

Polaka Akademia Nauk Instytut Badań Systemowych

Methodology and applicałions_

of decision support sysłems

Proceedings of the 3-rd
Polish-Finnish Symposiom
Gdańsk-Sobieszewo, S~płember 26-29, 1988

' edited by
Roman Kulikowski · ;

. ' .,,.,

Warszawa 1989

Secretary of the Conference
dr. Andrzej Stachurski

Wykonano z gotowych oryginałów tekstowych
dostarczonych przez autorów

- 329 -

Parallel Monte Car lo wit h applicat ion to g lobal
optimization

Aimo A. Toru ·
' Abo Akademi, Data City ,

SF-20520 A~O, Finland

Abstract

Different t ypes of parallel machines and existing systems are described
and principles for paralleliza tion of algorithms are discussed. Algorithms
proposed for global optimization are reviewed and based on this some con­
clusions ,rega.rdi ng paralleliza tion of globa.l optimization algorithms are pre-
~~- . '

1 Introd uc tion

With the increasing availability of multiprocessor systems designed for
parallel execution of algorithms it seems appropriate to discuss the possible
merit in using parallel algorithms in optimiza.tion .

One optimization problem thai. la.tely has recei ved considerable atten­
tion is the so called globa.l optimization problem [Tom .and Żilinskas 1988] .
The global optimization ·problem consists in finding 'the global minimum
of a given function j(x) over s9me ,specified region A . The ·fuuction /(-)
may have severa! !ocal minima in A .

In contrast, to local optimization for which the attainment of the !ocal
minimum is decidable (gradient equal to zero) no such gener\J criterion .
exists in global optimization for asserting that the global minimum has
been reached. ·

The only way to obtain information abo~t the function is to make a
function eva.luation. Norma.Iły a procedure for computing f(x) is available
but this may not be the case fort.he deriva.t.iv.es of/. Some vague auxiliary

· information about the smoothness of/ may be. av~ilable . In addition to
determining the global minimum. r and :r• il. is of int,erest to find also
ot.her good minima and their local.ions. .

The solution strat,egy norma.Iły consisls of global and !ocal stages.
In the abseuce of a priorj information all pa.rt.s of the region must be

)
- 330 -

considered equally critical (the global stage). Of course , no significant
parL of A must be neglected, unless one is willing to accept a considerable
chance that the global minimum will be missed. When some in formation is
accumulated some parts of the solu tion ~et ma.y be deemed more interesting
than others and mare accurate solu tions in these parts are wanted (the !ocal
stage) .

The effort required to obtain a solution is a function of the smoothness
assumptions and the accuracy requirements . Normally it is not known
if some smootness requirement is fulfillcd for the problem to be solved
and therefore it cannot normally be guaranteed that the global solution
is obtained w hen the comput.ation stops . Oy assigning liberał . smoothness
condi tions the probability that the optima! solu tion is obtained will be
larger but the computation time will a.lso becomes longer. To cope with
long computation times parallel algorithms could be a poosible solution.

Parallel algorithms for different parallel computers are quite different.
It is therefore necessary to know the features of these architectures before
discussing parallel algorithms. An exposition more deta.iled tha.n tha.t given
below can be found for instance in [Moi tra and Iyengar 1987).

2 Parallcl compute rs

Parallel comput.ers may be di vided int.o two categories. They are
single-instruct.ion mult.iple-dat.a (S1 MD) machines and multiple-instruction
multiple-data (MIMO) machines . Ordinary computers with . a single CPU
could with this terminology be called single-instruction single-data"(SISD)
machines. MIMO could mean either several SIMO rnachines or severa!
SISD ma.chines, which is not. so important, it is the existance of severa!
CP Us that counts . Instead of SIMD and MIMO the names single CPU (1-
CPU) parallel computers and multiple CPU (M-CPU) para.Ile! computers
therefore could be used.

