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In a previous paper, we discussed various ways in which to construct and 

process partial order relations or partially ordered sets (posets) in the context of 

ranking objects on the basis of multiple criteria. We now provide a more stra

ightforward characterization of the consistent and prioritized union operations, 

and provide straightforward algorithrnic implementations. 

Keywords: partially ordered set, transitive combination of partial order relations 

1. Introduction 

We extend on the work in a previous paper, see Rademaker et al. (2008), de
aling with operations to combine two partial order relations in an informative way. In 
this paper, rather than restricting ourselves to two partial order relations, we describe 
a consistent framework to process an arbitrary number of partial order relations, and 
formulate easily and efficiently implementable algorithms. We introduce the required 
basie concepts in Section 2, and construct our specific basie algorithms and structure 
in Section 3. The specific union operations are described in Sections 4 and 5, once 
again providing workable algorithms. We examine some properties in Section 6, and 
conclude with a summary in Section 7. 
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2. Preliminaries 

A (binary) relation Ron a set of objects P denotes same property or characte
ristic objects of P can have w.r.t. each other, i.e. xRy means "x is R-related to y". For 
example, R could denote "smaller than" or "less polluted than". A relation Ron P can 
be represented as a set of couples of objects from P, for example R = { (a, b), (c,d)} 
denotes aRb and cRd. If a relation R fulfills the properties of reflexivity (xRx) and 
transitivity (xRy and yRz imply xRz), it is called a pre-order relation. If it also has the 
property of antisymmetry (xRy and yRx imply x = y), in addition to reflexivity and 
transitivity, the relation R constitutes a (partia!) order relation. If xRy or yRx, x and y 

are commonly said to be comparable. An order relation is commonly denoted by the 
symbol :s;, and a couple (P, :S:), with Pa set of objects and :S: an order relation on P, 
is called a partially ordered set, or poset for short. 

We are dealing with a set of objects P which have been ordered on the basis of 
severa! order relations. As such, we have (P, :S:1 ), (P, :S:2), (P, :S:3) and so on. 

A relation R' on P is called an extension of a relation R on P if it holds 
that R <;;; R' (it is equivalent to say that R is a subset of R'). The unique smallest 
transitive extension of R is called the transitive closure of R ( commonly computed 
via the Floyd-Warshall algorithm, see Floyd, 1962, and Warshall, 1962, though other 
algorithms exist, see De Baets and De Meyer, 2003, and Naessens et al, 2002). 
Similarly, a poset (P, :S:') is called an extension of a poset (P, :S:) if :S:' is an extension 
of :s;. We say that two posets (P, :S:) and (P, :S:') contradict each other on two objects 
x, y E Pif we have x < y and y <' x, or y < x and x <' y. 

3. The {T,N,F} framework and the basie algorithms 

Our previous definition of the consistent union catered to the special case of 
two partially ordered sets as input. We now extend this to an arbitrary number of sets, 
after which we will examine same properties of the consistent union operation. To 
this end, we formulate an intermediate structure composed of a triple of relations: the 
tentative relations T, which contains a relation as soon it is present in one of the sets, 
the necessary relations N, which contain those relations present in every set, and the 
forbidden relation F, initialized as the inverse of T. We first show in Algorithm 1 
how to construct the set of {T,N,F} relations on the basis of a set of partial order 
relations { P1, ... , Pn} on a single set of objects P (naturally, Algorithm 1 is also suited 
to constructing a triple {T, N, F} for a single poset). The set T of tentative relations 
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is straightforwardly constructed by taking the union of the set of partial orders. In 
contrast, the set N of necessary relations is the intersection of the set of partia} orders. 
The set F of forbidden relations is the inverse of the set of tentative relations. Observe 
that it is possible, even probable, to have T n F -=I= 0. This will occur as soon as for two 
partial orders Pi and P1 from { P1 , ••• , P,1}, we have a contradiction on some x and y, 
or, equivalently, we have Pi n r11 

-=I= 0. In a subsequent step, we will extract a unique 
partia} order from { T, N, F}. 

