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Abstract 

Different t ypes of parallel machines and existing systems are described 
and principles for paralleliza tion of algorithms are discussed. Algorithms 
proposed for global optimization are reviewed and based on this some con­
clusions ,rega.rdi ng paralleliza tion of globa.l optimization algorithms are pre-
~~- . ' 

1 Introd uc tion 

With the increasing availability of multiprocessor systems designed for 
parallel execution of algorithms it seems appropriate to discuss the possible 
merit in using parallel algorithms in optimiza.tion . 

One optimization problem thai. la.tely has recei ved considerable atten­
tion is the so called globa.l optimization problem [Tom .and Żilinskas 1988] . 
The global optimization ·problem consists in finding 'the global minimum 
of a given function j(x) over s9me ,specified region A . The ·fuuction /(-) 
may have severa! !ocal minima in A . 

In contrast, to local optimization for which the attainment of the !ocal 
minimum is decidable (gradient equal to zero) no such gener\J criterion . 
exists in global optimization for asserting that the global minimum has 
been reached. · 

The only way to obtain information abo~t the function is to make a 
function eva.luation. Norma.Iły a procedure for computing f(x) is available 
but this may not be the case fort.he deriva.t.iv.es of/. Some vague auxiliary 

· information about the smoothness of/ may be. av~ilable . In addition to 
determining the global minimum. r and :r• il. is of int,erest to find also 
ot.her good minima and their local.ions. . 

The solution strat,egy norma.Iły consisls of global and !ocal stages. 
In the abseuce of a priorj information all pa.rt.s of the region must be 
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considered equally critical (the global stage). Of course , no significant 
parL of A must be neglected, unless one is willing to accept a considerable 
chance that the global minimum will be missed. When some in formation is 
accumulated some parts of the solu tion ~et ma.y be deemed more interesting 
than others and mare accurate solu tions in these parts are wanted (the !ocal 
stage) . 

The effort required to obtain a solution is a function of the smoothness 
assumptions and the accuracy requirements . Normally it is not known 
if some smootness requirement is fulfillcd for the problem to be solved 
and therefore it cannot normally be guaranteed that the global solution 
is obtained w hen the comput.ation stops . Oy assigning liberał . smoothness 
condi tions the probability that the optima! solu tion is obtained will be 
larger but the computation time will a.lso becomes longer. To cope with 
long computation times parallel algorithms could be a poosible solution. 

Parallel algorithms for different parallel computers are quite different. 
It is therefore necessary to know the features of these architectures before 
discussing parallel algorithms. An exposition more deta.iled tha.n tha.t given 
below can be found for instance in [Moi tra and Iyengar 1987). 

2 Parallcl compute rs 

Parallel comput.ers may be di vided int.o two categories. They are 
single-instruct.ion mult.iple-dat.a (S1 MD) machines and multiple-instruction 
multiple-data (MIMO) machines . Ordinary computers with . a single CPU 
could with this terminology be called single-instruction single-data"(SISD) 
machines. MIMO could mean either several SIMO rnachines or severa! 
SISD ma.chines, which is not. so important, it is the existance of severa! 
CP Us that counts . Instead of SIMD and MIMO the names single CPU (1-
CPU) parallel computers and multiple CPU (M-CPU) para.Ile! computers 
therefore could be used. 

1.1 Single CPU Parallel Computers 

The common feat.~re for these machines is they contain two types of 
processors ; one master processor (CPU) and a large number of simpler 
slave processors that can work in parallel and essentially perform the same 
type of task. 

Vector processors have already been used some time to speed up pro­
cessing for some t.ype of problems. The principle is that the same operation 
is performed simu]t.a.neously for a large number of tuples of elements. The 
speedup is facilitat.ed by the use of vector regist.ers, pipelining, multiple 
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funct 'on units (processors) and chaining. Problems that can be written 
in form of iterative application of simple operations on a large number of 
processing elernents are· sui table for veclor prócessing. Example of vector · 
processing machines are CRAY-1 and CYBEit 205 (CDC) . Vector proces­
sors are also available as add ons ror ordinary computers. 

A somewhat different single CPU machine is ICL's distributed array 
processor (DAP). The processors are arranged in a 64 x 64 matrix struc­
ture. Each processor can be connected to four neighbout processors; there 
is also row and column data highwa)IS which connect all processors in a 
given row or column and allów for rapid broad~asiing of infprmation across 
the processing matrix. Each processor has its own loca! storage and some 
i-egisters. Ali the processoi's perform the same instruction, which is broad­
casted from the CPU. 