1.1 Single CPU Parallel Computers

The common feat.~re for these machines is they contain two types of
processors ; one master processor (CPU) and a large number of simpler
slave processors that can work in parallel and essentially perform the same
type of task.

Vector processors have already been used some time to speed up pro­
cessing for some t.ype of problems. The principle is that the same operation
is performed simu]t.a.neously for a large number of tuples of elements. The
speedup is facilitat.ed by the use of vector regist.ers, pipelining, multiple

- 331 -

funct 'on units (processors) and chaining. Problems that can be written
in form of iterative application of simple operations on a large number of
processing elernents are· sui table for veclor prócessing. Example of vector ·
processing machines are CRAY-1 and CYBEit 205 (CDC) . Vector proces­
sors are also available as add ons ror ordinary computers.

A somewhat different single CPU machine is ICL's distributed array
processor (DAP). The processors are arranged in a 64 x 64 matrix struc­
ture. Each processor can be connected to four neighbout processors; there
is also row and column data highwa)IS which connect all processors in a
given row or column and allów for rapid broad~asiing of infprmation across
the processing matrix. Each processor has its own loca! storage and some
i-egisters. Ali the processoi's perform the same instruction, which is broad­
casted from the CPU.

1.2 Multiple CPU Parallcl Compntcrs

In order for several CPUs to be able to work on the same problem these
must be coupled in some way to permit information to be exchanged during
the computation. The main principles for this are to have the processors
coupled to a common stor age or to couple the processors so that they form
a network with a;. distributed storage, The processors can exchange infor­
mation either by reading f~om and wri'ting into the same storage positions
or by sending messages, depending on the principle adopted.

One class of multiple CPU parallel machii1es consists of big expensive
computers with few CPUs (< 10). These machines use the shared storage
mechanism. In this class there are several. GRAY X-MP machines, IBM
3090 rnachines and ETA 10 machines (CDC) .

Less exp,ensive systems can b~ . coi!structed by connecting micro ce1m- ·.
puters like workstations to form a parallel computer. Such an environment
consisting of Sun-3 workstations connected on an ethernet exists at the
University of Colorado. The ability to use the network of workstations for
distributed concurrent processing is based on the Sun version of the Berke­
ley Unix 4.2 operating system, which each workstation runs. A distributed
processing t.ool, DPUP, provides. two models of co,1current computation.
The first is a master-slave model :-,vhere all processes are linked to one mas­
ter in a star arrangement and all communication is through the master.

· The second is a broadcast model where ea.ch prócess is a.n equal member
of a ring of processes and can .send messages to a.li of the processes at
once. DPUP provides several ba.sic co11currcncy capa.bilities including the
crea.tion and termination of remote processes and various means to send
and receive messages.

- 332 -

A third class consists of inexpensive micro processors tha.t are con­
nected to become nodes in a processor network. The input/output unit'
and the seconda.ry stora.ge used is norma.Iły supplied by an ordina.ry micro
compu_ter. An example of such prosessor~ a.re In mos' transputers, especially
designed to be nodes in a. distribut.ed processor network. The tra.nsputers
are rather powerful CPUs {IMS T414: :::; 10 Mips, IMS T800: ~ 2 Mega.
Flops) with it.s own !ocal memory. Each t.ransputer may be connected to
four other transputers. ·

The simple construction admits to construct large systems with a con­
siderable compu ting power (super computer) a.t a ra.ther low cost. Because
of this we beli ve that the utilization of these machines will probably show
to be highly rewarding. The concept of shared storage may be used and it
can be implemented without having a physically shared storage (Ahuja et

al 1986].

2 Parallel Algoi-ithms

The performance of parallel a.lgorithms is often measured by using the
chara.cteristic called speedup. Let the time needed to solve a problem by a ·
pa.ra.llel algorithm on m processors be tm a,;d let the time required to solve
the same problem using a. non-para.Ile! algorithm on the same system be

. t,. The speed up Sm is defined as the ratio

lf the speedup is proportional to the nu·mber of processors m use<l it is said
that the speedup is linear. The expression for the speedup could also be
interpret.ed as the effecti11e number of processors m, in the system.

