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CLUSTER-WISE MODEL IDENTIFICATION: 
WHAT HAPPENED DURING THE LAST TWENTY YEARS? 

Jan W. Owsiński 
Systems Research Institute, Polish Academy of Sciences 

Abstract: The paper deals with olle of the toughest problems in data 
analysis: given a set of observations we suppose they were generated 
by a set of different processes, to which different models correspond. 
We must, tlterefore, simultaneously split the set of observatioru into 
subsets correspolldillg to different models, and idelltify these models. 
In this formulatioll the problem has not found any satisfactory 
solution to date, except for the very special cases ( single dimension or 
"brute force" applicability). The paper presents the questioru 
encountered, some formulatiolls and approaches used, and a positive 
proposal for at least one of the aspects of the overall problem, related 
to the objective Junction, which displays the feature of globality, thai 
is - implication of a globally optimal solution to the problem. For the 
sake of shortness the respective problems and issues will just be 
signalled, with the detailed considerations left to more teclmical 
publicatio,is. 

Keywords: model ide11tificatio11, cluster analysis, global optimum. 

1. Introduction: prerequisites 

Assume we dispose of n observations x;, ie/ = { l, ... ,n}, each one 
composed of m+ 1 values Xij, corresponding to the same number of variables 
~.jeJ = { l, ... ,m+l }, serving to describe the observations. 

We are asking for a model of the process generating these 
observations, in a static form. Without any loss to generality we will denote, 
rather traditionally, the single output variable from the model by Y, Y = Xm+I• 

Thus, in a classical case we will be looking at the model appearing through 
the form Y = f(X1, ... .Xm) + ą, this model being commonly identified - with 
respect to the form off(.) and the properties of E - via a number of well-
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known procedures, primarily of regression character. The variables Xi, ... )(111 
span the space denoted Ex. 

Yet, in this case we suspect that the observations are in fact produced 
not by a single model (process), but rather by a set of such - even if 
somewhat "similar" - models or processes. Let us denote the (unknown) 
number of such models p, these models being indexed by q, qeQ = { 1, ... ,p }. 
We know nothing, a priori, of these models, other than their assumed 
generał form quoted above. This means, in particular, that we do not know 
what is the breakdown (partition) of the set / into subsets generated by and 

corresponding to the individual models q (the subsets being denoted A q ), 

nor what is the proper value of p (the number of models). We will initially 
only assume that I ~ p < n, although, as it can be easily imagined, and 
demonstrated for definite cases, the assumption of I ~ p < m may also be in 
place, like in the standard regression models. 

Thus, we look for models Ją(.) - omitting the questions related to e, 

at least for a white - along with their number and the subsets of 
observations, associated with them. Like in the single-model case, we will 

be . . . . f . f { } . th -Jq(i) ( • ) trymg to m1mm1se a unct1on o E; , assummg at y; - XH,·••.Xim 

+ E;, where q(i) assigns a model ą to an observation i according to the 
break:down of/. Note that writing this equation defining y; we assumed the 
breakdown (and the assignment i • q) to be done, and so the error term E 

not depending any longer upon the model choice (in particular, Mańczak 
1979). 

We will denote the breakdown, or partition, of I by P, P = {A 1, ... ,AP}, 
with uąA. ą = /. The potential further properties of P, or implied by them, will 
be discussed in the paper later on. 

In addition, we will assume that some definitions exist of distances 
and/or proximities in Ex, denoted, respectively, d(.,.) and s(.,.), and that 
these definitions can be appropriately extended to sets and to geometrie 
structures in Ex. They will be denoted, when applied to sets, D and S, 
respectively. We will require of these only that they be positive, and in case 
distance and proximity are simultaneously defined, that the two display an 
opposite monotonicity, i.e. d(x1.x2) ~ d(x3~) ~ s(x1.x2) ~ s(x3~) '</ X;EEx, 

and likewise for D and S. 
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2. The problems 

This very generał formulation, first: leaves a lot of space void in terms 
of details, and, second: implies a number of different, often altemative 
formulations and potential solution forms. In order to proceed positively one 
has to fi.U the voids and malce selection among the possible formulations. 

