

- 330 -

considered equally critical (the global stage). Of course, no significant
part of A must be neglected, unless one is willing to accept a considerable
chance that the global minimum will be missed. When some information is
accumulated some parts of the solution set may be deemed more interesting
than others and more accurate solutions in these parts are wanted (the local
stage).

The effort required to obtain a solution is a function of the smoothness
assumptions and the accuracy requiremments. Normally it is not known
if some smootness requirement is [ulfitied for the problem to he ved
and therefore it cannot normally : guaranteed that the glob solution
is obtained when the computation stops. By assigning liberal smoothness
conditions the probability that the optimal solution is obtained will be
larger but the computation time will also becomes longer. To cope with
long computation times parallel algorithms could be a possible solution.

Paralle] algorithms for different parallel computers are quite different.
It is therefore necessary to know the features of these architectures before
discussing parallel algorithms. An exposition more detailed than that given
below can be found for instance in [Moitra and Iyengar 198

2 arallel computers

Parallel computers may be divided into two categories. They are
single-instruction multiple-data (SIMD) machines and multiple-instruction
multiple-data (MIMD) machines. Ordinary computers with.a single CPU
could with this terminology be called single-instruction single-data (SISD)
machines. MIMD could mean either several SIMD machines or several
SISD machines, whi is not so important, it is the existance of several
CPUs that counts. Instead of SIMD and MIMD the namessi e CPU (1-
CPU) parallel computers and multiple CPU (M-CPU) parallel computers
therefore could be used. .

1.1 Single CPU Parallel Computers

The common feature for these machines is they contain two types of
processors; one master processor (CPU) and a ls : number of simpler
slave processors that can work in parallel and essentiaily perform the same
type of task.

Vector processors have already been used some time to speed up pro-
cessing for some type of problems. The p e is that the same operation
is performed simultaneou ' for a large number of tuples of elements. The
speedup is facilitated by the use of veclor registers, pipelining, multiple

- 332 -

A third class consists of inexpensive micro processors that are con-
" nected to become nodes in a processor network. The input/output unit
and the secondary storage used is normally supplied by an ordin:
computer. An example of such prosessors are Inmos’ transputers, «
designed to be nodes in a distributed processor network. The tr:
are rather powerful CPUs (IMS T414: =~ 10 Mips, IMS T800: =
Flops) with its own local memory. Each transputer may be con
four other transputers. '

The simple construction admits to construct large systems with a -

siderable ¢ ing power (super computer) at a rather low cost. Because
of this we : that the utilization of these machines will probably show
to be high arding. The concept of shared storage may be used . it

can be implemented without having a physically shared storage [Ah_, et
al 1986].

2 Parallel Algorithms

The performance of parallel algorithms is often measured by using the
characteristic called speedup. Let the time ne d to solve a problem by a
parallel algorithm on m processors be t,,, and let the time required to solve
the same problem using a non-pai el algorithm on the same system be

ty. ' e speedup Sy, is defined as the ratio
Sm = tl/tm.
If the speedup is prop« onal to the number of processors m used it d

that the speedup is linear. The expression for the speedup could aiso e
interpreted as the effective number of processors m. in the system.

The efficiency of an implementation of an algorithm on a multipro-
cessor machine may be defined as

E,, = Sy/m.
In order to obtain a good efficiency one should therefore keep all the pro-
cessors busy working productively un the problem is solved, an °r
to obtain good speedup one should try to use as many processor. _ 1g
as-possible.

The cﬁectivéness Fin [Schendel 1984] is c¢...ned ds
Fno=Sm /(2 Sm/t1,

where mt,,, measures the ’cost’ ¢ el algorithm. F,, is thus a
measure of both eedup and efficiency. ‘

- 334 -

algorithm. Each of the m; logical processes can run on a separate proces-
sor. It is not an easy task in this case to achieve efficiency because the
number of pr(’)cessors needed in.the different steps may differ essentially.
Also it is to be expected that the difTerent logical processes in the steps i
and i + 1 will correspond to completely diflerent algorithms which means
context switching and difficult programming.

