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1 . Introduction

Many different approaches to formulate thermodiffusion theories in 3D bodies have been developed in the
literature, see the historical review [4]. In engineering applications to shell structures one needs a 2D model of
thermodiffusion based on laws of 3D continuum thermodynamics [5,7]. Among many important phenomena in
shells to be described by such a 2D model is, for example, the transient hydrogen and heat diffusion. It embrittles
the materials of shell structures used for hydrogen production, storage and distribution and significantly affects
the behaviour of the structures. Another example is the moisture sorption in shell structures made of polymeric
materials and composites which may considerably change the prediction of moisture transport processes in
shells.

To formulate the 2D model of shell thermodiffusion we apply the direct through-the-thickness integration [1–3]
of 3D laws of continuum thermodiffusion [5,7].

2 . Basic 3D relations of non-linear thermodiffusion in solids

LetP with boundary∂P be a part of the bodyB in the reference placement. Then thermodiffusion phenomena
in 3D bodies are governed by five integral laws of continuum thermodiffusion, which are some extension of
those given in [5,7]. These laws are: balances of body mass, of mass of diffusing medium, of linear and angular
momenta, and of energy as well as the entropy imbalance. When the mass production within the body and all
inertia effects are disregarded, and then influence of diffusing medium is properly accounted for, these laws in
the Lagrangian description relative to the reference placement are:
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In the 3D laws given above,ρ andc are the referential mass (densities) of the body and of diffusing medium,
b, ε, r andη are the body force, the internal strain energy, the heat supply and the entropy, all per unit mass
of B, P is the Piola stress tensor field,n is the exterior unit normal vector of∂P , y is the position vector of
deformed body relative to an inertial frame, whilej, q andh are the fluxes of diffusing medium, of contact heat
and of entropy through the boundary∂P , respectively.

With standard assumptions from (1)–(4) we get the local Lagrangian balance relations. In particular, the local
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diffusion equation takes the form

dc

dt
+ Divj = 0.(5)

HereinafterGrad andDiv are Lagrangian gradient and divergence operators, respectively.

In what follows we are restricting ourselves by nonlinear thermoelastic solids. We introduce the free energy
densityψ = ǫ − θη which has the formψ = ψ(Grady, θ, c). In addition we represent the energy fluxq as
follows q = h+µj, whereµ = ∂ψ

∂c is the chemical potential. As a result, the global Clausius-Duhem inequality
(4) transforms into the local inequality

(Gradµ) · j +
1

θ2
h · Gradθ ≥ 0.

All local relations following from (5)–(4) should be complemented by initial and boundary conditions. In
particular, forc we assume the following boundary conditionn · j = k(c− c0), wherek andc0 are the diffusion
parameter and concentration in an environment of the solid.

3 . Reduction of 3D problem to 2D equations of shell thermodiffusion

In the shell-like bodyB, the boundary surface∂B consists of three parts: the upperM+ and the lowerM− shell
faces as well as the lateral boundary surface∂B∗. Then the position vectorx of B is described byx = x + ζn,
wherex is the position vector of some shell base surfaceM , n is the unit normal vector orientingM , andζ ∈
[−h−, h+]. Each partP (t) of the deformed shell-like body can be represented by a partΠ (t) of M(t) defined
by a position vectory(t). Applying the exact through-the-thickness integration [2, 6] of all 3D fields present
in 3D laws of thermodiffusion given above, we can introduce uniquely the corresponding 2D fields now given
entirely onM . Then following involved but straightforward transformations, all 3D laws of thermodiffusion
can be reduced to their 2D representations, which can be regarded as exact implications of the 3D global laws.
When 2D laws are supplemented by corresponding boundary and initial conditions, such resultant 2D initial-
boundary-value problem for shell thermodiffusion becomes a direct extension of the resultant 2D model of shell
thermodynamics developed in [2, 6]. As for the temperature, we introduce two surface diffusion-related fields
which are related to the mean values ofc and its gradient. As a result, instead of (5) we get two 2D equations
for diffusion in shells.

As an example, we consider the hydrogen diffusion in pipelines in the special case of axisymmetric deformation
and stress-assisted diffusion of a circular tube, [8].
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