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About the Workshop 

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed 
from the atmosphere is high on the political and scientific agendas. Building on the UN climate 
process, the intemational community strives to address the long-term challenge of climate 
change collectively and comprehensively, and to take concrete and timely action that proves 
sustainable and robust in the future . Under the umbrella of the UN Framework Convention on 
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to 
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these 
inventories to develop strategies and policies for emission reductions and to track the progress 
of those strategies and policies. Where forma! commitments to limit emissions exist, regulatory 
agencies and corporations rely on emission inventories to establish compliance records. 

However, as increasing intemational concem and cooperation aim at policy-oriented solutions 
to the climate change problem, a number of issues circulating around uncertainty have come to 
the fore , which were undervalued or left unmentioned at the time of the Kyoto Protocol but 
require adequate recognition under a workable and legislated successor agreement. Accounting 
and verification of emissions in space and time, compliance with emission reduction 
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation 
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting 
oftraded emission permits are to name but a few. 

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized 
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based 
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National 
University . The 4th Uncertainty Workshop follows up and expands on the scope of the earlier 
Uncertainty Workshops - the 1st Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in 
2007 in Laxenburg, Austria; and the 3rdWorkshop in 2010 in Lviv, Ukraine. 
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Abstract 

We are interested in the spatial distribution of fossil-fuel-related emissions of 
CO2, but it is important to understand the uncertainty in emissions estimates. Uncertainty 
is introduced in the rnagnitude and location of large point sources, the magnitude and 
distribution of non-point sources, and from the use of proxy data to characterize emissions. 
For the U.S. we develop estimates of the contribution of each component. At 1 degree 
resolution, in most grid cells, the largest contribution to uncertainty comes from how well 
the distribution of the proxy (population density) represents the distribution of emissions. 
In other grid cells the magnitude and location of large point sources make the major 
contribution. Uncertainty is strongly scale-dependent with uncertainty increasing as grid 
size decreases. Uncertainty for one degree grid cells is typically on the order of+/- 150% 
but this is perhaps modest in a data set where emissions per grid cell vary over 8 orders of 
magnitude. 

Keywords: U.S. CO, emissions, gridded emissions, large point sources, proxy data 

1. lntroduction 

There is a wide range of interest (both geochemical and geopolitical) in 
geographically explicit inventories of the sources and sinks of the greenhouse gas CO2. 
It is a challenge to estimate sources and sinks in a spatially-explicit context and to best 
characterize the location and magnitude of emissions and sinks we would like to 
estimate also the associated uncertainty. Current gridded inventories of emissions from 
fossil-fuel use and industrial processes rety heavily on related, proxy and re-purposed 
data. In the following analyses we refine and combine the components of uncertainty 
and discuss them in the context of the widely-used Carbon Dioxide Information 
Analysis Center [l] gridded inventory for fossil-fuel related emissions from the U.S. 
(see also [2]). 

Few studies have explored the uncertainty of global-scale, grid-level emissions 
datasets. Rayner et al. [3] noted that "none of the pointwise fossil emission products 
available today include" estimates of uncertainty and then estimated that for their 
dataset "uncertainties can be as high as 50% at the pixel level". They also pointed out, 
importantly, that uncertainties for nearby pixels are not independent because, for 
example, the uncertainty for any given grid space includes consideration that a large 
point source might be only slightly displaced and the total for the ensemble of cells is 
constrained by national data. Rayner et al. emphasize that "using the uncertainty ofthis 
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pointwise map alone in an inversion is a serious error since it assumes independence of 
errors." 

2. Methods and analysis 

Large point sources make up a large percentage of anthropogenic carbon 
dioxide emissions for the U.S. and for other industrialized countries [4]. In 2010 one 
third ofU.S. emissions were reported from only 311 sites oflarge point sources [5]. As 
soon as the first few latitude and longitude data points from these data sets were typed 
into Google Earth many of these point sources were not observed at their reported 
locations. We have to deal with both magnitude and locational uncertainty. Total 
uncertainty in emissions from any geographic grid space thus has to reflect uncertainty 
in small or areał sources and in both the magnitude and location oflarge point sources. 

