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Creep in slightly redundant structures 

J. HULT (GOTEBORG) 

ENGINEERING structures like an 1-beam subject to plane bending and a thin-walled sphere loaded 
by pressure are examples of slightly redundant structures. The stress fields in such nearly isostatic 
structures depend only slightly on the constitutive properties of the material. A perturbation 
method may then be used to analyze the stress field during stationary creep without having to 
specify the creep in detail. It is shown that for some standard structures the deviation from the 
isostatic case is an effect to the second order in a geometrically linear measure of redundancy. 

Takie konstrukcje in.Zynierskie jak belki dwuteowe zginane w plaszczyinie lub cienkoscienne 
powloki kuliste, poddane cisnieniu wewn~trznemu, stanowict przyklady ustroj6w slabo statycmie 
niewyznaczalnych. Rozklady napr~zenia w takich prawie statycznie wyznaczalnych konstruk
cjach zalei:ct jedynie w nieznacznym stopniu od wlasno8ci konstytutywnych materialu. Moma 
zatem zastosowac do analizy procesu ustalonego pelzania takich konstrukcji metod~ perturbacji 
bez wchodzenia w szczeg61y samego pelzania. Wykazano, i:e w pewnych standardowych kon
strukcjach tego rodzaju odchylenie od przypadku statycznie wyznaczalnego staje si~ efektem 
drugiego rz~du wzgl~dem liniowej miary statycznej niewyznaczalnosci. 

IlpllMep~ cna6o CTaTl{tlecKH Heonpe~e.JIHMhiX coopymeliHH HBJUIIOTCH Ta.Klle RIDI<eHepHhie 
KOHCTpYK~Jm, KaK ~YTaBPOBhie 6aJIKH, ll3nt6aeMbie B IIJIOCKOCTil, I{JIH TOHKOCTeHHbie ccpe
pw.IecKHe o6oJIOq}{Jl no.n; BHYTPeHHHM ~asneHH:eM. Pacnpe~eJieHH:H HanpH>KeliHH B TaKH:X, 
UOq'!Jl CTaTHtJeCKil onpe~eJII{MhiX coopy>KeHIUIX, 3aBH:C.ffT JlHIIIb B He3HatJI{TeJlbHOH CTeneHH 
OT cpH:3w-IecK.HX csoH:CTB MaTepH:aJia. Ilo3TOMY ~ aHaJIH3a npo~eccos yCTaHOBH:BIIIeH:cH non-
3ytJeCTH: B TaKHX coopy>KeHIUIX MO>KHO ynoTpe6HTb MeTO~ B03My~emti{, He BXOM B no~o6-
HOCTil caMOrO npOI~ecca UOJI3ytJeCTH. IlOKaaaHO, tiTO B HeKOTOphiX CT~apTHblX KOHCTpYK
~X TaKoro po.n;a OTKJIOHeHWI OT CTaTHtieCKOH onpe~eJIHMOCTH .ffBJUIIOTC.ff 3cpcpeKTaMH BTO
poro nopH~a no OTHOIIIeHHIO K JU:tHeHHOH Mepe CTaTw.IecKOH Heonpe~eJIHMOCTil. 

1. Introduction 

THE THEORY of creep is becoming an important tool in the design of high temperature 
machinery. Its basic foundations are now rather well established, both on the microscopic 
and the macroscopic level. 

The microscopic theory describes various creep phenomena in terms of previously 
known physical entities and laws of interaction. The macroscopic theory is a branch of 
continuum mechanics. Both these aspects are essential to applications in design work. 

Creep rupture is known to start in small isolated regions, and so the conditions for 
creep rupture depend strongly on phenomena on a microscopic level. Steady creep defor
mation on the other hand is governed by certain average material properties. Hence design 
rules against creep rupture call for a deeper physical understanding of the creep process 
than do design rules against excessive creep deformation. 