There is quite a number of aspects, which intervene in the more 
detailed problem formulation and (the on-going) solution search, and it is, in 
fact, hardly possible to present them consistently within the frames of a 
short paper. Thus, we will just stop at some milestones along a winding 
road, and malce comments related to them. A kind of a guide for such a road, 
though at a definitely earlier stage of respective developments, was offered 
in Owsiński (1989). 

Let us first state that the problem outlined is in fact equivalent to the 
generał one of cluster analysis (''finding the subsets of observations that be 
intemally possibly si111ilar, while being possibly dissimilar between them"). 
Thus, since the very problem of cluster analysis has hardly found 
a satisfactory solution, in theoretical as well as in algorithmic terms, no 
wonder the cluster-wise modelling problem has not. In fact, most of the 
issues we will be citing here apply in a very similar manner to the generał 
clustering problem. 

2.1. The nature of the model 

We are looking for a genuine model, which can be used for 
forecasting, prediction, or design. Thus, ./(.) corresponds to a well-defined 
function (say, a linear regression function), assigning the values of y to those 
of (xn, ... ,X;m). We are therefore not dealing with, for instance, the classical 
probability density function mixture problems, where primarily the density 
function parameters or other distribution characteristics were looked for 
(Back 1996), for a very constructive overview of the relations between 
clustering and mixture-type or other probabilistic models). There are some 
more recent approaches involving mixture formulations that offer new 
vistas, also in cluster-wise mode1ling problem, and one of them will be 
commented upon further on. Nor are we interested - in the first place - in 
the problems of testing and validation of the otherwise identified clusterwise 
models (see, in particular, a recent article by Hennig (2000), treating the 
question of identifiability of such models). That is - we are looking for 
a constructive approach in determination of clusters and, simultaneously, 
models. 
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In particular, a discriminant function may, of course, play also a role 
of a model, which then ultimately just assigns a point to a class. In the 
extreme case, it is therefore admissible within this formulation to include 
sheer classification ( .. typology"), treating definite values of y, namely t. 
being the „types" of the clusters ą, as the models. 

2.2. Uniqueness of the overall model 

Since the set / is broken down into internally coherent subsets, and 
little additional assumptions are made, it is possible that the subsets Aą are 
determined so that the correspondingf have overlapping argument domains. 
These domains may be defined as, for instance, the convex hulls of the { x;}. 
ieAą. denoted H({x;}ą}. If the mappings Y(H({x;}ą}) for various ą are 
overlapping, it may happen that more than one value of y correspond to an 
x; or to some XE Ex. Making of narrowing and thus simplifying assumptions 
concerning this issue may be inappropriate. lt is customary to introduce an 
additional variable (x(ą)) for the purpose of distinguishing the y's generated 
by different (overlapping) models (e.g., Nakamori and Ryoke 1994). The 
variables charged with such an assignment rarely. if ever. appear as natural 
phenomena. and certainly cannot be subject to the proper identification 
procedure. 

2.3. The number of clusters and the monotoniclty 

For the sake of generality it is assumed here that the number of 
models - clusters - denoted p is not predefined. This is an essential aspect 
of the formulation, since none of the classical cluster analysis methods 
provides a convincing solution with this respect. 

Thus. of all the clustering techniques the K-means-type ones are 
based upon a class of objective functions. which, as reflecting the sum of 
intra-cluster distances - or intra-cluster distances from the cluster-wise 
model - are inherently monotone in p. Thus. they get, generally, "better", as 
p increases, since ultimately (whenever applicable) an object is a perfect 
model of itself (no error). Hence, additional criteria are required in order to 
select the „proper" value of p. when applying such approaches. 

The agglomerative or divisive schemes do not omit this problem, 
neither. Since they provide a hierarchy of partitions, decision must be made 
as to the level of this hierarchy, which is to be retained as solution. 
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The "constructive" single-cluster-defining approaches ( e.g., Mirkin 
1996, for an excellent presentation) can lead to determination of certain Aą's 
as corresponding to "proper" clusters, but the overall set of anyhow thus 
determined subsets will in generał not satisfy the condition uąA ą = I. 
In order to satisfy it, either the "constructive" definition has to be broken, or 
additional "classification" performed, assigning the left-out i' s to the already 
defined A ą , s. 

