Polska
Akademia
Nouk
Instytut
Badan
Systemowych

Methodology and applications of decision support systems

Proceedings of the $3-\mathrm{rd}$ Polish-Finnish Symposium Gdańsk-Sobieszewo, Seplember 26-29, 1988
edited by
Roman Kulikowski

Polska Akademia Nauk Instytut Badań Systemowych

Methodology and applications of decision support systems

Proceedings of the 3-rd
Polish-Finnish Symposium
Gdańsk-Sobieszewo, September 26-29, 1988 edited by Roman Kulikowski

Secretary of the Conference

dr. Andrzej Stachurski

Wykonano z gotowych oryginalow tekstowych dostarczonych przez autorbw

$$
41267
$$

A DECISION SURPORT SYSTEM FOR ANALYSING AND AGGREGATING FUZZY ORDERINGS

Jan W. owsinski, Skawomir zadrozny

Systems Research Institute
polish Academy of sciences Newelska 6, 01-447 Warszawa, Poland

Eqmary. The paper presents a practical method for implementing a software for the in-session processing and aggregation of precedence data obtained from a number, m_{9} of judges and concerning a number, n, of items. Precedence data can be given in a variety of ways ranging from a unique ordering to $1 / 2 \cdot n(n-1)$ fuzzy precedence indices. First, the principles of processing of such data are presented, and then problems and suggested solutions. The latter refer to two notions: "expert agreenent" as to the final precedence coefficients on the one hand and "resulting ordering" of the items on the other.

Eeywords: ordering, fuzzy precedences, aggregation, agreement measures, consensus.

1. INTRODUCTION

In the development of practicable computer-based data analysis tools for decision aiding in multi-person, multi-item sif tuations it is necessary to find means for acquiring, processing aggregating and assessing data reflecting various opinions, Thisf paper deals with a specific, but still sufficiently general, situation in which a number, m, of judges express opinion as to the precedence (based upon the comparison of value, of importance, "of temporal sequence,...-) of a number, n, of certain items.

Two fundamental problems appear: that of moving towards the consensus among experts, and of determining the resulting ordering of the items considered. When data obtained from judges are expressed in the form of orderings then the formulation proposed by Marcotorchino and Michaud (1979) yields simultaneous solution of the two problems, whether by application of the mets hod developed by those authors or by the heuristic approach of owsinski and Zadrotny (1986). Thus, in the space of orderings there exists such an ordering that minimizes the aggregate distance from the orderings given by judges.

Judges may, however, be unwilling or incapable of giving orderings. The requirement of providing orderings is a limitation . Which for some purposes can be treated as advantageous, since thereby judges are forced to provide in fact more information. Still, in many cases this requirement cannot be kept. Thus, precedence coefficients may appear with values greater than 0 and smaller than 1 , indicating a vagueness of precedence. When this broadened space of aata is accepted as solution space then the problems previously mentioned arise. Namely, it is obvious that within this space solutions can be found that are much nearer to all of the opinions than any of the orderings is.

The method described here is not aimed at direct resolution of this dilemma. Its purpose is more modest, namely to, provide the basis for a software that would accept, process and aggregate the data in a variety of ways, so as to highlight the contents of this dilemma and a number of other aspects of a deci-sion-preparation session.

2. BASIC NOTATIONS

. This section contains the basic notions used in the paper: n - the number of items considered, $\mathrm{n}=\mathrm{card} \mathrm{I}, \mathrm{i}, \mathrm{j}, \mathrm{l} \in \mathrm{I}$, m=card $K, k \in K$,
$d_{i j}^{k}$ - degree of precedence of item "i".before item "j" as defined by judge "k" when considering "i" and "j" apart from other items, with $d_{i j}^{k} \in[0,1]$ where $d_{i j}^{k}=\left\{\begin{array}{l}1, \text { when } i \text { strictly precedes } j, \\ 0, \text { when } j \text { strictly precedes } i,\end{array}\right.$ (when $d_{i j}^{k} \in(0,1)$ then coefficients shall be referred to as "fuzzy", while for $d_{i j}^{k} \in\{0,1\}$ - as "crisp"), $0^{k}(i)$-serial number of item i in the ordering defined by precedences $d_{i j}^{k}$, whenever determination of such ordering is feasible and desired, the ordering itself being denoted o^{k},
$I_{\alpha}^{k f}$ - subsets of $I_{\text {, }}$ numbered α, defined by judge k, for which precedences are given in different ways, f denoting type of data, and

$$
\begin{equation*}
I=\bigcup_{a=1}^{a} I_{\alpha}^{k f} \tag{1}
\end{equation*}
$$

