
4th International Workshop 
on Uncertainty in Atmospheric Emissions 

7-9 October 2015, Krakow, Poland 

re 
11 AS A 

PROCEEDINGS 

•••• •K~A-

-~~~ kr,k.ow.pJ 



4th International Workshop 
on Uncertainty 

in Atmospheric Emissions 

7-9 October 2015, Kraków, Poland 

PROCEEDINGS 

Warszawa 2015 



4th International Workshop on Uncertainty in Atmospheric Emissions 
7- 9 October 2015, Cracow, Poland 

Printed from the materiał submitted by the authors. 

ISBN 83-894-7557-X 
EAN 9788389475572 

© Systems Research Institute, Polish Academy of Sciences, Warszawa, Poland 2015 

ii 



About the Workshop 

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed 
from the atmosphere is high on the political and scientific agendas. Building on the UN climate 
process, the intemational community strives to address the long-term challenge of climate 
change collectively and comprehensively, and to take concrete and timely action that proves 
sustainable and robust in the future . Under the umbrella of the UN Framework Convention on 
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to 
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these 
inventories to develop strategies and policies for emission reductions and to track the progress 
of those strategies and policies. Where forma! commitments to limit emissions exist, regulatory 
agencies and corporations rely on emission inventories to establish compliance records. 

However, as increasing intemational concem and cooperation aim at policy-oriented solutions 
to the climate change problem, a number of issues circulating around uncertainty have come to 
the fore , which were undervalued or left unmentioned at the time of the Kyoto Protocol but 
require adequate recognition under a workable and legislated successor agreement. Accounting 
and verification of emissions in space and time, compliance with emission reduction 
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation 
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting 
oftraded emission permits are to name but a few. 

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized 
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based 
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National 
University . The 4th Uncertainty Workshop follows up and expands on the scope of the earlier 
Uncertainty Workshops - the 1st Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in 
2007 in Laxenburg, Austria; and the 3rdWorkshop in 2010 in Lviv, Ukraine. 
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A metric for the prognostic outreach of scenarios: Learning from the 
past to establish a standard in applied systems analysis 

Abstract 

Matthias Jonas, Elena Rovenskaya, Piotr Żebrowski 

International Institute for Applied Systems Analysis, 
Laxenburg, Austria 

M. Jonas (rg'j ):jonas@iiasa.ac.at 

Our study concerns retrospective learning, the characteristic feature of which is thai 
prognostic uncertainty increases the more the further we look inio the future. RL seeks to 
establish a metric for the outreach of prognostic scenarios. The purpose behind RL is to 
provide an easy-to-apply indicator, which informs non-experts about the time inJ he future 
at which a prognostic scenario ceases to be in accordance (for whatever reasons) with the 
system's past. ldeally, this indicator should be derived concomitantly with building a 
prognostic model. RL concerns the limitations of predictions and prognostic scenarios. 

Keywords: Greenhouse gas emissions, emission inventories, emission scenarios, diagnostic 
uncertainty, prognostic uncertainty, learning 

1. Introduction 

Evaluating the performance of climate forecasts is becoming increasingly relevant 
[1]. At its heart this evaluation aims at judging the credibility of climate projections and 
quantifying the uncertainty in these projections [2- 3]. In our study, which builds on 
(what we term) retrospective learning [RL], we take the opposite view. 

RL seeks to establish a metric for the outreach of prognostic scenarios. The 
purpose behind RL is to provide an easy-to-apply indicator, which informs non-experts 
about the time in the future at which a prognostic scenario ceases to be in accordance 
(for whatever reasons) with the system's past. Ideally, this indicator should be derived 
concomitantly with building a prognostic model. In brief, RL concerns the limitations 
of predictions and prognostic scenarios. 