In any case, in a generał formulation, an "extemal" criterion has to be 
applied, inherently alien to the original procedure, in order to determine the 
"proper" p. 

2.4. Numerical i~ues 

Side by side with the above issues, which are in practical terms 
translated into a lot of algorithrnic, but also theoretical, details, there are 
also quite fundamental numerical issues in the solving of the problem 
considered. The multimodality, combinatorial character, NP-hardness, 
curse-of-dimensionality, etc., in addition to the definitional questions 
already alluded to, make out of it quite a playground for a multitude of often 
poorly justified heuristics. Let us just mention here the necessity of using 
multiple starting points (even up to the order of 106), not only in case of any 
of the K-means-type algorithms, but also many other methods, with very 
poor - if any - estimates on error bounds. Many of the mathematical 
programming tasks, which are formulated in this framework, are being 
solved through approximations, and/or with assumptions, which accordingly 
simplify the initially assumed model of the problem solved. 

2.5. The nature of clusters 

One of the approaches, which is used in both formulation and sol uti on 
of the cluster-wise modelling problem is connected with the introduction of 
fuzziness. First of all, clusters Aą can be defined as fuzzy sets, that is, each Xi 
is assigned a number µą(xi) e [0,1], the membership coefficient, which 
corresponds to the degree, to which ith observation belongs to cluster q. 
Fuzziness is therefore naturally extended to the model /(.) in that it will 
assign values to y on the basis of the respective membership functions. In 
addition, though, the very model can also take on a fuzzy form, which we 
shall not comment upon here. The membership coefficients can be required 
to satisfy the condition uąAą = I. On the other hand, this condition can also 
be satisfied by the overlapping, "crisp" clusters Aą, this situation giving rise 
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to a similar situation with respect to the determination of y as in the case of 
fuzzy clusters. 

2.6. Mod.eis and procedures - the examples 

A good illustration for the actually applied procedures is provided by 
the papers of Lau, Lew1g, Tse (1999), and Nakamori and Ryoke (1994). We 
will cite here the basie assumptions and the simplifications made in the two 
approaches. They differ considerably in terms of both concrete formulations 
of the problem and the sol uti on methods applied thereto. One of them relates 
to the mixture formulation with the maximum likelihood function and so a 
mathematical programming framework (Lau, Leung, Tse 1999), with the 
cluster-wise linear regression of Spath (1979) as the original source of 
inspiration, and the papers by Celeux and Govaert (1993), as well as 
DeSarbo, Oliver and Rangaswamy (1989) as the essential points of 
reference. The other one is related to a fuzzy-set formula.tion regarding 
clusters and models, with an ellipsoidal model form, a.llowing for an 
eigenva.lue-based sub-optimisation procedure (Na.ka.mori and Ryoke 1994). 
This line of proceeding originates with the early papers on fuzzy clustering, 
like, first of all, Dunn (1974), and fuzzy linear regression - Jajuga (1986). 
Yet, the limitations of both, quite altogether complex procedures, a.re in 
many points similar: 

(a) number of clusters: in both cases the number of clusters is largely 
assumed a priori (in the second case it can decrease from a.n initial 
number based on an extema.l criterion); this is closely related to; 

(b) the monotonicity of the (implied or explicit) objective function, which 
in both cases can be likened to the sum over clusters of the sums of 
errors with respect to the models sought and determined, that is - the 
more models, the small er the sum of errors ( down to the limit of 
ca.pa.city of determination of a model, i.e. the minimum cardinality of 
clusters); 

(c) the starting points - some special procedures a.re a.pplied in the two 
cases for generation of the proper sta.rting points (random generation 
and Ward clustering), in view of both multimodality of the respective 
problems and the necessity of ha.ving a minimum cardinality of the 
initial clusters for determination of models; 

( d) the dimensions of the problems treated: it is characteristic that in the 
two cases the dimensions, in terms of H, m, and p, of the exa.mples 
shown, are quite small (n in dozens, m - a couple, p- similarly); this is, 
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in fact, the illustration of the limited numerical capacities of the 
methods and the technical algorithms involved; 

(e) the optimisation algorithms: these are different (a variant of the E-M 
· algorithm, eigenvalue-based assessment of the "matching" of 

observations and clusters, exchange algorithm, etc.); even, though, for 
the subproblems of the overall problem these algorithms do not provide 
a guarantee of obtaining a unique optimal solution; let us note at this 
point that fuzziness is often introduced into the clustering problems in 
order to secure a facility of computations ( continuous, differentiable 
subproblems in place of the hard-to-treat combinatorial ones). 

3. The question of the objective function and the algorithm 

It appears that the formulation of the objective Junction is one of two 
essential issues in the formulation and solution of the problęm here 
considered, side by side with the respective optimisation algorithm. Yet, it is 
obvious that the two are very closely related. The present paper focuses in 
its second part on the formulation of the objective function that would help 
in resolving the limitations related to monotonicity and the pre-defined 
number of clusters, but also provide a form that lends itself to a mare 
effective and efficient optimisation. Thus, the objective function we look for 
should: (I) avoid monotonicity with respect to the number of clusters (and 
thereby provide the capacity of comparing essentially different partitions P 
and the corresponding models); (II) accommodate a possibly flexible 
forrnulation of the details of the problem ( e.g. the distance/proximity 
definitions); (III) allow for a facile optimisation or at least sub-optimisation 
through either generał or special procedures. 

Now, let us introduce some notions and observations related to both 
the objective function formulations and the prerequisites for the design of 
algorithms. 

Assume D(f,A) assigns a real non-negative value to a model/ and the 
set of observations indices A. Thus, D(f ,Aą) may denote the sum of error 
term for the model proper for the cluster ą. We are definitely looking for the 
(exhaustive) partition P, incorporating the set of models {f}ą, for which the 
function ~ D(f ,A ą) attains minimum, like in virtually all the approaches 
used. Yet, it is exactly this formulation that entails the problem of 
monotonicity and of the determination of the number of clusters. The 
situation is, of course, the same, for the "dual" problem of max ~ S(f ,A ą), 
where cluster-wise similarities of the clusters and their models are summed. 
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It is quite natural to assume that a model/is uniquely determined (at 
least down to the precision of numerical algorithms) for the respective set of 
observations A. This is, for instance, the case of the classical LS and their 
non-orthodox variants. So, given the appropriate definitions, we can use the 
simplified notations D<..Aą) and S(Aą), or even D(_ą) and S(ą). 

Definitely, most of the approaches refer to D<..Aq) or S(Aą), or rather 
their respective sums, Ę, D(A ą) or Ę, S(A ą). Therefore, in view of 
monotonicity of such objective functions, the value of p is either defined 
a priori, or calculations are performed for a series of values of p, with an 
extemal criterion applied in order to determine the "best" value of p. In such 
a situation the search for a globally optima! P is replaced by the local search 
algorithms, with two techniques most widely applied, oftentimes in 
conjunction. 

One is the "object exchange" technique, in which all of the individual 
objects ie I can be exchanged between the clusters Aq, if this leads to an 
improvement in the objective function Ę, D<..Aq) or Ę, S(Aą). For this 
purpose, an increment function is used, fl;(ą,ą'), reflecting the difference of 
value of the objective function resulting from moving of object i from 
cluster q to cluster q'. In many cases it can be shown that fl;(ą,ą') is 
a straightforward function of D<..i,q) and D<..i,q'), or simply D(_i,ą) - D(_i,q') 
(and likewise for S(.,.)). Full iterations, in which entire I is successively 
analysed, are repeated until the change in the objective function gets small 
enough, or the P gets repeated ( cycling), or a predefined number of full 
iterations have been performed. For several standard objective functions 
convergence to local extrema was proven. 

The seminal algorithm of Spath (1979), from which a part of the title 
of this paper is derived, and the follow-up algorithmic varieties, used the 
"object exchange" technique. 

The other one is the "centre-and-reallocate" technique, most popular 
in the K-means variety of the usual cluster analysis problem. Here, given 
that at the start the partition P is given, defined solely by the clusters Aq, 
first the cluster-proper models f are - locally - determined for these 
clusters, then, objects i are assigned in - again - a locally optima! manner to 
models f, forming new clusters, A ,ą• and thus a new partition, P'. This is 
a complete iteration, after which new models,r. will be determined. 

