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Small vibrations of elastic medium deforming in time 

Z. WESOI..OWSKI (WARSZAWA) 

IsoTROPIC elastic material is subject to finite strains in such a manner that the elongations in 
three mutually perpendicular directions are proportional to time. The equations for a small 
additional motion are constructed and several types of possible vibrations are analyzed. On the 
basis of the condition of propagation it is demonstrated that three principal directions of pro
pagation exist connected with longitudinal and transversal waves. 

Izotropowy material spr~tzysty poddany jest skonczonym odksztalceniom w ten spos6b, ze wy
dlui:enia w trzech wzajemnie prostopadlych kierunkach SC4, proporcjonalne do czasu. Buduje 
sict r6wnania dla malego dodatkowego ruchu, a nast~tpnie analizuje kilka moi:liwych drgan. 
W oparciu o warunek propagacji pokazuje si~t, i:e istniej<4, trzy gl6wne kierunki propagacji, 
kt6rym odpowiadaj<4, fale poprzeczne lub podlui:ne. 

M30TJ'OIIHbiH ynpyraH: MaTepmm no.rtaepmeH KoHelffibiM .rte<l>opMa~~ TaKHM o6pa3oM, t.~To 
y,[{JIHHHeHHH B TJ)eX B3aHMHO rreprreH):{HKy.JUipHbiX HanpaBJieiDIHX nponop~OHaJibHO H3MeHH
lOTCH so apeMeHH. BhiBOMTCH ypaaHeHHH, onHchmaro~He Manoe .rtonoJIHHTeJlbHoe ASIDKeHHe, 
l<OTOpble 3aTeM llOASepraroTCH aHaJIH3Y C TOl.ll<H 3peHIDI pa3.JUNHbiX BH):{OB B03MO>KHbiX 
Hone6aHHH:. Ha OCHoae ycnoBHH pacrrpoCTJ)aHeHHH BOJJH noKa3aHo, l.lTO cyll(eCTByroT Tpll 
OCHOBHbiX HanpaBJieHHH pacrrpOCTJ)aHeHHH BOJIH, KOTOpbiM COOTBeTCTBYJOT npO)lOJlbHbie HJIH 
nonepel.IHhre HoJJe6aHHH. 

SMALL vibrations of elastic media have been extensively treated in the literature. In par
ticular it is known that a complete coincidence can be established between the theory 
of vibrations and the condition of propagation of an acoustical wave provided the vibra
tions are infinitesimal and the finite initial deformation is homogeneous and stationary [1]. 
Thus, the coincidence also holds true in the linear theory of elasticity where-according 
to the definition-the initial deformation does not exist. In the present paper, we consider 
a situation more general than those hitherto dealt with. The finite, initial deformation 
varies in time; small additional vibrations are now superposed on that deformation and 
certain particular forms of vibrations are investigated. 

1. Fundamental motion and additional motion 

Let us introduce fixed Cartesian coordinate system. The coordinates of a typical point 
of the body under consideration in the natural state BR are denoted by X'<, (X = 1, 2, 3. 
Let us consider the motion x(t) given by the relations 

(1.1) 

where A.K are certain functions of time t only, 

(1.2) 
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574 Z. WESOWWSKI 

At the instant t = 0, the body is in a natural state BR, and hence .A.x(O) = I. Superposition 
of a rigid translation (but no rotation) upon the motion (l.I) does not influence the sub
sequent relations of this paper. 

Let us pass to determination of the strain gradients x',«, the strain tensor B,., its inva
riants I x, K = I , 2, 3 , and the density e. All calculations of this section are based on the 
relations and notation given in [2]. According to (l.I), we have 

(1.3) 

(1.4) 
0 01 .t~ 0 , 

.t~ 

(1.5) 

(1.6) 
I 

(! = AtA2A3(!R, 

(!R being the density in the state BR. Raising and lowering of indices is performed by means 
of the metric tensors of the Cartesian coordinate system previously introduced: 

(I.7) 

Further considerations will be confined to homogeneous and isotropic elastic materials. 
For such materials, there exists the elastic potential u (referred to unit mass) which is 
a function of the strain invariants /K. only, u = u(Ix), and the Piola-Kirchhoff stress tensor 
TR,« is defined by 

