 

(1.4) s,,. = -p(J,,.+2r;f,,., 

where p is the isotropic pressure, r; the coefficient of viscosity and J,,. the deviator of the 
flow tensor. The flow tensor is 

(1.5) 

with v the velocity, while its deviator is 

. !a.a. 
(1.6) [,,. = [,,.- 3 (),,.. 

If we write v1 = u1, we have[,,. = e1,.. This implies an imperfection of the classical 
approach, assuming that "flow" is defined by an infinitesimal deformation. 

We shall presently see that this view is too narrow and does not apply to "elastic 
liquids". 

It was long known that there are elastic liquids which exhibit an elasticity of shape, 
a property called "elastico-viscosity" (SCHWEDOFF, 1889. See also HATSCHEK, 1928, p. 224). 
Their theory has only recently been developed mainly for polymers. However, the rheolog
ical equation of an elastico-viscous liquid was postulated by Maxwell already in 1866. 
He wrote it in a form which relates the c o m p 1 e t e stress to a c o m p 1 e t e strain 
and its time derivatives. It was first pointed out by REIGER (1919) that the isotropic part 
of both viscous liquids and elastic solids must be dealt with separately, as under isotropic 
pressure the liquid may be assumed to be simply elastic similar to a solid. For elastico
viscosity we therefore have to look for a relation between the elastic deviator 

(1.7) 

and the viscous deviator 
0 

0 s,,. 
(1.8) [,,. = 21}. 

Maxwell assumed that the rate of deformation J,,. of an elastico-viscous material is 
equal to the co-axial sum of the elastic and the viscous rates of deformation. For the 
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THE RIGIDITY OF GASES 717 

elastic rate of deformation he introduced J and for the viscous rate of deformation f and 
wrote (in different form and with different notation) 

(1.9) 
0 ; s 
d=-+-

2~-t 2'Yj 

which means that he assumed that the measure of flow is equal to the time derivative of 
the measure of strain, or 

(1.10) 
0 d 0 

fim = (iielm· 

We shall now examine under what conditions such an equality can exist. 

2. The HenckyMmeasure of strain 

In accordance with (1.10), flow is expressed as the rate of relative deformation. This 
is only possible if we consider finite deformations and drop the classical assumption 
that e is infinitesimal. To consider infinitesimal deformation of a liquid means excluding 
real flow. When there is flow, the deformation is finite. 

Therefore consider dilatational flow. Consider a cylindrical tube of increasing length /, 
surrounding a straight streamline of a viscous liquid. Let the origin of the coordinate 
system permanently coincide with one end of the tube. Let the other end move with the 
velocity v 1, and let the flow be homogeneous, so that Vx = (v,fl)x, where v1 = dlfdt. 
In accordance with the arguments of classical hydrodynamics, the longitudinal rate of 
deformation or "flow" which causes and determines the viscous resistance is fi = v,fl. 
Introducing the above expression for v, we find fi = (dlfdt)fl = (dlfl)dt = (dfdt)log(/f/0), 
where /0 is the "original" length of the tube at some arbitrary time t = 0. If the flow is 
not homogeneous, we must consider an element of length, say dx, the two ends of which 
move with the velocities Vx and Vx+dx = vx+ (dvxfdx)dx, respectively, so that the relative 
velocity (our previous v1) is (dvxfdx)dx andfxx = dvxfdx = Vx,x· We then find as before 
fxx = d[1og(~x1 f~x0)]fdt, where x 0 and x 1 are the values of x fort= 0 and t = t, respec
tively. But ~x1 = ~x0 +ux(x0 +~x0 , dt)- ux(x0 , dt), where ux(x0 , t) is the relative 
displacement as a function of the initial coordinates and time. Neglecting terms of second 
order and higher order (ux,x cannot vanish identically) against the first order term, there 
results ~x1 = ~x0 +ux,x(x0 , 0) ~x0 and therefore fxx = (dfdt)[log(l +ux,x)] = (dfdt) x 
x log(l + lxx). Only when the displacement gradient is infinitesimal, can we, by developing 

(2.1) 

use the Cauchy deformation, Eq. (1.3). When the displacement gradient is finite, as it 
will be in every case of real flow, whether viscous or plastic, we must measure the deforma
tion in the logarithmic measure introduced systematically by Hencky in which 

(2.2) 

replaces the Cauchy measure 

(2.3) 

e8 = log(///0) 
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We find then 

(2.4) jj d H 
1 = -(e,) 

dt 

and the designation "rate of deformation" for fim is justified. 