Note that we have postulated very little of the models, distances­
proximities, etc. Thus, we may deal with the least squares formulations, the 
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fuzzy-set theoretical settings, or even the likelihood functions resulting from 
mixture models. The generał outline of the situation remains the same. 

Given the sole possibility of performing )ocal search, the entire 
procedure usually takes the following form: (i) same special algorithm is 
used to define the starting point for one of the above techniques, since a 
certain minimum cardinality of A ą is required in order to determine models 
(like in LS regression, for instance); these algorithms include Monte Carlo 
generation of initial clusters, classical progressive merger procedures (such 
as, for instance, the Ward technique in Nakamori and Ryoke 1994), and a 
number of eustom-made procedures (like space-dividing ones); (ii) proceed 
with a loca) search technique for one or mare of the pre-selected values of p; 
(iii) check with an external criterion (based, say, on D(Aą .Aą)) whether same 
clusters could not be merged, and, possibly, after the meger would have 
been performed, return to (ii); (iv) on the basis of (another) external 
criterion the local solution is retained, which has same special properties 
( e.g. the biggest drop in the otherwise monotone decreasing objective 
function for a given p ). This, indeed, does not seem to be an internally 
consistent procedure. 

Thus, even within the framework outline above, many of the methods 
and procedures applied have to somehow deal with the inter-cluster 
similarity or distance ( e.g., Nakamori and Ryoke 1994, for the portion of the 
procedure where clusters are merged). Here, we can deal with distances 
determined through models: D(f'/"). through models and observations in 
different clusters: D<f'.Aą '), or through observations in different clusters 
alone: D(Aą'.Aą'). For simplicity we do not distinguish between these 
distance definitions, and generally denote them D(q',q"). We wish to 
maximise I.q,I.q„D(q',q"), since allowing for a small value of this "inter­
cluster differentiation" measure might lead to indistinguishable clusters and 
models. Analogous definitions can be introduced for the similarities S(.). 

4. A generał global objective function 

We will now proceed to presentation of the principles of construction 
of the objective function that at least partly responds to challenges 
forwarded in the preceding section. lndeed, we have defined in Section 3 
two elements of the generał global objective function that we propose, in 
particular, for the cluster-wise model identification problem: 

c*(P) = Cv(P) + C(P) • min, 
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where Co(P) = "'f.,,D(q), and C(P) = 4,,4, .. S(q',q"), or 

C..(P) = Cs(P) + c°(P) • max, 

where Cs(P) = "'f.,,S(q), and c°(P) = r.ą ·"'f.ą · D(ą',q"). 

It is natura] that the elements of c*(P) and C.(P) (may) have opposite 
monotonicity in p (e.g. Co(P) decreasing with p, while C(P) increasing with 
p). We will assume only here that this opposite monotonicity is of similar 
character as in case of d(.,.) and s (.,.) in Section 1. 

By referring to either c*(P) or C.(P) we can avoid monotonicity and 
by solving the thus formulated minimisation or maximisation problem (if we 
are able to) obtain in a natural manner the number of clusters along with 
their composition and respective cluster-proper models. 

Let us comment yet on two issues, which are related to the generał 
formulation proposed. 

First, it is obvious that it will quite often be so that the functions D 
and S will be closely related and one would be simply derived from the 
other. Yet, both for the sake of clarity of presentation (the distinct "two­
sidedness" of the objective function), and in view of the fact that in many 
instances these two functions actually stem from different formulations (like 
D(q) being the LS sum of errors, and S(ą',q") representing correlations 
between model parameters), we insist on the distinction of the two elements. 
We will also see that this has a counterpart in the proposed algorithmic 
solutions. 

Second, there is, obviously, quite a variety of feasible concrete 
formulations of the functions involved, satisfying the "opposite . 
monotonicity" requirement, so that a high degree of flexibility is offered 
within the approach proposed. Within such a broad domain we may, in 
particular, deal with cases, where the overall objective function will be very 
close to monotonicity, implying global solutions with p close to n or to 1. 
This borders upon the frequent issue of explicit weights. Although, as we 
will see in the following section, a weight mechanism is being introduced 
into the generał formulation, its purpose is not to influence the shape of the 
ultimate solution. The present author leaves the question of weights, 
whether implicit or explicit, to the discretion of the designer of the particular 
analytical exercise. 

