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ROOT LOCUS AND FREQUENCY DESIGN 
OF INDUSTRIAL PID CONTROLLERS - A TUTORIAL 

Leszek Trybus 
University of Technology, Rzeszów 

Abstract: The tuto rial deals with the problem of tuning industrial PID 
controller given overshoot and settling time. Plants typical for process · 
control and DC servos are considered. Controller settings are 
computed by means of root locus and frequency methods. Analytical 
expressions are derived for same simple models employed by self
tuning controllers. A number of numerical examples for illustration of 
design cases is presented. 

Keywords: PID controller, root-locus, frequency method, process 
control. 

1. Introduction 

Working knowledge of industrial controller design, what effectively 
means quick calculation of PID settings given basie specifications, still 
seems rather insufficient both among teachers, students and engineers. 
Teaching programs focus essentially on control theory. Textbooks often hide 
practical aspects among various abstract issues of limited usefulness. 
Besides, in Poland and other East European countries familiarity with root 
locus method, which allows for quick design given plant transfer function, is 
also rather inadequate. 

The purpose of this tutorial is to fill these gaps in part by presenting 
solutions to basie design problerns involving industrial PID controller of IEC 
1131 standard (Lewis 1995). Root locus and frequency methods are 
employed (e.g. Phillips and Harbor 1991, Franklin et al. 1995). We consider 
only typical process control plants and DC servos, i.e. the models with time 
constants, delays and integrators (e.g. Findeisen 1969, Unbehauen and Rao 
1987). Two basie specifications, overshoot and settlihg time, are given. 
Selection of specific PID transfer function, with four or three parameters, 
depends on noise content in the process variable. Analytical solutions for a 
few simple models identified by some commercial self-tuning controllers are 
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Leszek TRYB US 

derived (Astrom et al. 1993). Fifteen brief numerical examples illustrating 
various design cases are provided to support the tutorial. 

2. Preliminaries 

PID controller. The PID transfer function specified in the IEC 1131 
standard (Lewis 1995) and implemented now in most of industrial 
controllers and larger PLCs has the form 

l Tds 
PID: kp(I+-+T ). (1) 

'I'js __!Ls + 1 
D 

We assume that the settings Ti, Td, D satisfy the following restriction 

(2) 

which assures that the PID has two real zeros. So one can write 

PID: ks+ z1 . s + z2 (3) 
s s+p 

Ti +Td/D 1 D 
k=kp(D+l),z1+z2= / ,z1z2= ,p=-. 

TJd(I+l D) TiTd(l+l/D) Td 

The PID of the type (3) has long been used in Honeywell controllers 
(Bibbero 1977). The case with double zero is of particular interest, so 

PID: k (s+z)2 ' 
s(s+vz) 

(4) 

z= _1 d + I/ D d = 1 v = 2(D + 1) Td = Ti . 
Ti 2(1+1/D)' D(2D+l-2.jD(D+l)' 1+1/(dD)' d 

For D = 0.5, 1, 2, 5, 8 we get v = 2.3, 3.4, 5.4, 11.5, 17.5, respectively 

(D = 5, 8 are default values in Siemens and Honeywell controllers). Small 

values of D are necessary when process variable is not filtered well enough. 

If the process variable is noise-free, large D can be set and (1) 

reduces to the textbook form k P (1 + 1/ ('I'js) + Td s) . Assuming Td ~ 'I'j / 4 we 

can write 

PID: (5) 
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Root locus and frequency designs of industrial PID - a tutorial 

If Td = Ti /4, as in the well-known Ziegler-Nichols tunings (e.g. Findeisen 

1969, Astrom et al. 1993), then 

PID: 
k (s + z)2 

s 
k =k Ti 

p 4' 
2 

z=-
T-I 

(6) 

In this tutorial, depending on design specifications and process noise, we 
consider each of the PID representations (3) to (6). Return to the original 
settings k P, ~, Td, D is straightforward. 

Typical industrial plants. The designs presented here apply only to the 
plants of common industrial practice. In the process control area the plants 
are usually modeled by 

1 --r s 1 --r s 1 
Ts+l e ' (T1s+l)(T2s+l) e '(Ts+1)11' 

1 --rs ---e ' 
s(Ts + 1) 

(plant gain included into PID). Time constants and delays are identified from 
time or frequency responses. While writing a plant transfer function GP (s) 
or frequency characteristics J<i P (JW )J, L<i P (Jw) we implicitly assume, 
loosely speaking, that GP (s) is of the same class as the models (7). 
Oscillatory, unstable, non-minimum phase and other nonstandard models are 
not considered here. 

