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participate, will provide a source of much needed information on recent trends 
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Abstract 

The apparatus of Generalized Nets is applied here to describe the user’s 

choice of a selection function serves as a basis for one of the basic genetic 

algorithm operators, namely the selection operator. The selection is a 

probabilistic process based upon the individual’s fitness such that the 

better individuals have an increased chance of being selected for the next 

generation. Selection of best individuals could be realized using different 

methods. In the present study the user is allowed to choose between two 

of the most widespread selection functions, namely roulette wheel 

selection and stochastic universal sampling. The resulting generalized net 

model could be considered as a separate module, but it can also be 

assembled into a generalized net model to describe a whole genetic 

algorithm. 

Keywords: generalized nets, genetic algorithms, selection function. 

1 Introduction 

Genetic Algorithms (GA) are an adaptive heuristic search algorithm, designed 

to simulate processes in natural systems necessary for evolution, and especially 

those that follow the principles of “survival of the fittest” formulated for first 

time by Charles Darwin [6]. GA are implemented in a computer simulation in 

which a population of abstract representations (called chromosomes or the 

genotype of the genome) of candidate solutions (called individuals, creatures, or 

phenotypes) to an optimization problem evolves toward better solutions. Once 

the genetic representation and the fitness function are defined, GA proceed to 
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initialize a population of solutions randomly, then improve it through repetitive 

application of mutation, crossover, inversion and selection operators. In each 

generation, the fitness of every individual in the population is evaluated, 

multiple individuals are stochastically selected from the current population 

(based on their fitness), and modified (recombined and possibly randomly 

mutated) to form a new population. The new population is then used in the next 

iteration of the algorithm. Commonly, the algorithm terminates when either a 

maximum number of generations has been produced, or a satisfactory fitness 

level has been reached for the population.  

Due to a variety of successive implementations of Generalized Nets (GN) 

theory for description of parallel processes in several areas [1-3], the idea of 

using GN for the description of GA has intuitively appeared. Up to now, a few 

GN models regarding GA performance have been developed [1, 3, 9-14]. A GN 

model for GA learning is proposed in [1, 3]. In [9-12] GN models are used to 

describe the basic genetic algorithms operators, correspondingly selection, 

crossover and mutation have been developed. The GN model of a roulette 

wheel selection method, which is one of the widely used selection functions, has 

been developed in [9], while the GN model of a stochastic universal sampling is 

presented in [10]. Different types of crossover, namely one-, two-point 

crossover, as well as “cut and splice” techniques, are described in details in 

[11]. The GN model, presented in [12], describes the mutation operator of the 

Breeder GA. The evaluation of GA fitness function is presented by the GN 

model developed in [13], while the selection of GA operators is described by 

the GN model, presented in [14].  

The purpose of the present investigation is to develop a GN model, which 

allows the user to choose a selection method that to be implemented in the 

selection operator. This GN model combines the selection methods of roulette 

wheel selection [9] and the stochastic universal sampling [10] as the mostly 

used, but could be expanded with a number of other possible methods. 

2 Selection methods 

The selection of individuals to produce successive generations plays an 

extremely important role in a genetic algorithm. A probabilistic selection is 

performed based upon the individual’s fitness such that the better individuals 

have an increased chance of being. Most functions realizing the selection are 

stochastic and designed so that a small proportion of less fit solutions are 

selected. This helps keep the diversity of the population large, preventing 

premature convergence on poor solutions. There are many methods for selection 

of the best individuals, i.e. roulette wheel selection, Boltzman selection, 
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tournament selection, rank selection, steady state selection and some others. 

Among the most popular and well-studied selection methods are roulette wheel 

selection and stochastic universal sampling. The selection method is a user-

defined parameter of the entire procedure of selection. 

2.1 Roulette wheel selection (RWS)  

A common selection approach assigns a probability of selection Pj to each 

individual j based on its fitness value. A series of N random numbers is 

generated and compared against the cumulative probability 

1

i

i i

j

C P


  

of the population. The appropriate individual i is selected and copied into the 

new population, if Ci-1 < U(0, 1)  Ci. Various methods exist to assign 

probabilities to individuals: roulette wheel, linear ranking and geometric 

ranking. 

Roulette wheel, developed by Holland [7], is the first selection method. The 

probability Pi for each individual is defined by: 

P [Individual i is chosen] = 

1

i

PopSize

j

j

F

F



 

where Fi equals the fitness of individual i. The use of roulette wheel selection 

limits the genetic algorithm to maximization since the evaluation function must 

map the solutions to a fully ordered set of values on  . Extensions, such as 

windowing and scaling, have been proposed to allow for minimization and 

negativity. 