$d_{1 j}$ - aggregate precedence indices, 1.e. variables.forming the solutions to aggregation problens, with $\left\{d_{i j}\right\}_{1, j}=D_{p}$
Q - proper objective functions.
More detailed notions shall be explained in the further course of this paper.
3. PURPOSE OF THE SOFTWARE

The purposes of this work are as follows: to secure a number of input management (data acquisition and processing) functions, to aggregate (fuzzy or crisp) precedence indices for particular judges, to calculate other indices, such as e.g. "degree of consensus", and to perform such session management functions, as determination of the. "outlying" individual orderings, all of these in an interactive environment. The goal is to provide guidance for the multi-item-oriented (ordering-type) voting-based attempt at defining a common opinion (ordering), with a "sufficient" degree of agreement (consensus).

Thus, precedence aggregation would be but one of the functions performed. Before proceeding to proper aggregation the software system has therefore to acquire and process data obtained from individual judges.
4. INPUT FORMS

There are two fundamental forms of data input:

1. ordering of items, from which $d_{i j}^{k}$ can be deduced, and 2. explicit values of $d_{i j}^{k}$
but these two fundamental forms can be presented and mixed in a variety of ways.

Each judge, k, starts by dividing the set I into nonoverlapping nonempty subsets, each subset denoted $I_{\alpha}^{k f}$. Index f is conposed of two subjndices, f^{*}. $\mathbf{f l}^{\prime \prime}$, Mhere f^{+}indicates whether items in $I_{\alpha}^{1 k y}$ hall be ordered $\left(E^{*}=1\right)$, their preference coefficients given ($f^{\prime}=2$) or "unknown precedence" ($f^{*}=3$) flagged. The second in-
dex specifies choices within these three categories. At the stage of division of I into subsets, the sequence of items within subsets is of no importance.
once $I_{\alpha}^{k f}$ specified, data concerning them starting with $\alpha=1$, are given. The number of subsets for a judge may range from $a_{K}=1$ to entier $(n / 2)+1$, with enticer defined via strong inequality.

Within the subsets $I_{\alpha}^{k f}$ for particular f^{-}the following further choices can be made, indicated by values of $\mathrm{fn}^{\prime \prime}$: 1. $f^{-}=1, f^{n}=1$; items contained in $I_{\alpha}^{k f^{\prime} f^{\prime \prime}}$ are simply unequivocally ordered, forming $o_{\alpha}^{k}\left(I_{\alpha}^{k}\right)$, so that for all i, $j \in I_{\alpha}^{k 11}$ there is $d_{i j}^{k} \in\{0,1\}$, \in_{1}^{α}
$f^{n}=2: 0_{\alpha}^{k}$ shall contain an indifferent subsequence (only one), denoted $0_{\alpha}^{k I}$, so that for all $i, j \in 0_{\alpha}^{k I}$ there is $d_{i j j}^{k}=0.5$, and for all the other $1, j \in I_{\alpha}^{k 12}$ there is $d_{i j}^{k} \in\{0,1\}$,
$f^{m}=3$: within 0_{a}^{k} a subsequence shall be indicated only one, as before) for which one or more alternative suborderings shall be given, $O_{\alpha B}^{k A}$, where B is the serial numbbet of alternative subordering, and for the $i, j \in 0_{\alpha B}^{k A}$ there is

$$
d_{i j}^{k}=\frac{1}{B^{k \alpha}} \sum_{\beta=1}^{B^{k \alpha}} d_{i j}^{k \beta}
$$

where $\mathrm{B}^{\mathrm{k} \alpha}$ is the total number of alternative suborderings with in the index subset α of, the judge k, while for all the other $i, j \in I_{\alpha}^{k 13}$ there is $d_{i j}^{k} \in\{0,1\}$.
2. $f^{-}=2 ; f^{n}=1$: all the $d_{i j}^{k}$ are specified, one for each pair $(1, j)$, ie. $1 / 2 n(n-1)$ numbers $\in[0,1]$.
$f^{n}=2$: only some $d_{i j}^{k}$ are given, and all those which are not specified, are deduced from the given ones.

Besides the f index combinations shown there may be a situation, accepted by the system, in which, during the $I_{\alpha}^{k f}$ elicitation phase, not all $1 \in I$ are considered, which means that for all the $1 \in I-I_{\mathbf{a}}^{\mathbf{k}}$, where

$$
\begin{equation*}
I_{a}^{k}=\bigcup_{a} I_{a}^{k f} \tag{2}
\end{equation*}
$$

"unknown terminal precedence" is assumed, so that, by default, for all $i, j \in I-I_{a}^{k}$ there is $d_{i j}^{k}=0.5$, and for ali $i \in I_{a}^{k}$ and $j \in I-I_{a}^{k}$ there is $d_{i j}^{k}=1$.

