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An overview of certain properties of mutual rank probabilities in partially 

ordered sets (posets) together with some new theoretical and experimental re

sults are given. In a first part, transitivity properties are studied. It is shown that 

the type of transitivity shown by mutual rank probabilities nicely fits into the 

cycle-transitivity framework tailor-made for expressing transitivity of recipro

cal relations. In a second part, so-called linear extension majority cycles (LEM 

cycles) which can occur in posets with n 2: 9 elements are studied. Minimum 

cutting levels to avoid such LEM cycles are derived. In a last part approximation 

formulae for the mutual rank probabilities are established and their accuracy is 

compared for posets on up to 11 elements. 

Keywords: posets, mutual rank probabilities, cycle-transitivity, linear extension 

majority cycles, cycle-free cuts, approximations 

1. Overview 

In many situations, one attempts to rank objects according to some well-defined 
properties. In an environmental context one could for example aim to rank chemical 
substances according to their environmental impact or to rank regions according to 
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their soil pollution. However, frequently, in such a ranking attempt only a partia! 
ranking of the objects can be established, since one e.g. lacks objective information to 
salve incomparabilities between objects. A possible approach is to insist on deriving a 
linear order by trying to remove those incomparabilities, such as using average ranks 
of the objects as to ensure comparability of each pair of objects. However, in same 
cases knowing the probability that one object is ranked higher than another can be 
sufficient. In this context, mutual rank probabilities are used as an objective and 
valuable quantification of such probabilities . 

It is known that in the probability graph in which the vertices are the elements of 
a partially ordered set and the directed edges the ordered pairs of elements for which 
their mutual rank probability is at least 1 / 2, cycles can occur. Such cycles are called 
linear extension majority cycles or LEM cycles. This observation has raised the inte
rest in the type of transitivity exhibited by the mutual rank probabilities. In a first part 
of this contribution, we focus on this transitivity which is not yet fully characterized. 
We show, however, that a generalization and therefore weaker type of transitivity than 
mutual rank transitivity nicely fits into the cycle-transitivity framework. This cycle
transitivity framework has been tailor-made for expressing transitivity of reciprocal 
relations and has already shown in the past to be a powerful tool to concisely express 
transitivity of various reciprocal relations. 

In a second part we then take a closer look at the LEM cycles themselves and 
present same experimental results. We specifically search for posets with n elements 
(for n= 9, 10, 11 , 12) such that the minimum probability corresponding to an edge in 
a k-cycle (for k = 3, 4, 5) is maximum for all posets of size n. 

Computing the mutual rank distribution is a computationally hard task and 
for posets of considerable size out of reach with current technology. Therefore, for 
practical purposes, one is interested in obtaining sufficiently good approximations for 
the mutual rank probabilities. In a third and last part we focus on such approximations 
and present an experiment in which accuracy is verified for all posets with up to 11 
elements. 

2. Preliminaries 

2.1. Posets 

A binary relation 'S_ p on a set P is called a (partia/) order re/atżon if it is a 
reflexive (x '5,p x), antisymmetric (x 'S_p y and y 'S_ p x imply x =p y) and transitive 
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(x S:_p y and y S:_p z imply x S:_p z) relation. A linear order relation S:_p is an order 
relation in which every two elements are comparable (x S:_p y or y S:_ p x). If x S:_p y 
and x -1- y, we write x < p y. If neither x S:_p y nor x ?_p y, we say that x and y are 
incomparable and write x I IP y. A couple (P, S:_p ), where P is a set of objects and 
S:_ p is an order relation on P, is called a partially ordered set or poseł for short. If no 
distinction between order relations has to be made, the index P in S:_p can be ornitted. 
Moreover, if the order relation is elear from the context, we can simply denote the 
poset as P. A chain of a poset P is a subset of P in which every two elements are 
comparable. Dually, an anłichain of a poset P is a subset of P in which every two 
elements are incomparable. A poset (Q, 'S:.Q) is called the dual poseł of (P, S:_p) if 
P = Q and x 'S:.Q y iff x ?_p y for all x,y EP. 