We now address the problem of how to extract a specific uniquely defined ma
ximum informative partia} order relation R from a set of { T, N , F} relations, for which 
it holds that (I) it corresponds to a transitive closure of a subset of T, (2) it is an exten
sion of N, and (3) RnF = 0. We detail the required steps in Algorithm 2. As an aside, 
we draw the parallel to our definition in Rademaker et. al (2008): the relation R we 
use is uniquely defined because it is the intersection of all maxima} relations which 
satisfy conditions (1), (2) and (3). 

Algorithm 1: Constructing the set of {T,N ,F} relations 

Data: Set of partia} orders { P1, ••• , P,1} on a single set of objects P 
Result: Set of {T,N,F} relations 
T +- (I); 

N +-P x P; 
F +-0; 

foreach Pi E {P1 , ... ,Pn} do 
T=TUPi; 
N=NnPi; 
F=FU(Pi)- 1

; 

end 

Algorithm 2 uses an intermediate R, denoted R', to prevent that the result de
pends on the order in which we add or remove relations. We initialize R' to the set 
of tentative relations T, and immediately subtract the set of forbidden relations from 
R'. Subsequently, we iteratively perform a composition of R' with itself, denoted as 
R' o R'. Such a composition at first possibly includes the induction of relations present 
in F. After each composition step, we subtract F from R', so as to not use relations 
from F when composing R' with itself in the next step - the induced relations present 
in F are thus removed in this step. Naturally, these relations will be induced once 
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more in the next composition step. Nevertheless, this iterative process will reach a 
status quo: at one point, we will induce a set of relations which is a subset (possibly 
empty) of F. We know now which forbidden relations can be induced from T. We 
copy R' to R. By subtracting all paths in R' inducing such a relation from R, except for 
those relations which are necessary (present in N), we finally end up with the desired 
partial order R. For completeness' sake, we also mention we use an intermediate F', 
to keep intact {T,N,F}. 

Algorithm 2: Extraction of R from {T,N,F} 

Data: Set of {T,N,F} relations 
Result: Consistent union R 

R' ..-T\F; 
while (R' oR') np-I -=I- (l) do 
I R' +- (R' oR') \F; 

end 
R +- R' F' +- F foreach { (a,c) EF' I (a,b) I\ (b,c) ER'} do 

I 
F' +- F'U{(a,b),(b,c)}; 
F'..-F'\N; 

end 
R ..-R\F'; 

Observe that the way in which R is extracted does not depend on how the set of 
{T,N,F} relations was constructed. Nevertheless, care must be tak.en when construc
ting the set of {T,N,F} relations: for arbitrary relations T, N and F, we should not 
expect R to be a partial order. We describe different ways to combine two {T,N,F} 
relations in Sections 4 and 5. 

We briefl y detail why it is advantageous to use a set of { T, N, F} relations. Both 
the intersection and the union of two posets contain less information than the two 
posets themselves: information on which relations are present in only one poset, and 
which are present in both, has been lost. The same is true for our relation R extracted 
from a set of {T,N,F} relations: R contains less information than {T,N,F}. 

Suppose now we have a set P of partial order relations { P1, ... , P,1}, and 
process this set in two different ways. The first is a stepwise construction of R, 
abandoning the residual information present in {T,N,F} after each step. The second 
constructs a single { T, N, F} structure on the basis of P, and extracts an R from this. 
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We should not expect both approaches to yield the same outcome in generał (we 
will return to this in Section 6 in more detail). In other words, in order to easily and 
accurately extend the consistent union operation from Rademaker et al. (2008) to 
an arbitrary number of input posets, we need to have a representation which does 
not result in a loss of information. To this end, we introduced the triplet of relations 
{T,N ,F} . 

4. lmplementation of the consistent union operation 

Our previous definition of the consistent union catered to the special case of 
two input partially ordered sets, see Rademaker et al. (2008). We now extend this to 
an arbitrary number of sets. As the operation to extract R from a {T,N ,F} set does 
not depend on the origin of {T,N,F}, the consistent union operation will have to be 
a way of combining two {T,N,F} structures (correlating to a number of posets). As 
the intricate part is the extraction of R from {T,N,F} (Algorithm 2), the consistent 
union operation can be very simple. 