Let us emphasise at this point that the merits of the objective function 
proposed here are not merely related to the possibility of avoiding 
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monotonicity with respect top (postulate I from the beginning of Section 3). 
There are, namely, severa} formulations of the objective function for the 
classical clustering problem, some of which can be transformed for the 
needs of the cluster-wise identification problem. Owsiński (1991, pp. 74-
79), provides an overview of such formulations (see also Marcotorchino 
1985, for a more formal, but narrower treatment of a similar problem). 
Beyond this somewhat dated review we can yet mention the functions 
proposed by Stanfel (1992), based on the information-theoretical 
considerations, or Fraley and Raftery (1998), following Schwarz (1978), the 
"Bayesian Information Criterion" applied to the mixture model-maximum 
likelihood formulation, similar to that of Lau, Leung, Tse (1999). Another 
known form that avoids monotonicity with respect to p is the pseudo-F­
statistic. 

Yet, in distinction to virtually all of these objective functions, the 
formulation proposed here has very important additional features: it is 
generał enough to accommodate a lot of different concrete definitions at 
various levels of resolution ( object descriptions, · distances-proximities, 
clusters, ... ), including the possibility of appropriate expression of the 
cluster-wise identification problem (postulate m, and it suggests a definite 
algorithmic simplification, outlined in the subsequent section, under quite 
mild conditions (see, again, Owsiński 1991)-thus fulfilling postulatem. 

5. An algorithmic suggestion 

Although the generał objective function proposed allows for avoiding 
the trap of monotonicity and for the search for the "proper" number of 
clusters without any additional criteria nor tests, the fundamental numerical 
difficulty remains, as attached to the concrete formulations of the functions 
involved. Thus, the algorithms used for these formulations ( e.g. various 
exchange algorithms) will have to be used also in this framework. At this 
level of generałity the sole facilitation - though not to be overlooked - is 
related to the possibility of making reasonable comparisons for various 
solutions, also those differing as to the value of p. 

We have, however, assumed "opposite monotonicity", just in order to 
secure the fundamental properties of the objective function. This entails 
further - algorithmic - possibilities. 

Denote, namely, by /JlCD(P) the difference between the (optimum) 
values of CD(P) for ap and p-1. Likewise for /JlĆ(P). Unless they are equal 
zero, their signs differ. Their sum, N'C*(P) = /JlCD(P) + N'Ć(P), is the basis 

335 



Jan W. OWSIŃSKI 

for assessing whether it is worth to move up or down with p, at least locally. 
Moreover, this value can be used not just on the optimum partitions. Further, 
for quite a class of CD(P)' s and Ć(P)'s it can be shown that the t:!CD(P) and 
t:!Ć(P) are also (weakly) opposite monotonie in p, this fact being in direct 
connection with the cardinalities of respective (sub)sets involved (see 
Owsiński 1990). lt is, generally, quite common to be able to establish 
definite regularities concerning dependence of t:!CD(P) and t:!Ć(P) on p. 
If so, we can consider the formulation 

c*(P,r) = rt:!CD(P) + (1-r)t:!Ć(P), with re [0,1]. 

The proposed procedure would start from r=l, for which the global 
solution in terms of p is as close to n as the minimum size of clusters, 
necessary for identification of models, allows. As the value of r is 
decreased, the optimum value of p for c*(P,r) decreases as well, with the 
actual P(p) being determined through step-by-step procedures. These 
procedures may, in particular, take the form of progressive mergers, like in 
the classical clustering schemes, or more complex procedures (e.g. split-and­
merge), based on the analysis of the values of t:!CD(P) and l:!lĆ(P). The 
same, of course, applies to the objective function c.(P,r). 

This algorithmic proposal leaves, of course, stili a lot of questions 
open. Notwithstanding the simplification offered, numerical difficulties 
remain. They do not just apply to the optimisation procedure. Most of all -
the determination of the starting point seems to be the essential difficulty in 
the cluster-wise model identification problem. 
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