From here on, we consider only finite posets (P, S:_p ). For elements x,y EP we 
say that y covers x, denoted as x -<p y, if x < p y and there exists no z EP such that 
x < p z <p y. In other words, x is smaller than y, and no third element is situated in 
between x and y. 

A poset (P, S:_p) can be conveniently represented by a covering graph or so
called Basse diagram, displaying the covering relation -<p. Note that x < p y if and 
only if there is a sequence of connected lines upwards from x to y. We call the ele
ments in the Hasse diagram verłices and the lines representing the covering relation 
edges. 

A permutation of the elements x1 ,x2, ... ,x11 of P which is consistent with the 
partial order, that is, such that Xi <p x 1 implies i < j, is called a linear exłension of P. 
More generally, a poset (Q, S:.Q) is called an exłension of (P, S:_p) if Q =Pand if x S:_p y 
implies that x S:.Q y. A linear extension is an extension in which every two elements 
are comparable. Each linear extension of P corresponds to a possible ranking of the 
elements of P which obeys the order relation S:_p. Both concepts are essentially the 
same. 

We denote by p(xi < x1) the fraction of linear extensions of P in which Xi 

precedes x 1. If the space of all linear extensions of P is equipped with the uniform 
measure, the position of x E P in a linear extension can be regarded as a discrete 
random variable X with values in { 1, ... , n}. Since p(x; < x 1) = Prob(X; < X1 ), it is 
called a mutual rank probability. 

2.2. Reciprocal relations 

A fuzzy relation R on A is an A 2 ---. [O, 1] mapping that expresses the degree of 
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relationship between elements of A: R(a,b) = O means a and b are not related at all, 
R( a, b) = 1 expresses full relationship, while R( a, b) E ]O, 1 [ indicates a partial degree 
of relationship only. For such relations, the concept of T-transitivity is very natura!. 

Let T be a t-norm. A fuzzy relation R on A is called T-transitive if for any 
(a,b,c) E A3 it holds that T(R(a,b),R(b,c)) :S: R(a,c). The three basie t-norms are 
TM, the minimum operator, Tp, the ordinary product, and h, the Łukasiewicz t-norm. 

Another class of A2 _, [O, 1] mappings are the reciprocal relations Q satisfying 
Q( a, b) + Q( b, a) = 1, for any a, b E A. They arise in the context of pairwise compa
rison. Though the semantics of reciprocal relations and fuzzy relations are different, 
the concept of T-transitivity is sometimes formally applied to reciprocal relations as 
well. However, more often the transitivity properties of reciprocal relations can be 
characterized as of one of various kinds of stochastic transitivity. The following gene
rał formulation of stochastic transitivity has been proposed in De Baets and De Meyer 
(2005). 

Let g be a commutative increasing [1/2 , 1] 2 ---, [l/2, l] mapping. A reciprocal 
relation Q on A is called stochastic transitive w.r.t. gif for any (a, b, c) E A3 it holds 
that (Q(a,b) 2 1/ 2 /\ Q(b,c) 2 1/ 2) • Q(a,c) 2 g(Q(a,b),Q(b,c)) . 

This definition includes strong stochastic transitivity when g = max, moderate 
stochastic transitivity when g = min, weak stochastic transitivity when g = 1 /2, and 
A-transitivity, with AE [O, 1 ], when g = A max +(1-A) min. Clearly, strong stochastic 
transitivity implies A-transitivity, which implies moderate stochastic transitivity, 
which, in tum, implies weak stochastic transitivity. 

3. Transitivity properties 

3.1. Transitivity of mutual ranking probabilities 

For any poset P = {x1, ... ,x11 }, 

(1) 

defines the reciprocal relation Qp, which is the relational expression of the mutual 
rank probabilities of P. 