1.2 Multiple CPU Parallcl Compntcrs 

In order for several CPUs to be able to work on the same problem these 
must be coupled in some way to permit information to be exchanged during 
the computation. The main principles for this are to have the processors 
coupled to a common stor age or to couple the processors so that they form 
a network with a;. distributed storage, The processors can exchange infor­
mation either by reading f~om and wri'ting into the same storage positions 
or by sending messages, depending on the principle adopted. 

One class of multiple CPU parallel machii1es consists of big expensive 
computers with few CPUs ( < 10). These machines use the shared storage 
mechanism. In this class there are several. GRAY X-MP machines, IBM 
3090 rnachines and ETA 10 machines (CDC) . 

Less exp,ensive systems can b~ . coi!structed by connecting micro ce1m- ·. 
puters like workstations to form a parallel computer. Such an environment 
consisting of Sun-3 workstations connected on an ethernet exists at the 
University of Colorado. The ability to use the network of workstations for 
distributed concurrent processing is based on the Sun version of the Berke­
ley Unix 4.2 operating system, which each workstation runs. A distributed 
processing t.ool, DPUP, provides. two models of co,1current computation. 
The first is a master-slave model :-,vhere all processes are linked to one mas­
ter in a star arrangement and all communication is through the master. 

· The second is a broadcast model where ea.ch prócess is a.n equal member 
of a ring of processes and can .send messages to a.li of the processes at 
once. DPUP provides several ba.sic co11currcncy capa.bilities including the 
crea.tion and termination of remote processes and various means to send 
and receive messages. 
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A third class consists of inexpensive micro processors tha.t are con­
nected to become nodes in a processor network. The input/output unit' 
and the seconda.ry stora.ge used is norma.Iły supplied by an ordina.ry micro 
compu_ter. An example of such prosessor~ a.re In mos' transputers, especially 
designed to be nodes in a. distribut.ed processor network. The tra.nsputers 
are rather powerful CPUs {IMS T414: :::; 10 Mips, IMS T800: ~ 2 Mega. 
Flops) with it.s own !ocal memory. Each t.ransputer may be connected to 
four other transputers. · 

The simple construction admits to construct large systems with a con­
siderable compu ting power (super computer) a.t a ra.ther low cost. Because 
of this we beli ve that the utilization of these machines will probably show 
to be highly rewarding. The concept of shared storage may be used and it 
can be implemented without having a physically shared storage (Ahuja et 

al 1986]. 

2 Parallel Algoi-ithms 

The performance of parallel a.lgorithms is often measured by using the 
chara.cteristic called speedup. Let the time needed to solve a problem by a · 
pa.ra.llel algorithm on m processors be tm a,;d let the time required to solve 
the same problem using a. non-para.Ile! algorithm on the same system be 

. t,. The speed up Sm is defined as the ratio 

lf the speedup is proportional to the nu·mber of processors m use<l it is said 
that the speedup is linear. The expression for the speedup could also be 
interpret.ed as the effecti11e number of processors m, in the system. 

The efficiency of an implementation of a.n algorithm on a multipro­
cessor machine may be defined as 

In order to obtain a good efficiency one should therefore keep all the pro­
cessors busy working product.ively until the problem is solved, and in order 
to obtain good speedup one should try to use as many processors working 
as· possi ble. 

The effectiveness Fm (Schendel 1984] is defined as 

where mtm measures the 'cost' of the parallel algorithm. Fm is thus a 
mea.sure of both speedup and efficiency. 
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2.1 Principles for Parallelization 

The central problem of pa.ra.llel progra.mming is the question of how to 
obt~in program units that can be processed in pafallel. There are at least 
two issues tha.t_ must be a.ddressed when discussing pa.ra.llelization. The 
first.is the degree of para.llelism (speedup a.nd efficiency) and the second is 
the programming effort needed to obtain a. correct program. 

Baąed on the, presentations in [Ahuja. et al 1986; Hey and Pritchard 
1987) we recognize the following classes of parallelism: M-onte Carlo Paral­
./elism (processor fa.rm), Geometrie ·Pamllelism, Task Parallelistn and A/0 

gorithmic• Parni/elism. 