In roulette wheel selection the individuals are mapped to contiguous 

segments of a line, such that each individual's segment is equal in size to its 

fitness. A random number is generated and the individual whose segment spans 

the random number is selected. The process is repeated until the desired number 

of individuals is obtained (called mating population). This technique is 

analogous to a roulette wheel with each slice being proportionally sized to the 

fitness 

2.2 Stochastic universal sampling (SUS)  

Stochastic universal sampling developed by Baker [4] is a single-phase 

sampling algorithm with minimum spread and zero bias. Instead of a single 
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selection pointer employed in roulette wheel methods, SUS uses N equally 

spaced pointers, where N is the number of selections required. The population is 

shuffled randomly and a single random number pointer1 in the range [0, 1/N] is 

generated. The N individuals are then chosen by generating the N pointers, 

starting with pointer1 and spaced by 1/N, and selecting the individuals whose 

fitness spans the positions of the pointers. If et(i) is the expected number of 

trials of individual i, ( )et i    is the floor of et(i) and ( )et i    is the ceiling, an 

individual is thus guaranteed to be selected a minimum of times ( )et i    and no 

more than ( )et i   , thus achieving minimum spread. In addition, as individuals 

are selected entirely on their positions in the population, SUS has zero bias. For 

these reasons, SUS has become one of the most widely used selection 

algorithms in current GA. 

Fig. 1 demonstrates the stochastic universal sampling. The individuals are 

mapped to contiguous segments of a line, such that each individual’s segment is 

equal in size to its fitness exactly as in roulette wheel selection. As many 

equally spaced pointers are placed over the line, as are the individuals to be 

selected (N). For 6 individuals (N = 6) to be selected, the distance between the 

pointers is 1/6 = 0.167. Fig. 1 shows the selection for the sample of the random 

number 0.1 in the range [0, 0.167]. 

 

 

Figure 1: Stochastic universal sampling 

After selection the mating population consists of the individuals 1, 2, 3, 4, 6 

and 8. Stochastic universal sampling ensures a selection of offspring which is 

closer to what is deserved than roulette wheel selection.  

3 GN model for choosing of a selection method 

GN model that allows the user to make a choice of the selection method is 

presented in Fig. 2. This model is built upon the GN models the separately 

describe the functions of roulette wheel selection method [9] and stochastic 

universal sampling [10] as presented in Genetic Algorithms Toolbox in Matlab 

[5, 8]. 

pointer I pointer 2 pointer 3 pointer 4 pointer 5 pointer 6 
I 

2 t 3 i 4 t I 5 lt 18i19110 inclividual / [ T 

I I I I 
7 

O.O i 0.18 0.34 0.49 0.62 0.73 0.82 0.95 LO 

random number 
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Figure 2: GN model of selection function choice 

The token  enters GN in place l1 with an initial characteristic “pool of 

possible parents”. The token  is split into new tokens  and , which 

correspondingly obtain characteristics “fitness values of the individuals in the 

population (FitnV)” in place l2 and “number of individuals to be selected (Nsel)” 

in place l3. The form of the first transition of the GN model is as follows: 

 

Z1 = <{l1}, {l2, l3}, r1, (l1) > 
 

truetruel

ll
r

1

32

1   

 

The token  is split into new tokens  and , which obtain correspondingly 

characteristics “calculation of the function cumfit = cumsum(FitnV)” in place l4 

and “identify the population size (Nind)” in place l5. The form of the second 

transition of the GN model is as follows: 

 

Z2 = <{l2}, {l4, l5}, r2, (l2) >, 
 

truetruel

ll
r

2

54

2   

 

Further, the tokens  and  are combined in a new token  in place l6 with a 

characteristic “calculation of the function Mf = cumfit(:, ones(1, Nsel))”. The 

token  keeps its characteristic “identify the population size (Nind)” in place l7. 