It is also possible to set $f^{-}=3$, meaning "unknown precedence", taken to be
$f^{-}=3\left(f^{m}=1\right)$: for items contained in $I_{\alpha}^{k 3}$, ic $I_{\alpha}^{k 3}$, there is $d_{i j}^{k}=0.5$, for all $j \in I_{a}^{k}$.

5. FORMULATIONS OF THE AGGREGATION PROBLEM

Assume that all the $d_{i j}^{k} i . e$ for all (i,j) $\in I \times I$ and $k \in R_{\text {, }}$ are given, specified and calculated in whehever manner.

The problem of aggregation of precedences takes on two forms, depending on whether the aggregate is to have the form of ordering; $d_{i j} \in\{0,1\}$, or can allow fuzzy precedences, $d_{i j}[0,1]$.

In the "crisp" case, the one of aggregate orderings the prom blem can be formulated along the lines set by Marcotorchino and Michaud (1979), i.e. in the form of the binary LP problem:

$$
\begin{equation*}
\max _{D}\left\{Q_{1}(D)=\sum_{i<j}\left(\hat{a}_{i j} d_{i j}+\hat{a}_{j i 1} d_{j i}\right)\right\} \tag{3.a}
\end{equation*}
$$

subject to

$$
\begin{align*}
& d_{i j} \in\{0,1\} \quad \forall i, j \in I \tag{3.b}\\
& d_{i j}+d_{j i}=1 \quad \forall i, j \in I \tag{3.c}\\
& d_{i j}+d_{j i}-d_{i I} \leq 1 \quad \text { vi, } j, I \in I \tag{3.d}
\end{align*}
$$

where

$$
\begin{aligned}
& D=\left\{d_{i j}\right\} \quad n \times n-1, \text { and } \\
& \hat{d}_{i j}=\frac{1}{m} \sum_{k=1}^{m} d_{i j}^{k}
\end{aligned}
$$

The blnary LP problem can be, in fact, solved as a usual continuous one via standard routines, insofar as substitution of (3.b) by

$$
d_{i j} \in[0,1]
$$

yields solutions satisfying (3.b).
The problem (3) consists in finding of an ordering, defined by $d_{i j}$, which is the closest to the common score given by $\widehat{A}_{1 j}$. The constraints $(3 . c)$ and ($3 . d$) require antisymmetry (in the continuous case \rightarrow completeness) and transitivity in the ordering relation.

In the second case; when aggregate precedence coefficients are allowed to be fuzzy, the problem can take the following form:

$$
\min _{D}\left\{Q_{2}(D)=\sum_{1, j}\left|a_{i j}-a_{i j}\right|^{2}\right\}
$$

subject to

$$
\begin{align*}
& d_{i j} \in[0,1] \quad \forall i, j \in I \tag{4.b}\\
& d_{i j}+d_{j 1}=1 \quad \forall i, j \in I \tag{4.c}\\
& d_{i j}+d_{j i}-d_{i 1} \leqslant 1 \quad \forall i, j, 1 \in I \tag{4,d}
\end{align*}
$$

which means approximation of $\left\{\hat{d}_{i j}\right\}$ by antisymetric and transitive $\left\{d_{i j}\right\}$ within the same space.
6. FUZZY DATA CONSISTENCY

In terms of chronological description of the in-session proceeding, this section should precede the previous one, since it refers to functions performed by the software directly after the initial data acquistion and processing, described in section 4. Since, however, several notions to be used here belong to problem formulation, therefore this order was taken.

There are three questions related to consistency of fuzzy data on precedence coefficients as provided by the judges:

* completeness.
* transitivity,
* determination of the unspecified precedence coefficients (for $f^{n}=2, f^{n \prime}=2$).
6.1. Completeness

The first of these questrions is solved throughout the systen by assuming that

$$
\begin{equation*}
d_{j i}^{k}=1-d_{i j}^{k} \tag{5}
\end{equation*}
$$

with $d_{i j}^{k}$ previously specified. Whenever a judge gives a $d_{j i}^{k}$ after $\mathrm{a}_{i j}^{\mathrm{k}}$ has been given, and (5) is not satisfied, the systam displays both values and asks for the proper ones. This arbitrary assumption is justified not only by - at least-halying of the time and effort necessary to complete $\left\{d_{i j}^{k}\right\}$, but also by the need to avoid unduly and counterintuitional complexity of further operations if completeness is not kept to.