The Monte Carlo method consists of performing a. number of experi­
ments which ca.n be seen as dra.wing independent samples from an unknown 
distribution. Using these the charact.erisic ofinterest, whose value may be. 
deterministic is estimated. The a.ccuracy of the estimate is increasing with 
the number of experiments. 

For problems solvable by a Monte Carlo method there is a natura.I 
possible para.llelism in the sampling process. This sampling could be per­
formed in pa.ra.llel on m processors by. running the same program for dif­
ferent random numbers. This pa.rallelism tha.t ma.y be called Monte Carlo 
parallelism is therefore very ea.sy to implement. The speedup is linear and 
the efficiency maxima.I hecause no inte'ra.ct.ion between processors is needed. 

' Geometrie para.llelism is achieved by partit.ioning the problem into m 
subproblems of the same kind as the original ąne for instance by dividing 
the decision space into m pa.rts . Also in this approach the prograrnming 
is reduced to· developing a single program and the workloa.d on different 
processors is balanced. Of course one wouldexpect to encounter some bor­
der problems whose solution will require interactión hetween ńeighbouring 
processors. This could lea.d to some loss in elfi.ciency. It is interesting to . 
note tha.t Monte Carlo parallelism t a.n be regarded as tha.t special case of 
geometrie parallelism for which t.he m pa.rts a.re identical to the original 
problem. 

For task parallelism the problem is partit.ioned .into a number of dif­
ferent. t.asks classes. The tasks to be performed a.re administrated by a 
cocordinat.or. When a processor becomes idle ił, will be assigi:ied a new 
ta.sk by the coordinator. The speed up and efficiency is dependent on the 
number -of tasks that can be performed in parallel. The efficiency may be 
improved by decrea.sing the number of processors used . The workload is 
natura.llyT balanced. 

For algorithmic parallelism the steps i= CT in the program are real­
ized as m; pa.rallel proc~es, where mi is determined by the logic of the 
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algorithm. Each of the mi logical processes ·c_a.n run on a separate proces­
sor . Il is not an easy task in tl1is case to achieve efficiency because the 
number ~f pr!cessors needed in , the differen t steps may differ essentially. 
Also it is to be expected that the different lógical processes in the steps i 
and i+ l will correspond to comp1etely different algorithms which means . 
context switching and difficult p-togramming . 

2.2 Parallel Global Optimization 

For amore geneeral discussion including loca! optimization see [Sutti 
1983a.,b; Schnabel 1984,1987; lootsma and R.agsdell 1988]. 

Parallelism is easily achieved in glqbal optimization . By partitioning 
the optimization region A in m pa.rts geometrie parallelism is obtained. 

For probabilistic methods both geomct.ric and Mont.e Carlo parallelism 
can be utilized . Geometrie parallelism would be more efficient because of 
the stratified sampling, i.e., the possibility that sorne region is ignored is 
smaller for the more uniform distribution of trial points of the stratified 
sampling and therefore fewer points need to be sa.mpled [Tom 1974]. 

Ilowever, the partition may ~ead to a need for neighbouring processors 
to communicate. For insta.nce, if local search is a component in the global 
optimization ·method used a working point may want to enter the region of 
a. neighbonring processor . One solut.ion would be to" transport" this point _ 
to the processor in question which then could continue the local search. 
This could lead to big differences in processor workload . Another solution 
which do not have this drawback is to use the partition only for sampling 
trial points and let the search region be the whole A for each processor. 
If found advantageóus new local1minima found could be communicated to 
all processors. In this case the com11mnication need could be expect,ed to 
be smaller and the workload balanced. 

3 Applications 

One of the earliest contributions I.o parallel global optimization is 
[McJ(eown 1980]. Ba.sed on a discussion of Torn 's a.lgorithm [Tom 1978] 
a generał appr~ach to designing ·pa.ra.llel algorithms for multiple CP U sys­
tems utilizing global J'nemory is proposed . In order to achieve the highest 
level of parallelism possible he suggests modifying the complete sequential 
algorithrn so that it may be applied as a whole as one or many identical 
para.Ile! tasks, each of which w hen run alone would solve the problem. He 
ca.lis such an algorithm a h.olistic algorithm. The proposed holistic Tom 
algorithm uses the1global memory to store the working points (initially N0 
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in number). Each task improves working points and periodically transfers 
them to private memory for clustering and reduction . Some measures for 
avoiding unwanted interference between tasks such as flagging points that 
are being improved are discussed . Iłowever, such interferen-.e problems 
would not exist if Tom 's original alg<>rithm as such were used as the holis­
tic a.lgorithm, initializing the random number generator differently for each 
of them paralle1 task and using N0 /m initial working points for each task, 
i.e., if Monte Carlo parallelism were used . McKeow~ also suggests a holis­
tic version of the Price algorithm [Price 1978] . Some results of simulating 
the effect of various parameters in the algorithm on such characteristics as 
the proportion of time wasted in queuing for access to global memory is 
reported . · · 