The efficiency of an implementation of a.n algorithm on a multipro­
cessor machine may be defined as

In order to obtain a good efficiency one should therefore keep all the pro­
cessors busy working product.ively until the problem is solved, and in order
to obtain good speedup one should try to use as many processors working
as· possi ble.

The effectiveness Fm (Schendel 1984] is defined as

where mtm measures the 'cost' of the parallel algorithm. Fm is thus a
mea.sure of both speedup and efficiency.

- 333 -

2.1 Principles for Parallelization

The central problem of pa.ra.llel progra.mming is the question of how to
obt~in program units that can be processed in pafallel. There are at least
two issues tha.t_ must be a.ddressed when discussing pa.ra.llelization. The
first.is the degree of para.llelism (speedup a.nd efficiency) and the second is
the programming effort needed to obtain a. correct program.

Baąed on the, presentations in [Ahuja. et al 1986; Hey and Pritchard
1987) we recognize the following classes of parallelism: M-onte Carlo Paral­
./elism (processor fa.rm), Geometrie ·Pamllelism, Task Parallelistn and A/0

gorithmic• Parni/elism.

The Monte Carlo method consists of performing a. number of experi­
ments which ca.n be seen as dra.wing independent samples from an unknown
distribution. Using these the charact.erisic ofinterest, whose value may be.
deterministic is estimated. The a.ccuracy of the estimate is increasing with
the number of experiments.

For problems solvable by a Monte Carlo method there is a natura.I
possible para.llelism in the sampling process. This sampling could be per­
formed in pa.ra.llel on m processors by. running the same program for dif­
ferent random numbers. This pa.rallelism tha.t ma.y be called Monte Carlo
parallelism is therefore very ea.sy to implement. The speedup is linear and
the efficiency maxima.I hecause no inte'ra.ct.ion between processors is needed.

' Geometrie para.llelism is achieved by partit.ioning the problem into m
subproblems of the same kind as the original ąne for instance by dividing
the decision space into m pa.rts . Also in this approach the prograrnming
is reduced to· developing a single program and the workloa.d on different
processors is balanced. Of course one wouldexpect to encounter some bor­
der problems whose solution will require interactión hetween ńeighbouring
processors. This could lea.d to some loss in elfi.ciency. It is interesting to .
note tha.t Monte Carlo parallelism t a.n be regarded as tha.t special case of
geometrie parallelism for which t.he m pa.rts a.re identical to the original
problem.

For task parallelism the problem is partit.ioned .into a number of dif­
ferent. t.asks classes. The tasks to be performed a.re administrated by a
cocordinat.or. When a processor becomes idle ił, will be assigi:ied a new
ta.sk by the coordinator. The speed up and efficiency is dependent on the
number -of tasks that can be performed in parallel. The efficiency may be
improved by decrea.sing the number of processors used . The workload is
natura.llyT balanced.

For algorithmic parallelism the steps i= CT in the program are real­
ized as m; pa.rallel proc~es, where mi is determined by the logic of the

)

- 334 -

algorithm. Each of the mi logical processes ·c_a.n run on a separate proces­
sor . Il is not an easy task in tl1is case to achieve efficiency because the
number ~f pr!cessors needed in , the differen t steps may differ essentially.
Also it is to be expected that the different lógical processes in the steps i
and i+ l will correspond to comp1etely different algorithms which means .
context switching and difficult p-togramming .

2.2 Parallel Global Optimization

For amore geneeral discussion including loca! optimization see [Sutti
1983a.,b; Schnabel 1984,1987; lootsma and R.agsdell 1988].

Parallelism is easily achieved in glqbal optimization . By partitioning
the optimization region A in m pa.rts geometrie parallelism is obtained.