Woodard et al. [6] have developed one key component of what we need to 
quantify the spatially explicit uncertainty in gridded inventories of CO2 emissions - an 
approach for dealing with the uncertainty in the locations of large point sources. Also 
many gridded inventories exist that document ground level sources of anthropogenic 
emissions of CO2 for the U .S. and the globe and these inventories use a variety of top
down and bottom-up methods to geographically distribute emissions that are not 
attributed to large point sources. Each of the top-down inventories uses some sort of 
proxy, such as population density or satellite-observed nightlights, to help distribute 
emissions totals from a large (national or state) scale down to the level of grids as small 
as 0.1 degrees on a side. Some of the inventories use multiple proxies to take advantage 
of their differing characteristics. Using proxy data, white necessary, can result in the 
misallocation of emissions values both spatially and temporally. Hutchins et al. [7] 
show that the differences among existing data sets increase as grid size is decreased. To 
address these issues, we have taken the first steps toward calculating the total 
uncertainty for a CDIAC-like inventory for the U.S. at the 1-degree grid scale. Data 
here are estimates of annual emissions for the year 2009. 

In the gridded CDIAC inventory [1] data on population density are used as a 
proxy for the spatial distribution of all emissions within a country. For this analysis, we 
have removed emissions from electric power plants from the country total prior to using 
the population proxy to distribute the remaining national emissions. The power plants, 
with magnitudes and locations from EPA' s eGRID dataset [5], were then added back 
to give total emissions in each grid cell. The emissions inventory discussed here is thus 
comprised of two components, power plant emissions from the eGRID dataset and all 
remaining national emissions distributed using population density as a proxy. These 
remaining emissions do contain some additional, large industrial sources of CO2, but 
reporting to the EP A GHG Reporting Program [8] shows that in 201 O, 73% of emissions 
from sources greater than 25,000 metric tons of CO2 equivalent were from power plants. 
Comparable data on industrial sources are not available outside of the U.S. and for the 
purposes ofthis study we assume these industrial sources to be part of the areał sources 
of emissions (hereafter "non-point sources"). 

There are thus 6 components of uncertainty that need to be combined for an 
estimate oftotal uncertainty for the cells in the modified CDIAC database: 

• Uncertainty in total national emissions 
• Magnitude uncertainty for large point sources 
• Spatial uncertainty for large point sources 
• Magnitude uncertainty of the population proxy 
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• Spatial uncertainty for the population proxy 
• Uncertainty in using population density as a proxy for emissions 
For this analysis all calculations are based on one-sigma uncertainty. In 

combining the component uncertainties we assume that, except for the uncertainty in 
the national total, each of the components are independent of each other and they are 
therefore combined in Euclidean fashion (the square root of the sum of the squares) on 
a grid cell by grid cell basis. The uncertainty in the national total is passed to all 
components equally across grid cells. In this analysis we use data for emissions in 2009 
as published by CDIAC in 2013. Tempora! uncertainty would need to be considered in 
developing a time series of emissions. 

Uncertainty in total national U.S. emissions is estimated at 2.5% (one sigma). 
This value is based on comparisons with other inventories, U.S. EPA analyses, and 
literature research of the components which combine to calculate total national U.S . 
emissions. (see also Andres et al. [2]). According to the U.S . EPA [9] the 95% 
confidence interval for total U.S. CO2 emissions from fossil fuel combustion is -2% to 
+5%. Instead of using this asymmetric value we take the symmetric value of ±5%, and 
since this is two standard deviations about the mean and our computations are all based 
on one standard deviation, the estimated national error used in our computations is 
±2.5%. 

A random sample of 500 large point sources from the US EP A eGRID data set 
was taken in order to find the exact locations of the power plant discharges. We used 
Google Earth satellite imagery to identify the point sources and to verify each latitude 
and longitude. With spatial information from Google Earth, the distance between the 
actual location and the reported location was computed for each point source in the 
sample. The maximum distance from the reported location to the observed location of 
a point source was approximately 106 km. The mean distance from the reported location 
for all of the sample point sources (excluding zero) was 1.97 km. The mean distance 
from the reported locations for all of the point sources in the sample was 0.84 km. The 
latter value was then used as the mean spatial uncertainty. The spatial uncertainty for 
the top 81 emitters was larger than for the random sample ofpoints. It was found that 
60% were farther than 1km from the reported location. The mean difference in location 
was 7.94 km and the maximum spatial difference was about 122 km. 

The information gathered from the 500-item random sample suggested that the 
differences between discharge locations and eGRID reported locations might be 
attributed to: 1.) differences between the plant site and the exact location of the CO2 
discharge stack, 2.) use of default locations in the EPA database, such as the centroid 
of a county, when the initial report to EPA did not include plant coordinates, 3.) 
typographical errors, 4.) reporting the location of a company office or mailing address 
instead of the plant site, and 5.) dealing with the existence of multiple stacks on the 
same site. 