(I.8) T « au 
RI = (!R axf , 

,Cl 

where u is a function of the gradients x'.: through the invariants lx. Using the relations 
following from Eqs. (I.4), (I.S), 

(1.9) 

a/3 - B BP -1 B I rs aB's - rp s 1 rs + 2g , 
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SMALL VIBRATIONS OF ELASTIC MEDIUM DEFORMING IN TIME 575 

we obtain 

(1.10) TRka. = 2Wt xk,a.+2W2 (It xk,a.-Bks~,«") + 2W3 (BkpBPqxq,a.-ltBkpxP,«+l2 xk,a.), 

aw 
wK = 

81
K , w = eRu, K = 1, 2, 3. 

Substituting now Eqs. (1.3), (1.4), (1.5) into Eq. (1.8), we obtain: 

(1.11) 

TRt 1 = 2[ltW1 +lt(l~+li)W2+ltl~liW3], 

TR22 = 2[l2W1 +l2(li +l~)W2 +l2l~l~W3], 

TR33 = 2[l3Wl +l3(l~+li)W2+l3l~l~W3], 

TRt 2 = TR2 1 = TRt 3 = TR31 = TR2 3 = TR3 2 = o. 
Since TRia. are independent of the coordinates xa., the left-hand side of the equations 

of motion 

(1.12) 

is equal to zero, which yields the conclusion that also the acceleration x1 is equal to zero. 
The motion (1.1) is then possible provided that 

(1.13) 

where c1 , c2 , c3 are fixed parameters. In the subsequent considerations it is assumed that 
Eq. (1.13) has been subsituted in Eq. (1.1). 

Let us now pass to the consideration of a perturbed motion x*(t), differing only slight
ly from the motion x(t) [cf. Eqs. (1.1) and (1.13)]-that is, the motion 

(1.14) 

xd = l 1 X1 +u1 (Xa., t), 

x* 2 = A2X 2 + u2(Xot, t), 

x*3 = l 3 X 3 +u3 (Xa., t). 

The quantity ui(Xa., t) is the displacement of the perturbation. ToUPIN and BERNSTEIN [3] 
derived the following equation for u1 

(1.15) 

where the functions 

02(1 
(1.16) AjiX/ = f!R -i--, 

ax .a.aX'.P 

are calculated for the fundamental motion x(t). In the Cartesian coordinate system intro
duced here and under a consistent application of the independent variables X~ (and not x1

), 

al1 differentiations (1.15) may be replaced by partial differentiations with respect to xa. 
and t. 

In order to obtain Eq. (1.16) in an explicit form in the case of isotropic materials, the 
necessary differentiations should be performed; it should be born in mind that u depends 
on xi,a. through the invariants IK. Applying Eqs. (1.9) once again, we obtain 

(1.17) Aka.m{J = 2Wt gkmgafl +2W2 [2xk,IXXm,p- gkmXr,a. xr.P -xk,llxm,"'+ (ltgkm -Bkm)gafl] + 
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+ 2W3 [(gk,.Bsqx'l,ot + BkrXs,a- g,.sBkqx'l,rx -/1gk,.Xs,ot + f1grsXk,rx- B,.sXk,rx) X 

x(g' mr,P + g5mX',{J) + (BkpBPm -/1 Bkm +lzgkm)grxPJ 

+ 4 { w11 xk,(X Xm,{J + Wzz (/1 xk,(X- B/xp,rx)(/1 Xm,{J- Bm'x/) 

+ w33 (BkpBPqxq,ot-11 BkqXq,(1.+lzxk,(1.)(BmrB'5x/ -/1 Bm'x,.,P +lzXm,{J) 

+ w 23 [(/1 xk,(X- Blxp,ot) (Bm,Brsx/ -/1 Bm5X/ + [z Xm,(X) 

+ (BkpB"4xq,rx -/1 BkqXq.rx + lzxk.rx) (/1 Xm,fJ- Bm,x'.13)] 

+ w31 [(BkpBpqXq,(X-11 BI/Xq,rT.+fzxk,ot)Xm,{J +xk,a.(Bm,B"Sxs,{J -/1 Bm'x,.,P +lzXm,{J) 

The functions Aik are symmetric neither in Latin nor Greek indices. Due to Eq. (1.16), 
however, the symmetry Aik = Aki occurs. 