6.2. Transitivity

Transitivity requirement may be applied both to input data and to aggregation results, and it may be relaxed on both these ends. These relaxations have, of course, different meanings. Thus:

Remark 1: If. (5) holds for all $k \in K$ and $i, j \in I_{\text {, }}$ and all $\left\{d_{i j}^{k}\right\}$ for $k \in K$ are transitive, ie.

$$
\begin{equation*}
d_{i j}^{k}+d_{j i}^{k}-d_{i 1}^{k} \leq 1 \quad \forall i, j, 1 \in I \tag{6}
\end{equation*}
$$

then problem (4) can be solved without constraints (4.c) and (4.d) to yield $d_{i j}=\hat{d}_{i j}$.

Proof: There is

$$
\begin{aligned}
\hat{a}_{i j}+a_{j i i} & =\frac{1}{m} \sum_{k=1}^{m} d_{i j}^{k}+\frac{1}{m} \sum_{k=1}^{m} d_{j i}^{k}=\frac{1}{m}\left(\sum_{k=1}^{m} a_{i j}^{k}+\sum_{k=1}^{m} d_{j i}^{k}\right)= \\
& =\frac{1}{m} \sum_{k=1}^{m}\left(d_{i j}^{k}+d_{j i}^{k}\right)
\end{aligned}
$$

which, in view of (5),

$$
=\frac{1}{\mathrm{~m}} \sum_{k=1}^{\mathrm{m}} 1=1
$$

Similarly

$$
\begin{aligned}
\hat{a}_{1 j}+\hat{a}_{j 1}-\hat{a}_{i 1} & =\frac{1}{m} \sum_{k=1}^{m} d_{i j}^{k}+\frac{1}{m} \cdot \sum_{k=1}^{m} d_{j 1}^{k}-\frac{1}{m} \cdot \sum_{k=1}^{m} d_{i 1}^{k}= \\
& =\frac{1}{m} \sum_{k=1}^{m}\left(d_{i j}^{k}+d_{j 1}^{k}-d_{i 1}^{k}\right)
\end{aligned}
$$

which, in view of (6),

$$
s \frac{1}{m} \sum_{k=1}^{m} 1=1
$$

Thus, completeness and transitivity hold with respect to $\hat{D}=\left\{\hat{d}_{i j}\right\}$ if they hold for all $D^{k}=\left\{d_{i j}^{k}\right\}$, $k \in K$. Since, additionally, $\hat{a}_{i j} \in[0,1] \quad \forall i, j \in I$, therefore \hat{D} belongs to the feasible set for D, Ω_{D}, determined by all, the constraints (4.b) ; (4.c) and (4.d). Hence, there exists $D=\hat{D} \in \Omega_{D}$, for which $Q_{2}(D)=0$, and therefore application of (4.b), (4.c) and (4.d) is not necessary. QED.

Remark 1 diminishes, the computational effort necessary for aggregation. The advantage is however, not very great, since all $\left\{d_{i j}^{k}\right\}, k \in K$ still have to be transitive. That is why it is more advisable to secure transitivity in (4) while relaxing this requirement for the judge-provided data. Not only is that way of proceeding much easier computationally, but also it may justly be belifeved that averaging over a greater number m of judges would yield results violating the transitivity constraint to only a low degree, if at all (the similar would happen to the completeness constraint, were it necessary). Thus, though the system provides heuristic procedures for "transitivization"; it is not advised to use them for each D^{k}, since this may make the session too lengthy and cumbersome.

Whether, however, transitivity constraints are relaxed'or not at the D^{k} definition stage, it is important for the fuzzy context to consider the properties given below.

Note, first, that
Remark 2: $d_{i j}^{k}+d_{j 1}^{k}-d_{i 1}^{k} \leq 2$ for all $d_{i j}^{k} d_{j 1}^{k}, d_{i 1}^{k} 6[0,1]$.
Thus, it may be useful to intróduce the notion of ε-transitivity a $D^{k}=\left\{d_{i j}^{k}\right\}_{i, j}$ shall be referred to as ε-transitive if

$$
\begin{equation*}
d_{i j}^{k}+d_{j 1}^{k}-d_{i l}^{k} \leq 2-\varepsilon \quad \forall i, j, l e I \tag{7}
\end{equation*}
$$

where, obviously $\varepsilon \in[0,1]$, with 0 -transitivity characterizing all possible $D^{k} s$ (Remark 2), and i-transitivity corresponding to (6), i.e. usual transitivity.

