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Rozdział 4 

Metody i algorytmy obliczeniowe 
w systemach komputerowych 



THEORETICAL FOUNDATIONS 
OF NEURAL NETWORKS PREDICTION 

Maciej Krawczak 
Systems Research Institute 

Polish Academy of Sciences 
University of Computer Technology and Management 

Newelska 6, 01-447 Warsaw, Poland · 
krawczak@ibspan.waw.pl 

Most observational disciplines, such as finance, biology, and physics, 
try to infer properties of an unfamiliar system from the analysis of a 
measured data of its behavior. There are many mature techniques as­
sociated with traditional time series analysis. However, during the last 
decade, severa/ new and innovative approaches have emerged (such 
as neural networks (NN) and time-delay embedding), promising insi­
ghts not available with these standard methods. Unfortunately, the re­
alization of this promise has been difficult. Adequate benchmarks 
have been lacking, and much of the literature has been fragmentary. 

Key words: dynamie systems, chaos theory, approximation. 

1. Introduction 

It is assumed that an interesting system is observed, namely the output 
of the system is available and observed. The second assumption is such that, 
generally, the reasons of system performance is unknown - it means the 
inputs to the system are not available. The aim is to analyze the observed 
system and to forecast the future behavior of the system. There are many 
real time series - systems - e.g. financial or in nature, difficult to analyze 
using, Tong (1990). 

There have been developed mathematical methods for analysis of time 
series - they will be discussed in details. The main difficulties in analyzing 
the real world time series and related systems are due to presence of non­
linearity and representation of only finite observations - these kind of diffi­
culties justifies the use of empirical as well as nonparametric methods dealt 
in this work. 
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For last few years much attention has been paid to the application of 
the chaos theory for analysis of different time dependent real systems. At the 
same time much interest has been given to the ability of modem computa­
tional tools such as neural networks and genetic programming. It must be 
mentioned that development as well as various applications of fuzzy logic 
has found a great interest in artificial intelligence. 

The ideas developed in this work are derived from different disci­
plines, it means the approach to analysis of time series is multidiscipline. 

2. Observation of linear systems 

For long time in the system theory linear dynamie systems (very often 
time-invariant) were investigated very deeply. Let us consider a linear time 
invariant system defined by state-space equations: 

~(t )= Ax(t )+bu(t) 

y(t )= hx(t )+ dv(t) 

(1) 

(2) 

The state vector of the system x is of the N dimension; y(t) is the ob­
served output of the system; u(t) is the driving force (control or noise) ap­
plied to the system; v(t) is considered as noise; the matrix A and vectors b, h, 
d are parameters of the system. Having the system parameters as well as the 
value of the state x(t) it is easy to predict y(t). 

Now, Jet us consider a discrete version of the system (1)-(2), taking 
samples of the output at times L1t: 

x(k + I)= <I>x(k) 

y(k)=hx(k) 

(3) 

(4) 

in these equations k=nL1t and <I> = exp(A~t). There is a question when and if 

y(k) can determine corresponding state x(k), in other words there is a ques­
tion of observability of the system. For linear systems like (3)-(4) we define 
a so-called observability matrix: 

O(h, <I>)= 1:~ I <I>x(k) 

h<I>N-1 

(5) 

Putting 

y(k +n)= h<I>n x(k) (6) 
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we can describe an observation vector 

[y(k 1 y(k + 11 ... , y(k + N -1)]= O(h, <I> )x(k) (7) 

In order to find the state of the system the observability matrix o(.) must be 

invertible. 

The linear autoregression which exactly models the observed se­
quence has a form 

y(k )= h<I>N 0-1 [(k-N) ... y(k -l)+dv(t )Y. (8) 

N ow Jet us consider a nonlinear system, which are much more useful 
because most of observed time series represent nonlinear dynamie systems. 
In a similar way we can write a nonlinear system: 

~(t) = F(x(t )) 

y~) = h(x(t)) 

(9) 

(10) 

where x is N dimensional state of the system, F is a nonlinear transition 
function, h is an observation function. Applying sampling intervals equal to 
Llt we can write a delay vector 

[y(k-11 y(k-21 ... , y(k-T)] (11) 