The two aspects of creep are in no way opposed to one another. On the contrary, they 
depend strongly on each other, and their common ground seems to increase as our under
standing of the creep phenomena deepens. Physical theory cannot disregard certain general 
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932 J. HULT 

relations derived on the macroscopic level and the mechanical theory must not contain 
any violations of basic physical principles. 

Design against creep deformation is complicated for two reasons as compared with 
traditional practice: time enters as a new variable, and the constitutive laws are usually 
nonlinear. As a result creep calculations normally require an electronic computer. This 
is strongly reflected in a recent creep design monograph by PENNY and MARRIOTT (1971), 
which simply takes the availability of a computer for granted. 

A primary goal for the creep designer is to determine the stress distribution in the 
structure. Once the stress field is known the deformation may be calculated, and the time 
to creep rupture may be estimated. 

Most engineering structures are redundant (hyperstatic) and so the constitutive 
equations enter in the stress calculation. The complexity of the stress calculation is then 
largely governed by the complexity of the constitutive equations. In certain cases, however, 
the situation is simplified. For all isostatic structures, subject to prescribed surface tractions, 
the stress field is determined by equilibrium requirements alone. 

Examples of such isostatic structures are the idealized I-beam with infinitely thin flanges 
and negligible web area subject to bending in the plane of the web, and the infinitely thin
walled sphere subject to internal or external pressure. Both these structures represent limit
ing cases, which may not be realized in practice. If, however, the flange and wall thicknesses 
are small but finite, the stress distributions may be expected to deviate only slightly from 
those in the isostatic cases. The magnitude of this deviation will depend on the geometry 
of the structure and on the constitutive law of the material. One may anticipate that the 
influence of the material properties will be smaller the closer the structure approximates 
the limiting isostatic case. It is the object of this paper to study such nearly isostatic cases 
in some detail. 

2. Simple truss 

As an introductory example a simple plane, three-bar truss will be examined, cf. Fig. 1. 
It is easily analyzed, and it displays some features common to all hyperstatic structures. 
The state of stress in this truss will be determined under the following assumptions: 

1) the loading force Pis applied at zero time and then kept constant; 
2) the deformations are so small that equilibrium conditions may be stated for the 

undeformed state; 

p 

FIG.l. 
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CREEP IN SUGHTLY REDUNDANT STRUCTURES 933 

3) the deformations are so small that all second-order terms may be neglected in the 
compatibility conditions. 

Denoting the cross sectional area by A, and the stresses by a, we then obtain the equilib
rium condition 

(2.1) q 1 A+2a2 Asina = P, 

where index 1 and 2 refer to the central bar and the outer bars respectively. 
With e denoting the strain follows the compatibility condition 

(2.2) 

The constitutive equation of the bar material is assumed to belong to the class 

(2.3) e = e<e> + e<c> 

with 

(2.4) e<e> = G(a) 

and 

(2.5) t;<c) = F(a). 

Here e<e> denotes time-independent elastic strain and e<c> denotes creep strain. The dot 
in Eq. (2.5) denotes the time derivative, and hence Eq. (2.5) predicts a constant rate of 
creep strain for all cases of constant stress. With P = constant then follows {HULT, 1962) 
that a constant state of stress will be reached in the truss after a certain stress redistribution 
has taken place. With a = constant the constitutive equations (2.3)-(2.5) may be replaced 
by the simpler one 

(2.6) e = F(a). 

As shown by HoFF (1954) the same stress field would be obtained if the constitutive 
equation were of the type 

(2.7) e = F(u). 

This may be interpreted as the constitutive equation of a nonlinearly elastic material. 
Since e<c> = 0 when a = 0, it follows from Eq. (2.5) that 

(2.8) F(O) = 0. 

The following analysis, which aims at finding the stationary state of stress, will therefore 
be based on this simpler constitutive equation, i.e. 