The problem of characterizing the transitivity of Qp was already raised by Fi
shbum (1973). For any u, v E [O, 1 ], define o(u, v) as 

o(u, v) = inf{p(xi < xk) I p(xi < x1) 2 u, p(x1 < xk) 2 v} , 
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where the infimum is taken over all choices of Pand distinctxi ,Xj ,Xk. Fishbum proved 
that 

ó(u, v) = 0 if U+ V< 1, 

u+ v- 1 S o(u, v) S rnin(u, v), 

o(u, 1 -u) S 1/e, 

o(u, v)::; 1 - (1- u)(l -v)(l - ln[(l - u)(l -v)]). (2) 

A non-tńvial lower bound on o was proved in Kahn and Yu (1998) via geometńc 
arguments. Define 

y(u, v) = inf{Prob(Yi < Yk) I Prob(Yi < Yj) 2 u,Prob(Yj < Yk) 2 v}, 

where the infimum is taken over Y = (Y1, ... , Yn) chosen uniformly from same n

dimensional compact convex subset of JR:11
• Since o(u, v) 2 y(u, v), the function y 

provides a lower bound for o. Kahn and Yu (1998) proved that 

l~n(u, v) 
y(u , v) = 

(1-u)(l -v) 
------;=== 
u+v-2Ju+v-I 

, if u+v < l , 
, if u+ v-1 2 rnin(u2, v2), 

(3) 

, otherwise. 

Since the mutual rank probability relation Qp is a reciprocal relation, we want 
to investigate how these transitivity results translate into the transitivity framework 
called cycle-transitivity. 

3.2. Cycle-transitivity framework 

In the cycle-transitivity framework (De Baets et al. , 2006), for a reciprocal 
relation Q on A, the quantities 

aabc = min(Q(a,b) , Q(b,c),Q(c,a)), Babc = med(Q(a,b) , Q(b, c), Q(c,a)) , 

Yabc = max(Q(a,b), Q(b, c) , Q(c,a)), 

are defined for all (a ,b,c) E A
3

. Obviously, aabc S Babc S Yabc· Also, the notation 
i\= {(x,y, z) E [O, 1] 3 lx S y S z} will be used. 

A function U : i\---+ JR: is called an upper bound function if it satisfies: 
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(i) U(O,O, 1) 2 O and U(O, 1, 1) 2 l; 

(ii) for any (a,~' y) E ~: 

U ( a , ~' y) + U (I - y, 1 - ~, 1 - a) 2 1 . 

The function L : ~ ___, ~ defined by 

L( a,~. y) = 1 - U(l -y, 1 - ~. 1 - a) 

(4) 

(5) 

is called the dual lower bound function of a given upper bound function U. Inequ
ality ( 4) simply expresses that L ::; U. 

A reciprocal relation Q on A is called cycle-transitive w.r.t. an upper bound 
function U if for any (a,b,c) E A3 it holds that 

where L is the dual lower bound function of U. 
Due to the built-in duality, it holds that if (6) is true for some (a,b,c), then this is 
also the case for any permutation of (a,b,c). In practice, it is therefore sufficient 
to check (6) for a single permutation of any (a,b,c) E A3 . Altematively, due to the 
same duality, it is also sufficient to verify the right-hand inequality (or equivalently, 
the left-hand inequality) for two permutations of any (a,b,c) E A 3 (not being cyclic 
permutations of one another), e.g. (a,b,c) and (c,b,a). Hence, (6) can be replaced by 

<Xabc +~abc + Yabc - 1 :S U ( <Xabc , ~abc, Yabc) · (7) 

Note that a value of U (a,~, y) equal to 2 will often be used to express that for the 
given values there is no restriction at all (indeed, a+ ~ + y - 1 is always bounded 
by 2). In Fig. l the relationships between some types of (cycle-)transitivity are shown. 

3.3. Cycle-transitivity of mutual rank probabilities 

If we translate the bounds (2) and (3) into the cycle-transitivity framework, 
we obtain that (3) provides an upper bound U (a,~' y) on a+~+ y- 1, whereas (2) 
provides a lower bound, which is, however, less stringent than the lower bound func
tion L( a,~' y) associated to U (a,~, y) by (5). Surprisingly, the upper bound function 
U (a,~' y) which is the equivalent of (3), is very simple. 
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TL -transirivity 

dice-rransiriviry 

a+y-ay 

murual-ra11k-tra11sitil'ity 

a+~ - ap 

Tp-transitit'iry 

TM•transitil'ity 

~+ y-4a<l/2 S P 
t / 2 -a ~ 1/2 

otherwise 

\\'eak stochasric 
rransitivity 

y a<l /2SP 
l / 2a c'. 1/! 
2 othawise 

moderare stochasric 
rransitidty 

~ a < l/ 2 S P 
1/ 2ac'. 1/ 2 
2 otherwisc 

strong srochasric 
transitfriry 

Fig.1: Hasse-diagram with different types of cycle-transitivity characterized by their 
upper bound function U (a,~' y) . Bottom up (partial) ordering of transitivity types is 
in agreement with the 'stronger than' relation. 