Takens theorem (1981) allows to apply the observability problem of nonlin­
ear systems. Due to this theorem which states that under very mild condi­
tions, if 

T > 2D+l (12) 

(where D is the fractal dimension), then there exists (for almost all smooth 
function h) an one-to-one differentiable mapping 'I' between the delay vec­
tor and the state vector x(k) 

'P(y(k-11J(k-21 ... ,y(k -T))= x(k) (13) 

In this way we can write an autoregression which models the time series in 
the form 

y(k)= ho Fo 'P(y(k-11 y(k-21 ... , y(k-T)). (14) 

It is worth to notice that equation (13) has a similar form as equation (7). 
Such a form allows to apply nonlinear autoregressions to model time series. 
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3. Neural networks prediction 

Feedforward neural networks work as an universal approximators. 
Before using such a network it must be trained. For an input x(k) the net­
work response ( or output) is given as 

y(k)=N(w,x(k)) (15) 

where weights w are parameters of the network. During the learning process 
we try to minimize the average squared error (a learning error) 

1 p 2 

min- I,[d (k )-N~ ,x(k ))] 
w p p=I 

(16) 

counting over a training set of examples, where d(k) is the desired pattem 
for each input. Under same stationary and ergodic conditions the learning 
error (15) converges to an expectation: 

1 p 2 

lim min- I,[d (k )-N (w ,x(k ))] 
P • ~ w p p =I (17) 

• EIID -N (w ,xt. 
Here D and X are considered as random variables while the expectation is 
taken over the joint probability distribution . 

The problem of fin ding optimal parameters w* for linear systems is 
trivia], eg. Shanmugan (1988). For nonlinear systems, the problem is much 
mare complex, especially using neural networks. Namely, we must use the 
universal approximator properties of feedforward neural networks. The for­
mal explanation of using least square errors for neural network training can 
be found e.g. in Hecht-Nielsen (1990). 

4. Chaotic series 

Many interesting systems in the real world are known to be nonlinear 
or chaotic. Up till now by same mathematical expressions the analysis is 
constrained to extraction of similar tendencies. For example let us analyze 
one of the most famous and oldest, perhaps, equation modelling a popula­
tion growth. The equation is called the logistic equation and is described by 
the following form (discrete case) 

x(t + 1) = b x(t) (1 - x(t)), t =O, ... , 300 (18) 
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where b is a real value parameter. The logic equation is drawn in Fig. 1 for 
the parameter b = 3.0, and first 200 points t = 1, ... ,200, and for the initial 
condition x(0) = 0.1, 
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0,2 

o 
14 27 40 53 66 79 92 105118131144157 170 183 196 

Fig. 1. The first 200 points of the logistic equation. 

Another example of chaotic series is generated by the Mackey-Glass 
equation ( 1977) of the form: 

x(t - s) 
x(t+l)=bx(t)+a c( ) (19) 

1+x t-s 

where the parameters can be stated as follows: a = 0.2, b = 0.9, c = 1 O, 
s = 18 , and the initial conditions are assumed to be 
x(0) = x(l) = ... = x(18) = 0.7. Time evolution of the Mackey-Glass equation 

for the above parameters is shown in the Fig. 2 
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Fig. 2. The first 200 points of the Mackey-Glass equation. 
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The above time series are shown in order to show that simple nonlin­
ear equations with feedback can cause very complex behavior of the plots. It 
will be shown little later the attractors of complex time series. 

Embedding 
There is a pretty simple method for analyzing time series, the method 

is called the time series embedding, Ruelle (1981) and Takens (1981). The 
approach can be illustrated by plotting pairs of point x(t) and x(t + 1) for the 

considered functions. The case of the logistic equation is shown in the Fig. 3 
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Fig. 3. Embedded logistic function . 