Remark 3: If all $D^{k} s, k \in K$, are complete and ε-transitive then the solution D of problem (4), obtained in the absence of constraint (4.c) and (4.d) shall also be complete and ε-tran sitive.
proof follows the one for Remark 1.

Now, two properties related to ε-tansitivity shall be introduced, of importance for algorithmic transitiviaation.

Remark 4: If $d_{i j}^{k} \in[\varepsilon, 1-\varepsilon]$ then (7) holds for these $1, j$ and $l \in I-(i \cup j)$.

Remark 5: If $d_{i j}^{k}+d_{j l}^{k} \in[\varepsilon, 2-\varepsilon]$ then (7) holda for these $1 ; j$ and 1.

Validity of these two remarks is obvious. In fact, checking of (7) for all the permutations of $(i, j, 1)$ reduces to

$$
\begin{align*}
& d_{i j}^{k}+d_{j 1}^{k} \leq 2-\varepsilon \text { for }(i, j, 1),(j, 1,1) \text { and }(1, i, j) \text { and } \tag{8}\\
& d_{i 1}^{k}-d_{j 1}^{k}-d_{i j}^{k} \leq 1-\varepsilon \text { for }(i, 1, j),(j, i, 1) \text { and }(1, j, i)
\end{align*}
$$

from where Remarks 4 and 5 follow immediately. The first of them can be applied, though, only to $E \leq 0.5$, i.e. to quite low ε values, since violations of (6) beyond 0.5 would be counterintuitive, though cannot be ruled out a priori.
6.3. Completion of a funzy D^{k}

This subsection presents a few remarks on calculation of implicit $d_{i j}^{k}$, when $f^{-}=2, f^{n=2}$. Such an option is chosen whenever specification of all the fuzzy $d_{i j}^{k}$ for $1, j$ eI is not feasible for some reasons. It should be mentioned, however; that first - a high degree of arbitrariness is introduced, and secondly - that with this option, if arbitrariness is not to go beyond acceptability, one must still specify quite a large share of the $1 / 2 n(n-1)$ values of $d_{i j}^{k}$.

Assume, for instance, that $d_{i j}^{k}$ and $d_{j 1}^{k}$ are given. Then, it seems plausible to calculate $d_{i 1}^{k}$ according to

$$
\begin{equation*}
d_{i l}^{k}=F\left(d_{i j}^{k}, d_{j 1}^{k}\right) \tag{9}
\end{equation*}
$$

where F is of the nature shown in Figi. Not only is such F intuitively, and also formally, acceptable, but it also ensures satisfaction of (6), even for fuzzy, coefficients. In view of (5) an F can be used to determine any remaining single coefficient when the coefficients for two other index pairs are given, for any indcx t-izlet $(i, j, 1) \in I^{3}$. Obviously, F brings a degree of

FIg. 1 : Shape of a function F serving for determination of simplicit precedence coefficients: $\left.d_{i l}^{k}=F^{\left(d_{i j}^{k}\right.} d_{j 1}^{k}\right)$.
arbitrariness, which seems acceptable when both its arguments. are specified by the judge. The question arises, however, weethe it is acceptable to superimpose F over itself:

$$
d_{i j}^{k}=F\left(F\left(d_{i j}^{k}, d_{j l}^{k}\right), F\left(d_{1 j}^{k}, d_{j, 1}^{k}-1\right)\right.
$$

thereby importantly increasing arbitrariness of a part of data. The system would work in such a case, but certainly this suboption should not be abused. Even when unlimited superposition of F is allowed, at least $n-1$ values of $d_{i j}^{k}$ must be specified,

7. AGGREGATIOA SOLUTIONS AND AGREEMENT MEASURES

7.1. Aggregation solutions

Solutions to the ordering problem (3), whether exact. or suboptimizing, are obtained in ia methods described elsewhere see Marcotorchino and Michaud (1979), Michaud (1981), and oisinski and Zadrotny (1986). That is why coly a few general remarks shall be forwarded here.

According to (3) the aggregation problem in its strict--crisp-ordering-oriented version is being solved through applycation of standard LP techniques. Because of the dimensions of the LP problem, o(n^{3}). direct application of standard.techniques for higher n encounters difficulties. The authors of the method suggest the use of simplified algorithms, but this does not yet solve the question of the in-session use of the software with simple, all-accessible hardware of the PC type. That

[^0]is why the present authors introduced a heuristic suboptimization procedure, see owsinski and zadrokny (1986), referring to the objective function (3.a), but having the simplicity of classical progressive merger procedures; so that the software can be used in-session with modest hardware.

