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About the Workshop 

The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed 
from the atmosphere is high on the political and scientific agendas. Building on the UN climate 
process, the intemational community strives to address the long-term challenge of climate 
change collectively and comprehensively, and to take concrete and timely action that proves 
sustainable and robust in the future . Under the umbrella of the UN Framework Convention on 
Climate Change, mainly developed country parties to the Convention have, since the mid-
1990s, published annual or periodic inventories of emissions and removals, and continued to 
do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these 
inventories to develop strategies and policies for emission reductions and to track the progress 
of those strategies and policies. Where forma! commitments to limit emissions exist, regulatory 
agencies and corporations rely on emission inventories to establish compliance records. 

However, as increasing intemational concem and cooperation aim at policy-oriented solutions 
to the climate change problem, a number of issues circulating around uncertainty have come to 
the fore , which were undervalued or left unmentioned at the time of the Kyoto Protocol but 
require adequate recognition under a workable and legislated successor agreement. Accounting 
and verification of emissions in space and time, compliance with emission reduction 
commitments, risk of exceeding future temperature targets, evaluating effects of mitigation 
versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting 
oftraded emission permits are to name but a few. 

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized 
by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based 
International Institute for Applied Systems Analysis, and the Lviv Polytechnic National 
University . The 4th Uncertainty Workshop follows up and expands on the scope of the earlier 
Uncertainty Workshops - the 1st Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in 
2007 in Laxenburg, Austria; and the 3rdWorkshop in 2010 in Lviv, Ukraine. 
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On the uncertainty in modeling urban air quality 
under imprecise emission data 

Abstract 

Piotr Holnicki 1 and Zbigniew Nahorski 1 

1 Systems Research Institute, Polish Academy of Sciences, 
Warsaw, Poland 

ho/nicki@ibspan.waw.pl, nahorski@ibspan. waw.p/ 

Air pollution dispersion models have recently been used for supporting decisions 
conceming air quality management and emission control. Emission inventory is the basie input 
dataset in air quality evaluation. To select the best strategy of emission reduction and to assess 
the possible environmental effects, there is a need to estimate the contribution of the respective 
emission sources to the resulting air pollution. This paper addresses the problem ofuncertainty 
of air pollution models, related irnprecision and uncertainty of the emission data. The problem 
is discussed in a case study for Warsaw agglomeration, where the main wban scale air 

pollutants: S02, NOx, PPM 10, PPM2.s are considered. CALMET/CALPUFF modeling 
system is used as the main forecasting tool which links the emission data with the resulting 
concentrations. Uncertainty analysis, based on a Monte Carlo algorithm, shows the main factors 
which decide on the resulting uncertainty of the model forecast. 

Keywords: air pollution, emission inventory, computer model, uncertainty analysis 

1. Air quality models in decision support systems 

A direct application of air quality models is in forecasting dispersion of pollutants, 
analysis of ecological results of some specific meteorological episodes, or evaluation 
of the finał environmental impact of emission sources. Recently developed Integrated 
Assessment Models (1AM) [2, 3, 9, 16) are used for supporting decisions conceming 
air quality management and emission control policy. The air quality model is a key 
module of such a system which enables to assess environmental, economic or health 
benefits of emission abatement, and to select the best strategy of emission reduction. In 
such applications, there is a need to estimate the contribution of emission sources to 
ambient concentrations with required accuracy. However, due to a very complex 
structure of such systems, there exist many sources of environmental effects of 
atrnospheric pollution as well as in the resulting regulatory decisions. 

The quantitative assessment ofuncertainty brings the modeling prediction closer to 
reality. It increases decision maker's confidence in the modeling results and improves 
the quality of the finał decisions. To assess the accuracy of modelling results and a 
connected decision support process, inaccuracy and uncertainty of the model should be 
evaluated. The main sources ofresults ' variability (tempora! or spatial) and uncertainty 
(imprecise information or Jack of information about unknown quantity) should be 
identified and assessed [ 11, 15, 17]. 

It is a common view in the literature that emission field inventory is one of the main 
sources of uncertainty in modeling of air pollution dispersion. The problem is 
particularly significant in urban agglomerations [1 , 4, 10, 12, 14) . Emission field in 
such cases comprises a variety of sources, point-, area- and line-, with different 
technological parameters, emission intensities, composition of polluting species, and 
also - with different uncertainty which is introduced to the system. This uncertainty 
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must be taken into account in complex analysis, when the results are to be used in 
supporting regulatory decisions. 

