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Abstract

In the paper a modification of the method of fuzzy clustering basing on

fuzzy intuitionistic features is presented. Objects are described by set of

features with fuzzy intuitionistic numeric values. Generally, the method

uses the concept of modified fuzzy c-means procedure. The author suggests

different method for distance measure between cluster centers and intuition-

istic data. A comparison of the results obtained for some numeric examples

of clustering is presented.

Keywords: fuzzy c-means clustering, fuzzy intuitionistic data, distance

measure.

1 Introduction

In fuzzy clustering the limits between clusters are fuzzy and input data can be-

long to different clusters partially with different levels of membership. In many

practical clustering problems the input data must be treated as fuzzy sets. For ex-

ample during face recognition procedure, some distances measured between face

elements are rather fuzzy numbers than crisp values. Moreover, a not exceeded

bounds of these distances can be done. Such situation occurs often in practice.

Thus, in the paper, an approach to fuzzy clustering basing on data with intuition-

istic fuzzy features is presented. Objects are described by set of features with
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intuitionistic fuzzy values [1]. Generally, the method uses modified c-means pro-

cedure applied to such data.

The applications of intuitionistic fuzzy sets in clustering problems begin for

year 2004. Hung, Lee and Fuh [3], proposed the fuzzy clustering algorithm based

on intuitionistic fuzzy relations. In years 2007-2008, a Greek team from the Uni-

versity of Piraeus, University of Athens and Technological Educational Institute

of Crete was published some papers on fuzzy clustering of intuitionistic fuzzy

data [5] [7] [8]. The novel variant of the FCM algorithm assumed that the features

were represented by intuitionistic fuzzy values, i.e. elements of an intuitionis-

tic fuzzy set. The elements of an intuitionistic fuzzy set were characterized by

two functions representing their belongingness and non-belongingness to this set,

respectively. In order to exploit this information for clustering a novel distance

metric was defined especially designed to operate on intuitionistic fuzzy vectors.

The distance is based on a new similarity measure between intuitionistic fuzzy

sets. The paper [7] apply the method to RGB color image clustering. In the pa-

per [5] the clustering is based on intuitionistic fuzzy intersection and is applied

to computer vision problem. The paper [8] concerns application of intuitionistic

fuzzy clustering to information retrieval from cultural databases. The similarity

measure is applied also. In the paper [12] the clustering algorithm is based on

definition of association coefficients of intuitionistic fuzzy sets. Also interval-

valued intuitionistic fuzzy set is considered. The intuitionistic fuzzy hierarchical

clustering algorithm was presented in [13]. There, normalized Hamming distance

and the normalized Euclidean distance were applied to clustering. In [14] Xu and

Wu proposed intuitionistic fuzzy C-means clustering algorithms for intuitionistic

fuzzy set and interval-valued intuitionistic fuzzy set, respectively. To solve the

optimization problem the Lagrange multiplier method was employed. A novel

intuitionistic fuzzy c-means color clustering on human cell images is proposed

by Chaira [4]. The non-membership values are calculated from Sugeno’s type

intuitionistic fuzzy complement. The method is applied to color space medical

images. In order to incorporate intuitionistic property in conventional fuzzy clus-

tering algorithm, the cluster centers are updated using a hesitation degree. In [11]

identical similarity measure as in [7] was used as distance measure in cluster mem-

bership matrix. In [10] the concept of the α-level fuzzy relation was extended in-

troducing the definition of (α, β)-level intuitionistic fuzzy relation. Next, the idea

of intuitionistic fuzzy tolerance matrix was described and clustering algorithm

based on this matrix was proposed.

In [2] the author suggested a modification of fuzzy c-means (FCM) algorithm

and applied this modification to clustering of fuzzy data. The idea is developed

here for intuitionistic fuzzy data.
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2 Modification of FCM with Intuitionistic Data

Consider input data set X = (x1, ..., xN ) where any data xi is described by a vec-

tor Fi = (fi1, ..., fiL) of fuzzy features fil. Any feature fil represents uncertain

numeric values. Thus, any feature is described by set of intuitionistic fuzzy sets

with membership functions µlk and non-membership νlk. In practical situations

triangular or trapezoidal shapes of membership and non-membership functions

are useful. Sophisticated shapes as bell, Gaussian or some other are not reason-

able because of infinite support. Consider now a set V = (V1, ..., Vc) of fuzzy

clusters. Let v1, ..., vc be unknown centers of clusters. Any data xi can belong

to any cluster Vj with unknown membership uij . The goal of the robust fuzzy

c-means algorithm is to find optimal number of clusters and centers of clusters to

minimize objective function J(U, V ).