The simplified method uses the function (3,a) in its modified form:

$$
\begin{equation*}
Q_{1}(D, r)=r \underset{i<j}{d_{i j} d_{i j}+(1-x)<\sum_{j 1} d_{j 1}} \tag{10}
\end{equation*}
$$

where $r \in[0,1]$ is a weighting coefficient, whose changes accompany. the working of this algorithm. There is, obviously,.

$$
\begin{equation*}
\arg \max _{D} Q_{1}(D, T)=\{1,2, \ldots, n\}=D^{C P r t}(1)=D_{I} \tag{11}
\end{equation*}
$$

and if proper $d_{i j}$ are equal zero then there are more maximizing $D^{-\prime} s$ than D_{I}. on the other hand, there is

$$
\begin{equation*}
\text { arg } \max _{D} Q_{1}(D, 0)=\{n, n \cdots 1, \ldots, 2,1\}=D^{0 p t}(0)=\dot{D}_{I} \tag{12}
\end{equation*}
$$

$\operatorname{Max} Q_{1}(D, T / 2)$ corresponds to the optimum for (3). By changing r from 1 to 0 che gets a finite series of different $D^{\text {opt }}(\mathrm{r})$ going from D_{I} to \bar{D}_{I}. Each such $D^{\text {opt }}(\mathrm{I})$ would be valid for a segment Δr^{t}, where t denotes the step number, with

$$
\bigcup_{t} \Delta r^{t}=[0,1] \text { and } \Delta r^{t-1} \cap \Delta r^{t}=r^{t}, \quad r^{0}=1
$$

The smplified method does not solve this series of LP problems equal to parametrization of the LP problem (3), but proceeds in an approxdmative way: starting with the ardering D_{I} it applies a sequence of transformations taken from a limited class, so that \bar{D}_{I} is finally reacbed. At every step \hat{r}^{t} and $Q_{\mathcal{1}}\left(D^{t}, \hat{r}^{t}\right)$ are calculated.

As far as problem (4) is concerned its solution reduces to mere transitivization of $\hat{D}_{\text {, }}$. Whenever deemed necessary.

7.2. Agreement measures

Certainly, the values of the very objective functions $Q_{\mathcal{1}}$ and Q_{2} provide some measures of agreement: Q_{1} - agreement as to the aggregate ordering and Q_{2} - agreement among the experts

With no reference. Without, however, some knowledge about the sciles of their values, actual assessment of the degree of agreemanta. is doubtful.

Thus, with respect to Q_{1}, when completeness holds and X are subject to usual constraints:

Remark 6:

while

$$
\begin{align*}
& \arg \min \max Q_{1}(\hat{D}, x)=\left\{\frac{1}{2}\right\}_{1, j} \text { and } \tag{13}\\
& \quad \min \max Q_{1}(\hat{D}, x)=\frac{1}{4} n(n-1)
\end{align*}
$$

$$
\begin{equation*}
\max _{\hat{D}} \max _{X} Q_{1}(\hat{D}, X)=\frac{1}{2} n(n-1) \tag{14}
\end{equation*}
$$

corresponding to any argument \hat{D} representing an ordering. Using the results (13) and (14) the following relative measure can be proposed:

$$
\begin{equation*}
M_{1}^{1}(\hat{D})=\frac{Q_{1}^{\text {opt }}(\hat{D})-\frac{1}{4} n(n-1)}{\frac{1}{4} n(n-1)}=\frac{Q_{1}^{\text {opt }(\hat{D})}}{\frac{m \ln }{\hat{D}} Q_{1}^{o p t}(\hat{D})}-1 \tag{15}
\end{equation*}
$$

with $M_{1}^{1}(\hat{D}) \in[0,1]$, reaching'zero for $\hat{D}=\left\{\frac{1}{2}\right\}_{i, j}$ and 1 for \hat{D} representing an ordering. Note that $M_{j}(\hat{D})$. does not reflect that much the agreement among judges as the agreement with respect to ordering of items. Thus, $\hat{D}=\left\{\frac{1}{2}\right\}_{i, j}$ can be obtained if $\alpha_{i j}=\frac{1}{2}$ for all $1, j \in I$ and all $k \in K$. On the other hand, $M_{1}(\hat{D})$. reaches its maximum when all the judges $k \in \mathbb{R}$ give $d_{i j}^{k}$ (explicity or implicitly) corresponding to the same, consensory, ordering.