Dixon and Patel [Dixon and Patel 1981] discuss the parallelization of · 
the algorithm of Price (Price 1981] for single CPU parallel computer (lCL's 
DAP), the algorithms of Torn [Torn 1978], and Doender et al [Boender et 
al 1982) for a multiple CPU machine with global memory. The algorithms 
suggested are ba.sed _on algorithmic parall elism. For Tom's ąlgorithm a 
task pa.rallelism a.pproach, where some processors are dedicated to perform 
tasks from the same task class is also suggested . The tasks considered are: 
sampling points, improving points and reducing points. No experiments · 
wer~ performed. 

In (Schnabel 1984] a conceptual pa.rallel a.lgorithm for global optimiza,­
tion ba.sed on algorithmic and geometrie parallelism is suggested. The algo­
rithm basica.lly consists of a.da.ptively partitioning the varia.ble space into 
subregions likely to contain one loca! mi.nimizer each (parallel sampling, 
trowing away high points and clus\ering), and then simultaneonsly finding 
these loca.I minimizers using separate processors, recurring this _procedure 
as necessa.ry. Additional efficiency is promóted by the early termination of 
subregions where the function is high. 

In [Sutti 1984] a para.lfe'lization of Price's a.lgorithm for a multiple CPU 
computer based on algorithmic para.llelism is suggested. It is reported that 
numerical experiments on the Neptune system at Loughborough University 
were performed on par allel versions of Price's and Tom 's algorithms. No 
numerical results are given . 

Evtushenko (Evtushenko 1985] in his descript.ion of covering methods 
for global optimization suggests the use of multiprocessor computers. The 
operating efficiency of the method depends on the sequence of coordinate­
wise cpverings of the parallelepiped. Dy running one processor. for each 
cooordinate and excha.nging information between the processors the effi­
ciency could be improved. He also suggests a.nother possible -va.ria.nt: the 

\ pa.rtit.ion of the para.llelepiped into s parts, s being the number of proces­
sors, i.e., geometrie p~rallelization. 
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3.1 Single C PU Applications 

Two implementations of Price's algorithm on the ICL DAP at Queen 
Mary College, Universi ty of London was applied to a ll except H3 of the 
standard test problems and additionally to the six-hump camel back func­
tion and a Shu bert function with 18 global minima {Ducksbury 1986]. The 
initial parallel algorithm which was a direct parallelization of Price's algo­
rithm was much slower than the sequential algorithm! The explanation is 
that the three sections of the a.lgorithm that could not be parallelized were 
the main time consumers. The algorithm was then modified to allow for 
more parallelism. This version showed a speedup ranging from 3.2 to 68 
over the problems. The efficiency is stili ra.ther low because 4096 processors 
were used . The experimeut revealed tha.t. the parallelism in the algorithm 
must be very closely matched oni.o the available hardware, in order to take 
advantage of its computing power . 

Large scale (n = l 00-500 ) quadratic ( wit.h negatively defined matrix ) 
global optimization problems solved on vect.or cornpute;s is considered in 
[Pardalos 1986). The optimizations were carriecl out on the machines Cray 
1 S and Gray X-MP /48. With only 4 except.ions ( out of a total 240) test 
problems. at least one solution was found to each problem. No advaritages 
oft.he multiple CPU capabilit.y oft.he Gray X-MP/48 was taken. The CPU 
t.ime for the problems was found t.o bi' well approxirnat.ed by (1.5/104 )n4 

sec. 

3.2 Multiple CPU Applications 

In {Dyrd et al 1986; Schnabel 1087) a concurrent variant of Timmers 
algorithm is considered. The test environment consisted of a network of 
four or eight Sun-3 workstations . The master-sla.ve model of DPUP was 
used (see Sec. 1.2). The parallel algorithms a.re hased on algorithmic 
parallelism the first part using geometrie parallelism (sampling and choice 
of start point.s) and the second part task parallelism (loca! minimizations) 
[Byrd et al 1986). 