-20+--~--------+---
1980 2000 2020 2040 2060 2080 2100 

Over 1000 scenarios lf0m lhe IPCC Ftflh Assessmenl Report are shown 
Scun:e:flllu1all!llt™=<iiłalf«bą)!lydpi2Jl )4 

Figure 1. Historical and projected global fossil-fuel (C02) emissions, including 
emissions from cement production [4]. 
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Figure l is a classical illustration of how quickly and strongly prognostic 
scenarios deviate from historical records. The figure shows historical and projected 
global CO2 emissions resulting from fossil-fuel buming and cement production. From 
a purely intuitive perspective, only the highest emission scenarios appear to be in 
accordance with the historical record (until when?), but not the !ower ones. 

2. Motivation 

From a theoretical point of view, we argue that the mathematical tools and 
techniques needed to quantify the outreach of prognostic scenarios based on learning 
from the past (that is, to apply RL) are available. However, the necessary 
epistemological insights to apply these tools and techniques properly, including outside 
their traditional context, are missing. The first statement (tools and techniques are 
available) is bold; white the second (knowledge to apply tools and techniques outside 
their traditional context is missing) is not new. Developing the first statement is subject 
to this paper. The second statement is at the core of empirical inference science, which 
is a maturing paradigm. Empirical inference science aims at complementing classical 
statistics in Estimating dependencies on the bas is of empirical data ... a central problem 
in applied analysis [5: vii]. 

From a practical point of view, we argue that deriving the aforementioned 
indicator exhibits most interesting windfall profits: l) We anticipate that generating the 
indicator white building a model will lead us onto new paths of constructing models 
and conducting systems analysis (i.e., towards a new standard of 'good modeling'). 2) 
Our insights in RL will allow the chance of complying with--or the risk of exceeding
agreed global warming targets to be corrected. We conjecture that the risk of exceeding 
2050 global warming targets ranging between 2 to 4 °C and greater is underestirnated. 
We will return to these two issues at the end of our paper. 

3. Terminology 

We explain the difference between diagnostic and prognostic uncertainty, the two 
terms at the core of our paper, in Section 5.1 below. Their definitions will provide the 
basis for understanding the difference between learning in a diagnostic and prognostic 
context and the other terms (e.g., 'prediction' and 'forecast') that we use. 

4. Status quo 

Since their inception, climate treaty negotiations have set out to stabilize Earth ' s 
clirnate by irnplementing mechanisms that reduce global greenhouse gas [GHG] 
emissions and lead to sustainable management of the atrnosphere at a 'safe' steady-state 
level (assumed to hold for an increase in global average temperature of below 
2 °C above preindustrial levels ). In recent years, intemational climate policy has taken 
a step beyond achieving GHG concentration-related objectives by increasingly focusing 
on lirniting temperature rise [6] . The idea oflimiting cumulative global GHG emissions 
by adhering to a long-term global warming target was first discussed broadly and 
publicly by policymakers at the 2009 United Nations climate change conference in 
Copenhagen. It appears to be a promising and robust methodology [7- 12] (cf. also Box 
1). To comply with it, the emission reductions required from the fossil-fuel and land 
use/land-use change sector are daunting: 50%-85% below the 1990 global annual 
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em1ss10ns, with even greater reductions for industrialized countries (13-15]. The 
underlying assumptions are equally daunting: terrestrial or oceanie sinks continuing to 
offset fossil-fuel and LUC emissions before achieving an emissions balance that goes 
beyond CO2-C (i.e., CO2-eąuivalents also including CH4, N2O, etc.), with no systemie 
surprises occurring during the transition process. In particular, the imperative followed 
for net emissions from LUC activities is that these will be reduced linearly to zero until 
2050. That is, it is assumed that deforestation and other LU mismanagement will cease 
and that net emissions balance. 

Box 1. Relationship between GHG emissions and global surface temperature [16: 
Fig. 3.2; 17]. 

The :magnitude of an increase in global 1111d'ace tempenlure is n« delemJined by emlnions in any one 
year, but by thll concentńltim of GHOs in 1h11 alnlOlplme wbich, in tum, ia the neU>Ulcome of tOIIII 
emissions and renuWals of OHOs to and ftotn the llllllOllphere OVII( an e.llteJlded pe.doc!. 