For probabilistic methods both geomct.ric and Mont.e Carlo parallelism
can be utilized . Geometrie parallelism would be more efficient because of
the stratified sampling, i.e., the possibility that sorne region is ignored is
smaller for the more uniform distribution of trial points of the stratified
sampling and therefore fewer points need to be sa.mpled [Tom 1974].

Ilowever, the partition may ~ead to a need for neighbouring processors
to communicate. For insta.nce, if local search is a component in the global
optimization ·method used a working point may want to enter the region of
a. neighbonring processor . One solut.ion would be to" transport" this point _
to the processor in question which then could continue the local search.
This could lead to big differences in processor workload . Another solution
which do not have this drawback is to use the partition only for sampling
trial points and let the search region be the whole A for each processor.
If found advantageóus new local1minima found could be communicated to
all processors. In this case the com11mnication need could be expect,ed to
be smaller and the workload balanced.

3 Applications

One of the earliest contributions I.o parallel global optimization is
[McJ(eown 1980]. Ba.sed on a discussion of Torn 's a.lgorithm [Tom 1978]
a generał appr~ach to designing ·pa.ra.llel algorithms for multiple CP U sys­
tems utilizing global J'nemory is proposed . In order to achieve the highest
level of parallelism possible he suggests modifying the complete sequential
algorithrn so that it may be applied as a whole as one or many identical
para.Ile! tasks, each of which w hen run alone would solve the problem. He
ca.lis such an algorithm a h.olistic algorithm. The proposed holistic Tom
algorithm uses the1global memory to store the working points (initially N0

- 335 -

in number). Each task improves working points and periodically transfers
them to private memory for clustering and reduction . Some measures for
avoiding unwanted interference between tasks such as flagging points that
are being improved are discussed . Iłowever, such interferen-.e problems
would not exist if Tom 's original alg<>rithm as such were used as the holis­
tic a.lgorithm, initializing the random number generator differently for each
of them paralle1 task and using N0 /m initial working points for each task,
i.e., if Monte Carlo parallelism were used . McKeow~ also suggests a holis­
tic version of the Price algorithm [Price 1978] . Some results of simulating
the effect of various parameters in the algorithm on such characteristics as
the proportion of time wasted in queuing for access to global memory is
reported . · ·

Dixon and Patel [Dixon and Patel 1981] discuss the parallelization of ·
the algorithm of Price (Price 1981] for single CPU parallel computer (lCL's
DAP), the algorithms of Torn [Torn 1978], and Doender et al [Boender et
al 1982) for a multiple CPU machine with global memory. The algorithms
suggested are ba.sed _on algorithmic parall elism. For Tom's ąlgorithm a
task pa.rallelism a.pproach, where some processors are dedicated to perform
tasks from the same task class is also suggested . The tasks considered are:
sampling points, improving points and reducing points. No experiments ·
wer~ performed.

In (Schnabel 1984] a conceptual pa.rallel a.lgorithm for global optimiza,­
tion ba.sed on algorithmic and geometrie parallelism is suggested. The algo­
rithm basica.lly consists of a.da.ptively partitioning the varia.ble space into
subregions likely to contain one loca! mi.nimizer each (parallel sampling,
trowing away high points and clus\ering), and then simultaneonsly finding
these loca.I minimizers using separate processors, recurring this _procedure
as necessa.ry. Additional efficiency is promóted by the early termination of
subregions where the function is high.

In [Sutti 1984] a para.lfe'lization of Price's a.lgorithm for a multiple CPU
computer based on algorithmic para.llelism is suggested. It is reported that
numerical experiments on the Neptune system at Loughborough University
were performed on par allel versions of Price's and Tom 's algorithms. No
numerical results are given .

Evtushenko (Evtushenko 1985] in his descript.ion of covering methods
for global optimization suggests the use of multiprocessor computers. The
operating efficiency of the method depends on the sequence of coordinate­
wise cpverings of the parallelepiped. Dy running one processor. for each
cooordinate and excha.nging information between the processors the effi­
ciency could be improved. He also suggests a.nother possible -va.ria.nt: the

\ pa.rtit.ion of the para.llelepiped into s parts, s being the number of proces­
sors, i.e., geometrie p~rallelization.