The test problems considered were the standard test problems. From 
t.heir results they can simul?.te the speed up I.hat. would be obtained on these 
p'roblems using any number of processors when only the cost of function 
evaluations is being considered . Wit h a. sample size of 200 points per 
iterat.ion, the speedup with 8 processors was between 3.5 and 6.1 for the 
seven test problems, ~nd for t he number of processors 200 or more 4.8 
and I O .O respect.ively. For a largcr sample size; 1,000 points, the speed up 
figures were 6.0-7 .1 (8 processors) and 17 .9-27.0 (1,000 processors). 

The results illustrate that. it is rat.her e11Sy to · make good use of a 
relatively small number of processors for expencive function evaluatious 
using thi~ ·,l gorii.hm, but that the speedup for larger nu mber of processors 



- 337 -

may be, limited due to the small numher of loca! minimizations m the 
second part of the algorithm, 

In order to make use of more ~rocessors when performirig )ocal min­
imizations Schnabel proposed to use severa! processors in the local min­
imization step so that function evaluations and finite difference gradient 
evaluations could be made in paralleL The speedup· for the H3 problem 
for (6, 12, 24, 1000) processors improved from (5.4, 8,7, 12 ,9, 23.9) to (5.8, 
10.5, 17.1, 44.0) and (5.8, 11.3, 20.5, 76.3) for two different parallel !o­
cal minimization strategies. · The improvement is essential, but for a large 
number of processors the speedup gain declines. In order to further im­
prove the efnciency. it is suggested to divide the problem into task classes 
(sampling, minimization) . By dedicating t.he righ t number of processors 
for performing tasks from these ta5k classes a more efficient utilization of 
the processors overall would be achieved . 

At Abo Akademi (Finland ) sorne experiment.s were performed on a 
16 IMS T414 transputer syst.em (l lat.hi I) [Vi'alldćn 1987], Geometrie par­
allelization was used dividing A into 8 equal sized parts in which crude 
sampling was performed using 8 processors . The program was written in 
OCCAM, a language specially designed for parallel programming. In order 
to introduce some communicatioo the processes were connected in a tree 
stucture each process reporting when a new bet.ter vah!e was found . In . 
this way the top process all the time hc1s up-to-da.te information about the 
b-est point discovered . This best point value was also communicated down 
the tree in order to avoid unnecessary rep~rting, The speedup approaches 
8 for expensive fundions as expected . When compared to the parallel al­
gorithm run on a single transputer the speed up was as high as 14 because 
of the· time-slicing overhead when the proccssiis are running in parallel on 
the timesharing system of one transputer . A more serious effort to par­
allel global optimization will be undertaken on Ilathi 2, a 100 lMS T800 
transputer system installed iń 1988. 

Price describes a transputer version of his algorithm [Price 1978, 1983) 
in [Price 1987]. Each transputer is working on its own (randomly chosen) 
set of points, trying to replace the worst point by a bet ter . W hen such a 
point is found the rcsult is forwardcd t,o a coordinator transputer for accep­
tance. The coordinator transputer also act.s a5 the st.orage for the whole 
point set and initiat.es loca! searches when some conditions are fulfilled , 
Simulat.ions wit.h an OCCAM irnplement,at.iÓn suggest that the speedup 
should be linear provided I.hat, comm11;1ication overheads are relatively in- _ 
significant. [t, is also mentioned that some preliminary experime·nts run on 
a protot.ype computer with five transputers achieved the expected fourfold 
reduction in running time. 
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4 Conclusions 

The speedup and efficiency obtained in parallel applications of global 
optimiza.tion has in many cases fallen short of expectations. In some cases 
the time to obtain a solution has even been longer for a parallel algorithm · 
than for a ccirresponding sequential one. Partly this is due tp the novel ty of 
the subject, and to the fact that programming parallel algorithms is more 
difficult than programming sequential ones. Ifowever, a more fundamental 
difficulty is the limited parallelism a.chievable in algorithmic parallelization 
of certain sequential algorithms. Oecause global optimization is suita.ble 
for Monte Carlo and geometrical parallelization, which does not have the 
drawbacks of algorithmic parallelization, methods based on these concepts 
as well as algorithms ba.sed on task parallelism seems worth future in"'.es­
tigation . 

The speed up possible by using parallel comput,ers is especially interest­
ing for the covering type methods because successful application here will 
considerably extend the number of sol va.ble global optimization problems. 
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