In addition to (7) we also deal with two following transfer functions 

1 
2' s 

1 

s(Ts + 1) 
(8) 

which represent a DC servomotor equipped with current or voltage driver, 
respectively. 

Design problems. General problem involves tuning a feedback loop 
with PID controller and the plants as above to get transients roughly sirnilar 
to those of standard 2nd order system 

(9) 
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The poles are s1 ,2 = R ± jl, with R = -~ron, I= ron .J1-~ 2 . Overshoot 

P% and settling time t s are given by 

1C~ 

P% =e ✓i-g1 · 100, 4 4 
t =-=--
s IRI ~(l)n . 

(10) 

For ~ = 1, 1/ .fi., 0.5 we have P% = O, 4.3, 16.3, respectively. Specifications 

imposed on the loop may involve different number of data. Here we consider 
two basie problems, having given: 

1) overshoot P% only 

2) overshoot P% and settling time t.1 . • 

If t s 1s not specified, then ts,PID ~ts,P is reasonable choice as far as 

industrial applications are concerned (the same settling time for PID as for 
P). 

3. Root locus designs 

The plant must be given in the form of a proper transfer function 
GP (s), so delay e--rs is replaced by Pade approximation. Parameters of 
GP are identified from step responses by means of graphical methods or 
least-squares approximation (e.g. Mańczak 1971, Unbehauen and Rao 1987, 
Ljung 1987, Niederliński et al. 1998). We review six standard problems 
given type of the controller and specifications. Numerical examples are 
provided. 

Im s 

I 

Res 

R 

Fig.I. Illustration of root-locus design. 
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Root locus andfrequency designs of industrial PID-a tutorial 

P + P% . Open-loop transfer function is G open (s) =kG P (s), so the 

root-locus is deterrnined by the equation 1 +kG P (s) =O. Let r be the table 

of closed-loop poles resulting from Matlab instructions 

k = kmin:dk:kmax 

r = rlocus(num,den,k) 
(11) 

with numerator num and denominator den from GP . In r we select 

a particular colurnn r(: , i) such that its plot is closest to imaginary axis 
(Fig. I). The angle 

R 
</> = atan ~ (12) 

deterrnines straight line corresponding to the overshoot P%. The crossing 

s • of this line with r(: , i) is obtained for the gai n k which yields overshoot 

similar to P% (exactly P% if GP is of 2nd order as in (9)). so and k are 

found using Matlab instructions 

Re= real(r(:,i)); Im= imag(r(:,i)) 

[k, r(:,i), atan(lm./(-Re)) * 180/ pi]. 
(13) 

The atan() above represents the angle 180°-LGp(s) for s along r(:,i). 

In the three colurnn table generated by (13) we choose a row whose third 
element equals </> . The first element in the row represents the value of k and 

the second the crossing s • = R + jl . Settling time t s is estimated as 4/IRI 
(see (10)). 

Example. Given the plant 1/ (s + 1)3 and specification P% = 16.3 we 

get </>=60°, k=l, so=0.5(-l+j✓3), ts=8 , P%,actua1=l3.9 (from 

Matlab step() response). The actual overshoot characterizes standard 

feedback system, i.e. the one with controller and plant in the forward path 

and with unity feedback. 

We repeat that in the problems considered here the closed-loop 
transfer function Gc1ased is different than the 2nd order one in (9), so one 

cannot expect P% actual to be exactly the same as the specified P% . 

Therefore while defining the generał design objective in Sec.2 we have used 
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the words "roughly similar". If one really needs P%,actual = P%, subsequent 

fine-tuning must be performed. A step-by-step algorithm for precise tuning 
of the PID controller is described in Świder and Trybus (1998). 

PI +P o/n . PI transfer function kp U +-T' ) is written as k s-n with 
,s s 

k = k P , z = I/Ti . Let p1 denote a stable pole of GP which is closest to the 

origin (inverse of the largest time constant). Zero z is chosen by pole-zero 

cancellation, i.e. 