J

- 3 ,6 -

3.1 Single C PU Applications

Two implementations of Price's algorithm on the ICL DAP at Queen
Mary College, Universi ty of London was applied to a ll except H3 of the
standard test problems and additionally to the six-hump camel back func­
tion and a Shu bert function with 18 global minima {Ducksbury 1986]. The
initial parallel algorithm which was a direct parallelization of Price's algo­
rithm was much slower than the sequential algorithm! The explanation is
that the three sections of the a.lgorithm that could not be parallelized were
the main time consumers. The algorithm was then modified to allow for
more parallelism. This version showed a speedup ranging from 3.2 to 68
over the problems. The efficiency is stili ra.ther low because 4096 processors
were used . The experimeut revealed tha.t. the parallelism in the algorithm
must be very closely matched oni.o the available hardware, in order to take
advantage of its computing power .

Large scale (n = l 00-500) quadratic (wit.h negatively defined matrix)
global optimization problems solved on vect.or cornpute;s is considered in
[Pardalos 1986). The optimizations were carriecl out on the machines Cray
1 S and Gray X-MP /48. With only 4 except.ions (out of a total 240) test
problems. at least one solution was found to each problem. No advaritages
oft.he multiple CPU capabilit.y oft.he Gray X-MP/48 was taken. The CPU
t.ime for the problems was found t.o bi' well approxirnat.ed by (1.5/104)n4

sec.

3.2 Multiple CPU Applications

In {Dyrd et al 1986; Schnabel 1087) a concurrent variant of Timmers
algorithm is considered. The test environment consisted of a network of
four or eight Sun-3 workstations . The master-sla.ve model of DPUP was
used (see Sec. 1.2). The parallel algorithms a.re hased on algorithmic
parallelism the first part using geometrie parallelism (sampling and choice
of start point.s) and the second part task parallelism (loca! minimizations)
[Byrd et al 1986).

The test problems considered were the standard test problems. From
t.heir results they can simul?.te the speed up I.hat. would be obtained on these
p'roblems using any number of processors when only the cost of function
evaluations is being considered . Wit h a. sample size of 200 points per
iterat.ion, the speedup with 8 processors was between 3.5 and 6.1 for the
seven test problems, ~nd for t he number of processors 200 or more 4.8
and I O .O respect.ively. For a largcr sample size; 1,000 points, the speed up
figures were 6.0-7 .1 (8 processors) and 17 .9-27.0 (1,000 processors).

The results illustrate that. it is rat.her e11Sy to · make good use of a
relatively small number of processors for expencive function evaluatious
using thi~ ·,l gorii.hm, but that the speedup for larger nu mber of processors

- 337 -

may be, limited due to the small numher of loca! minimizations m the
second part of the algorithm,

In order to make use of more ~rocessors when performirig)ocal min­
imizations Schnabel proposed to use severa! processors in the local min­
imization step so that function evaluations and finite difference gradient
evaluations could be made in paralleL The speedup· for the H3 problem
for (6, 12, 24, 1000) processors improved from (5.4, 8,7, 12 ,9, 23.9) to (5.8,
10.5, 17.1, 44.0) and (5.8, 11.3, 20.5, 76.3) for two different parallel !o­
cal minimization strategies. · The improvement is essential, but for a large
number of processors the speedup gain declines. In order to further im­
prove the efnciency. it is suggested to divide the problem into task classes
(sampling, minimization) . By dedicating t.he righ t number of processors
for performing tasks from these ta5k classes a more efficient utilization of
the processors overall would be achieved .