Substituting Eqs. (1.3), (1.4), (1.5) into (1.17), we finally obtain: 

A1111 = 4.A.fWtt +4A.f(}.~ + A.~) 2 Wzz + 8A.fA.1A.~W33 + 8A.fA.~.A.~ (A.~ +A.~)Wz3 

+ 8A.fA.~A.~W3 1 +4A.f(A.~ +A.~)W1z +2W1 +2(A.~ +A.~)Wz + 2A.~A.~ W3, 

At 2 t 2 = 2(Wt +A.~Wz), 

At3t3 = 2(Wt +A.~Wz), 

A1
1

2
2 = 4A.1A.zWu +4A.tA.z(A.i+A.~)(A.~+A.~)Wzz+4A.~MA.~W33 

(1.18) + 4A.tA.zA.HA.1A.~ +MA.~ +2A.fA.~) Wz3 +4A.1 A.zA.~ (AI+ A.~)W31 

+4AtAz (A.i +A.~+ 2A.~) W12 +4A.1A. 2 Wz +4A.1 AzA~ W3, 

At 133 = 4A.tA.3Wu +4A.1A.3(A.f+A.~)(A.~+A.~)Wzz+4A.~A.1A.~W33 

+4A. 1 A.~A. 3 (A.iA.~ +A.~A.~ +2A.~A.i)W23 +4A.tA.~A. 3 (A.f +A.~)W31, 

+4A.tA.3(A.f +A.~ +2A.~)Wiz +4A.t.A.3Wz +4A.1A.iA.3W3, 

A 1
2

/ = -2.A.tA.zWz-2AtAzA~W3, 
A1331 = -2A.1A.3Wz -2A.1A.3 A.~W3. 

All the remaining functions A 1\fJ vanish. The functions A2rxl and A3a.l may be obtained 
from those given by cyclic change of indices at the elongations Ax. 

It is seen that the tensor Airxl is independent of (xk, X~ and is the function of the only 
variable t. Owing to that property, the tensor may be taken out of the parantheses in Eq. 
(1.15). The differentiation indicated in that formula may be reduced-in the Cartesian 
coordinate system-to partial differentiation (with fixed xrx); hence, we obtain: 

(1.19) 

This equation is the equation sought for, describing the small motion superposed on the 
fundamental motion (1.1). 
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SMALL VIBRATIONS OF ELASTIC MEDIUM DEFORMING IN TIME 577 

2. Derivation in convective coordinates 

The derivation of Eqs. (1.19) presented above in the case of small additional motion 
is complete. Since, however, that in solving certain particular problems (e.g., stability), 
convective coordinates are extensively used in the literature, let us employ these coordi
nates in the present paper. Such an approach has the advantage that the corresponding 
formulae are - particularly in the case of isotropic materials-well known from the re
levant literature (cf., e.g., [4]). 

In addition to the Cartesian reference frames xi and xa, let us now introduce the con-

vective coordinate system ()i which coincides in B with the system x« 

(2.1) 

The time-dependent metric tensor corresponding to ()i is denoted by Gii, Gib by con
trast with fixed gii' gii, gafJ, g(I.P. 

Calculations of the invariants lx lead to relations already given (1.5). Passing now to 
the stress tensor, we obtain 

(2.2) 

with the notations 

(2.3) 
2 aw 

'Pl = ~l-7f/. 
J' /3 2 

2 aw 
P2 =~ ~-a/' 

J' 13 2 

in [3] the corresponding notations were f/J, P, p), W denoting the elastic energy referred 
to unit volume in BR. This function is identical with the function W = f!R(] introduced 
in the preceding section. The remaining components of the stress tensor are obtained from 
those defined by Eq. (1.11) by means of cyclic interchange of indices. 