Global emissim budgets estimale the t<tal amoun1 of (net) OHO emissions thet Will lllll1l1t in !I gi.ven 
temperatw:e increase. withiń a probability nlllge. This ia why cumulative emilSWIII (e.g.. between today 

and2050) are perceived as agoodprędictorforlhis tempmll:W:eiru:rease (e.g. in2050 and~)- nut 
is, 1h11 emissiona budget approach allows 1inking cmnulalive emilprions of OHOs directly to teroperaJJie. 

withom deternńning lltnlo1pheric l:Oll~OIII of OHOa an4 th!ńr l8diatiw forcing 81 imnnedi.-y 
obaervables (aee ligure below). The. relatj~p between . cmiulative emlnions and temperamre .ia 
~ as a probability, to refl:ect unceńainty of the climale response to a giYen 1111\omll of OHO 
emissions. 

Wlrile global emission budgets identify 1h11 overall limit on glotial emilial.ons, thlly do not p1ucrlbe tlte 
timing of peak emissions or 1h11 rate at wruch emisai.ms lll1lll be reduced, ao IQllg III the overall bu.dget ia 
m:t breached. There will be a number of ttajectories thllt could lead to ihe lmdgeted level of cumolative 
enrlsaiOIII and th! rellted (but u.ncertain becBliBe ttajectóry'«pendeit) tempimlture increaae. O'wt time: 
BeC8USe !he emiasions ~ is ultiąulely ilx~ howevln", delaya in red1ic#g etnissioila ) 111181 be 
compensated wilh mare mpi.d OHO emlnim reductions in future ,-a. 

--
In their study (15] Jonas et al. discuss diagnostic (retrospective: looking back in 

time) and prognostic (prospective: looking forward in time) uncertainty in an 
emissions-temperature-uncertainty [ETU] framework thai allows any country to 
understand its national and near-term mitigation and adaptation efforts in a globally 
consistent and long-term context (worldwide coverage; warming range of2-4 °C). To 
achieve this understanding, national linear emission target paths were established (from 
1990 to 2050 or, altematively, from 2000 to 2050) thai are consistently embedded 
globally. In this systems context, cumulative emissions until 2050 are constrained and 
globally binding but are uncertain (i.e. , they can be estimated only imprecisely); and 
whether or not compliance with an agreed temperature target in 2050 and beyond will 
be achieved is also uncertain. In a nutshell, the ETU framework can be used to monitor 
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a country's performance-past as well as prospective achievements-in complying 
with a future warming target in a quantified uncertainty-risk context ( cf. Box 2). The 
authors' objective, in particular, was to understand the relevance of diagnostic and 
prognostic uncertainty in this global emissions-temperature setting and across tempora! 
scales. Although the mode of bridging uncertainty across tempora! scales stili relies on 
discrete points in time ('today' and 2050) and is not yet continuous, the authors' study 
provides a valuable first step toward that objective. 

Box 2. Output features of the ETU framework [15; adapted]. 

S. Diagnostic versus prognostic uncertainty and learning in a diagnostic 
versus prognostic context 

5.1 What is the difference between diagnostic and prognostic uncertainty and 
why do we consider them independent? 

Jonas et al. [ 15] explain the difference between diagnostic and prognostic 
uncertainty in a tempora! ('today'-versus-future) GHG emissions context: 

Diagnostic uncertainty, our ability to estimate current emissions, stays with us 
also in the future. Assuming that compliance with an agreed emissions target is met in 
a target year allows prognostic uncertainty to be eliminated entirely. How this target 
was reached is irrelevant; only our real diagnostic capabilities of estimating emissions 
in the target year matter. This is how experts proceeded, e.g., when they evaluated ex 
ante the impact of uncertainty in the case of compliance with the Kyoto Protocol ... in 
2008-2012, the Protocol 's commitment period ... 

Emissions accounting in a target year can involve constant, increased or 
decreased uncertainty compared with the start (reference) year, depending on whether 
or not our knowledge of emission-generating activities and emission factors becomes 
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mare precise. The typical approach to date has been to assume that, in relative terms, 
our knowledge of uncertainty in the target year will be the same as it was in the start 
year. 