M. REINER 

The assertion that only the Hencky-measure is suitable for the description of a finite 
deformation due to viscous flow is important enough to warrant support by an additional 
argument. Consider the elongation of a bar of "original" length /0 in stages. If we elongate 
the bar first by a small incrementLI/, the extension will be jjfllo. Now elongate the extended 
bar of length /0 +jjf by another increment Ll/. The question then arises how to express its 
extension. In accordance with the Cauchy measure, if the second elongation follows the 
first immediately, so that both can be considered as forming one single operation upon 
the original length /0 , the second extension will again be Lll I 10 and the total 2LI/ I 10 • 

But, if the second extension was carried out after some time as an entirely new opera
tion, the original length /0 not being known, the second extension would be Lllll(/0 +Lil) 
and the total jjf[ll/0 + ll{l0 +jjf)] which is different from 2jjfll0 • 

Now, let us consider the progressive elongation in the light of the Hencky measure. We 
have /1 = l0 +Lil, 12 = 11 +Lil = l0 +2jjf and the final extension is 

(2.5) eH = ln(/2 /10). 

The expression on the right side can, however, be developed as follows: 

(2.6) 

Therefore, if a bar of length /0 is extended by Lll in a first operation and by another Ll/ in 
a second operation, the result is the same as if it were extended in one single operation 
by 2LI/, provided extensions are defined as by HENCKY, but not so if defined as by CAUCHY. 
Mathematically, this is expressed by the statement that Hencky-extensions form a group, 
while Cauchy extensions do not form a group. In describing flow, we, therefore, must 
use the Hencky measure. 

3. The relaxation-time 

Maxwell wrote Eqs. (1.9) in the form 

where 

(3.2) 

. s 
S = 2ud-

r T' 

is the "relaxation time", a term which can be understood from the example presently given. 
Let the body, the rheological equation of which is Eq. (1.9), be stressed until a certain 

stress s0 is reached. Start the experiment at that timet = 0 by fixing the deformation. We 
then have from (1.9) putting d = 0 

(1) For convenience, we omit the subscripts /, m and the superscript 0
• 
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THE RIGIDITY OF GASES 

(3.3) 

By integration this gives 

(3.4) 

or 

(3.5) 

s 
-=-!!:_ 
s 'YJ 

[Ins]~ = - !!:_ t 
'YJ 

719 

We see that the initial stress s0 is gradually reduced until it vanishes at t = oo. The stress 
accordingly relaxes in the measure of 

sl 'YJ 
(3.6) --y,d=O = --;; = T. 

For an inelastic material t-t ~ oo and T ~ 0, the relaxation is instantaneous. Alter
natively, when 'YJ ~ oo, T ~ oo which is the case of an elastic solid, the stress does not 
relax. 

4. Maxwell's kinetic theory of a gas 

It is generally stated that a gas is a kind of fluid, which possesses an elasticity of volume, 
but no elasticity of shape or rigidity. The elasticity of volume is expressed by the law of 
Boy le-Mariotte as 

(4.1) p = Re, 
where p is the isotropic pressure in a steady state, (! is the density and R is a constant when 
the temperature is constant. It is, however, maintained that a gas has no elasticity 
o f s h a p e o r "r i g i d i t y". 

MAXWELL, in his quoted paper (1866), assumes such a rigidity on theoretical grounds. 
We shall presently treat with Maxwell's work. But this work has been entirely ignored. 
It is not mentioned in any volume of the "Encyclopedia of Physics" dealing with gas, 
or in some other book known to me. To make sure that it is ignored e v e r y w h e r e, 
I inquired Professor GOLDSTEIN (Harvard University) who wrote me, "I cannot remember 
at all having seen a modern exposition about the shear elasticity of an ideal gas". In any 
case, it was assumed that, if such a rigidity existed, it could not be observed. This was 
formulated by JEFFREYS (1952) as follows: "In any experiment that tests the behaviour 
over large intervals, the f I o w will be much greater than the e l a s t i c d e f o r m a -
t i o n and the insertion of an elasticity term in the stress-strain relation will affect nothing 
observable". JEFFREYS does not consider the case when there is elasticity in a direction 
where there is no displacement and no flow. Such elasticity has been called "cross-elasticity". 
We shall come back to it in § 7. 