The locations of power plants are not part of a continuous distribution and 
therefore most traditional statistical methods do not work well in dealing with the 
uncertainty in their emissions. The discrete, or binary, nature of the locations (a plant 
either is in a given grid space or it is not) spurred the creation of a new method for 
dealing with the likely locations and the uncertainty in the emissions from power plants 
and the development of a new statistic, PSUM = Point Source Uncertainty Measure, [ 6] 
which we treat as a standard deviation in the analyses here. The uncertainty results are 
scale dependent, as with any spatial uncertainty. For a given locational uncertainty, the 
larger the grid cell the greater the probability that the point source will actually be found 
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in the reported cell. Monte Carlo analyses were run using the magnitude of emissions 
and the reported location for each point source as well as the calculated mean spatial 
uncertainty and the size of the geographic grid cells. A resulting grid of simulated 
means effectively distributes the reported CO2 emissions from a point source to 
surrounding cells based on the fraction of the total number of simulation executions that 
fell in each cell. 

The magnitude uncertainty for emissions from large point sources is taken to be 
a constant ±10.62% (one sigma) [10]. This number was derived by comparing data 
collected on smokestack emissions of U.S. electric power plants with emissions 
calculated from fuel deliveries at the same plants. The value 10.62 was the mean of the 
difference of the two measurements. 

LandScan is a recently developed global data set [11] that estimates the average 
locations where people actually are rather than where their home location is. Landscan 
was first produced in 1998 and data sets for 2000-2012 are now available. CDIAC has 
contemplated use of LandScan population data but has not yet made the conversion. 
The CDIAC gridded CO2 emissions data set relies, however, on a 1984 population 
distribution data base from the Goddard Institute for Space Studies [12]. While this 
GISS data set allows an estimation of the spatial distribution of CO2 emissions over a 
long time series, an additional contribution to uncertainty results from the changes in 
urbanization and population distribution that have occurred since 1984. Although the 
GISS data are used as the proxy for distributing emissions, we use LandScan 
characteristics here to illustrate the uncertainty that could be achieved for the post-2000 
time period. 

Magnitude uncertainty in LandScan for the U.S. was assumed to be comparable 
to the estimates of uncertainty derived by the U .S . Census Bureau at the same spatial 
scale [13]. LandScan does not currently have any published estimates for uncertainty 
but we assume that it is very low in the U.S. As in all of the data sets used here, the 
uncertainty will vary by country or region in a global analysis. The uncertainty estimate 
provided by the U.S. Census Bureau is O.Ol%. Spatial uncertainty in LandScan was 
estimated by looking at the changes incurred as a result of small shifts in the cell 
boundaries. We took the LandScan data set and distributed CO2 emissions proportional 
to the population density values associated with each grid cell. We then shifted the grid 
cells by 10 kilometers (approximately one tenth of a grid cell in the central U.S.) in 
each direction (N, S, E, and W) so that each grid cell contained successively one tenth 
of each of the four surrounding cells. This effectively creates a weighted sum in which 
the central cell emissions value is weighted by 90% and the cell that is shifted towards 
the center is weighted by the remaining 10%. A weighted sum was computed for each 
of the four shifts that occurred. The standard deviation for the resulting four weighted 
sums was then computed and stored as the uncertainty value within the central cell. 

In order to characterize the uncertainty associated with using population density 
as a proxy for CO2 emissions we started with the per capita emissions in each state [14] 
(with data on large point sources removed) and the mean number of grid spaces per 
state. We calculated the standard deviation in per capita emissions from non-point 
sources at the state level and took this as a measure of the variability in the relationship 
between population density and emissions density at that scale. We assumed that the 
variability among states provides a measure of the variability at the grid level within 
states. This provides enough information that we can back-calculate to estimate the 
standard deviation in emissions by grid cell attributed to the population proxy. Then we 
can use this standard deviation as the uncertainty estimate for using population density 
as a proxy for emissions at the grid cell level. 
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3. Discussion and conclusions 

The combination of the six aspects of uncertainty produces a total uncertainty, 
by gridspace, for a hypothetical, modified CDIAC dataset. Figure I shows these results 
as a percent of total emissions in each grid space. Recall that these numbers apply to a 
hypothetical data set - one in which 1.) the data on large point sources have been 
substituted for an equal quanti ty of emissions that were previously distributed according 
to population density and 2.) the data on population density have an uncertainty 
attributed to data from the U.S. Census Bureau at the same scale. In both cases we 
expect that the best achievable uncertainty will be much higher in many other countries 
where the data on population and large point sources have greater uncertainty. 