At Abo Akademi (Finland) sorne experiment.s were performed on a
16 IMS T414 transputer syst.em (l lat.hi I) [Vi'alldćn 1987], Geometrie par­
allelization was used dividing A into 8 equal sized parts in which crude
sampling was performed using 8 processors . The program was written in
OCCAM, a language specially designed for parallel programming. In order
to introduce some communicatioo the processes were connected in a tree
stucture each process reporting when a new bet.ter vah!e was found . In .
this way the top process all the time hc1s up-to-da.te information about the
b-est point discovered . This best point value was also communicated down
the tree in order to avoid unnecessary rep~rting, The speedup approaches
8 for expensive fundions as expected . When compared to the parallel al­
gorithm run on a single transputer the speed up was as high as 14 because
of the· time-slicing overhead when the proccssiis are running in parallel on
the timesharing system of one transputer . A more serious effort to par­
allel global optimization will be undertaken on Ilathi 2, a 100 lMS T800
transputer system installed iń 1988.

Price describes a transputer version of his algorithm [Price 1978, 1983)
in [Price 1987]. Each transputer is working on its own (randomly chosen)
set of points, trying to replace the worst point by a bet ter . W hen such a
point is found the rcsult is forwardcd t,o a coordinator transputer for accep­
tance. The coordinator transputer also act.s a5 the st.orage for the whole
point set and initiat.es loca! searches when some conditions are fulfilled ,
Simulat.ions wit.h an OCCAM irnplement,at.iÓn suggest that the speedup
should be linear provided I.hat, comm11;1ication overheads are relatively in- _
significant. [t, is also mentioned that some preliminary experime·nts run on
a protot.ype computer with five transputers achieved the expected fourfold
reduction in running time.

I)

- 338 -

4 Conclusions

The speedup and efficiency obtained in parallel applications of global
optimiza.tion has in many cases fallen short of expectations. In some cases
the time to obtain a solution has even been longer for a parallel algorithm ·
than for a ccirresponding sequential one. Partly this is due tp the novel ty of
the subject, and to the fact that programming parallel algorithms is more
difficult than programming sequential ones. Ifowever, a more fundamental
difficulty is the limited parallelism a.chievable in algorithmic parallelization
of certain sequential algorithms. Oecause global optimization is suita.ble
for Monte Carlo and geometrical parallelization, which does not have the
drawbacks of algorithmic parallelization, methods based on these concepts
as well as algorithms ba.sed on task parallelism seems worth future in"'.es­
tigation .

The speed up possible by using parallel comput,ers is especially interest­
ing for the covering type methods because successful application here will
considerably extend the number of sol va.ble global optimization problems.

References

[Ahuja et al 1986] S. Ahuja, N. Carriero and D. Gelernter, Linda and
friends, Computer 19, 26-34.

[Boender et al 1982] G . Boender, A. Rinnooy Kan, L. Stougie and G.
Timmer, A stochastic method for global optimirntion, Mathematical
Programming 22, 125-140. ,

[Byrd et al 1986) R.H. Byrd , C. Dert, A.11.G. !linnooy Kan and R.B .
Schnabel , Concurrent stochasl.ic m.ethods for global optimization, Tech.
Rept. CU~CS-338-86, Depart.ment of Computer Science, University of
Colorado, Boulder, CO, 40.

[Dert 1986] C.L. Dert , A para/lei algorilhm for global optimization, Mas­
ters t.hesis, Econometric lnsit.ute, 8rasmus University, The Nether­
lands .

[Dixon and Patel 1981) L.C.W. Dixon and KO. Pa.tel, The place of
para/lei computatio11 in 11umerical optimizatio11 Il; the multiextremal
globnl optimizatioń problem, The Ilatfield Polytechnic, NOC 119, 11
p .

[Ducksbury 1986) P.G. Ducksbury, Para/lei array processing, (Ellis Har­
wood, Chich ester) 123 p.

[Evtusbenko 1985] Yo.G. Evt.ushenko, Numericnl optimization tech­
niques, (Optimization Software, Inc ., Nei: York), 561 p .