Proposition 1. The reciprocal relation Qp generated by the mutual rank probabilities 
in a poset P is cycle-transitive w.r.t. to the upper bound function U given by 
U(a,~,y) = a+y-ay. 

151 



Karel DE LOOF, Bernard DE BAETS and Hans DE MEYER 

In view of the above result, cycle-transitivity w.r.t. the upper bound function U 

given by U (a,~' y) = a+ y- ay is called mutual-rank-transitivity. 
Inspection of Fig.l reveals that mutual-rank-transitivity is stronger than dice

transitivity but weaker than Tp-transitivity and also weaker than moderate stochastic 
transitivity. Also note that mutual rank transitivity does not imply weakly stochastic 
transitivity. 

4. Cycle-free cuts 

4.1. Linear extension majority cycles 

The linear extension majority (LEM) relation of a poset P is the binary relation 
-<LEM such that X -<LEM y if p(x < y) > p(y < x). 

Aigner (1988), Fishbum (1973, 1974, 1976), Ganter et al. (1987), and Gehrlein 
and Fishbum (1990a) have given example posets P where the relation -<LEM contains 
cycles, i.e. where a subset {x1 ,x2, ... ,xm} of elements of P exists such that x1 -<LEM 

x2 -<LEM ... -<LEM Xm -<LEM x1 . These cycles are referred to as LEM cycles on m 

elements, or m-cycles for short. 
By using exhaustive enumeration (Gehrlein and Fishbum, 1990a), it was found 

that no poset with less than 9 elements contains a LEM cycle. In Gehrlein and Fish
bum (1990b), the likelihood of LEM cycles up to n= 12 is estimated by generating 
random partia! orders. However, to our best knowledge no exact counts for n ?: 9 are 
known. Counting the number of posets with n ?: 9 elements having a LEM cycle is no 
trivia! task. The number of posets with n elements quickly explodes for increasing n, 
and even worse, the number of linear extensions of each poset can be exponential in n. 
Brinkmann and McKay (2002) describe a very efficient method to construct pairwise 
non-isomorphic posets, which allows them to enumerate posets on up to 16 points. 
As an illustration of the size of the problem, the number of (unlabeled) posets of size 
9 to 16 are shown in Table 1. 

In order to be able to count the number of posets with LEM cycles for n on 
up to 12 we used the enumeration algorithm of Brinkmann and McKay (2002) to 
enumerate all posets of size n. Subsequently, the algorithm developed by the present 
authors (De Loof et al., 2006) based on the so-called lattice of ideals representation of 
a poset has been used to compute all mutual rank probabilities. This algorithm avoids 
enumerating all linear extensions for the computation of the mutual rank probabilities. 
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n number of posets 
9 183231 
10 2567284 
11 46749427 
12 1104891746 
13 33823827452 
14 1338193159771 
15 68275077901156 
16 4483130665195087 

Table 1: Number of unlabeled posets for n= 9, 10, ... 16. 

n 3-cycles 4-cycles 5-cycles 
9 5 o o 
10 138 6 o 
11 5439 89 o 
12 204935 2677 5 

Table 2: The number of n-element posets that contain LEM cycles. 

Its running time is linear in the number of ideals, which can still be exponential in n. 
However, in most cases the number of ideals is much smaller than the number of linear 
extensions. The results of this counting procedure are summarized in Table 2. 

4.2. Minimum cutting levels to remove LEM-cycles 

We now want to deterrnine a minimum cutting level 8 such that the graph 
of the crisp relation, obtained from the mutual rank probability relation by setting 
its elements smaller than or equal to 8 equal to O and its other elements equal 
to 1, is free from cycles. In other words, we want to obtain the minimum 8 such 
that at least one mutual rank probability in any LEM cycle is smaller than or equal to 8. 