However, uncertainty under a prognostic scenario always increases with time 
[conservative systems view]. The farther we look into the future, the greater the 
uncertainty. This important difference suggests that diagnostic and prognostic 
uncertainty are independent. This differs from how prognostic modelers usually argue. 
A prevalent approach is to realize a number of scenarios and grasp prognostic 
uncertainty by means of the spread in these scenarios over time-which increases with 
increasing uncertainty in the starting conditions built into their models. However, this 
approach nullifies diagnostic uncertainty once a target (future) is reached. 

The notion of a conservative systems view is central to RL, meaning that a system 
cannot exhibit surprises in the future that it has not experienced during its 'one-reality' 
past. 

This difference between diagnostic and prognostic uncertainty is not only 
theoretical. It becomes relevant in the next section. 

5.2 What do we understand by learning in a diagnostic and prognostic context? 

Learning under diagnostic conditions requires the 'measuring' of differences or 
deviations. Here we follow Marland et al. [ 18], who discuss this issue in the context of 
emissions accounting and uncertainty: 

Estimates of uncertainty have traditionally been expert judgments based on the 
data input to the calculations. But for C02 emissions from fossil faels, there are actually 
at least Jour approaches that one can take to gain same insight into the fali uncertainty 
of emissions estimates: comparison of estimates made by independent methods, 
comparison of estimates from multiple sources, evolution over time of estimates from a 
single source, and, soon (we hope), modeling against remotely sensed data. 

With respect to the evolution of estimates over time (3 rd approach), the authors 
state: 

Many of the countries and organizations that make estimates of C02 emissions 
provide annual updates in which they add another year of data to the time series and 
revise the estimates for earlier years. Revisions may reflect revised or mare complete 
energy data and mare complete and detailed understanding of the emissions processes 
and emissions coefficients. In short, we expect revisions to reflect learning and a 
convergence toward mare complete and accurate estimates. 

Retrospective learning, in tum, is about the limitations of look.ing (projecting) 
into the future and may be best explained in contrast to retrospective forecasting. 
Retrospective forecasting strives for the most appropriate (best) forecast by minimizing 
the difference between forecast (prediction) and actual outcome, white the 
characteristics of the data record-here quantified by its dynamics and diagnostic 
uncertainty (random error)--are assumed not to change when inter- or extrapolating 
the historical data record. By way of contrast, retrospective learning seeks to capture 
the characteristic feature of prognostic uncertainty, namely, that prognostic 
uncertainty increases the more the further we look into the future, 1 while it is 

1 As a matter offact, the confidence band ofan (e.g.) linear regression also increases, but for mathematical rather 
than physical reasons, and it does so backward and forward in time. 
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assumed in the context of this propos al that the data record' s memory is contained ( as 
above) in its dynamics, not in its uncertainty. 

Figure 2 attempts to visualize the fundamental difference between prediction and 
an advanced mode of learning from the past, the latter allowing the increase in 
prognostic uncertainty with time to be grasped. The mode of RL thai we intend to 
explore builds on representation of the available data by way of two components: i) a 
Taylor (or equivalent) polynomial which captures the signal's predominant (lower
order) dynamics (learning phase 1 ); and ii) a linearly increasing 'uncertainty (learning) 
wedge',2 which comprises the signal's higher-order dynamics and the uncertainty 
underlying the signal- or only the data record's higher-order dynamics if the data 
record is accurate and precise (learning phase 2). We expect this two-component split 
inio \ower-order dynamics and uncertainty wedge to be systems-dependent and 
unsharp, the latter resulting from uncertainty. In a nutshell, Figure 2 indicates thai we 
seek to balance three things: the 'right' order of the dynamics and both the 'right' 
extension and the 'right' opening of the uncertainty wedge. Tt is this balance thai musi 
hold during the testing phase. The historical data held back for this phase have not been 
used before, thai is, during learning phases 1 and 2, which is why we refer to this part 
of the data record as "historical future" . 

future 
Lumlng (L1) L„mlng(L2) ••-ITJ Today 

Hlńoncal Lellffllng Hllłorlcal Futwe 

Figure 2. Illustrating the different steps of RL with the help of a simple (periodic, 
increasing, and periodically increasing) function. 