Maxwell's reasoning is based on a kinetic theory of gases which pictures the gas as 
a crowd of molecules, each moving on its own independent path. 

Suppose the molecules to be confined in a rectangular vessel with the dimensions a, b, c, 
so that the volume of the vessel is 

(4.2) V=a·b·c. 
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720 M.REINER 

Let the sides of the vessel be perfectly elastic. Let the molecules have no action on one 
another, so that they never strike one another, or cause each other to deviate from their 
rectilinear path. 

We now consider one molecule of mass moving in the direction a with velocity u. 
By impact with one of the sides normal to a, when the side is at rest, it transfers the mo
mentum mu-(-mu) = 2mu. It returns to the same side after a lapse of time 2afu. The im
pact upon the side per unit time or the pressure force is equal to the rate of change of mo
mentum or equal to the momentum 2mu divided by the time 2afu, or 

2mu mu2 
bCPaa = -2 / = --, a u a 

(4.3) 

where Paa is the stress and be the area on which it acts. 
From (4.3), considering (4.2), we have from one molecule 

(4.4) 
mu2 

Paa = -b- = mu2fV. 
a c 

From N molecules with u the mean value of velocities and n the number density of the 
molecules, or 

(4.5) 

we find 

(4.6) 

N 
n=

V' 

_ Nmu2 _ _
2 Paa - --V- - nmu . 

In the steady state, the motions of the molecules have no preference for particular 
directions in Space and mu2 = mij2 = mw2 , where V and W are the velocities in the direc
tions band c. We then have for the pressure in the steady state 

(4.7) 
1 l:m(u2 + v2 + w2

) 
Paa = Pbb = Pcc = P = nm 3 --·· l:m · 

Considering that nm is the density (!, this is the kinetic expression for the Boyle-Mariotte 
Jaw, Eq. (4.1). 

Now let us move one of the sides normal to a, a distance ~a with the velocity U which 
is s m a 11 e r t h a n u. Due to the "perfect elasticity" of the side, the velocity of the 
molecule is reversed by collision. Re I at i v e to the moving side, the velocity 
of the molecule is u- U before collision, and - (u- U) = -u+ U after the collision. 
Relative to a fixed system, the velocity of the molecule is therefore u- U + U = u before 
collision and (- u + U) + U = 2 U- u after collision. By one collision, the velocity u with 
which the molecule hits the wall is reduced by u- (2 U- u) = - 2 U. This process goes 
on for the interval T, where 

(4.8) TU= ~a. 

As said before, the molecule, hitting the side once, returns to it after the time 2afu. There
fore, the molecule hits the side during the time T, Tuf2a times. Introducing T from (4.8), 
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THE RIGIDITY OF GASES 721 

this is equal to (~a/U)(uf2a). By one collision the velocity is reduced by -2U to u-2U. 
By (~a/U)(u/2a) collisions it is reduced to 

(4.9) 2 ~Q ( ~") u- U--u=u 1--. 
U2a a 

The pressure is now in analogy with ( 4.3) 

mu
2 (I- ~r 

(4.10) bcp"" = ----:::--'-
a+~a 

To the first order this is 

(4.11) bcp- = mu
2 (1-3~). 

"" a a 

However, the area be is changed by movements ~b and ~c in the direction b and c from 

-_ ( ~b ) ( ~e ) . ( ~b ~e ) be to be = b I+ b e I+ c or approximately to be I+ b + c . Therefore (4.I1) 

becomes 

(4.I2) P- = mu
2 (I-3~)(bc. 

"" a a 

But from 

(4.13) -- ( ~b ~c) bc=bc 1+b+c, 

we have to the first order 

(4.14) -- 1 ( ~b ~c) Ifbc=- 1----
bc b c 

and therefore to the same order 

(4.15) -p = mu
2 (I-3~- j!!_ _ ~). 