2.2 Parallel Global Optimization

For a more geneeral discussion including local optimization see [Sutti
1983a,b; Schnabel 1984,1987; lootsma and Ragsdell 1988].

Parallelism is easily achieved in global optimization. By partitioning
the optimization region A in m parts geometric parallelism is obtained.

For probabilistic methods both geometric and Monte Carlo parallelism
can be utilized. Geometric parallelistn would be 1more efficient because of
the stratified sampling, i.e., the possibility that some region is ignored is

aller for the more uniform distribution of trial points of the stratified
sampling and therefore fewer points need to be sampled [Torn 1974).

Ilowever, the partition may dead to a need for neighbouring processors
to communicate. For instance, if local search is a component in the global
optimization method used a working point may want to enter the region of
a neighbouring processor. One solution would be to ”transport” this point
to the processor in question which then could continue the local search.
This could lead to big diflerences in processor workload. Another solution
which do not have this drawback is to use the partition only for sampling
trial points and let the search region be the whole A for each processor.
If found advantageous new local minima found could be communicated to

processors. In this case the communication need could be expected to
be smaller and the workload balanced.

3 Applications

One of the earliest contribulions to parallel global optimization is
[McKeown 1980]. Based on a discussion of Térn's algorithm [Térn 1978]
a general approach to designing parallel algorithms for multiple CPU sys-
tems utilizing global memory is proposed. In ordert chieve the highest
level of paralielism possible he suggests modifying the complete sequential
algorithm so that it may be applied as a whole as one of many identical
parallel tasks, each of which when run alone would solve the problem. He
calls such an algorithm a holistic algorithm. ' e proposed holistic Térn
algorithm uses the global memory to store the working points (initially Ny

% P

3.1 Single CPU Applications

Two implementations of Price’s algorithm on the ICL DAP at Queen
Mary College, University of London was applied to all except H3 of the
standard test problems and additionally to the six-hump camel back func-
tion and a Shubert function with 18 global minima [Ducksbury 1986]. The
initial parallel algorithm which was a direct parallelization of Price’s algo-
rithm was much slower than the sequential algorithm! The explanation is
that the three sections of the algorithm that could not be parallelized were
the main time consumers. The algorithm was then modified to allow for
more parallelism. This version showed a speedup ranging from 3.2 to 68
over the problems. The efficiency is still rather low because 4096 processors
were used. The experiment revealed that the paralielism in the algorithm
must be very closely matched onto the available hardware, in order to take
advantage of its computing power

Large scale (n = 100 - 500) quadratic (with negatively defined matrix)
global optimization problems solved on vector computers is considered in
[Pardalos 1986). The optimizations were carried out on the machines Cray
1S and Cray X-MP/48. With only 4 exceptions (out of a total 240) test
problems, at least one solution was found to each problem. No advantages
of the multiple CPU capability of the Cray X-MP/48 was taken. The CPU
time for the probiems was found to be well approximated by (1.5/10%)n*
sec.

3.2 Multiple CPU Applications

In [Byrd et ol 1986; Schnabel 1987} a concurrent variant of Timmers
algorithm is considered. The test environment consisted of a network of
four or eight Sun-3 workstations. The master-slave model of DPUP was
used (see Sec. 1.2). The parallel algorithms are based on algorithmic
parallelism the first part using geometric .rallelism (sam 1g and choice
of start points) and the second part tasl .rallelism (loca inimizations)
{Byrd et al 1986].

The test problems considered were the standard test problems. From
their results they can simulate the speedup that would be obtained on these
problems using any number of processors when only the cost of function
evaluations is being considered. With a sample size of 200 points per
iteration, the speedup with 8 processors was between 3.5 and 6.1 for the
seven test problems. and for the number of processors 200 or more 4.8
and 10.0 respectively. For a larger sample size; 1,000 points, the speedup
figurés were 6.0-7.1 (8 processors) and 17.9-27.0 (1,000 processors).

The results illustrate that it is rather easy to make good use of a
relatively small number of processors for expencive function evaluations
using this -‘gorithm, but that the speedup for larger number of processors