µ(x)ν(x)

x

a1 a3a2 a 4 a5 a 6 a 7 a 8

1

0

Figure 1: Membership and non-membership functions for data.

In the paper the following procedure, called IFCM, is proposed. Firstly, cen-

ters of intuitionistic fuzzy sets are found. Many methods are proposed in literature

to found them: association coefficients [12], maximum and minimum values of

each feature [11], tolerance value [9][10], Sugeno type intuitionistic fuzzy com-

plement [4], etc. Here some solutions were considered but it seems that very

simple procedure is the best

xil = (a1il + a2il + a3il + a4il + a5il + a6il + a7il + a8il)/8 (1)

where a1il..a8il denote the characteristic values of l feature for element i. The rule

can be explained as follows. Both functions - membership and non-membership

have the same influence on the result. If the data are fuzzy sets (non intuitionistic)

then if membership function is symmetric then rule gives geometrical center; if

sides of membership trapeze are non equal then the result is sifted somewhat in

the direction of longer side. It is true also for non-membership function.
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Next, sufficient, surely too great number cmax of clusters and initial matrix

of membership U are supposed. For example, without any previous knowledge

uij can be equal to 0.5. Very often Huber function is applied to distance measure

ρ(x) between data xi and center vj of the cluster Vj , i.e. ρ[d(xi, vj)]. The goal of

this function is to reduce the influence of outliers.

ρ(x) =

{

x2/2 if |x| ≤ 1
|x| − 1/2 if |x| > 1

(2)

Kersten et al. [6] proposed reduction of outliers using a function ψ(x)=dρ(x)/dx
and weights w(x) = ψ(x)/x, where the weights are defined as follows

w(x) =

{

1 if |x| ≤ 1
1/|x| if |x| > 1

(3)

After integration it can be obtain a formula for ρ

ρ(x) =

{

x2/2 if |x| ≤ 1
|x| if |x| > 1

(4)

In this paper, after many investigations, another idea are proposed. The func-

tion ρ(x) has form of squares

ρ(x) =

{

x2/2 if |x| ≤ 1
x2 − 1/2 if |x| > 1

(5)

The definition also reduce somewhat influence of outliers, but also fasten search-

ing for big clusters laying far from starting point of clustering procedure. It seems

reasonable.

Another measure of distance, as suggested before, the author obtained in a

way somewhat similar to weighting function defined in [6] by expression with

derivative w(x) = (1/x)dρ(x)/dx. It is assumed for |x| <= 1 the weightw(x) =
1 and for |x| > 1 the weight w(x) = 1/x2. Applying inversely the definition

dρ(x)/dx = xw(x) to the proposed weighting function, it is possible to find

appropriate ρ(x) as integral. The result is as follows

ρ(x) =

{

x2/2 if |x| ≤ 1
ln(|x|) + 1/2 if |x| > 1

(6)

Applying new definition of ρ[d(xi, vj)] the objective function is equal

J(U, V ) =
N
∑

i=1

c
∑

j=1

umij ρ[d(xi, vj)/γ] (7)
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where γ is a scaling constant, called Huber constant. The value of γ can be found

experimentally or by calculating standard deviation or median. The choice of γ
was not very critical. The value d(xi, vj) is as before a distance between data xi
and center of cluster Vj , but now both values are fuzzy. Therefore, centers of data

were found firstly. The cluster centers will be considered at this moment as crisp.

However, at the end of clustering procedure they will be fuzzified.

Five different procedures, replacing Huber ρ(x) function, denoted here by

DL, DS , DP , DH , DK , were used in the paper for calculations using modified

distance definition

dm(xi, vj) = d(xi, vj)/γ (8)

D(xi, vj) =



































d2m(xi, vj)/2 if d2m(xi, vj) ≤ 1 else

[ ln(d2m(xi, vj) + 1)]/2 case 1 denoted as DL(xi, vj)
d2m(xi, vj)− 1/2 case 2 denoted as DS(xi, vj)
|d3m(xi, vj)| − 1/2 case 3 denoted as DP (xi, vj)
|dm(xi, vj)| − 1/2 case 4 denoted as DH(xi, vj)
|dm(xi, vj)| case 5 denoted as DK(xi, vj)

(9)

First three cases, 1, 2, 3, are suggested by the author, case 4 by Huber, and case 5

by Kersten et al.

Now, the matrix of membership [uij] of data xi in the cluster cj is updated in

the following way:

uij =
[

c
∑

k=1

(D(xi, vj)

D(xi, vk)

)1/(m−1)]−1
(10)

New values of uij are normalized in all clusters to 1

u
′

ij =
uij

∑c
j=1 uij

(11)

In the next step the influence of outliers can be reduced using weighting function

w[dm(xi, vj)] =



















1 if 1/dm(xi, vj) ≤ 1, else

1/dm(xi, vj) Huber weight, case 1, denoted as wH

1/d2m(xi, vj) new weight, case 2, denoted as wS

1/d3m(xi, vj) new weight, case 3, denoted as wP

(12)

Using this definition of D(xi, vj) and w[dm(xi, vj)] the results obtained by simu-

lation were compared with other methods. For this reason, the definitions (7) (8)
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(9) (10) (11) and (12) were adopted for the proposed clustering algorithm. New

centers of clusters are calculated as follows:

vj =

∑N
i=1 u

m
ij w[dm(xi, vj)]xi

∑N
i=1 u

m
ij w[dm(xi, vj)]

(13)

Now, there are two possibilities - center of cluster can be crisp or intuitionistic

fuzzy. Fuzzy center is more interesting, because it may represent fuzziness of

data belonging to the cluster. Because the membership function of the data have

trapezoidal shape, it is reasonable to use the same type of membership for cluster

center calculated as weighted mean

a2jl =

∑N
i=1 uij a2il
∑N

i=1 uij
a7jl =

∑N
i=1 uij a7il
∑N

i=1 uij
(14)

The points a4jl, a5jl, where alpha-cut is equal to 1, are calculated in similar way.

Similar procedure is used for non-membership function. It is not necessary to cal-

culate these values during iteration. They can be found at the end of the clustering

procedure.

FCM algorithm requires declaring maximal number of clusters cmax. During

any iteration merging procedure can diminish the number of clusters if the dis-

tance between their centers is small. Several methods for merging procedure are

proposed in literature. Here, merging criterion is based on concepts of variation,

cardinality, and compactness. Variation σj of the cluster cj is defined as weighted

mean function of distance

σj =
N
∑

i=1

uijD(xi, vj) (15)

Fuzzy cardinality is a measure of the cluster size and is defined as

nj =
N
∑

i=1

uij (16)

Compactness of the cluster is a ratio

πj =

∑N
i=1 u

m
ij D(xi, vj)

∑N
i=1 u

m
ij

(17)

Separation between two clusters cj and ck can be calculated using modified dis-

tance dm(xi, vj) between cluster centers vj and vk. Decision about merging two

38



clusters is taken with help of validity index. Validity index is defined as ratio [2]

ωjk =
D(vj , vk)
√
πjπk

(18)

During every iteration the validity index is calculated for any pair of clusters cj , ck
and if ωjk < α then merging procedure is initiated. The value α = 1 corresponds

to situation when distance between clusters is equal to geometric mean of the

cluster compactness. In practice the values in the range [0.1, 0.35] work well.

The center vl of new cluster cl is located in the weighted middle

vl =
vjnj + vknk
nj + nk

(19)

Two old clusters are eliminated after merging and replaced by new cluster. After

merging, the membership values are recalculated and the IFCM procedure re-

peats. Stop criterion is based on the change of membership values uij after each

iteration. If maximal change is lower than threshold ǫ then procedure is stopped.

3 Simulation Experiments

In the paper input data have probabilistic nature. Every data xi is two-dimensional

vector of intuitionistic fuzzy trapezoidal sets (Fig. 1) xil = (a1il..a8il) and yil =
(b1il..b8il) on the plain (x, y) = 640 × 480 pixels. Probabilistic distributions

for fuzzy parameters were used. As a result we obtain a fuzzy value with two-

dimensional membership function in the form of pyramid with top cut off and

inverse pyramid for nonmembership.

First, the values r, b were generated with uniform [0, 1] distribution. The

values ai2, bi2 were generated using formula of the type:

if number of clusters 2 ≤ c ≤ 3 then for j := 1 to c do begin

r:=Random; b:=Random;

a2:=-300/c+j*(10+600/c)+(300/c)*r*cos(2*pi*b);

b2:=190+100*(j mod 2)+160*r*sin(2*pi*b);

The values sign and sign1 are equal to 1 or -1 and they were changed during

generation to obtain axial symmetry of probability density. Other parameters of

fuzzy numbers were obtained using formula:

a4 := a2 + 4 +Random(5); a5 := a4 + 4 +Random(5);
a7 := a5 + 4 +Random(5);
b4 := b2 + 3 +Random(5); b5 := b4 + 3 +Random(5);
b7 := b5 + 3 +Random(5);
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a1 := a2 − 4−Random(5); a3 := a4 − 1−Random(5);
a6 := a5 + 1 +Random(5); a8 := a7 + 1 +Random(5);
b1 := b2 − 3−Random(5); b3 := b4 − 1−Random(5);
b6 := b5 + 1 +Random(5); b8 := b7 + 1 +Random(5);

If number of clusters is greater then three analogical way of data generation

was used.

Every time 2% or 5% of data was generated as outliers with uniform distri-

bution on the whole plain. Following values were used: number of data N=100,

500 or 1000, real number of clusters c=1, 2, 3, 4, maximal (initial, start) value

cmax=4, 5 or 6, m=1.5, γ=0.1...1000, α=0.2 or 0.3, ǫ=0.005..0.01. The size of

clusters was identical. An example of results is presented in Fig. 1.

Figure 2: Clustering results where N = 1000. Number of initial clusters cmax=6,

number of real clusters c=3; m = 1.5, α = 0.25, ǫ = 0.01, γ = 100.

Gray rectangles shaded with lines and with black centers represent fuzzy in-

tuitionistic data. This black centers show area with membership equal to 1. Gray

empty circles show actual center of clusters and displacement of the cluster’s cen-

ters during actualization and merging procedure, after merging color of circles

is changed (visible well only in color image). Big holes show final position of

centers.

During clustering procedure the distance was calculated two times. First time,

where the distance between data and cluster center is calculated (for all clusters)
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and second time, where objective function is calculated. Between these calcula-

tions the weight is calculated. In the paper five cases were considered for distance

and three for weight. Totally, it obtains 5× 3× 5 = 75 different cases. All these

cases are compared. More of them give bad results - bad number of clusters or

long time of calculations with many iterations. Only the best methods were inves-

tigated more carefully. It is not possible to look for optimal values of parameters:

m, γ, α and ǫ in 75 different cases. Thus, typical ”good” values are assumed for

parameters: m = 1.5, α = 0.25 and ǫ = 0.01. Every time the clustering process,

the number of iterations between merging procedures, total number of iterations,

final value of objective function and time of calculations were displayed. Here,

some results for best methods are shown in Table 1, where γ=100 and 2000. Other

parameters were unchanged.

Table 1: Results of clustering for best methods.

Method γ = 100 γ = 2000 Rank

No. of Error No. of Error

Iterat. ∗ 105 Iterat. ∗ 103 Iterat. Error Total

DL wS JS 18.28 1.810 10.93 7.687 5 3 5 5 V

DS wS JS 13.78 1.293 9.81 6.065 3 2 2 2 I-II

DP wS JS 16.27 1.260 12.07 5.909 4 5 1 1 III-IV

DH wS JS 12.68 1.419 9.34 6.578 2 1 3 3 I-II

DK wS JS 12.60 1.425 11.35 6.703 1 4 4 4 III-IV

In Tables following notations are used: DL DS DP DH DK - formula for

distance, wH wS wP - formula for weight, JL JS JP JH JK - formula for distance

function D used for calculation of the objective function J(U, V ) and merging

(variation, compactness). Initial number of clusters was assumed as 6 and real

number of clusters was 3. The results in Table 1 were ranked in raising way. The

methods DS ws JS and DH ws JS work very good. The method DP ws JS
works fast, but sometimes, in about 5% of cases, it stops with not correct number

of clusters (4 clusters). The method DL ws JS works good but slow.

The influence of parameter γ is shown in Table 2, where also good methods

are presented. It should be noted that initial repartition of cluster centers was

random. Therefore, sometimes occurs that bad number of real clusters was found.

For all cases in Table 1 and separately in Table 2 intuitionistic data were identical.

For γ = 100 any method do not work good, a bad number of clusters was found

very often. Simply, parameter γ is too small. The best method DL wS JH gives

correct number of clusters only in 70% of cases. For γ = 2000 the situation is
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changed, the methods work good. Only for DS wS JH and DP wS JH sometimes

bad number of clusters was found. The method DL wS JS works good in large

range of γ values, unfortunately it gives greatest error. Of course, the value of ǫ
can be diminish, but it entails more iterations. For N = 1000 and slow computer

PC the clustering procedure takes 1000 ms to 2000 ms depending on data and

method. In conclusion, DS wS JS and DH wS JS methods were found as the

best.

Table 2: Results of clustering for different parameter γ.

γ = 100 γ = 500 γ = 1000 γ = 2000
Method Iter. Error Iter. Error Iter. Error Iter. Error

∗103 ∗103 ∗103 ∗102

DL wS JH 45.1 5.89 25.5 2.06 18.6 1.59 14.2 10.56

DS wS JH 34.0 5.00 24.0 1.66 18.8 1.35 17.2 9.15

DP wS JH 30.9 4.95 22.6 1.65 19.5 1.35 16.7 9.13

DH wS JH 33.0 5.17 23.0 1.78 17.6 1.42 14.7 9.62

DK wS JH 33.3 5.18 22.0 1.87 18.4 1.43 17.7 9.72

4 Conclusions

The main goal of the paper consists in comparison of some distance measure used

for clustering problem. Only fuzzy C-means (FCM) algorithm was considered

with some modifications suggested by the author. Fuzzy intuitionistic data are

used. Centers of clusters are assumed also as fuzzy intuitionistic. The author

thinks that in the case of many data it is not possible to use special distance mea-

sure taking in consideration all parameters of intuitionistic sets during calculations

of distance between any data and fuzzy intuitionistic center of cluster. It will be

sufficient to defuzzify every data at the beginning of the algorithm, curry out the

FCM clusterisation and finally rebuild center of clusters as intuitionistic using

mean procedure applied to members of the cluster. Interesting, but disputable,

concept is suggested - apply a measures for calculation of distance between data

and cluster center and similar or different measure for merging procedure, where

distance between clusters is calculated. The results show that both concepts are

possible, final results are correct for some different measures. Many combinations

were considered, totally 75 cases. Most of them are bad, but good procedures were

found. Investigation were performed for large number of data but in any case only

a few trials were executed. If the method was bad investigation was interrupted.
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Only good methods were tested more carefully. The data and starting points were

chosen as random. The best procedures apply the measure proposed by the author

and by Huber.
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The papers presented in this Volume 2 constitute a collection of contributions, 
both of a foundational and applied type, by both well-known experts and young 
researchers in various fields of broadly perceived intelligent systems. 
It may be viewed as a result of fruitful discussions held during the Tenth 
International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets  
(IWIFSGN-2011) organized in Warsaw on September 30, 2011 by the Systems 
Research Institute, Polish Academy of Sciences, in Warsaw, Poland, Institute 
of Biophysics and Biomedical  Engineering, Bulgarian Academy of Sciences in 
Sofia, Bulgaria, and WIT - Warsaw School of Information Technology in 
Warsaw, Poland, and co-organized by: the Matej Bel University, Banska 
Bystrica, Slovakia, Universidad Publica de Navarra, Pamplona, Spain, 
Universidade de Tras-Os-Montes e Alto Douro, Vila Real, Portugal, and the 
University of Westminster, Harrow, UK:
 
Http://www.ibspan.waw.pl/ifs2011 

The consecutive International Workshops on Intuitionistic Fuzzy Sets and 
Generalized Nets (IWIFSGNs) have been meant to provide a forum for the 
presentation of new results and for scientific discussion  on new 
developments in foundations and applications of intuitionistic fuzzy sets and 
generalized nets pioneered by Professor Krassimir T. Atanassov. Other topics 
related to broadly perceived representation and processing of uncertain and 
imprecise information and intelligent systems have also been included.  The 
Tenth International Workshop on Intuitionistic Fuzzy Sets and Generalized 
Nets (IWIFSGN-2011) is a continuation of this undertaking, and provides many 
new ideas and results in the areas concerned.

We hope that a collection of main contributions presented at the Workshop, 
completed with many papers by leading experts who have not been able to 
participate, will provide a source of much needed information on recent trends 
in the topics considered.
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