(2.9) 

The stresses a 1 and a2 may now be determined from the four Eqs. (2.1), (2.2), (2.9)1 and 
(2.9)2 • Two limiting cases are of interest: 

I) a~ 0. From Eq. (2.1) then follows a 1 = P/A, and from Eqs. (2.2), (2.8), (2.9h 
follows a 2 = 0 for any material behavior of type (2. 7) and (2.8). The truss here degenerates 
to acting as only one load carrying member, and hence this system may be termed isostatic. 

In a~ n/2. From Eq. (2.2) then follows e1 = e2 and hence from Eqs. (2.9)1 and 
(2.9)z follows a 1 = a2 irrespective of the shape of the function F. From Eq. (2.1) then 

18* 

http://rcin.org.pl



934 J. HULT 

follow the stresses a 1 = a2 = P/3A. In this limiting case the truss again degenerates to 
only one load carrying member, viz. a bar with cross sectional area 3A. 

Hence when ex = 0 and a = n/2 the stresses in this truss are independent of the material 
properties, provided they belong to the class (2. 7) and (2.8). 

When ex is near 0 or n/2 the stresses are then likely to depend only weakly on the ma
terial properties. On the other hand, the dependence on the material properties will be 
a maximum at some intermediate slope ex. We shall consider the latter case first. 

Two forms of the function F will be assumed: 
I. F(a) = Bcr'. This corresponds to the creep law usually associated with NORTON 

(1929). A closed form solution is obtained, and, in particular, the largest stress is found 
to be 

(2.10) 

As shown elsewhere (HULT, 1962) this proportionality between load and stresses is 
obtained only when F is a power function. 

The stress a 1 is never larger than the corresponding stress in the linearly elastic truss 

(2.11) * _ P/A 
a 1 

- 1 + 2 sin 3 ex · 

Plotting the ratio 

(2.12) 

for various n-values, with a varying between zero and n/2, we obtain the diagram in Fig. 2. 
For any given n-value the ratio R is a minimum for a certain slope ex. It is seen that 

this optimum ex-value is fairly independent of n. When ex falls in this range the truss displays 

'*'..-
~ 
~ 

~t~_j 
a sin ex 1 

FIG. 2. 

a maximum dependence on the material property n. We may denote this ex-interval the 
region of maximum redundancy. 

2. F(a) = Ksh( afa0 ). This corresponds to the creep law often associated with PRANDTL 
(1928). No closed-form solution is obtained, and the stresses are no longer proportional 
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P/Aao=O 

a 

FIG. 3. 

to the load. The stress ratio (2.12) will therefore depend on the load P as shown in Fig. 3. 
Again the truss shows maximum redundancy in a rather limited a-range. It should be 
noted that the limiting curve corresponding to infinite load is identical with the limiting 
curve in Fig. 2 corresponding to the rigid plastic material. 

The case of nearly parallel bars will now be considered. We shall term this a case of 
slight redundancy, even if this terminology may not pass entirely without objections. 
When the bars are nearly parallel 

(2. 13) sincx ~ 1-B2 /2L2 

and we shall use the small parameter 

(2.14) 

in the calculations. The basic equations (2.1) and (2.2) then take the forms, to order 04 

0'1 = 2(1-02)u2 = P/A, 

(1-202)e1 -ez = 0. 
(2.15) 

Instead of the constitutive equations (2.9)1 and (2.9)2 , we shall use their in verses 

0'1 = p-l(el) = f(et), 

O'z = p-l(ez) = f(ez). 
(2.16) 

When () --+ 0 it then follows that 

(2.17) 

With 0 < () ~ 1 we now put 

(2.18) 

e1 = e2 = F(P/3A) = e0 , 

0'1 = 0'2 = P/3A = f(eo)• 
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936 J. HULT 

From the compatibility relation (2.15h then follows to order 04 

(2.19) 

The Taylor series expansion 

(2.20) CJ =/(e) =/(e0}+(e-e0)f'(e0)+ ~ (e-e0)
2/"(e0)+ ... 

then yields with Eqs. (2.17h, (2.18) and (2.19) denotingf'(e0 ) by f' andf"(e0) by f" 

CJ1 = P/3A + ~f' + ~ ~2/" + ... 
(2.21) 

If, finally, these stresses are required tofulfill the equilibriumEq. (2.15)1 , it follows that 

(2.22) 

and hence 

(2.23) 
CJ1 = (P/3A) (1 +202/3) +402e0 f' /3 + 0(04f"), 

CJ2 = (P /3A) (1 + 202 /3)- 202e0 f' /3 + 0(04
["). 