- 339 -

[Hey and Pritchard 1987) A.J ;G. Hey and D.J. Pritchard, Parallelism in
scientific programming and its efficient implementation on transputer
arrays, Technica.l Report, Dept. of Electr. and Computer Science,
U niversity of Soutltampton, 70 p. ·

[Lootsma and Ragsdell 1988) F.A. Lootsma and K.M. RagsdeU, State­
af-tlie-art in para/lei nonlineai· optimizatio11 , Parallel Compu.ting 6,
133-155. .

[McKeown 1980) J .J . McKeown, Aspects of paral/el computations in nuc
merical1optimization, in: ·F. Arcetti and M, Cugiani (eds.), Numerical
techniques for stochastic systems, 297-327 .. ·

[Moitra and lyengar 1S87] A. Moitra and S.S. lyengar, Parallel algoa
rithms for some computationa/ problems, In: M.C. Yovits (ed.), Ad­
vances in computers 26 (academic Press, Boston) , 93-153. ·

[Pa1·dalos 1986) P.M. Pardalos, Aspects of paralle/ computatitrn in global
optimization, PrQc. of the Annual Allerton Conf. on Communication,
Control and Computing 24, 812-821.

(Price 1978) W.L. Price, A co,itro/led random search procedure for global
optimizatiolł, in: qixon, L.C.W . and G .P. Szego , (eds.), Towards

.,Global Optimization 2 (North-Holland, Amsterdam) 71-84.
[Price 1981) W.L. Price, A new version of the controlled random ·

search pr~cedure Jor global ąptimizatio.~ ,· Technical Report, Engineer­
ing Del)t., Uni . of Leicester.

(Price 1983) W .L. Price, Global optimization by controlled random search,
JOTA 40, 333-348:

(Price 1987) W .L. Prite, Global optimization algorithms for a CAD work­
station, JOTA 55, 133-146.

(Schcndel 1984] U. Schendel, lntrod11clio.n to 11umerical methods for
para/le/ computers, (Ellis llorwood, Cl~ichester) 15lp.

(Selma-bel 1984] R.B . Schna.bel , P.a rallc/ computi11g in optimization; In :
K. SchiUkowski {Ed) , NATO ASI Series Vol. Fl5, CompuLaLional
M aLhemat.ical Program111łng (Springer-Verlag, Berlin) , 357-381.

(Schnabel 1987] R.B . Schnabel, Co11c11rrent Junction evaluations in Io­
cal and global optimization, CompuLer Meth . in Appl. Mech. and
Engineering 64, 537-552. · ,

(Sutti 1983a) C. Su tti, Nolłgradient mi,iimizatio11 met~ods for parallel
processing computąs, part 1, JOTA 39, 465-474.

(Sutti 1983b) C. Sutti, Nongradient mi~imization methods for parallel
processing c~mp,uters, part 2, JOTA 39i 475-488.

(Sutti 1984] C. Sutti, Local and global optimization by parallel algorithms
for MIMD systems, Annals of Opera.Lions Research 1, 1.51-164.

[Torn 1974] A.A. Tom, Global optimization as a combination of global
and lccal search, A.bo A.kademi, HHA~ A:13, Finland; 65p.

\

- 340 -

[Tom 1978] A.A. Tom, A search clustering approach to global opti­
mization, in: Dixon, L.C.W . and G.P. Szego, (eds.), Towards Globai
Optimization 2 (North-Holland , Amsterdam). ·

[Tor11 and Żilinskas 1988] A.A. Tom· and A. Żilinskas, Global optimiza-
tion, to appeą.r, 250 p. . .

[Wallden 1987) M. Wallden, Perfonna1lce of a distributed algorithm,
Technical Report B 5, Abo Akademi (Finland) Press, Dept. Cornp.
Sc ., 31 p . .

. [Walster et al 1985) G.W. Walste:, E.R. Hansen and S. Sengupta, Test
results for a global optimization algorithm; in: P.T. Boggs, R.H .
Byrd and R.B. Schnabel (eds.), Numerical optirriization 1984, SIAM , .
Philadelphia 1985, 272-287.

ł

\
\