6. Methodology-just one approach 

Assume the following situation, namely, thai we have more than one historical 
data record available, each accurate and precise (which can be easily relaxed to 
' accurate and imprecise '), and thai we have learned from the past (i .e., from an RL 
exercise): 

• that each historical data record exhibits (but not necessarily) a linear dynamics; 

2 "Linear" meaning linear relative to the dynamics, which is why we also speak of linear RL (sufficicnt in the 
context ofthi s study). 
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• that each data record ' s uncertainty (learning) wedge unfolds linearly into the 
future (up to what time in the future, however, is stili unknown); and 

• that our historical data records exhibit linear interdependencies. That is, in the 
case of an emissions-concentration-temperature [E-C-T] system, we mean linear 
interdependencies of a serial sort (fully sufficient in the context of this study): 

T = T ( C), C = C ( E) , and E = E ( t) ; with T denoting gł obal surface temperature, 

C atmospheric C02 concentration, E C02 emissions into the atmosphere, and t 
time. As a matter of fact, as individual time series these are exponential (posing 
no difficulties to treating their interdependencies in a similar way). 

To facilitate understanding the philosophy behind the methodology, we consider 
two cases: 

6.1 Serial interdependence E • C • T 

Starting from E = E( t) , i.e. 

[ E] = Pg C ; [ mEt] = Pg2C ; [ t] = y 
y y 

with m denoting the signal ' s (here) linear dynamics and Et indicating that we are in the 
E-t piane; and 

[ fEt,u] = 1 

[ fEt,1] = 1 

with the constants fEt,u and fEt,I indicating the upper [u] and !ower [l] borders of the 

uncertainty wedge. The difference between upper and !ower border at any time is given 
by ~ = lifE,mEt t . 

On the other hand, the difference between upper and !ower border can be 
perceived as error in E, which suggests that use is made of the law of error propagation: 

2 8E 2 8E 2 ( )2 )2 
crE = 8mEt crmEt + ( 81 cr, . 

Assuming time to be known exactly (i.e., cr, =O): 

that is, the error in E is given by the error in the slope mE„ the signal's dynamics. 

Alternatively: 

crE = crmEt 
E mE, 

RequestingliE :=2crE, one finds via comparison 
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,1.fEt = ,1.E = 2 crE = 2 crmEt 
E E mEt 

In a nutshell, an accurate-precise system has been merged with classical statistics, 
meaning (here) that we grasp the historical future of our data record with the help of a 
straight line, the slope of which is uncertain. Another point warranting attention is that 
the Jaw of error propagation is approximate and can only be applied under conditions 

that guarantee the validity of partia! derivatives. In particular, if Af Et = .1.fEt ( t), these 

conditions could be violated quickly with increasing t. 

One can proceed similarly for C = C( t) , i.e., 

[ C]= ppmv; [me, ]= ppmv 
y 

... (here not repeated). Alternatively, instead of analyzing E = E( t) and C = C( t) 

individually, one can also look at the linearly interdependent case C = C(E), i.e., 

or, to generalize further, at the linearly interdependent case T = T( C) =T( C(E)), i.e., 

T = mTcC =mTcmCEE 

= mTcmcEmEt t = mnt 

C 

• C 

E 

Figure 3. Graphical illustration of learning in the C-E space: independent versus 
linearly interdependent case. In the !alter case, learning does not happen in 

a space which is spanned by a 2-dimensional square ( .1.E x .1.C), but along 

a 1-dimensional space ( red curve) belonging to a curved uncertainty wedge. 