On the basis of relations given in [3], Jet us consider the motion R*(t) = R(t)+w(t), 
w being small in comparison with R. The quantities appearing in Eqs. (2.2)-(2.3) are 
now subject to certain increments. Their linear components are denoted by the same kernel 
letter as those connected with the motion R(t) and marked by a prime. With the notations 

(2.4) 

the physical components of w are, according to (2.2), the quantities uf A1 , vf A2 , wf A3 • 

We now have 

y'
11 = A,i,A,[2wu +2W22(Ai +A~)2 +2W •• A1A1 +4Wz.n<~(A~ +A~) 

~2~2 ~2 ~ 2 1 Ai+A~ A~A~] 
+4W3111.211.3+4W12(11.2+11.J)-W1 A~ -W2-Ay--w3~ Ux 

+ A, LA.[ 2Wu +2Wz2 (Ai+A~)(A~ +A~) +2W •• MA~A1 
+ 2W23A~ (A~A~ +A~ A~+ 2A~A~) + 2W31AhAi + l~) + 2Wt2(A~ +A~+ 2A~) 

4 Arch. Mech. Stos. nr 4/72 

http://rcin.org.pl



578 

(2.5) 

where 

(2.6) 

Z. WESOWWSKI 

1 M - A~ 1 2] 2 [ • 2 12 2 2 -W1A~ +W2---xf-+W311.3 Vy+ A
1

A
2

A
3 

2W11 +2W22 (1.1+A2)(A2+A3) 

+ 2W33AI A1A~ + 2W23A~ (AI A~+ A~ A;+ 2A.i A~)+ 2W31 A~(Af +A~) 

12 12 12 1 A~-A~ 2] + 2w12 (11.1 + 11.3 + 2~~.2)- W1 If+ W2 -~~- + W3 A2 Wz, 

- A
1
f

2
A

3 
(W2+A~W3)(ur+vx), 

(JlW 
WKL = aJKoh. 

The remaining increments of the stress tensor are obtained from those given above by 
cyclic permutation of indices of all quantities except WKL· 

To the equations of motion constructed by means of convective coordinates, there 
enter, in addition to the increments already mentioned, the increments of the Christoffel 
symbols r;~ and of the acceleration a'. In order to determine a', let us differentiate R*(t) 
twice with respect to time, which finally yields 

(2.7) , 2 1 D
2 

( v) 
a =-r;nf2F' 

Here D/Dt denotes the differentiation with respect to t at fixed values of (Ji. 

Using the formulae derived in [2), the increments of FJ~ are determined (Christoffel 
symbols Fj" vanish); 

(2.8) 

r /1 1 
22 = Ai Uyy, r /1 1 

33 = -ATUzz, 

r l1 1 
23 = At Uyz, r /1 1 

31 = At Uzx, 

The remaining increments FJ~ are obtained from (2.14) by cyclic permutation of indices 
and (u, v, w). 

Inserting now Eqs. (2. 7) and (2.8) in the equations of motion we finally obtain: 

(2.9) [ 2W11 + 2w22 (A~+ A~) 2 + 2W3 3 At.<t + 4W23A.~A~ (A~+ A.~)+ 4W 31 A.~ A.~ 
2 2 1 A.~ +A~ A~ + l~ J ( 1 A~ ) 

+4W12(A2+A3)+ .A.i w1 +~W2+--xr-W3 Uxx+ AI w1 +AI w2 Uyy 

( 
1 A~ ) 2 2 12 12) 2121214W + AI w1 + Af w2 Uzz + [2W11 +2(At +A3) (11.2 +11.3 w22 + Jl.tJI.2JI.3 33 

+ 2A~ (Ai A~+ A~ A;+ 2Ai A.i)W23 + 2A~ (Ai + A~)W 31 + 2 (li +A~+ 2A~)W 12 
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SMALL VIBRATIONS OF ELASTIC MEDIUM DEFORMING IN TIME 579 

+ W2 +A~W3]vxr+ [2Wu + 2(Ai +A~) (A~ +A~)W22 +2AiA~A~W33 

+2AhAiA~ +A~ A~ +2AiA~)W23 +2A~(Ai +A~)W3 l +2(J.i +A~ +2A~)W12 

+ w, +A~W.]Wxz = 2~, e. Zt', ( ;, ) . 
The remaining two equations may be obtained from the above by cyclic permutation of 
the indices and functions u, v, w. By introducing the quantities Ut = uf At, u2 = v / A2 , 

u3 = wf A3 , we obtain the system (1.19), derived in a different manner. In the subsequent 
sections of the paper, the analysis of solutions of that system will be presented. 