Another measure takes the form of

$$
\begin{equation*}
M_{1}^{2}(\hat{D})=\frac{\max Q_{1}\left(D_{i} x\right)-\min Q_{1}(\hat{D}, x)}{x} \tag{16}
\end{equation*}
$$

with $M_{1}^{2}(\hat{D}) \in[0,1]$ reaching zero when $\max _{X} Q_{1}(\hat{D}, X)=\min _{X} Q_{1}(\hat{D}, X)$, i.e. when $\hat{D}=\left\{\frac{1}{2}\right\}, j^{\prime}$ and 1 when $\hat{D} \in E_{0}, E_{0}$ being the space, of orderings. The latter results from:

Remark 7:

$$
\begin{equation*}
\min _{X} Q_{1}(\hat{D}, X) \mid \hat{D} \in E_{O n}=0 \tag{17}
\end{equation*}
$$

Both measures are easy to calculate, since the finimum appearing in (16) can be obtained from X maximizing $Q_{1}(\hat{D}, X)$ by reversing the ordering obtained thereby.

With.regard to the agreement among judges without any outer reference, the proper absolute measure can be based upon the objective function (4.1) yielding:

$$
\begin{equation*}
M_{2}^{A}\left(\left\{D_{k}\right\}\right)=\frac{2}{n(n-1)} \frac{1}{m} \sum_{k} \sum_{i<j}\left|d_{1 j}^{k}-d_{1 j}^{k}\right| \tag{18}
\end{equation*}
$$

Again, this absolute measure has to be scaled against the scope of its values:

$$
\begin{equation*}
m_{2}\left(\left\{D_{k}\right\}\right)=\frac{\left.\max _{k}\right\} A_{2}^{A}\left(\left\{D_{k}\right\}\right)-m_{2}^{A}\left(\left\{D_{k}\right\}\right)}{\left.\max _{k}\right\}} \tag{19}
\end{equation*}
$$

so that the relative values of the measure M_{2}. range from 0 to 1, reaching 0 for the maximum diversity of opinions and 1 when all the precedence coefficients given by all the judges are identical: $\mathrm{a}_{1 j}^{k}=\hat{a}_{i j} \forall k \in \mathrm{k}, \mathrm{i}, j \in \mathrm{I}$. For the sake of simplicity an approximate measure can be used, namely

$$
\begin{equation*}
M_{2}\left(\left\{D_{k}\right\}\right)=1-2 \cdot M_{2}\left(\left\{D_{k}\right\}\right) \tag{20}
\end{equation*}
$$

resulting from
Remark 8: for even m: $\max _{\left\{D_{k}\right\}} M_{2}\left(\left\{D_{k}\right\}\right)=\frac{1}{2}$
while for odd m:

$$
\begin{equation*}
\max _{\left\{D_{k}\right\}} M_{2}\left(\left\{D_{k}\right\}\right)=\frac{1}{2} \frac{(m-1)(m+1)}{m^{2}} \tag{21}
\end{equation*}
$$

the latter approximating $\frac{1}{2}$ from below sufficiently well for higher ml .

8. ALGORITHMS

This section presents the outlines of three procedures, decisive for the working of the system.

8.1. Suboptimal aggregation of orderings

As mentioned previously, this procedure refere to Q_{1} of (3.a), but suboptimizes it only, since the class of operations
to be preformed on an ordering 18 strictly limited. The procedure 1s, roughy, as follows:

1. t. step number, $\left.=1, r^{t}=1,0^{t}=1,2,3, \ldots, n\right\}$, where n-total number of items ordered, and is is in (10).
2. $t=t+1$.
3. Calculate, for all j,1\&Tf $j<\mathcal{L}^{2}$
and

Where, for instance,

$$
\begin{equation*}
0_{j+}^{t-1}(j+1,1)=\left\{1|j+1\rangle{ }_{0}^{t-1} 1>{ }_{0}^{t-1} 1,1>j\right\} \tag{23}
\end{equation*}
$$

with $>0_{0}^{t-1}$ denoting preceadnce according to 0^{t-1}. The two r^{t} series of values correspond, respectively, to the following ope: rations:

$$
\begin{aligned}
& r_{j 1}^{t} \ldots \ldots 1_{1} i_{2} \ldots \ldots 1 \ldots \rightarrow \ldots 1 j i_{1} i_{2} \ldots \\
& r_{1 j}^{t} \ldots \ldots j \ldots i_{2} i_{1} 1 \ldots
\end{aligned}
$$

(Should the class of transformations of 0^{t-1} allow actual optimization, calculation of appropriate r^{t} would be mich more complex, referring to the LP algorithms.)

4: Find $\max _{j, 1}\left(r_{j 1}^{t}, r_{1 j}^{t}\right\}=x_{j \neq 1 *}^{t}=x^{t}$.
5. Execute the operation corresponding to $r_{j * 1 *}^{t}$ and thereby
form 0^{t}.
6. If O^{t} is the reverse of 0^{1} or $z^{c}=0$ then go to 7. otherwise return to 2 .
7. stop.