The tokens  and  are combined in a new token  in place l8 with 
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a characteristic “calculation of the function cumfit(Nind)”. The token  keeps its 

characteristic “number of individuals to be selected (Nsel)” in place l9. The form 

of the third transition of the GN model is as follows: 

 

Z3 = <{l3, l4, l5}, {l6, l7, l8, l9}, r3, (l3, l4, l5) > 
 

falsetruetruefalsel

falsetruefalsetruel

truefalsefalsetruel

llll
r

5

4

3

9876

3 

 

 

A new token  with a characteristic “choice of selection function – RWS or 

SUS” enters GN in place l10. The token  keeps its characteristic “calculation of 

the function cumfit(Nind)” in place l11. The token  obtains a new characteristic 

“rand(Nsel)” in place l12. The tokens  and  are combined in a new token " 

(the notation ' is used for RWS and the notation '' – for SUS) in place l13 with a 

characteristic “calculation of the function 

trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1)')”. 

The form of the fourth transition of the GN model is as follows: 

 

Z4 = <{l8, l9, l10}, {l11, l12}, r4, ( l8, l9, l10) > 
 

13,1010

13,99

13,88

131211

4

Wtruetruel

Wtruefalsel

Wfalsetruel

lll
r 

 

 

where W8,13 = W9,13 = W10,13 = “SUS is chosen”. 

The token  keeps its characteristic “identify the population size (Nind)” in 

place l14. The tokens  and  are combined in a new token ' in place l15 with a 

characteristic “calculation of the function 

trials = cumfit(Nind) .*rand(Nsel, 1)”. 

The tokens  and " are combined in a new token  " in place l16 with a 

characteristic “calculation of the function Mt = trials(:, ones(1, Nind))' ”. The 

token  obtains a new characteristic “sort(rand(Nsel))” in place l17. The form of 

the fifth transition of the GN model is as follows: 

 

Z5 = <{l7, l11, l12, l13}, {l14, l15, l16, l17}, r5, (l7, l11, ( l12, l13)) > 
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falseWfalsefalsel

WfalseWfalsel

falsefalseWfalsel

falseWfalsetruel

llll
r

16,1313

17,1215,1212

15,1111

16,77

17161514

5 

 

 

where W11,15 = W12,15 = “RWS is chosen” and W7,16 = W11,16 = “there is a token in 

place l13”. 

The tokens  and ' are combined in a new token  ' in place l18 with a 

characteristic “calculation of the function Mt = trials(:, ones(1, Nind))' ”. The 

form of the sixth transition of the GN model is as follows: 

 

Z6 = <{l14, l15}, {l18}, r6, (l14, l15) > 
 

17,1515

14

18

6

Wl

truel

l
r 

 

 

where W15,17 = “there is a token in place l15”. 

The tokens   and  ' are combined in a new token ' in place l19 with a 

characteristic “calculation of the function: 

[NewChrIx, ans] = find (Mt < Mf & …[zeros(1, Nsel); Mf(1:Nind-1, :)]  Mt)”. 

The tokens   and  " are combined in a new token " in place l20 with a 

characteristic “calculation of the function: 

[NewChrIx, ans] = find (Mt < Mf & [zeros(1, Nsel); Mf(1:Nind-1, :)]  Mt)”. 

The form of the seventh transition of the GN model is as follows: 

 

Z7 = <{l6, l16, l18}, {l19, l20}, r7, (l6, (l16, l18)) > 
 

falseWl

Wfalsel

truetruel

ll
r

19,1818

20,1616

6

2019

7 

 

 

where W16,20 = “there is a token in place l16” and W18,19 = “there is a token in 

place l18”. 

I 
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In the place l19 the new chromosome is created and the selection function, 

performing roulette wheel selection method, is completely fulfilled. 

The tokens " and  are combined in a new token " in place l21 with a 

characteristic “shuffle new population NewChrIx = NewChrIx(shuf)”. The form 

of the eighth transition of the GN model is as follows: 
 

Z8 = <{l17, l20}, {l21}, r8, (l17, l20) > 
 

21,2020

17

21

8

Wl

truel

l
r 

 

 

where W20,21 = “there is a token in place l20”. 

In place l21 the new chromosome is created and the selection function, 

performing stochastic universal sampling, is completely fulfilled. 

4   Analysis and conclusions 

The theory of Generalized Nets has been applied here in order to allow the user 

to choose a selection function to serve as the basis of one of the genetic 

algorithm operators, namely the selection operator. The GN model developed in 

this paper permits the user to choose between two of the mostly widespread 

selection functions, namely roulette wheel selection and stochastic universal 

sampling, but it can be expanded with other selection methods too. Such a GN 

model could be considered as a separate module, but it can also be assembled 

into a single GN model for the description of a whole genetic algorithm.  
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