3. Small vibrations of the medium 

The coefficients of the system (1.19) are functions of time, which makes its general 
analysis somewhat complicated. It is possible, however, to find several particular solutions 
which are presented below. 

Let us first consider the vibrations corresponding to a plane wave. To this end, the 
additional displacements ui are assumed to have the form 

(3.1) ui = /1cp(P, t), 

where 
P = Xa.Na., Na.Na. = 1, 

[i = const, l'lr = L 
(3.2) 

The function cp(P, t) represents the length of the displacement vector u1
• From Eq. 

(3.2)3 , it follows that this vector has a fixed direction in space. On the material surfaces 
having normals Na. in the state BR, the absolute value of that vector depends exclusively 
on time. 

Substituting (3.1) into (1.19), we obtain: 

(3.3) 

where 

(3.4) 

The symmetry Aka.mfJ = A,tka. makes Bkm a symmetric tensor, Bkm = Bmt. Assuming 
that iJ2cp/iJp2 =F 0, let us divide Eq. (3.3) by iJ2cp/iJP2, 

(3.5) a2, / a2, 
Bkmr = (!Rik at2 ap2 . 

From Eq. (3.5) it follows that the direction of vibrations is the eigenvector of the Bkm 
tensor. Bkm is, however, a function of time, 1m being time-independent, according to our 
assumption. This means that the vibrations (3.1) are possible for a prescribed Na. only 
in the case in which BkmCNa.) has at least one time-independent eigenvector. The eigenvalue 
corresponding to this vector may, on the other hand, be time-dependent. 

4* 
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In order to find the form of Bkm necessary to make possible the vibrations (3.1), let 
us assume blK>(t), K = 1, 2, 3, to be normed eigenvectors. Owing to the symmetry Bkm = 
= Bmk' it can be assumed that these vectors are mutually orthogonal. Denoting their 

K 
corresponding eigenvalues by ;e(t), we obtain 

(3.6) 

K 

According to (3.4), the motion (3.1) is possible provided at least one vector bk(t) is 
K 

time-independent, bk(t) = lk = const. In such a case 

(3.7) 

and the only possible vibrations of the form (3.1) have the direction lk. If two vectors 
K L K 
bk(t) and bk(t) are time-independent, then, due to the orthogonality of the triple bb 
K = 1, 2, 3, also the third vector must be time-independent and assume the form 

Bkm = ~ K K K 
.:...J ;e (t) fk lm. 

K=1, 1, 3 

(3.5) 

Three mutually orthogonal possible directions of vibrations are found to exist. If these 
vibrations were, for each timet, orthogonal or parallel to the material plane xrx.Nrx. = const, 
they might be called longitudinal or transversal vibrations. Since the planes rotate (except 
the planes xrx. = const), they are, in general, neither longitudinal nor transversal. 

The situation in which Bkm has the form (3.7) or (3.8) is special. In general, no vibra
tions ofthe form (3.1) can exist for prescribed values of Nrx.. The important particular 
case occurs when Nrx. = ~CXQ for a fixed e = 1, 2 or 3. For the sake of simplicity let us assume 
(! = 1; then, in accordance with Eq. (3.4), we may write 

(3.9) Bkm = 
1 1 [A 

1 1 0 

A// 

and the tensor Bkm for each material and each A1 , A2 , A3 , has the form (3.8), the constant 
1 2 3 

eigenvectors being li = (1, 0, 0), li = (0, 1, 0), li = (0, 0, 1). The planes X 1 = const 
do not rotate in time and hence the first direction corresponds to longitudinal vibrations, 
the remaining two-to transversal vibrations. 