The strict cut at value c E [1/2, 1 [ of a reciprocal relation Q defined on a set A, 
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is the crisp relation Qc defined by 

{

l, if Q(x,y) > c, 
Qc(x, y) = 

· O, otherwise. 

The m-cutting-level is the smallest number Cm such that for any finite poset the strict 
cut Qc111 of the mutual rank probability relation Q is free of LEM cycles of length :S m. 

Prom the previous section it is known that the mutual rank probability relation 
of any poset is mutual-rank-transitive. This property allows us to derive an upper 
bound for the m-cutting-level. Denote by :MR the set of all mutual rank probability 
relations, and by CR the set of all finite reciprocal relations that are mutual-rank
transitive. Clearly :MR~ CR. 

Let us first consider the case m = 3. The 3-cutting-level is the largest value that 
can be obtained for the minimum of three relational elements forming a 3-cycle in a 
mutual rank probability relation, i.e.: 

c3 = sup max min(qiJ,qJk,qki). 
QE'MR l,J.k 

An upper bound c3 for q is 

c3 = sup max min(qiJ, qJk, qki). 
QECR l,J,k 

To obtain c3, it is therefore sufficient to consider the mutual-rank-transitive recipro
cal relations with 3 elements and to find a set of values of ą12,ą23,ą31 such that 
min ( q 12 , ą23, q31 ) is maxima!. Prom symmetry considerations it follows that the inve
stigation may be restricted to relations for which ą12 = ą23 = q31 = q. Expressing that 
such a relation be mutual-rank-transitive, yields the condition q2 :S 3q - 1 :S 2q - q2 , 

or, equivalently (3 - Js) /2 :S q :S ( Js - 1) /2. As a consequence we have that 

C3 :S C3 = (VS-1)/2 = 0.618034. 

In generał, for m 2: 3, let us introduce the following notations. We number the 
nodes of the complete graph from 1 to m and consider the cycle of length m in which 
the nodes appear in the natura! order. The edges of this cycle are attributed equal 
weight aim). We need to find the maximal value of a;m) such that the reciprocal relation 
which underlies the graph is mutual-rank-transitive. By symmetry, we attribute to 
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m a(m) -c (m) ,(m) polynomial equation I - m a2 a3 

3 0.61803 x1-+x-1=0 

4 0.66667 0.50000 3x2 -2x = O 

5 0.70711 0.58579 2x2 -1=0 

6 0.72361 0.61803 0.50000 5x2 -5x+ 1 = O 

7 0.74227 0.65270 0.53209 3x3 -3x+ 1 =0 

Table 3: Weights of graphs with m nodes that represent max-optima} 

mutual-rank-transitive reciprocal relations whose strict cuts at a;m) are m-cycle free. 

the edges starting at node i and ending at node (i+ j) mod m, irrespective of i, the 

same weight at), where j E { 1, 2, ... , m - 1}. Clearly, since the reciprocal relation 

underlying this graph should be reciprocal, it holds that ar = 1 - a~"'.l_ J for all j E 
{ 1, 2, ... , m - 1}. We call these weighted graphs max-optimal. 

In the first column of Table 3 the maximum values of a;m), which also yield the 
values Cm, are listed form E {3, 4 , 5, 6, 7}. In the other colums the values are shown of 

ar for j = 2, ... , l m/2 j (the remaining ones can be found by complementation). In 
the finał column, we mention the polynornial equation whose largest real root provides 

the value of a;m). The reader can easily verify that with these weights one obtains 
graphs whose underlying reciprocal relation is mutual-rank-transitive. 

At present, we have not yet been able to compute the lirniting value of a\m) as 
m __. =. On the other hand, it is known from the work of Yu (1998) that the strict cut 
of any mutual rank probability relation at the value 

l+(v'2-l)J2v'2-l 
p = ------- = O 78005 2 . 

yields a crisp relation that is transitive, and thus obviously m-cycle free for any m > O. 
Therefore, it must hold that 

lim C111 '.Sp. 
n,--,.oo 
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Note, however, that this inequality does not imply limm-.oo Cm :S p, since Cm is only an 
upper bound for Cm, 

These theoretical considerations on strict cutting levels concem the classes of 
either all mutual rank probability relations or all mutual-rank-transitive relations. Of 
course, the given bounds are not sharp when we restrict to posets of size less than 
given constant. 