It can easily be seen that whatever this procedure loses on optimization, it more than compensates in simplicity, especially so since experience shows that optimal and suboptimal results are either identical or sufficiently close.

8.2. Calculation of implicit $d_{i j}^{k}$

The first assuqptions is that calculation of fuplicit $\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}$ is not made at every new value of $\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}$ given by a judge, but at an explicit request, so as not to unnecessarily multiply the operations. At each such request for every unspecified $d_{i j}^{k}$ a search is made for such an 1 that in the triplet 1,j,1 two precedences are given, so that $d_{i j}^{k}$ can be calculated through F : Two problems appear: first, of calculating lmplicit $\mathrm{d}_{i j}^{k}$ on the basis of already calculated implicit "third" coefficients, and second, of situations with more than one such "third" coefficient. With regard to the first problem an option is assured under which once the first search for the "third index", 1 , is completed for all the pairs corresponding to unspecified $d_{i j}^{k}$ " the subsequent searches are initiated until some search is totally unseccessful. This, however, significantly prolongs the whole procedure. The other problem results from existence of multiple "third, indices" which may serve to calculate a specific coeffi= cient. It is assumed that, for a given level of search for the "third indices", once a $\mathrm{d}_{\mathrm{ij}}^{\mathrm{k}}$ was calculated for an 1 ; the subsequent "third indices" 1 - $1 \% \ldots$ are treated in the following way:

$$
d_{i j}^{k, s}=\frac{1}{s}\left[d_{i j}^{k, s-1} \cdot(s-1)+F\left(d_{i, 1}^{k} s, d_{1}^{k} s, j\right)\right]
$$

where s is the current number of the "third index" for i, j, and, of course, the arguments of F can appear in any other proper combination.

8.3. Transitivization

Again, as with calculation of tuplicit $-d_{i j}^{k}$ transitivization has to be asked for, and by default is performed after all $d_{i j}^{k}$ had been calculated. The exinstitvity level ε^{T} has to be specified, together with an option choice referring to the way of proceeding and to the information provided. The option choice
points out whether the procedure should go at once to the final ε^{T} level specified or whether it should pass through intermediate levels with a predetermined step, indicating first the transitivity level, ε^{0}, of the raw data. The second approach, although slower,. does not only provide additional information, but also may give more plausible results. The working, in general, is as follows: for every triplet of indices $\in I$, for which it is feasible, ε-transitivity is checked using Remarks 4 and 5. When e-transitivity is violated, this precedence index which is the closest to 0 or to 1 (see Remark 4) is altered so as to secure ε-transitivity. It is obviously sufficient to alter just one value, but when such alteration exceeds a certain threshold, specified in terms of ε, most often $\frac{1}{2} \varepsilon$, then the second-in--rank coefficient is also altered.

Another choice probler results from coexistence of explicitly and implicitly given $\mathrm{d}_{i j}^{k}$. No assumptions as to that are made as of now, however, since there exist two contradictory arguments:

* most of the intuitively obvious functions F preserve transitivity, so that, if violation of this condition occurs, it is due to the explicit $d_{i j}^{k}$, but
* the session is oriented at the judge-generated data, and not at the computer-generated ones.
Transitivization is always preceded by completion of $\left\{d_{i j}^{k}\right\}$ or by calculation of the implicit $d_{i j}^{k}$'s.

The question of indication of the way of increasing agreement is dealt with quite easily through determination of the "closest" and "farthest" opinions among the D^{k} 's.

9. CONCLUSIONS

The paper presents a complete framework for the group decision / decision aiding session software. From the outline presented one may easily conclude that management of such a.session, though requiring some preparation for the session manager, is not only quite feasible, both hardware- and software-wise, but may lead to valuable results, which could not be obtained with the methods to date.

REFERENCES
Marcotorchino, J-.F. and P. Michaud (1979): Optimisation en Analyse ordinale des Données Masson, Paris. Miphaud, P. (1981) : Agrégation des préferences. Ph. D. Thesis. University Paris VI.
Owsinski, J. W. and S1. zadrozny (1986): structuring a Regional Problem: Aggregation and Clustering in Orderings. Applied Stochastic Models and Data Analysis, 2,1 and $2, \mathrm{pp} .83-95$.
Orsinaki. J.W. and SI. Zadrozny (1986): Clugtering for ordinal data: a linear programoing formilation control eyber netics, 15, 183-194.
\square

ERS
41267

[^0]:

