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UNCERTAIN VARIABLES AND THEIR APPLICATIONS 
IN KNOWLEDGE-BASED PATTERN RECOGNITION 

Zdzisław Bubnicki 
Institute of Control and Systems Engineering 

Wrocław University o/Technology 
Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland 

Abstract: The pwpose of this work is to show how uncertain variables 
may be applied to a class of pattern recognition systems described by 
a relational knowledge representation with unknown parameters. The 
short description of uncertain logics and variables is given in the first 
part of the work. In the second part, formulations and solutions of the 
pattern recognition problem for different cases are presented. Two 
simple examples illustrate the approach considered in the paper. 

Keywords: uncertain variables, uncertain systems, pattern 
recognition, knowledge-based systems. 

1. Introduction 

The idea of the so called uncertain variables based on uncertain logics 
has been introduced and developed as a tool for the analysis and decision 
problems in a class of uncertain systems described by traditional 
mathematical models or by the relational knowledge representations 
(Bubnicki 1998, 2000c, 2001b, 2001c, 2002a). The unce1tain variable is 
described by certainty distribution given by an expert and expressing his/her 
knowledge concerning different approximate values of the variable. The 
uncertain variables are related to random and fuzzy variables but there are 
also essential differences. The so called soft variables as a generalization of 
random, uncertain and fuzzy variables have been presented in (Bubnicki 
2001d, 200le). 

The purpose of this work is to show how the uncertain variables may 
be applied to a class of pattem recognition systems with a relational 
knowledge representation containing unknown parameters which are 
assumed to be the values of uncertain variables described by certainty 
distributions. Such a description may be much simpler and nearer to 
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traditional models of the recognition problem than the description in the 
form of fuzzy mies. In the first part of the work a short presentation of the 
uncertain logics and variables is given. Details can be found in (Bubnicki 
2001b, 2001c, 2002a). 

2. Uncertain logics and variables 

Consider a universal set Q, w E Q, a set X~ Rk, a function 

g : Q ~ X , a crisp property (predicate) P(x) and the crisp property 

'Jl (w, P) generated by P and g: "For x = g(w) ~ x(w) assigned to w the 

property P is satisfied". Let us introduce now the property 
Gw(x)="x(W)=x" for xE X ~X, which means: "x is approximately 

equal to x" or "x is the approximate value of x ". The properties Pand Gw 

generate the soft property 'Jl (w, P) in .Q : "the approximate value of x(w) 

satisfies P", i.e. 

'Jl (w,P) = "x(w) E Dx", Dx ={xE X: P(x)}, (1) 

which means: "x approximately belongs to Dx ". Denote by hw (x) the 

logical value of Gw (x): 

w[x(w) = x] ~ hw(x), Ahw(x)?.0, maxhw(x)=l. 
XE X xEX 

(2) 

Definition 1. The uncertain logic Lis defined by Q, X, X, crisp predicates 
P(x), the properties Gw(x) and the corresponding functions hw(x) for 

w E Q. In this logic we consider soft properties (1) generated by Pand Gw. 

The logical value of 'Jl is 

_ t,,. _ · {max hw(x) for Dx :;t0 
w['JI (w, P)] = v['JI (W, P)] = xE Dx 

O for Dx =0 

and is called a certainty index. The operations are defined as follows: 

v[-,'Jl(w ,P)]=l-v['Jl(w,P)], (3) 
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(5) 

where lfl 1 is lfl or -, lfl , and lfl 2 is lfl or -, lfl • 
It is easy to note that Gw is a special case of lfl for Dx = {x} (a singleton) 
and 

v[.x(w) = x] = hw (x), v[.x(wfix]=I-hw(x). 

For the logic L one can prove the following statements: 

v[lfl (w, P1 v P2 )] = v[lfl (w, Pi) v lfl (w, P2)L 

v[lfl (w, Pi A P2 )] :S min { v[lfl (w, Pi)], v[lfl (w, P2 )]} , 

v[lfl(w,-,P)]~v[-,lfl(w,P)]. 

(6) 

(7) 

(8) 

The interpretation (semantics) of the uncertain logic Lis the following: The 
uncertain logic operates with crisp predicates P, but for the given w it is not 
possible to state if Pis true or false because the function g and consequently 
the value .x are unknown. The function hw(x) is given by an expert, who by 

"looking at" w obtains some information concerning .x and uses it to 
evaluate his opinion regarding .x = x . For the same (Q, X) we may have the 
different logics (the different hw) determined by different experts. 

Definition 2 (the uncertain logic C). The first part is the same as in Def.1. 
The certainty index of lfl and the operations are defined as follows: 

- 1 - -
vc [ lfl (w, P) = -{v[ lfl (w, P)] + 1- v[lfl (w, ,P)]} 

2 
1 

=-[ max hw(x) + 1- m~ hw(x)] 
2 xEDx xEDx 

where Dx is a complement of Dx, 

-,l[f (w, P) = 'P (w, ,P), 

One can note that Gw is a special case of 'P and 
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vc[x(w)=x]=_!._[hw(x)+l- max hw(.x)]. 
2 xEX-{x) 

(12) 

For the logic C one can prove the following statements: 

vc['P (w, Pi v Pi)] :2'. max {vc ['l' (w, Pi)], vc ['fi (w, Pz)]}, (13) 

vc[-,łfl (w, P)] = 1-vc['l' (w, P)]. (15) 

The variable x for a fixed w will be called an uncertain variable. Two 
versions of uncertain variables will be defined by: h(x) given by an expert 

and the definitions of certainty indexes w(x E Dx), w(x E Dx), 

w(xE D1 vxE Dz), w(xE D1 /\XE Dz). 

Definition 3. L-uncertain varżable x is defined by X, the function 
h(x) = v(x = x) given by an expert and the following definitions: 

v(xE Dx)= max h(x) for Dx i: 0 and O for Dx = 0, 
xEDx 

v(xE Dx)=l-v(xE Dx), 

v(xED1 VXE Dz)=max{v(xE D1),v(xE Dz)}, 

The function h (x) will be called L-certażnty dżstributżon • 

(16) 

(17) 

(18) 

(19) 

The definition of L-uncertain variable is based on logic L. Theo, for (1) the 
properties (6), (7), (8) are satisfied. In particular, (8) becomes: 

v(xE Dx):2'.v(xE Dx)=l-v(xE Dx). 

Definition 4. C-uncertain variable is defined by X, h(x) = v(x = x) given by 

an expert and the following definitions: 

vc(.xE Dx)=.!..[max h(x)+I- mig h(x)], 
2 xEDx xEDx 

(20) 
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v c ex E D1 v x E D2) = v c < x E D1 u D2) , 

vc(.xE D1 A.XE D2)=vc(.xE D1 nD2) • 

(21) 

(22) 

(23) 

The definition of C-uncertain variable is based on logic C. Then for (1) the 
prope1ties (13), (14), (15) are satisfied. According to (9) and (15) 

vc(x~ Dx)=vc(xE Dx). Thefunction vc(X:x)~hc(x) maybecalled 
C-certainty distribution. 

Let us consider a plant with the input vector u E U and the output 
vector y E Y, described by a relation R(u, y; x) c U x Y where x is an 
unknown parameter which is assumed to be a value of an uncertain variable 
x described by the certainty distribution hx(x). 

Analysis problem: For the given R, hx(x), Du c U (obtained as the result 

of the observation) and Dy c Y (given by a user), find v[Dy t Dy(x)] 

where 

Dy(x)={yE Y: V (u,y)E R(u,y;x)} 
uED„ 

is the set of all possible outputs. To salve the problem one should determine 
Dx(Du) = {xE X :Dy ~ Dy (x)} . Then 

(24) 

The value (24) denotes the certainty index of the property: for the 
approximate value of .x the set of all possible outputs contains the set Dy 

given by a user. 

Decision problem: For the given R, hx(x) and Dy find the decision u * 

maxirnizing the ce1tainty index of the property: for the approximate value of 
x the set of all possible outputs belongs to Dy given by a user. Then 

u*= argmax v[Dy(x) e Dy]= argmax ll}aX hx(x) 
11 u xEDx(u) 

where 

29 



Zdzisław BUBNICKI 

Dx(u) = {xE X :Dy(x) ~Dy}= {xE X :uE Du (x)} 

where Du (x) c U is the largest set such that the implication 

u E Du (x) • y E D y is satisfied, i.e. Du (x) = {u EU: Dy (x) ~Dy} . 

In the above formulations x has been treated as L-uncertain variable. The 
considerations for the C-uncertain variable have analogous forms. 

3. Pattern recognition 

Let an object to be recognized or classified be characterized by a 
vector of features u E U which may be observed, and the index of a class j 

to which the object belongs; j E {l, 2, ... , M}@ J , where M is the number 

of classes. The set of objects may be described by a relational knowledge 
representation R (u, j) E U x J which is reduced to the sequence of sets 

Du(j)cU, }=1,2, .. . ,M, 

I.e. 

Du(j)={uEU: (u,j)ER(u,j)}. 

Assume that as a result of the observation it is known that u E Du c U . 

The recognition problem may consist in finding the set of all possible indices 
j , i.e. the set of all possible classes to which the object may belong 

(Bubnicki 1993, 2001a, Szala 2002). 

Recognition problem: For a given sequence Du(}), j E 1,M and the result 

of observation Du find the smallest set D j c J for which the implication 

uE Du -'t }E Dj 

is satisfied. This is the specific analysis problem for the relational plant and 

D j = {j E J : Du n Du (j) :t: 0} 

where 0 denotes an empty set. In particular, if Du = {u}, i.e. we obtain the 

exact result of the measurement, then 

D j = {j E J : u E Du(})} . 

Now let us assume that the knowledge representation contains a vector of 
unknown parameters x E X and x is assumed to be a value of an uncertain 
variable .x described by a certainty distribution hx (x) given by an expert. 
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Recognition problem for uncertain parameters: For the given sequence 

Du (j; x), hx(x), Du and the set D j c J given by a user one should find 

the certainty index that the set D j belongs to the set of all possible classes 

It is easy to see that 

where 

Then 

Ą Ą 

Dx(Dj)={xE X: Dj ~Dj(x)}. 

v[l\ e; DjCx)] = max_ hx(x). 
x EDx (Dj) 

(25) 

(26) 

(27) 

(28) 

In particular, for D j = { j} one can formulate the optimization problem 

consisting in the determination of a class j maximizing the certainty index 

that j belongs to the set of all possible classes. 

Optimal recognition problem: For the given sequence Du (j; x), hx (x) 

and Du one should find / maximizing 

v[j E D j(i)]@v(j) . 

Using (26), (27) and (28) for D j = {j} we obtain 

where 

v(j) = v[x E Dx(j)] = max hx(x) 
xEDx(j) 

Dx(j)={xEX: jEDjCx)} 

and D j(x) is determined by (25). Then 

(29) 

(30) 

* j =argmaxv(j)=argmax max hx(x). (31) 
j j xEDx(j) 

Assume that the different unknown parameters are separated in the different 
sets, i.e. the knowledge representation is described by the sets Du (j; x j) 
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where. x j E X j are subvectors of x, different for the different j . Assume 

also that x j and xi are independent uncertain variables for i i:- j and x j is 

described by the certainty distribution hxj (x j). In this case, according 

to (25) 

Then 

where 

Finally 

* j = argmax max hx/x j). 
j XJE DX) (j) 

(34) 

In particular, for Du = {u}, (25), (32) and (33) become 

DjCx) ={JEJ: uE Du(j;x)} 

v(j)=v[uE Du(j;x)]=v[xj E Dxj(j)]= max _ hx/xj), (35) 
XjE D,j(]) 

(36) 

The procedure of finding / based on the knowledge representation 

< Du (j;x), j E 1,M; hx(x) > or the błock scheme of the corresponding 
recognition system is illustrated in Fig. 1. The solution may be not unique, 

i.e. v (j) may take the maximum value for the different /. The result 

v (j) = O for each j E J means that the result of the observation u E Du is 

not possible or there is a contradiction between the result of the observation 
and the knowledge representation given by an expert. 
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Knowledge-based recognition 

j 
Object 

u 
Observation (30), (29) 

V (}) 

}El,M .____, _ __. 

Knowledge representation 

< D11 (j;x), jE 1,M; hx(x) > 

Fig. 1. 

If x is considered as a C-uncertain variable then 

* ie = argmax vc(j) 
j 

where 

vc(j)=½{v[xE Dx(j)]+l-v[xE Dx(j)]}, 

Dx(j) = X - Dx(j). Finally 

vc(j)=.!_[ max h.,.(x)+I- max hx(x)]. 
2 XE Dx (j) XE Dx (j) 

(31) 
'. ) 

(37) 

The certainty indices v c (j) corresponding to (32) and (35) have the 

analogous form. 

4. Examples 

Example 1: Let u, x j E R1 , the sets D11 (j; x j) be described by the 

inequalities 

x J ::; u :$; 2x J , j = I, 2, ... , M 

and the certainty distributions hxj (x j) have a parabolic form for each j 

(Fig. 2): 
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where d j > 1. 

Fig. 2. 

In this case the sets (36) for the given u are described by the inequality 

u 
-<x-<u 2 - J - . 

By applying (35) one obtains v (j) as a function of d j , illustrated in Fig. 3: 

o for 
u 

dj ::;--1 
2 

u 2 for 
u u 

-(--d ·) +1 --1::;d · ::;-
2 J 2 ] . 2 

v(j) = 1 for 
u 
-<d · <u 2 - J -

2 -(u-dj) +1 for u::;dj::;u+l 

o for dj ~u+l. 
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.!!. 
2 

Fig. 3. 

u u+ I 

For example, for M = 3, u= 5, d1 = 2, d2 = 5.2, d 3 = 6 we obtain 

v (1) = 0.75, v (2) = 0.96 and v (3) =O. Theo / = 2, which means that for 

u = 5 the certainty index that j = 2 belongs to the set of the possible 

u 
classes has the maximum value equal to 0.96. For d1, d2 , d3 E [-, u] one 

2 

b . * d * o tams j = I or 2 or 3 an v (j ) = 1 . 

Let us consider x as a C-uncertain variable for the same numerical 
data. To obtain v c (j) according to (37) it is necessary to determine 

tJ. 
v[XjEDxj(J)]= m~x hxj(xj)=vn(j). (38) 

Xj E Dxj(j) 

In mir case the set Dxj(i) = X j - Dxj(i) is determined by the inequalities 

u 
X· <­} 2 

or Xj > U. 

Using (38) we obtain vn (1) = vn (2) = vn (3) = l. Then 

vc(j) = .!_[v(j) + 1-vn (j)] = .!.v(j), 
2 2 

(39) 

* i.e. vc(l) = 0.375, vc(2) = 0.48, vc(3) = O and ie= 2 with the certainty 

index vc (/) = 0.48. 

For di= 3, d 2 = 3.2, d 3 = 4 we obtain v(l) = v(2) = v(3) = 1 and 
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2 
Vn (1) = - (2.5 - 3) + 1 = 0.75, 

2 vn(2)=-(2.5-3.2) +1=0.51, 

1 
VC (1) =-(1 + 1-0.75) = 0.625, 

2 

1 
vc(2) =-(1 + 1-0.51) = 0.745, 

2 

* * and j c = 3 with the certainty index v c (j c) = 1 . 

Example 2: To indicate a role of hx(x) assume that in Example 1 the 

certainty distributions have the exponential form 

h ( ) - -(xrdj)2 
xj Xj - e 

By applying (35) one obtains v (}) as a function of d j 

-(':!_-d )2 u 
d· <-

2 1 for J -e 2 

v(j) = 1 for 
u 
-5,dj $u 

-(u-d .)2 2 
e J for dj ~u. 

For M = 3, u= 5, d1 = 2, d2 = 5.2, d3 = 6 we obtain 

v (1) = e -o.z5 , v (2) = e -0.4 , v (3) = e - I . 

Then / = 2 with the certainty index v(/) = e-0·4 = 0.67. For di, dz, 

d3 E [!±., u] one obtains / = 1 or 2 or 3 and v(/) = l. It may be shown that 
2 

for a C-unce1tain variable one obtains 

(1) = .!_ -0.25 vc e , 
2 

(2) = .!_ -0.04 vc e , 
2 

l -I 
vc(3)=-e . 

2 

Then, }; = / = 2 with the certainty index vc(l) =.!.e-0·4 =0.335. The 
2 

results for di = 3, d 2 = 3.2 and d3 = 4 are as follows: 
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(1) -1 1 -0.25 
V - --e 

C 2 ' 
V (2) = 1- _!_e -0.49 

C 2 ' 
1 -1 

V (3)=1--e 
C 2 

and l =3 with the certainty index vc(l)=l-_!_e-1 =0.816. In this 
2 

particular case the results / and j; are the same for different forms of 

certainty distribution (see Example 1). 

5. Conclusions and related problems 

The approach presented in the work may be considered to be an 
extension of a pattern recognition problem based on relational and logical 
knowledge representations (Bubnicki 1990, 1993) to an uncertain 
recognition system with unknown parameters. The uncertain variables are 
shown to be a convenient tool for decision making in a class of knowledge­
based pattern recognition systems described by relational knowledge 
representations with unknown parameters characterized by an expert. In the 
case of a C-uncertain variable the expert's knowledge is used in a better way 
but the calculations are more complicated. 

The numerical examples and simulations showed that the parameters 
in the certainty distributions have a significant influence on quality of 
recognition. Then, it may be reasonable to apply an adaptation consisting 
in self-adjustment of the parameters of the recognition algorithm or - more 
generally - to combine the application of uncertain variables and of the 
learning process described in (Bubnicki 2000a, 2000b, 2001a). The learning 
process consists in step by step knowledge validation and updating and may 
be treated as an extension of the known idea of adaptation via identification 
(Bubnicki 1980). In the convergence analysis of the learning process the 
stability conditions for unce11ain systems presented in (Bubnicki 2000d) may 
be useful. 

lt may be interesting and promising to apply uncertain variables 
in two-level knowledge-based pattern recognition systems (Szala 2002) and 
to apply a generalization based on soft variables (Bubnicki 2001d, 200le). 
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