"" abe a b c 

From (4.4), (4.6) and (4.7), we have 

(4.16) 
mu2 _ 
-- = nmu2 = Po, 
abe 

where p0 is the pressure if there is no change of volume. 
Finally, we can write 

- ( oa ~b ~c) 
Paa =Po I-3a-b-c, 

(4.17) 
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722 M. REINER 

So far did Maxwell develop his theory. 
Note that 

(4.18) 
~a ~b ~c ~V 
-+-+-=-=E 

a b c V 11 

is equal to the cubical dilatation E., if the extensions are infinitesimal, as assumed ("very 
small quantities"). 

From ( 4.18), the mean pressure pm is 

(4.19) Pm= (flu+P .. +flco)/3 = Po( I- ; •.) 

and Pm is equal to p 0 only if there is no change of volume and Eu = 0. 

5. Derivation of the rigidity 

We now introduce the infinitesimal extensions 

(5.1) 

Consider the case 

(5.2) 

Accordingly, from ( 4.17), 

(5.3) 

while from ( 4.19), 

(5.4) 

~c 
Ec =-, 

c 

Pm =Po =p. 

This is a case of p u r e s h e a r in which a, b, c, are the principal directions and the 
elastic stresses are, according to Hooke's law, 

(5.5) si = Po + 2p,E;, s, = Po- 2p,E;, sk = Po. 

Putting Pbb for sb Paa for s1, and Pcc for sk, we find the rather surprising result 

(5.6) P, = Po· 
This has been expressly stated by MAXWELL in the words "The coefficient (modulus) of 
(Rigidity) is therefore = p. This rigidity, however, cannot be directly observed, because 
the molecules continually deflect each other from their rectilinear courses, and so equalise 
the pressure in all directions". This equalization is connected with the time of relaxation. 
We can now calculate the time of relaxation of a gas such as air by putting in (3.6) p for p,. 
We find that T is of the order of I0- 10 s. In the statement of Jeffreys quoted above, he 
considers as "large intervals" those compared with I0- 12 s. which he calculates as the 
time of relaxation of water. 

6. The strain tensor 

In Sec. 2, we have defined the Hencky me as u re of strain (Eq. 2.2) from which we 
can calculate the p r i n c i p a 1 c o m p o n e n t s of the Hencky strain t e n s o r. 
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Introducing the stretch 

(6.1) 

we have in the Cauchy measure 

(6.2) ec = !!!_ = 1-lo = _!_ -1 = A- 1 
10 lo lo ' 

and in the Hencky measure 

(6.3) 

1 

eH= J ln). = (J.-1)- -} (J.-1)2 + .... 
0 

If the stretch is infinitesimal, this is reduced to 

(6.4) CH = A-1 

723 

which is the same as the classical measure of elasticity defined by (6.2). This gives us the 
principal components of infinitesimal pure strain as written in (5.1). 

Pure strain is defined by the absence of rotation while general strain presupposes a rota
tion. In §5, we considered the case of p u r e shear. If we want to know conditions in, 
say, si m p 1 e shear, we must use the tensor of finite strain and then specialize it 
for the infinitesimal case. 

Tensors of finite strain were derived by MuRNAGHAM (1937) only for two cases named 
after GREEN and ALMANSI. Let a body given by initial coordinates 1a be deformed, when 
the coordinates become x1, and let the c o o r d i n a t e g r a d i e n t s be 

(6.5) 
iJ,a 

m!A = -~-, 
uXm 

then the deformation tensors for the two measures are for finite deformations miD and D1.,. 

(6.6) 

As can be seen from the manner of notation, the Green-tensor refers to the initial state 
and the Almansi tensor to the final state. HANIN and REINER (1956) expressed the final 
Hencky-tensor as a function of the Almansi tensor as follows: 

(6.7) 2Dflm = Fo~Im+F1(2Dfm)+F2(4D~D:m), 

where the scalars F0 , F1, F2 are functions of the invariants of 2Dfm. They fo und the 
following expressions for F0 , F1, F2, where x stands for 2Dfm; 

(6.8) 

5 Arch . Mech. Stos. nr 5-6/72 

1 

J a2da 
F0 = IIIx 3 , 

1 - Ix a+ Ilx a2
- lllx a 

0 

1 r (1-Ixa)da 
~ 1- lxa+ llx a2

- Illxa3 
' 

0 
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7. Simple shear 

For the case of simple shear, we write 

(7.1) a= x-Fy, 

where r is the displacement gradient. 
The coordinate gradients are from (6.5) 

(7.2) ..,;. = [~ 
and, therefore, from (6.6)2 , 

(7.3) 

We find from (7.3) 

(7.4) 

Furthermore, 

b = y, c = z, 

-r o] 
1 0 
0 1 

(7.5) 
[

1 -F 
4D~D~ = F 2 -F 1 +F2 

0 0 
From (6.8,1), 

(7.6) 

For F 1 and F2 , we find from (6.8) 

F
2
+2 (C+l) (7.8) F 1 = rzc In C- 1 , 

Finally, 

Fo = 0. 