Combine two sets of {T,N, F} relations as follows: take the union of the two T 
relations, the intersection of the two N relations, and the union of the two F relations. 
For completeness' sake, we provide Algorithm 3. 

Algorithm 3: Non-priority combination of two sets of {T, N, F} relations 

Data: Two sets of {T,N,F} relations, {T1,N1,Fi} and {T2 ,N2 ,F2} 
Result: Set of {T,N,F} relations 
T .--T1 UT2; 
N .-- N1nN2; 
F.--F1UF2; 

As an aside, suppose now {T1,N1,Fi} and {T2,N2 ,F2} have been constructed 
on the basis of two partia! orders P1 and P2. The partial order relation R extracted as 
per Algorithm 2 from the set of relations {T,N ,F} constructed as per Algorithm 3, 
will correspond to the consistent union of P1 and P2 from Rademaker et al. (2008). 

5. lmplementation of the prioritized union operation 

Rather than requiring a new way to extract a relation R from a set of {T,N,F} 
relations, the prioritized consistent union operation will amount to a new way to con
struct a set of { T, N, F} relations. We consider the case where we have a priori ty set of 
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tentative, necessary and forbidden relations, denoted { T1, N1, F1}, and a non-priori ty 
set {T2,N2,F2}. 

Two options exist, depending on how much heed we want to pay to {T2,N2,F2}. 
Suppose we extract R from {T,N,F} constructed on the basis of some prioritized 
union of {T1,N1,F1} and {T2,N2,F2}. Clearly, we should have Rn F1 = 0. It 
is less elear whether we should also demand R n (F2 \ T1) = 0, or rather allow 
Rn (F2 \ T1 ) i= 0. We will formulate algorithms for both options: a strong prioritized 
union operation, allowing Rn ( F2 \ T1 ) i= 0, and a weak prioritized unio n operation, 
demanding Rn (F2 \ T1 ) = 0. Demanding Rn (F2 \ T1 ) = 0 (rather than allowing 
Rn (F2 \ T1 ) i= 0) yields the weaker operation, as it implies an increased importance 
of the non-priority {T,N,F} set, which must come at the expense of the importance 
of the priority {T,N, F} set. We show that, in order to make sure R is able to yield a 
partial order, we need to demand Rn (F2 \ T1) = 0. Hence, we advocate the use of the 
weak prioritized union operation. 

5.1. The strong prioritized union operation 

The R extracted from the {T,N,F} structure when constructed on the basis of 
two partia! orders P1 and P2, will be equal to the R yielded by prioritized union opera
tion from Rademaker et al. (2008). We extend it here for the prioritized combination 
of two {T,N,F} sets, and (erroneously, as we will show) count on Algorithm 2 to 
yield a partia! order. Algorithm 4 is again very simple. Observe how the non-priority 
poset only adds relations to T, and not to F. 

Algorithm 4: Strong prioritized combination of two sets of {T,N,F} rela
tions 

Data: Two sets of {T,N,F} relations, the priority set {T1,N1,Fi} and the 
non-priority set { T2, N2, F2} 

Result: Set of {T,N,F} relations 
T +-- T1 U (T2 \F1); 
N+--N1; 
F+--F1; 

We now show Algorithm 2 is able to yield a cycle for a certain combination 
of {T1,N1,Fi} and {T2,N2,F2}. Suppose T1 = N1 = F1 = 0, and T2 = {(a,b). (b,a)}, 
N2 = 0 and F2 = { (a, b), (b,a)}. Algorithm 4 yields the following: T = { (a,b), (b,a)}, 
N= F = 0. Applying Algorithm 2 to this { T, N, F} structure, will result in the relation 
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R { (a, b), (b,a )}, as neither (a, b) nor (b, a) contradicts F1. To be more exact, cycles 
can arise between objects for which the priority {T,N,F} contains no information 
regarding their pairwise order. As we had mentioned in Section 3, {T,N,F} needs to 
fulfill some (unspecified) properties in order for Algorithm 2 to yield a partial order. 
Apparently, the strong prioritized union operator does not fulfill these properties. We 
will formulate the weak prioritized union operation to prevent these problems from 
arising. 