The form of the creep rate function Fin Eq. (2.5) has been studied for a large number of 
structural materials. It is found that, invariably F'(u) > 0, F"(u) > 0 and hence, cf. Fig. 4, 

Eo 

F'Io. 4. 

(2.24) f'(e) > 0, f"(e) < 0, 

i.e., f(G) is convex upwards. 
From Eqs. (2.21)1 and (2.23)1 and Fig. 4 then follows for the maximum stress 

(2.25) P,f3A < CJi < (P/3A)(1 + 202) 

or, considering Eq. (2.14) 

(2.26) 
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Hence, independently of the creep law, the maximum stress deviates from the limiting 
value P f3A by a factor less than 1 + B2 I L 2 • This implies that detailed creep stress calcula
tions are unnecessary when B/L < 1/5, say. 

Our result illustrates the "guardsmen effect", so named by LECKIE (1971). Forcing 
the bars in a truss to fulfil both equilibrium and compatibility requirements implies that 
the relative influence of their material properties is suppressed, just as the individual per
sonalities among guardsmen are suppressed, when they are forced to march in line and keep 
in step. 

3. 1-section beam 

The maximum stress during creep in an !-section beam according to Fig. 5 will now 
be determined. The loading consists of a constant bending moment M, and the constitu-

B 
z 

Fla. 5. 

tive equation is given by Eqs. (2.3), (2.4) and (2.5). A limiting, constant state of stress will 
then arise, corresponding to the constitutive equation (2. 7) with the inverse 

(3.1) l1 = f(e). 

With standard Euler-Bemoulli assumptions and the notation of Fig. 5 follows the lon
gitudinal strain in an arbitrary fibre 

(3.2) e = x(D/2+z) = e0 (1 +OC), 

where 

(3.3) 

x = curvature of neutral plane, 
e0 = 'JlD /2 =· strain in flange midplane, 
0 = t ID = flange · thicknesa ratio ~ I, 
~ = 2zft = dimensionless coordinate. 

The Taylor series expansion of Eq. (3.1), given by Eq. (2.20), then yields the stress 
field 

(3.4) 

Neglecting the web area we obtain the equilibrium equation 

(3.5) M= 2 J u(z)(D/2+~)Bdz, 
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938 J. HULT 

where the integral extends from - t /2 to t /2. Change of variables and insertion of the stress 
field (3.4) then yields (with the same abbreviations as before) 

(3.6) 

It follows that, to order 02 

(3.7) f= Mf0BD2 

and hence the maximum stress, according to Eq. (3.4) for C = 1, is found to be 

(3.8) O'max = Mf0BD2 +eo0f' + ... = (Mf0BD2
) (l +02BD2e0f' /M)+ .... 

Again, the deviation from the maximum stress in the limiting idealized case is of order 02 , 

where 0 is the relative flange thickness. It also follows, since f" < 0, that Eq. (3.8) repre
sents an upper boundary for O'max. 

4. Spherical pressure vessel 

Pressure vessels under creep conditions have been extensively studied in recent litera
ture. The spherical and cylindrical vessels are particularly accessible to analysis, permitting 
in some cases even closed-form solutions, cf. OoQVIST & HULT (1962). We shall here deter
mine the stress field in a moderately thinwalled spherical vessel loaded by a constant inter
nal pressure p. The constitutive equations of the shell material are the multiaxial counter
parts of Eqs. (2.3), (2.4) and (2.5), assuming isotropy, incompressibility and second in
variant (Huber-Mises) theory. A limiting, constant state of stress will then arise, and may 
be found by using the corresponding relation between effective stress u e and effective 
strain Ee 

(4.1) O'e = f(ee). 

Here 

(4.2) u: = (3/2)slJsiJ 

and 

(4.3) e; = (2/3)elieib 

siJ and e1i being the stress and strain deviation tensors, respectively. Because of the spherical 
symmetry the scalar relation ( 4.1) is the only constitutive equation needed. 

From the assumption of incompressibility follows, using the notation of Fig. 6, 

(4.4) Ee = cr- 3 = C(R+x)- 3 = e~(l +0~)- 3 = e~(l-30~+602~2 - ••• )' 

where 

(4.5) 

e~ = strain in midsurface, 

0 = h/2R = wall thickness ratio ~ 1, 

~ = 2x I h = dimensionless coordinate. 

The Taylor series expansion of Eq. (4.1) 
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FIG. 6. 

(4.6) 

then gives the effective stress field 

(4.7) 

where f,f',f" are short notations for f(e~),f'(e~),f"(e~). 
Next, the circumferential stress a~ (x) is expanded in a power series 

(4.8) a~= C0 +C1 x+C2 x 2 +C3x 3 + .... 

The overall equilibrium relation for the half sphere 

(4.9) J a~· 2n(R+x)dx = pn(R-h/2)2
, 

where the integral extends from -h/2 to h/2, requires 

(4.10) C0 +(1/3)(C1R+C2R2)02 +(1/5)C3 R304 + ... -(p/48)(1-0)2 = 0. 

The differential equilibrium relation 

(4.11) 

yields, with a~ given by Eq. (4.8), 

(4.12) a,= C0 -C1R/3+C2R2 /6-3C3R3 /20 

+ (2Ctf3-C2R/3+3C3 R 2 /10)x+ (C2 /2-9C3Rf20)x2 + .... 

The effective stress ae = a~-ar then follows from Eqs. (4.8) and (4.12), and after 
replacing x by h~ /2, 

(4.13) a.= CtRf3-C2 R2/6+3C3 R3/20+ 

+ (Ctf3+C2R/3-3C3R2 f10)h~/2+ (C2/2+9C3 R/20)h2~2/4+ ...• 

The two expressions for ae, Eqs. (4.7) and (4.13), are finally identified term by term for 
equal powers of ~ to yield 

(4.14) 
C1R = 2f-3e~f', 

C2R 2 = -f+3e~f'+(9f2)e~2/", 

C3R 3 = (10/9)/+ 10e~f' +5e~2 f". 
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940 J. HULT 

The stresses may now be calculated at any chosen point. The circumferential stress 
will be a maximum at the inner or outer surface. From Eqs. (4.8), (4.10) and (4.14) follows 

(4.15) aq,G':!:~) = (p/48)(1-0)2 ± 0(2f-3e~f')+0(02) 

and hence aq, will be a maximum at the outer surface, if 

(4.16) e~f'(e~) < (2/3)/(e~) 

and at the inner surface otherwise. 
For a Norton material this corresponds ton > 3/2, which is a well-known result. 
As expected, the expressions for maximum stress in the shell, Eq. (4.15), and in the 

1-beam, Eq. (3.8), show marked similarities. The deviation from the maximum stress in 
the limiting idealized case is again of order 02

• Hence even for moderately thin walled 
shells there is no urgent need to do very precise stress field analyses. Irrespective of the 
complexity of the creep law the maximum stress will deviate very little from that in the 
corresponding elastic shell provided the wall thickness ratio is small. 

S. Conclusions 

The maximum stress in three slightly redundant structures subject to stationary creep 
has been calculated by a standard perturbation technique. This stress value has been 
compared to its counterpart in a corresponding fully isostatic structure. In all cases these 
stresses differ by an amount which is of the second order in a characteristic geometrically 
linear measure of redundancy. This result holds for all materials subject to stationary 
creep, irrespective of the form of the creep law. 
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