The scale shown on Figure I is qui te high. This was not unexpected because of 
how much uncertainty there is for the exact location and magnitude for CO2 sources at 
this scale. Figure I shows that the uncertainty associated with the modified CDIAC data 
set is consistently around 150% of the emissions total for each grid space. Recall that 
these estimates ofuncertainty are for a modified CDIAC data set where we have now 
isolated large point sources before using population density to distribute the remaining 
emissions from non-point sources. We have also treated the population density data as 
though they had been derived from Landscan, thus avoiding the shifts in population 
density that have occurred since construction of the Goddard Institute for Space Studies 
data set for 1984. Recall too that this uncertainty is for individual grid ce lis of I degree 
scale and is very scale dependent. There is strong correlation among grid spaces because 
of the spatial uncertainty about the exact placement of large point sources and because 
the national total is a defined constant. 

Total uncertainty is the combination of all of the components, but we also leam 
something of the role that each component takes in forming the whole. With an 
understanding of the relative magnitude of each of the pieces, and the locational 
characteristics ofwhere each component is large, we can try to target specific efforts to 
best reduce the total uncertainty. Table I provides summary statistics on the different 
components of uncertainty. Table 1 indicates that proxy uncertainty has the highest 
mean percentage of all the components. In particular a full 52% of grid cells have 90% 
oftheir uncertainty coming from proxy uncertainty. The implication here is that in the 
majority of grid cells, reduction of uncertainty can only be done by addressing 
uncertainty in the proxy relationship. This means that we must obtain a better 
understanding of the relationship between the proxies we use and the emissions they 
are meant to represent. Contributions from large point sources often dominate 
uncertainty for the grid cells where large point sources are present. And, the values here 
depend very much on the geographic scale. Uncertainty will increase for many reasons 
if the grid size is decreased without reducing the parameters of spatial uncertainty. 

Our efforts to systematically estimate the uncertainty in a gridded data set of 
CO2 emissions suggest that the uncertainty is quite high in the U.S. and it is probably 
higher in many countries where data on large point sources and the distribution of 
population are less well documented. Uncertainty will increase as the geographic scale 
is decreased. White data users need to appreciate the data uncertainty, the best data are 
probably suitable for many purposes. The analyses suggest that at 1-degree 
latitude/longitude resolution the current uncertainty ( one standard deviation) by grid 
space in the U.S. is on the order of+/- 150%. Taking this analysis to a global scale will 
require additional analysis to characterize spatial uncertainty for each country or group 
of similar countries. 
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Figure 1. Uncertainty by grid space shown as a percentage of total em1ss10ns at 1-degree 
resolution. Areas shown with very high uncertainty are often a result of cities with abrupt changes 
in population density. Excluding these few areas of very high uncertainty we can see that the 
overall uncertainty in grid spaces is on the order of 1.5 times the total emissions. This is for a 
hypothetical, modified version of the CDIAC data set for 2009 (see text). 

Table 1. By grid cell, a breakdown of each component ofuncertainty with its summary statistics. 
Uncertainty in the national total is not included since it affects each of the grid cells equally. Note 
that the country borders create problems in that emissions may or may not occur even if a grid 
cell is designated as predominantly ocean, and some of the zero values lie along the eastern 
shoreline of the U.S. This is one of the challenges of cropping a global data set to a single country 
for a targeted analysis. Values are given as the percent uncertainty in a single grid cell. 

Min l" Ouart. Median Mean 3rd Ouart. Max 
Magnitude Uncertainty, 
large point sources 0.00 0.00 13 .96 41.70 94.88 110.60 
Spatial Uncertainty, 
large point sources 0.00 0.00 12.62 37.69 85.77 100.00 
Magnitude Uncertainty, 
LandScan 0.00 0.00 O.Ol 0.oJ O.Ol O.Ol 
Spatial Uncertainty, 
LandScan 0.00 0.09 0.55 10.34 2.93 673.00 
Proxy Uncertainty 0.00 22.99 141.20 100.70 161.50 161.50 

Total Uncertainty, Emissions 
Data at Grid Cell Level 112.9 138.3 153.6 154.2 166.4 712.9 

(Quart.=Quart1le) 
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