4.3. Experimental computation of minimal cutting levels 

Again, by using the technique sketched in Section 3.1, we perform some tests 
on all posets of size n (with n= 9, ... , 12) to obtain the minimum cutting level needed 
to obtain cycle-free relations. In Table 4, the minimum cutting levels to avoid m-cycles 
in n-element posets (m = 3,4, 5 and n= 9, ... , 12) is shown. Note that the minimum 
cutting levels for avoiding m-cycles are monotonically increasing for increasing n, 
since one can easily establish a poset of n+ l elements from an n-element poset with 
equal minimum cutting level by adding e.g. an element which is smaller than all n 

elements. Note that for n = 11 no higher minimum cutting level for avoiding 4-cycles 
is found than for n = 10. In Fig. 2-7 all posets giving rise to the non-trivia} minimum 
cutting levels listed in Table 4 are depicted. 

n 3-cycles 4-cycles 5-cycles 

9 0.5031447 0.5 0.5 
10 0.5039683 0.5028490 0.5 
11 0.5061947 0.5028490 0.5 
12 0.5073505 0.5086657 0.5003979 

Table 4: Minimum cutting level to avoid cycles in posets of size n= 9, ... , 12. 

12-element poset with the highest cutting level to avoid 4-cycles; it holds that 
Prob(7 < 5) = Prob(5 < 8) = Prob(8 < 6) = Prob(6 < 7) = ?l;4t. 
5. Approximating mutual ranking probabilities 

Since computing the mutual rank probabilities quickly becomes infeasible for 
larger posets (De Loof et al., 2006), the question arises whether good approximations 
can be made. By using the so-called Markov Chain Monte Carlo method, one could 
sample almost uniformly from the set of linear extensions of a given poset (Bubley and 
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9 

6 

3 

Fig.2: 9-element poset with the highest cutting level to avoid 3-cycles; it holds that 
Prob(2 < 1) = Prob(l < 3) = Prob(3 < 2) = ?}f1, and due to symmetry also that 
Prob(8 < 7) = Prob(7 < 9) = Prob(9 < 8) = ?}3°1• 

6 

i 3 

4 

10 

Fig. 3: IO-element poset with the hi
ghest cutting level to avoid 3-cycles 
( dual poset not depicted); it holds that 
Prob(3 < 6) = f~8 and Prob(6 < 2) = 
Prob(2 < 3) = fgJ8 . 

2 

6 5 

4 8 i 3 

10 9 

Fig. 4: IO-element poset with the hi
ghest cutting level to avoid 4-cycles 
(dual poset not depicted); it holds that 
Prob(3 < 5) = Prob(5 < 4) = Prob(4 < 
6) = Prob(6 < 3) = j~1~-

Dyer, 1999). This (almost) uniform sample could then be used to estimate the rank 
probabilities. With this approach, one is able to obtain good approximations, albeit 
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2 

--l 

6 

Fig. 5: 11-element poset with the highest cutting level to avoid 3-cycles; it holds that 
Prob(2 < 5) = ii~, Prob(5 < 4) = ii!~ and Prob(4 < 2) = ii!6• 

2 3 

' 6 ' 
9 5 

7 

8 12 

Fig. 6: 12-element poset with the hi
ghest cutting level to avoid 3-cycles; it 
holds that Prob(7 < 9) = Prob(9 < 4) = 
6214 d p b(4 7) 6212 
12244 an ro < = 12244 · 