The above cases can be conveniently summarized: 

óE = .ófe,me,t =.ó.fe,E 
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óT=Mr,mr,t=Mr,T= ✓Mic +M2E +Mi,T 
... and so on. The interpretation is as follows: From analyzing ( e.g.) the second equation, 

which allows M 0 = .J óf2E + bfi, to be extracted, it becomes obvious that the learning 

on the left side {MCI) is determined by the learning on the right side ( .J M2E + Mi, ) . 
The resulting equation describes a second-order cone: 

2 2 2 _ x2 y2 z2 . 
MCE +ME,-MCt -O +-• 2 + 2 - 2 =0 (cf. a\so Fig. 3). 

a b c 

The basie idea behind the above procedure is to grasp the learning (M -terms) 
with the help of the error-propagation approach, the mathematics of which is well
established and easy to apply (even concomitantly with building a prognostic model). 

In the case oflinearly interdependent variables (here C = C{E) ), the learning does not 

happen in a space which is spanned by a (here) 2-dimensional square ( LiE x óC), but 

along a 1-dimensional curve belonging to a curved uncertainty wedge. lt appears that 
this reduction to the 1-dimensional space is also preserved in the case of more than two 
linearly interdependent variables. But it would be premature to praise this as a major 
step forward in reducing uncertainty. We still do not have any knowledge on the 
outreach of the curved uncertainty wedge (which needs to be determined as indicated 
in Fig. 2). 

E • C 
6.2 Serial-parallel interdependence 1 1 • T 

Ez • Cz 

Here, we do not derive the analytical expression for t.fn which describes the 

learning. Deriving this expression is easy and straightforward. In contrast, another 
insight is much more important, namely, the analytical expression for Mn also holds 

for a system, where the second emissions source ( E 2 ) has been replaced by a sink (R: 

E • c1 
removal): • T; meaning that the learning does not change while the two 

R • Cz 
systems differ: C = C1 + C2 versus C = C1 - C2 . That is, a sink reduces a source but 

their uncertainties still add up. 
lt is this game changer that has not so far been considered by prognostic modelers: 

a shortfall with far-reaching consequences, notably, when determining the risk of 
exceeding an agreed global temperature target in the future. 

7. Summary and preliminary outlook 

The purpose of our paper is to present a particular methodology to tackle 
retrospective learning, the characteristic feature of which is that prognostic uncertainty 
increases the more the further we look into the future. Alternative methodologies are 
conceivable. We currently consider the discussion of necessary assumptions and, if 
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need be, simplifying assumptions (stili) more important than immersing ourselves in 
numerical exercises. 

So far, we see two important consequences emerging: 

• The objective (i) to generate a metric / indicator to inform non-experts about the 
limitations of the predictive outreach of a prognostic scenario; and (ii) to 
demonstrate that this metric / indicator can be generated even concomitantly with 
building a prognostic model is within reach. We conjecture that the latter, in 
particular, will lead us, in the case of success, onto new paths of constructing 
models and conducting systems analysis- that is , towards a new standard of 
'good modeling'. 

• RL informs us that, from an uncertainty perspective, emission sources and sinks 
need to be separated- which is not done in estimating the risk of exceeding an 
agreed global warming target in 2050. This very risk can be determined by using 
multi-model emission scenarios like those in Figure 1 in connection with 
emission-climate change models (where "climate change" is quantified by 
changes in global surface temperature). The cumulative emissions of these 
scenarios are used as a predictor for the expected global temperature increase in 
the future (cf. Box 1). However, the crux of this exercise is that it starts
erroneously- from net emissions. (Take Fig. 1 above, for example: removals 
eventually outpace emissions and net emissions even become negative.) From an 
uncertainty perspective, preferring net emissions to emissions minus removals 
runs counter to the law of error propagation which informs us that a sink reduces 
a source but their uncertainties stili add up. This shortfall has far-reaching 
consequences. The correct approach would have been to deal with cumulated 
emissions and removals individually to determine their combined risk of 
exceeding the agreed temperature target. RL allows exactly this to be done: RL 
overcomes this shortfall and allows the effect of learning about emissions and 
removals individually to be grasped. 

This is why we argue that understanding and grasping RL is offundamental and global 
relevance. 
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Acronyms 

C concentrations 

E emissions 

E-C-T emissions-concentration-temperature 

ETU emissions-temperature-uncertainty 

GHG greenhouse gas 

I !ower 

RL retrospective learning 

T temperature 

u upper 
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