I ( C+ 1) 
Fz = rzc In C- 1 ' 

(7.9) B - 1 ( C+ 1) [F/2 1 
D,,.- crln C-l 1 -F/2 

0 0 
which yields 

(7.10) IH = 0, IIH =-! [In(~~! )J. 1118 = 0. 

We require the principal strains 

(7.11) Df!. = r r 7 

M. REINER 
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We find these from the equation 

(7.12) 

Considering (7.10), this is simplified to 

(7.13) A3 +1U = 0 

from which 

(7.14) Y- 1 (C+1) At 2 = + -11 = +-In --. - - 2 C-l ' 

I th f 'nfi . . 1 . 1 1 h 1· · · 1 C + I n e case o 1 mtestma stram, we ea cu ate t e mear apprmumatwn of -In--
2 C-1 

as follows. We have for C > 1 

(7.15) 1 I C+ 11 1 1 2 1n C-1 = C + 3C3 + .... 

Keeping the first term only and neglecting F 2 in comparison with 4, we have 

(7.16) 

and 

(7.17) 

1 r 
At 2 = +- = ---

. - C y4+F2 

[

1/2 

df!. = r ~ 

r 
2 

Comparison of this expression with (5.2) shows that we can write for (5.5) 

(7.18) s,. = Po ( d,.+r [~ -! W· 
and Df!, of (7.9) becomes for infinitesimal F 

r [r12 1 

~] (7.19) df', =-r ~ -F/2 
0 

and 

( [F/2 1 

W· (7.20) Stm = Po ~tm+F ~ -F/2 
0 

We, therefore, see that if we calculate the stress in infinitesimal simple shear using the 
Hencky measure of strain there will not only be shearing reactions p,F as in the classical 
theory, but also "cross stresses" of the second order, namely a tension p,F2 /2 in the x 
direction and a pressure - p,F2 /2 in the y direction. These effects can be used in order to 
check experimentally Maxwell's theory of the rigidity of gases. 

s• 
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8. The centripetal-pump effect 

Simple shear with the determination of s11 and s22 is difficult to carry out. However, 
REINER has used an instrument consisting of two concentric circular discs parallel at some 
distance d. Of these two discs, one, the "stator" is at rest. The other, the "rotor" revolves 
at some velocity !J. The distance d can be changed throught movement of one or the otherc 
disc in a normal direction (y). A gas between both discs is sheared, the streamlines (direc
tion x = 0) being circles. If the stress component in this direction (see) is a tension, "stran
gulation" stresses in the r direction are set in. They are pressures (s,) operating towards 
the centre and will, therefore, cause a centripetal pumping action. A pressure in the normal 
(y) direction pushes the plates apart. This would be in accordance with (7.20). 

Such an apparatus was designed by POPPER and REINER (1956) and demonstrated at 
the 9th Congress of Applied Mechanics (1958). The stator had an opening connected to 
a manometer. The distance d could be reduced from 0.75mm to 0.015mm. The rotor 
could be given speeds of up to 10 000 r.p.m. When the rotor was given a speed of about 
7 OOOr.p.m. and the gap d was the largest, the monometer registered a vacuum of about 
1 cm water. When the gap was reduced to about 0.02mm, the vacuum turned into a pressure 
which reached values higher than 1/2atm. This instrument was later developed in a more 
efficient form. Cross-stresses were determined in the flow of different gases (1965) and 
it was found that the effect was the same with mono-, di- and tri- atomic gases, decreasing 
with decreasing ambient pressure. It can, therefore, be said that the "Reiner effect" (as 
this centripetal pumping effect is now generally called) proves Maxwell's kinetic theory 
of the rigidity of gases. 

The present research was sponsored by the Swope Foundation of the Israel Institute of Technology. 
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