2 

3 

5 6 

7 8 

9 10 

11 12 

Fig. 7: 12-element poset with the hi
ghest cutting level to avoid 4-cycles; it 
holds that Prob(7 < 5) = Prob(5 < 8) = 
Prob(8 < 6) = Prob(6 < 7) = ?2lf0 . 
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at the expense of a good deal of computation time. It is worthwhile to investigate 
whether rough but quick approximations can be suggested. Ideally, one would like to 
have an approximation formula for p (x < y) combining variables that can be computed 
efficiently. Briiggemann et al. (2004) have suggested such a formula. First, they 
define Q(x,y) = (Nu(x,y) + 1)/(Nd(x,y) + 1 ), where Nu(x,y) is the number of objects 
above x which are not at the same time above y, and Nd(x,y) is the number of objects 
under x which are not at the same time under y. The probability that x is ranked higher 
than y is then approximated as p(x > y) = Q(y,x) /( 1 + Q(x,y) ). It is easily checked 
that 

Ą ( ) [Nu(y,x)+l]·[Nd(x,y)+l] 
Pl X> V = --------------------. 

. [N11 (x,y) + l] · [Nd(y,x) + l] + [Nu(y,x) + l] · [Nd(x,y) + l] 
(8) 

In what follows we will suggest two variants of (8) and compare their accuracy 
for n up to 11. Finally, we show how they can be applied iteratively. 

As a first variant of (8) we chose to include elements at the same time above x 

and y and elements at the same time under x and y. lf we define Nd(x) as the number 
of objects above x, and Nu(x) as the number of objects under x, we can write 

A [Nu(Y) + l] · [Nd(x) + l] 
p2(x > y) = [Nu(x) + l] · [Nd(Y) + l] + [Nu(Y) + l] · [Nd(x) + l]. (9) 

The denominator in (8) is an approximation of the total number of linear exten
sions, while the numerator is an approximation of the number of linear extensions in 
which x is ranked higher than y (up to a common factor a. in both numerator and deno
minator). Let us denote U as the set of elements above y, and D as the set of elements 
under x. If one sees Nu(Y) as an approximation of the number of linear extensions 
of U, and Nd(x) as an approximation of the number of linear extensions of D (up to 
a common factor a.), [Nu(y,x) + l] · [Nd(x,y) + l] approximates the number of linear 
extensions of the decomposable poset where each element of U is made greater than 
each element of D by adding an element, say z, such that z < u for all u E U and d < z 
for all d E D. However, if one decides to approximate, again up to a common factor 
a., the number of linear extensions by the number of elements, it would be more na
tura! to rewrite [N11 (y,x) + 1] · [Nd(x,y) + 1] as Nu(y,x) + Nd(x,y) + 1. If we adapt the 
denominator correspondingly, we obtain a second variant 

A ( ) Nu(y,x)+Nd(x,y)+l P1 X> V = ---------------
. · Nu(x ,y) +Nd(y,x) +Nu(y,x) +Nd(x,y) + 2 

(10) 
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A third variant is now obtained by combining both ideas: 

~ ( ) Nu(Y)+Nd(x)+l p4 X> Y = ------------
Nu(x) +Nd(Y) +Nu(y) +Nd(x) +2 

(11) 

Given a poset P, let us define a mutual rank matrix M(P) containing the exact 
mutual ranks p(x < y) for each (x, y) E P2 , and four approximate mutual rank matrices 
M;(P), for i= 1, ... ,4, containing the approximated mutual ranks Pi(x < y) for each 
pair (x, y) E P2 of incomparable elements, i.e. each pair (x, y) E P2 for which xl jy, and 
O or 1 for each pair (x,y) E P2 of comparable elements depending upon whether x < y 
or y < x. In order to have an idea of the approximation error, 

(i) the maximal absolute componentwise difference between M(P) and Mi(P) over 
all posets P of size n (Table 5), 

(ii) the maximal absolute componentwise difference between M(P) and Mi(P) ave
raged over all posets P of size n (Table 6) and 

(iii) the 1-normoftheabsolutedifference IM(P)-M(P);I (Table7), 

are computed for each n (n= 1, ... ,4) and the approximations (8)-(11). 

n Pl (x > y) f>2(x > y) p3(x > y) p4(x> y) 
4 0.067 0.067 0.083 0.167 
5 0.104 0.095 0.104 0.208 
6 0.135 0.141 0.150 0.233 
7 0.173 0.167 0.178 0.264 
8 0.207 0.193 0.222 0.285 
9 0.233 0.215 0.257 0.307 
10 0.270 0.247 0.289 0.326 
11 0.303 0.273 0.320 0.342 