Now Gopen(s) =kG~ (s), where 

L1 
z=p1 

G~(s) = ł[(s+ Pt )·GP (s)], 
s 

(14) 

(15) 

what means that the component (s + p1) in the plant denominator is 

replaced by s . For G~ we deterrnine k as above. 

Ex. Data as before. Results: z = p1 = l, k = 0.375, s0 = -0.25 + J0.433, 

P %,actual = 15.25%, ts = 16 (twice as much as for P). 

PD + P% , ts . PD part of the PID in (1) is equivalent to lead 

compensator k s+ z since 
s+p 

PD: k (1 + Tds ) = k s + z 
p ~s+I s+p 

with 
1 

z=----, 
Tc1(l+l/D) 

Open-loop transfer function thus becomes 

D 
p=-. ~, 

(16a) 

(16b) 

s+z 
Gopen (s) = k-- · G p (s) = k G(s), 

s+ p 

s+z 
G(s) =--·GP (s). (16c) 

s+ p 

The crossing s o = R + Jl is specified by the data P % , t s (Sec.2). Since 

there are three unknowns, k, p, z, one of them must be assumed a priori. 
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Root locus andfrequency designs of industrial PID- a tutorial 

Typically one chooses zero z as the inverse of a quarter of settling time 
(Phillips and Harbor 1991 ), so 

4 
z =-. (17) 

ts 

The root-locus equation 1 + k G(s) = O is split into the angle and gam 

conditions 

LG(s) = ±180°, 
1 

k=---. 
G(s) 

(18a,b) 

Using G(s) = s+z GP (s) in (18a), taking s = so and employing standard 
s+p 

geometry in the complex piane we can find 

p = z + I · tan a, (19) 

where a = ±180° - LG P (s O) ( a can be made acute by ±360°). Note that 

a!ł:.LPD(so), i.e. a is the angle of the transfer function (16a) computed at 

so . Having z and p one gets 

k _ s+ p I 
----·--

s+z Gp(s) 
S• 

(20) 

from (18b) (Matlab may leave small imaginary part in k due to roundoff). 

Ex. Data as before, t s = 6 (less than for P). Results: 

so = -0.67 + jl.15, Z= 0.67, p = 1.69, k = 2.32, P%,actual = 14.6%. 

2 

PID k (s+z) + P% , t5 . We repeat that such PID can be used if the 
s 

process variable is well filtered. For 

(s + z)2 
Gope,/s) = k---·Gp(s) 

s 

the angle condition (18a) yields 

z= IRI+ I -ctg a, a= +900 _ J.. LGµ (s)I 
- 2 s 

Therefore 
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s 1 
k=---·--

(s+z)2 Gp(s) 
so 

(23) 

Ex. Data as before, t5 = 6. Results: z= 0.853, k = 1.69, 

P%,actual = 14.5% (kp = 2.89, ~ = 2.34, Td = 0.58 ). 

s+z1 s+z2 · PID k--·--+ P%, t5 • Now the process vanable does not have to 
s s+p 

be so well filtered. However, the price of it is somewhat longer settling time 
t s . As for PI, zero z1 = Pl cancels out the pole p 1 , so 

s+ z2 , 
Gopen(s) = k--·Gµ(s) 

s+ p 
(24) 

with G~ given in (15). Thus we have returned to lead compensator design, 

another words, to PD controller. 

Ex. Data as before, t5 = 8 (as t 5 ,p for P). Results: z1 = 1, z2 = 0.5, 

P = 2, k = 2, P%,actual = 3.6%. 

(s+z/ PID k ( ) + P%, t5 , v given. This represents the case when the s s+v z 

divisor D in (1) is specified. The angle condition (18a) yields the equation 

tan</) tan ą, 
2atan-,--atan-,-+L.Gp(so)+ą, =0 (25) 

z-I vz-l 

where z'= z·t5 /4. (25) must be solved for z' using Matlab (or iteratively). 
Then 

k =- s(s+vz) __ I_ 

(s+z)2 Gp(s) 
so 

(26) 

Ex. Data as before (t5 = 8 ), D = I so v = 3.4. Results: z= 0.805, 

k = 2.84, P%,actual = 11.85%. 
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Root locus andfrequency designs of industrial PID - a tutorial 

In the last two cases we have taken ts ,PID ~ts,P. As indicated in Sec.2, 

this is a reasonable choice when the PID control is required but settling time 
is not specified. 