In the case of spherically symmetric deformation A1 = A2 = A3 the tensor Bkm for each 
1 

Nrr. has the form (3.8). Then AH = A~~ = AH = 1p(t), Afi = A~~ = ... = An = 
2 1 2 

= 1p(t), A<g> = A<g> = ... = A<~~> = ['!jJ(t)-'!jJ(t)]/2, whence 

(3.10) Bkm = ~(t)~km+ (~(t)-~(t))~~~~Nrx.Np. 
Each time-independent vector lk _L ~~Nrx. and lk = ~~Nrx. is now an eigenvector of the 
tensor Bkm· 
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Assuming now the necessary condition (3. 7) to hold true, Eq. (3.3) is written in the form: 

;:)2 qJ ()2 qJ 
(3.11) x(t) (Jp2 = (!R Ot2 • 

Separation of variables yields 

(3.12) qJ(P, t) = cx(P)x(t), 

(3.13) 
ex" X 

x(t) X = (!R ex 

Since the left-hand side of Eq. (3.12) depends on t only and the right-hand side on p, the 
following equations are true: 

(3.14) 

k 2 being the coupling coefficient. The solutions of the first equation are 

(3.15) 

The solutions of Eq. (3.14h are to be found for a known value of x(t)- i.e., the 
elastic potential W. Let us denote two linearly independent real solutions of (3.14h by 
X1 and X2 • Owing to the linearity and homogeneity of the equation, also the following 
expressions represent the solutions: 

Xt = Xl + iX2 = IXt + ixzl efar~r<xl+ix2>' 
(3.16) 

Xz = Xl -ixz = IXt +ix2le-iarc(xl+ix2>. 

By means of Eqs. (3.12), (3.15), (3.16), the functions qJ(P, t) are found 

(3.17) 
q;3 ,4 = jx1 + ixzle±iCkVP;P-ars(xl+tx2)J· 

These relations represent a sinusoidal wave. The function arg{x1 + ix2 ) depends on 
the time and the wave number k. The corresponding wave is then dispersive and propa
gates at the time-dependent velocity. The real-valued functions satisfying (3.11) are qJ1 + ~2 , 

(/)3 + (/)4, (qJ1- (/J2)ji, (q;3- q;4)ji. It should be born in mind functions x1 and x2 may be 
multiplied by arbitrary constants. 

The expressions (3.17) can also be used to construct the function q; corresponding 

to a stationary wave. Such a wave is represented, for instance, by x 1 sin ky (!RP; its nodes 
are located at the same material points, though moving in space. 

Similarly to (3.12), other particular forms of the function q;(P, t) may be assumed- e.g.: 

(3.18) q; = q;(P-cx(t>), qJ = y(t)fl(P-cx(t)). 

They also lead to certain solutions, while the equations for cx(t) are nonlinear. For the sake 
of brevity, we shall not investigate these cases in detail, particularly, since they are in part 
contained in the case previously considered. 

Let us pass to a solution entirely different from (3.11 ). Consider the problem of plane 
vibrations UJ = 0, a I oX3 = 0, and seek a solution of the form 

(3.19) 
Ut = u = cx(t)ei(llX+vY)' 
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Here p, and"' are fixed parameters. Since for some indices the functions Aka. mfJ are identically 
zero, the system of Eqs. (1.19) is reduced to: 

-(At 1 1 1 p,2 +A1 2 1 2 P2)ex+2A~~2 >t-t"'P = eRoc, 
2A~~2 >p,pex-(At 2 1 2 t-t2 +A222 2P2)/1 = (}Rp· 

(3.20) 

With p, = 0 or "' = 0, the solution reduces to that considered above. If p, ¥- 0 and "' ¥- 0, 
the system can be reduced to one differential equation for the function rx(t) 

{[ 
d

2 
2 2 2 2 2 2 ] 1 

(3.21) (}R' dt2 + (p, A 1 1 +'V A2 2 ) 2A~~2) X 

X [eR~: + (p2A1 1,. +v2A/ 1 2)] -.u2v2 2An2)} a= 0, 

P(t) being determined by the relation: 

(3.22) P= 1 { .. (A 1 1 2 A 2 2 2) 1 

2 A(12) (}Rrx+ 11ft+ 11"' exf. 
ft'P 12 

If the functions Atl are given, Eq. (3.21) can in principle be solved. To proceed with 
the analysis, let us assume ex(t) to be the real solution of the equation and p(t)- a function 
defined by (3.22). Replacement of (p,, P) by (- p,, -P), (- p,, P), (p,, -P) does not change 
Eq. (3.21), and hence, also in these cases ex(t) is a solution. In accordance with (3.22), only 
in the last two cases does P(t) pass into-P(t). Thus, we conclude that four solutions exist: 

(3.23) 

1 
u = exe'<"x +":f) , 

1 
V = _ pei(pX HY) ; 

~ = exe-i(PX+,Y> , 
2 

'V = _ pe-i(pX HY) ; 

3 
U = exef( -PX +•Y) ' 

3 v = Pe'<-PX+,Y>; 

4 
U = exef(pX-11Y) , 

4 
v = Pe'<PX+•Y>. 