Finally, we would like to stress that the { T2, N2, F2} used in this example, is 
not a partial order. As such, the operation described in Rademaker et al. (2008), of 
which Algorithm 4 is an extension, will allow extraction of a partial order for the case 
w hen { T1, N1, F1} and { T2, N2, F2} both have been constructed on the basis of a single 
(different) partial order. 

5.2. The weak prioritized union operation 

We now make a slight adjustment to Algorithm 4. Rather than limiting the 
influence of the non-priority {T,N,F} to the possible extension of T1 by a subset of 
T2, we now also allow the extension of F1 by a subset of F2 in Algorithm 5. We again 
count on Algorithm 2 to yield a partial order. The absence of cycles is guaranteed as 
now the inverse of at least one relation involved in the cycle will be present in F. 

Algorithm 5: Weak prioritized combination of two sets of {T,N,F} rela
tions 

Data: Two sets of {T,N,F} relations, the priority set {T1 ,N1 ,F1} and the 
non-priority set {T2,N2,F2} 

Result: Set of {T,N,F} relations 
T +--- T1 U ( T2 \ F1 ) ; 
N+--- N1; 
F +--- F1 U ( F2 \ T1 ) ; 

We return to the example that showed possible problems inherent to using Al
gorithm 4 for triples of {T,N,F} that were not constructed on the basis of a single 
poset. For T1 = N1 = F1 = 0, and T2 = { (a, b) , ( b, a)}, N2 = 0 and F2 = { (a, b) , ( b, a)}, 
Algorithm 5 will yield T = { (a,b), (b, a)}, N= 0, F = { (a, b), (b,a)}. Clearly, when 
extracting an R from this { T, N, F} structure, the outcome will be the empty set. 

We also provide an example to show how a single relation present in the prio-
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rity set of {T,N,F} relations, can prevent a cycle from occurring for both Algori
thm 4 and Algorithm 5. Suppose T1 = N1 = {(a,b)} and F1 = {(b,a)}, and let T2 = 
{ (b, c), (c ,a)}, N2 = 0 and F2 = { (a, c), (c, b) }. The weak prioritized union (Algori
thm 5) yields T = { (a,b), (b, c), (c,a)}, N= { (a, b)} and F = { (a, c), (b,a), (c,b )}. 
Algorithm 2 will then yield an R = {(a,b)}, as accepting {(a,b),(b,c),(c,a)} 
int o R would yield a cy cle containing at least one of F = { ( a, c) , ( b, a) , ( c, b)}, 
while accepting {(a,b), (b,c)} would also have a non-empty intersection with F. 
The strong prioritized union (Algorithm 4) yields T = {(a,b),(b,c),(c,a)}, N= 
{(a,b)} and F = {(b,a)}. Algorithm 2 would then first see the arising of the cycle 
{(a,b),(b,c),(c,a)}, which will contain F = {(b,a)}, and lead to each path being 
cut, preserving only the necessary relation ( a, b), which will be the finał output. 

Finally, we mention that we feel it is very probable the weak and strict 
prioritized union operations will be one and the same when taking two partially 
ordered sets as input. However, fully exploring this possibility falls outside the scope 
of this paper. 

6. Properties of {T,N,F} construction operations 

We now outline some desired properties of {T,N,F} constructing operations. 
We will contrast the use of the {T,N,F} structure to the altemative of constructing 
intermediate R relations, such as would be necessary when supplied with an opera
tion only capable of processing two partial orders. The behavior of such an opera
tion when processing a set P of partial orders {P1, ... , Pn} can be emulated as fol
lows: Construct {T1 ,N1 ,F1} and {T2,N2, F2} on the basis of P1 and P2, combine them 
into {T1,2,N1,2,F1,2} and extract R. From now on, we will write {T,N,Fh, 2, rather 
than {T1,2,N1,2,F1.2}, to make for easier reading. Construct {T,N,Fh on the basis 
of R, and combine it with {T,N,Fh to yield {T,N,Fh_ 3. Extract a new R from 
{T,N,Fh. 3, combine it with {T,N.F} 4 and so on. We will show this method yields 
very different results from the approach we advocate. 