In the case of the Mackey-Glass equation the embedding plot is shown in 
Fig. 4: 
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Fig. 4. Embedded Mackey-Glass function. 
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It should be emphasizes that even plots versus time are very complex 
time series than the respective embedding plots are rather simple as well as 
known pattems. The idea is such, namely given the point x(t) it is easy to 

make a very good estimation of the next point x(t + 1) by interpolation. The 

similar principle can be extended to multiple dimensions: 

X (t) = x(t ),x(d + t ),x(2d + t ),x(3d + 1 ), ... , x(nd + t) (20) 

where X is the embedded vector, d is the separation, and n is the embed­
ding dimension. 

lt has been shown (Takens, 1981) that for a given chaotic series em­
bedded properly there exists a smooth function. This function of embedding 
can be approximated in various ways, e.g. or by neural networks. Proper 
parameters that is the dimension parameter d as well as the embedding 
function must be found empirically. Latter we will discuss difficulties ap­
pearing during the modelling process. 

5. Elements of the empirical chaos theory 

5.1. Lyapunov exponents 

The main feature of chaotic systems is their high sensitivity to initial 
conditions. There is a way to distinguish this feature, namely by calculating 
the Lyapunov exponents (Wolff, Swift, Swinney, 1985). These exponents 
indicate whether succeeding points laying on an attractor diverge or con­
verge - with passing time. 

The examined trajectories on the attractor are embedded in a space. 
The divergence between two trajectories can be measured as a difference 
between two n-tuples. At the beginning there is a need to define the so­
called dominant average Lyapunov exponent as: 

I,k 
n- I / 

L=log --"-
2 n-1 

(21) 

where n denotes the index of a sample, is the Euclidean distance between 
two neighboring trajectories. There is also possible to calculate local Ly­
apunov exponents, for that we need samples of trajectories of attractor 
which should be dense. It is obvious that the rate of divergence is not con­
stant at all along the attractor. 
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It is interesting to allays the Lyapunov exponents. If the Lyapunov 
exponents are positive it means the system is a chaotic one, while the nega­
tive exponents indicate the system behavior is reverting, the value zero of 
the exponents characterizing cyclic behavior of the systems. For instance, an 
attractor of a sinusoida} system is a circle. 

5.2. Hurst exponent 

There is a very important measure of predictability of states of time 
series. This measure is named the Hurst exponent which is derived by appli­
cation of so-called R/S analysis. Considering a time series X representing 
by n points, and choosing a number p which can be taken for convenience 

as 1 O ::; p < n I 2, the n the data can be divided in to n I p blocks. For any 

błock the average is calculated, then next the maximum range of each błock 
as well as the standard deviation of each błock is calculated. The 
value=range/standard_deviation is calculated for any błock and next average 
of the błock is calculated. The average value rs is in relation with the 
HURST exponent in the following way 

(22) 

where H is the Hurst exponent. 

The Hurst exponent values are between O and 1. We can distinguish 
two ranges of the exponent. A value 0.5 < H < 1 indicates so called persis­
tent behavior, it means a system can be considered as the values moves to 
one as a predictable system. While a value O< H < 0.5 indicates probabilis­
tic systems. For H = O time series must change direction every sample, for 
H = 0.5 time series moves as a random walk, while for H = 1 a system is a 
purely deterrninistic. 

There is a relationship between one definition of the fractal dimension 
and the Hurst exponent, that is following expression 

O =2-H . 

Analysis and prediction of chaotic time series requires finding the 
above mentioned parameters - this is another difficult task. We can distin­
guish two class of methods: the first empirical and the second analytical one. 
Within the first group we must form a model of the attractor and a super­
vised learning algorithm of some kind is required (e.g. algorithms for learn­
ing feedforward neural networks or genetic algorithm). Within the analytical 
methods we must base our consideration on the Takens theorem (1981) for 
deterrnining the upper bounds of an embedding parameter (if we know the 
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fractal dimension of the attractor). There are severa} methods for deriving a 
choice of embedding dimension, e.g. Tong (1990), Wolff, Swiftt, Swinney, 
(1985). 

6. Conclusions 

In this paper we summarize modem foundations of application neural 
networks for prediction of time series. Here feedforward neural networks 
which are universal approximators are used as a tool for modeling unknown 
nonlinear functions. 

We have considered linear systems and associated state observability 
or autoregression. In a similar way we described nonlinear systems. Next we 
showed feedforward neural networks as universal approximators. Nonlinear 
systems, even very simple, can generate in some sense unstable solutions -
these kind of systems are called chaotic systems. The main parameters of 
such systems are described and the role of neural networks as a tool for 
modelling. 
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