2. Urban scale uncertainty analysis 

The computations performed in the framework of the study relate to the forecasts 
and analysis of air pollution dispersion in Warsaw agglomeration. The aim was to 
evaluate the environmental impact of the main categories of emission sources as well 
as to estimate the uncertainty of this forecast, which is related to the uncertainty of 
emission field inventory. The analysis covers a rectangular domain, approx. 30 x 40 
km2 of Warsaw Metropolitan Area shown in Fig. I. The regional scale, Gaussian puff 
dispersion model CALPUFF [18, I 9, 20] was used to simulate the air pollution transport 
and transformations within the domain. 

Figure 1. The study domain and the receptor points ([8], due to CCA License) 

In case of the discussed Warsaw study the total emission field was decomposed into 
four basie categories, mainly according to the emission parameters and the intrinsic 
uncertainty [7]. According to the previous remarks, assumed emission field was 
categorized into following four classes: 

• 16 high point sources (power/heating plants - low uncertainty), 

• I 002 low point sources (industry - medium uncertainty), 

• 872 area sources (residential sector - high uncertainty), 

• 1157 linear sources (transportation - high uncertainty). 

For computational purposes, the domain is discretized with a regular square grid 
with the step size h = I km. The point sources are located according to the geographical 
coordinates, the area and linear sources are represented as one grid element, I km2 

(compare Fig. I). Computations take into account temporal variability of the 
meteorologi cal and emission input data with the assumed step-size of time resolution, 
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' = I h. The annual mean concentrations of the main polluting species are recorded at 
563 fictitious receptor points, located in the center of grid elements shown in Fig. I. 
The list of the main primary and secondary pollutants considered in this study 
encompasses sulfur oxides (SO2), nitrogen oxides (NOx), sulfate and nitrate aerosols, 
particulate matter (PM10 and PM2.s) and Pb. 

3. Uncertainty analysis 

The uncertainty of the modeling results has been assessed using a Monte Carlo 
algorithm (6, 13] and the input uncertainties of the emission data. Applied to all the 
sources and pollutants, 2000 random sets of emission data were preprocessed within 
the assumed ranges ofuncertainty. Each random set of the emission data encompasses 
a one-year time interval. As stated in [8], to avoid generating umealistic emission 
episodes, a correlation between emission intensities of key individual pollutants from 
each emission source was established. 

Table 1. The input uncertainty range depending on emission category (95 CI) 
([8], due to CCA License). 

Emission sources 
Pollutant 

High point Low point Area Linear 

SO, ± 15% ±20% ±30% ±30% 

NOx ±20% ±30% ±40% ±40% 

PPM10 ±25% ±40% ±40% ±40% 

PPM,, ±25% ±40% ±40% ±40% 

PPM10_R - - - ±40% 

PPM, ,_R - - - ±40% 

Pb ±30% ±40% ±50% ±50% 

Table I presents these ranges, assumed for 4 categories of emission sources, at the 
95% confidence interval. The applied input uncertainties have been mainly based on 
ex pert opinions as presented in [8]. The norma! distribution of the input emission data 
was assumed. The relative uncertainty range of the resulting pollution concentrations 
at a receptor point is calculated as a ratio: (c97.s - c2_5)/cM, where c2_5 is the 2.5 and 
c97_5 is the 97 .5 percentile concentration value, and cM is the mean value. 

In the previous papers (7, 8] violation of air quality limits (EU 2008) byNOx, PM10, 
PM2.s concentrations, mainly in central districts, was indicated. The accuracy of the 
forecasts was confirmed by comparison of the results with measurements (FA2 index). 
Below the main factors which decide on the finał uncertainty are discussed. 

The first factor which determines the resulting uncertainty is the category of 
emission sources with the dominating share in polluting the receptor (see Table I). For 
example, it is known that NOx and Pb are typical traffic-related compounds for which 
the concentration maps are correlated with the topology of the arteria! streets. The 
correlation is also seen on uncertainty maps. The mobile sources also contribute to PM10 
pollution, but in the case of PM2.s and SO2 there is a considerable share of the area 
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sources (residential sector) and also of some point sources. The above correlations are 
reflected in the uncertainty maps. 