The system (1.19) being linear, each linear combination of the solutions (3.23) constitutes 
a solution. In particular, adding the first two solutions together, we obtain the solution 

u = ex cos (p,X + v Y), 

v = -Pcos(p,X +PY), 
(3.24) 

while the third and fourth solutions added together yield the solution 

u = ex cos ( - p,X + v Y), 

v = ficos (- p,X +vY). 
(3.25) 
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The relations (3.24) and (3.25) represent a stationary wave with nodal points located 
on straight lines parallel to ,uX + v Y = 0 and - ,uX + v Y = 0. The further two solutions 
[(1}-(2)] [(3)-(4)] do not substantially differ from (3.24) and (3.25). Summing up all four 
solutions (3.23), we obtain 

(3.26) 
u = cxcos,uXcosvY, 

v = psin,uX sinvY, 

which also represents a stationary wave. Three further solutions [(3)+ (4)- (1)- (2)], 
[(3)-(4)+(1)-(2)], [(3)-(4)-(1)+(2)] are not essentially different from (3.26). 

The differential Eq. (3.21), as a fourth order equation with real coefficients, has four 
1 2 3 4 

real, linearly independent solutions cx(t), cx(t), cx(t), cx(t). These solutions may be used to 
1 4 

construct complex solutions, such as cx(t) + cx(t). A typical solution of this type is denoted 

by a(t), and the corresponding {J(t) (3.22) - by P(t). 
On the basis of Eq. (3.19), we now write: 

(3.27) 
V = lP (t)l ei(araJJ(t)+PX+vY). 

Further solutions may be obtained from the above one by changing the signs of arga(t), 

argp(t), v and ,u, bearing in mind the sign of {i(t) [cf. Eq. (3.23)]. These solutions repre
sent propagating waves with phase planes parallel to flX +vY = 0, ,uX -vY = 0. Since a(t), 

PCt) dep~nd on the parameters ,u and v, the wave is dispersive and has a time-dependent 
velocity. 

It should be stressed that vibrations of the form (3.19) are not possible at all in the 
case when the material coordinates are replaced by spatial coordinates x, y. In such case, 
xi enters the equation for the function cx(t) [analogous to (3.20)}, which yields ex = 0 and 

fJ == 0. 
In a similar manner, the three dimensional case uk = cxk(t)eiln may be considered, 

leading to a system of three ordinary differential equations which can be further reduced 
to a single eight order differential equation. 

Let us consequently consider the displacement ui of the form 

(3.28) 

This is a generalisation of Eqs. (3.19) to the case of vibrations in three directions. Equation 
( 1.19) then yields the equation of motion: 

(3.29) Btk(t)/k(t)q/' (P) = (!Ri;(t)p(P), 

Bit being defined by Eq. (3.4). Separating the variables, we obtain: 

" i" L=~= -k2 
p Biklt 

(3.30) 

for each i, k being the coupling constant. This is a system of four equations for the func
tions p(P), lt(t), and its solution may be found in a manner analogous to the solution 
in the case of vibrations in two directions. 
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The existence of solution (3.1) suggests the possibility of existence of the solution: 

(3.31) 

(3.32) 

In the general case, the vibrations (3.31) are not equivalent to (3.1 ). Taking into account 
Eq. (1.1), we have 

(3.33) 

(3.34) 

Substituting now (3.31) and (3.32) in (1.19), we obtain 

where 

(3.36) 

The necessary condition for the existence of vibrations (3.31) is furnished by the re
quirement that Ckm should have one time-independent eigenvector, but even if this condi
tion is fulfilled, the vibrations (3.31) do not generally exist: the left-hand side of (3.35) 
is a function of p and t while the right-hand side is a function of p, t and the variables xcx. 