Constructing a set of relations {T, N, F} on the basis of a set P of partial orders 
{P1 , ... ,Pn}, denoted as {T,N, F}p, should be insensitive to the inclusion of multi
ple identical partial orders. In other words, suppose P' ~ P, it would be natural to 
have {T,N,F}p = {T,N,F}PuP'· When using an operation that does not preserve 
{T,N,F} as an intermediate result, it will be elear that this property does not hold. 
Suppose P1 = {(a,b)} and P2 = {(b,a)}. Clearly, the consistent union (denote it as 
R1.2) will be the empty set. If we now take the consistent union of this intermediate 
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R1,2 and P2, the outcome becomes R1,2,2 = { (b,a)}. When processing the partial or
ders in the inverse order, the outcome (R2,2,1) would be the empty set. Clearly, this 
method is sensitive to the repetition of partial orders. 

The example discussed above also shows that we should not expect the consi
stent union of three different partial orders to be independent of the order in which 
they are processed when using an operation which outputs only an R relation without 
conserving a {T,N, F} structure. When keeping the {T,N,F} structure as an interme
diate result however, sensitivity to the order of the processed posets does not occur. 
We pro vide an illustrative example on the basis of Pi = { ( a, b)} and P2 = { ( b, a)}. We 
have T1 =N1 = {(a,b)}, F1 = {(b,a)} and T2 =N2 = {(b,a)}, F2 = {(a,b)}. Combi
ning these via Algorithm 3 yields T = { (a. b), (b,a)}, N= 0 and F = { (a, b), (b, a)}. 
Clearly, the number of additional times P1 or P2 would be added to this {T,N,F} 
structure will not matter, nor will the order, in which they were to be added. As the 
simplicity of Algorithm 3 allows for an easy verification of these properties, we will 
not discuss this any further. 

Finally, we show that we have the pleasing property that for two {T,N,F} 
structures { T1, N 1 , F1} and { T2, N2, F2}, the consistent unio n of both structures will be 
equal to the consistent union of the weak prioritized unions when taking each struc
ture in tum as the priority structure. Algorithm 3 immediately contains the outcome 
of the consistent union of the two structures. We now let {T,N, F}i 11 denote the weak 
prioritized union taking {T1,N1,Fi} as the priority structure, and let {T,N,F}i 12 de
note the weak prioritized union taking {T2, N2, F2} to be the priority structure. As per 
Algorithm 5, this immediately yields 

T211 = T1 U(T2 \F1) 

N211 = N1 

F211 = F1 U (F2 \ T1) 

For {T,N, F} 112 , the relations are analogous. Observe now that T1 <;;;; T21 1 <;;;; T1 UT2, and 
likewise T2 <;;;; T112 <;;;; T1 UT2, whileF1 <;;;; F211 <;;;; F1 UF2 andlikewiseF2 <;;;; F112 <;;;; F1 UF2. 
Applying Algorithm 1 on {T,N,F}i 12 and {T,N,F}i 11 then yields for T = T21 1 U T112, 
which will be equal to T1 U T2 precisely because T211 and Tq 2 are extensions of the 
priority set of tentative relations of which the union is in tum an extension. Conse
quently, the union of T211 and T112 must then be equal to the union of T1 and T2. The 
same holds for the set of forbidden relations F, while the set of necessary relations is 
immediately defined as the intersection of both sets of necessary relations. Tuus, we 

175 



Michael RADEMAKER, Bernard DE BAETS and Hans DE MEYER 

are able to conclude that the consistent unio n of { T1, N1, F1} and { T2, N2, F2}, is equal 
to the consistent union of {T,N,F}i 11 and {T,N,F}i 12 . 

7.Summary 

We have extended our previous operations described in Rademaker et al. 
(2008) to be able to process multiple partial orders. To this end, we needed to 
introduce a new structure of a triplet of relations, to be able to conserve the necessary 
information when dealing with processing mare than two partial order relations. 
Both the consistent union and the prioritized union operation have been extended 
in this way. Extending the prioritized union to multiple partial orders identified a 
possible variant, with only one yielding a unique partial order. We hope the elear and 
easily implementable algorithms detailed in this text will allow these operations to be 
disseminated in mare data-exploratory papers. 
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