Table 5: Maximal absolute componentwise difference between M(P) and Mi(P) over 
all posets P of size n for each approximation formula 

As can be seen from Tables 5-7, approximation formula (9) seems to perform 
best for n ~ 7. Also note that the approximation errors grow qui te rapidly with larger 
n. 
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n f>1(x > y) f>2(x >y) p3(x > y) p4(x> y) 
4 O.Ol 1 0.015 0.014 0.047 
5 0.034 0.038 0.038 0.092 
6 0.062 0.062 0.066 0.134 
7 0.090 0.082 0.093 0.167 
8 0.114 0.098 0.115 0.191 
9 0.133 0.111 0.133 0.210 
10 0.150 0.122 0.148 0.223 
11 0.165 0.131 0.161 0.234 

Table 6: Maximal absolute componentwise difference between M(P) and tt(P) 
averaged over all posets P of size n for each approximation formula 

Each of the formulae (8)-(11) can be used in an iterative manner by "fuzzify
ing" the notions "above" and "under" in the calculation of Nd and N11 • The iterative 
scheme corresponding to PI (x > y) is given as an example. Schemes corresponding 
to the other variants are analogous and left to the reader. 
We define 

Co(x,y) - { ~ if X ::; y, 

if x > y or xl IY• 
(12) 

For i 2': 1 and (x,y) E P2 define 

Nd_;(x,y) = L C-1 (z,x) · [l -C;-1 (z,y)] (13) 
~EP 

and 

N11_;(x,y) = L C;-1 (x,z) · [l -C;-1 (y,z)]. (14) 
~EP 

We then define 

( ) 
[N11.;(y,x) + l] · [Nd_;(x ,y) + l] 

C; x , V = ) l [ l . . [N11.;(x,y + 1 · Nd.;(y,x) + 1 + [N11 ,;(y,x) + l] · [Nd_;(x,y) + l] (15) 
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n f>1(x>y) pz(x> y) p3(x > y) p4(x> y) 
4 0.004 0.004 0.005 0.016 
5 0.009 0.008 0.011 0.023 
6 0.014 0.013 0.017 0.030 
7 0.018 0.016 0.022 0.036 
8 0.022 0.019 0.026 0.041 
9 0.025 0.022 0.029 0.046 
10 0.028 0.023 0.031 0.050 
11 0.030 0.025 0.033 0.053 

Table 7: The I-norm of the absolute difference IM(P)- Mi(P) I for each 
approximation formula 

n (1) (2) (3) 
single 10 iter. single 10 iter. single 10 iter. 

4 0.083 0.083 0.014 0.021 0.005 0.007 
5 0.104 0.094 0.038 0.038 0.011 0.010 
6 0.150 0.102 0.066 0.054 0.017 0.012 
7 0.178 0.113 0.093 0.067 0.022 0.014 
8 0.222 0.134 0.115 0.075 0.026 0.016 
9 0.257 0.157 0.133 0.081 0.029 0.018 
10 0.289 0.181 0.148 0.086 0.031 0.019 
11 0.320 0.204 0.161 0.090 0.032 0.021 

Table 8: Comparison between applying p3(x > y) one single time or in 10 iterations; 
(1) maximal absolute componentwise difference between M(P) and Mi(P) over all 
posets P of size n, (2) maximal absolute componentwise difference between M(P) 
and Mi(P) averaged over all posets P of size n and (3) The I-norm of the absolute 

difference IM(P) - Mi(P) I 
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Remark that e.g. the expression in the summation of (13) is a fuzzification of the 
logical expression 

Z '.S X;\ •(Z :'.S y). (16) 

Using the iterative versions of p1 (x,y) and p4 (x,y) one obtains less precise 
results than the corresponding non-iterative formulae, and for p2 (x, y) only slightly 
better results. However, as Table 8 shows, the iterative application of p3 (x,y) gains 
more than 50% in accuracy after iterating 10 times. Iterating more than 10 times 
only slightly improves approximation accuracy, thus no convergence towards the exact 
value can be observed. 

Presently, we are investigating whether still better approximation formulae can 
be suggested. 
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