An interesting particular case is encountered when n has the direction of one of the 
axes xi- e.g. x1, which means that nk = (1, 0, 0). Then 

D2ui (:J2q; ( xl )2 iPq; xl ()2q; 
(3.37) p = xt' Dt2 = op2 Cf J:; + 2 opot Ct ;:;:- + ot2 ' 

and only two independent variables p and t appear in Eq. (3.35). Another important par
ticular case is obtained when 82q;fop2 = 0. The left-hand side of Eq. (3.35) is then equal 
to zero and (3.31) represents a rigid translation. 

4. Acoustical wave 

Starting from the equations of compatibility on the surface at which the second deriv
atives of xi(X'\ t) suffer a jump, the condition of propagation has been derived by 
C. TRUESDELL in the form 

(4.1) 

where Qkm is the acoustical tensor corresponding to the normal nk 

(4.2) 
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The scalar U is the propagation rpeed, and ak is the vector connected with the jumps 
of derivatives of xi(Xc\ t) by means of the conditions 

(4.3) 

[xk,a;p] = akxm,axP,pnmnp, 

[xk,m] = - Uaknm, 

[ ··kl _ u2 k x J- a. 

e U2 is the eigenvalue, and ak the eigenvector of the acoustical tensor Qkm. According to 
(1.3) and (1.18) Qkm is a symmetric tensor. 

Both ak and U may be functions of time t. By contrast with Eq. (1.19), which was 
true for small displacements uk, Eq. (4.1) is an exact equation. 

It is easily verified that for the isotropic material considered ni is not, in general, the 
eigenvector of the tensor Qkm(ni). It follows that in a nonlinear isotropic material the 
longitudinal elastic wave propagating in a prescribed direction ni does not generally exist. 
If, however, ni is assumed to be either (1, 0, 0), (0, 1, 0) or (0, 0, 1), then ni is the eigen
vector of the acoustical tensor Qkm(ni) and the longitudinal wave exists. Let us consider, 
for instance, the case in which ni = (1, 0, 0). Then, according to (1.3), we obtain: 

[

A 
1

1 
1

1 A f 0 0 ] 
1 A11;.2 o 1 

Qkm = A A A 2 2 1 ' 
1 2 3 A3131 AI 

(4.4) 

In addition to the eigendirection (1 , 0, 0) this tensor possessess the eigendirections (0, 1 , 0) 
and (0, 0, 1). The longitudinal wave is accompanied by two transversal waves with ampli
tudes a, = (0, 1 , 0) and ak = (0, 0, 1 ). Equations ( 4.1) yield the squares of propagation 
velocities corresponding to these waves 

U2 _ 1 A 1 u2 u2 _ 1 A 1 1 ~ 2 u2 1 A 1 1 ~ 2 
li - - 1 1 ILl' _L(2) - - 2 2 ILl' _L(2) = - 3 3 ILl • 

(!R (!R (!R 
(4.5) 

Similar relations hold true for ni = (0, 1, 0) and ni = (0, 0, 1). For the direction of pro
pagation ni = (n1 , n2 , 0) the eigendirection is (0, 0, 1). 

Thus, in an isotropic material three principal directions of propagation exist and they 
coincide with the principal directions of strain. Each principal direction of propagation 
corresponds to one longitudinal and two transversal waves. For other directions of pro
pagation, the corresponding wave is neither longitudinal nor transversal. Each of the 
principal propagation velocities is defined by A//. If all these quantities are positive, 
then all the principal propagation velocities are real. The expression for the velocity of 
propagation in an arbitrary direction contains, besides A//, also the quantities Aial; 
this explains why the condition for all the principal propagation velocities to be real does 
not ensure that the propagation velocity for a given direction ni is real. 

The tensor Ckm (3.36), essential in the case of small vibrations, is, with accuracy to 
a constant multiplier, equal to Qkm, Eq. (4.2). Small vibrations of the form leading to the 
equations given above are, on the other hand, generally impossible, while the propagation 
of a wave defined by Qkm is always possible. This fact has been stressed by C. TRUESDELL 

for a material possessing a general symmetry. It follows from the considerations presented 
here that in the particular case of isotropic materials, no coincidence exists between small 
vibrations and the propagation. 
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