An important factor influencing uncertainty is the relative share of emission 
categories which contribute to the selected receptor point. Exemplary maps shown 
below compare distributions ofa typical traffic-related NOx pollution and the pollution 
of PM2.s, which strongly depends on other emission categories, e.g. the area emission 
from the residential sector. Figure 2 contains two related pairs of maps, pollutant 
concentration and uncertainty, for NOx (top) and PM2.s (bottom), respectively. 

!¾I 

[111/m' ] 
(1'J 

Figure 2. The spatial maps of concentration (left) and uncertainty (right): 
NOx - top and PM2.s - bottom ([8],due to CCA License) 

It can be observed that the maximum concentrations (left maps) occur in the central 
districts of the city, but the spatial variability ofuncertainty (right map) is much more 
evident is not strictly correlated with the concentration map. For NOx the maximum 
uncertainties are obtained near the main crossroads (similar properties represent the 
other traffic dependent pollutants, such as PM w or Pb), white the global uncertainty 
maximum for PM2.s represents the residential sector (individual housing area). 

In these cases, high uncertainties correlate to some extent with the concentration 
values, but in fact they depend also on the location of the receptors. The location 
deterrnines the relative share of the contributing emission categories and the quanti ty 
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of the individual emission sources which affect a given receptor point. A specific 
coincidence of these factors leads to extreme values of the overall uncertainty at some 
locations. The quantity of individual sources that substantially contribute to a spot 
strongly influence the uncertainty. Due to the averaging effect, the rising number of 
such emission sources leads to the !ower aggregate level of the relative uncertainty, 
while a low number of the unbalanced sources mean high uncertainty. This fact is 
illustrated by the data for pollutions NOx and PM2.5 recorded at receptors # 136 
(crossroad) and #156 (housing), presented in Table 2 and in Table 3, respectively. 

Table 2. Uncertainty of NOx concentration depending on the receptor location 

Receptor #136 Receptor # 156 
uncertainty range 45% uncertainty range 28% 

Sources 
Concentration Share Dominating Concentration Share Dominating 

[ug/m3] [%] sources [ug/m3] [%] sources 

LINEAR 29,8 94,3 4 15,94 80,1 9 

AREA 1,0 3, I 2,86 14,4 2 

LOW 0,7 2,2 0,4 3,5 

HIGH 0,1 0,3 0,7 2 

Total 31 ,6 4 19,9 11 

Table 3. Uncertainty of PM2.5 concentration depending on the receptor location 

Receptor #136 Receptor #156 
- uncertainty range 23% - uncertainty range 33% 

Sources 
Concentration Share Dominating Concentration Share Dominating 

[ug/m3] [%] sources [ug/m3] [%] sources 

LINE 6,4 74,5 5 3,1 33 ,7 I 

AREA 1,9 22 1 5,8 60 3 

LOW 0,2 2,0 0,2 2,2 

HIGH 0,08 0,9 0,1 1,1 

Total 8,58 6 5,97 4 

So, the fewer sources contribute to the po li uti on level, the higher level of the relative 
uncertainty may be expected. At the same time, an unbalanced contribution of the 
individual generally increases the aggregate level uncertainty for the forecasted 
pollution. This generał conclusion is illustrated in the two selected receptor points, 
namely receptor #136 (crossroad) where the high level ofuncertainty occurs for traffic
related pollutants (NOx), and receptor #156 (residential area) in a peripheral district 
where fine particulates PM2.5 predominate in the emission field and induce a high level 
of uncertainty. On the other hand, in such cases, the impact of the input emission 
uncertainty assumed in Table 3 becomes less important. 

205 



4th International Workshop on Uncertainty in Atmospheric Emissions 
-------------------------------------------------------------------------------------------
4. Summary 

The paper addresses the problem ofuncertainty ofurban scale air pollution models 
under uncertainty of emission data. The case study discussed deals with Warsaw 
agglomeration where Monte Carlo algorithm is used. and sources contribute to the 
pollution level, the higher level of the relative uncertainty may be expected. Exemplary 
results illustrate the spatial distribution of uncertainty in the domain. The main factors 
are indicated which decide on resulting uncertainty of the forecast. It relates to the 
receptor 's location, but also depends on the share of emission classes that affect the 
receptor sile and on the number of the individual emission sources contributing to the 
overall concentration. 
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