4. Some analytical solutions 

Here we present solutions "by hand" to the plants (7), (8) typical for 
industrial practice. This requires restriction of Pade delay approximation to 
1 st order. Resulting expressions for PID settings can be used for automatic 
tuning. First two transfer functions of (7) have already been applied for this 
purpose (Astrom et al. 1993). 

-1 

1 -,s PID k (s+z1)(s+z2 ) Fig.2. Root-locus plot for -~--e + ----+ P% . 
(T1.1·+1 )(T2s+I) s 

I -rs PID k (s+zi)(s+z2) S h d l . "d "fi d 
(Tis+l)(T2s+l) e + s + P% . UC mo e IS I entI Ie 

by Honeywell UDC controllers during self-tuning. Pole-zero cancellation 
can be employed, so z1 = 1/T1 , z2 = 1/T2 . With 1 st order Pade we get 

k -"t S I 1 
G (s)=--·-e-=k' -s + 

open Ti_T2 s - s'(s' + 1) 
(27) 

where k'=kr/(2T1T2 ), s'=sr/2. Root-locus plot is a circle with the 

center at ( -1, jO) and the radius ✓2 (Fig.2). The crossing só = R' + jl' 
results from solving 

{ 
(R' -1)2 + !'2 = 2 

I'= -tan</> · R'. 

473 

(28) 



Having só we calculate 

Leszek TRYB US 

k' = s'(s' + 1) 
-s' +1 

Finally k = 2k''[iT2/r , t s = 2T /IR'I-

(29) 
so 

Ex. Data: T1 = T2 = T = 1, P% = 16.3% . Results: z1 = z2 = 1, 

só = -0.31 + j0.54, k' = 0.38, k = 0.76, ts = 6.5, P%,actual = 26.3% for 3rd 

order Pade delay approximation ( 1 st for design, 3rd for simulation). 

- 1- + PID 
(Ts+It 

2 
k (s+z) + P%. Such model is identified by Siemens 

s 

SIPART controllers 
z= I/T we get 

(Linzenkirchner 1980). After cancellation by setting 

k 1 , 1 
G (s)=-·----=k ----

open T 2 s(Ts + 1)11-2 s'(s' + 1)11-2 
(30) 

where k' = k/T, s' = sT . If n= 2, then Gclosed(s) = 2/ • For n~ 3 the 
sT k+l 

breakpoint sb of the root-locus equals -1/(n -1) and the corresponding gain 

is 

( )
n-I 

k'- ·_1_ n-2 
n-2 n-1 

for P% =0. (31) 

Settling time can be estimated as 

ts = 4(n-l)T (32) 

(roughly). If P% > O is required then Matlab instructions (11), (13) must be 

employed. 

Ex. Data: T = 1, P% = O, n= 3, 4, 5. Results: z = 1, k = 0.25, 0.148, 

0.105, ts = 8, 12, 16, respectively. P%,actual = O in all cases; ts,actual 

exceeds (32) somewhat. 

- 1-e -r:s + PID k (s+zi )(s+z2 ) + P%. With z1 = 1/T and 1 st order 
s(Ts+I) s 

Pade we get 
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G ( ) = ! . s + Z2 -1: s :::: k' s + Zz . - s' + 1 
open s 2 e - 2 1 

T s s s+I 
(33) 

where k'=kr/(2T), s'=sr/2, z2=z-r/2. To get small ts we must 

choose z2 large enough. The largest z2, for which the system has a triple 

pole and the root-locus looks as in Fig.3, equals 0.08. Then sb = -0.26 and 

k' = 0.22. Finally k = 2k'T /r, z2 = 2z2 /r. 

lms' 

Res' 

F·o 3 R 1 1 " I -'Cs PID k (s+z1)(s+z2) 
10 • • oot- ocus p ot 1or s(Y'.1-+I) e + .,· + P% • 

Ex. Data: T = T = I, P% =O. Results: z1 = 1, z 2 = 0.16, k = 0.44, 

P% actual = 17.5% . The overshoot can be removed by set-point filter -1 1 
1 . 

' S Zz+ 

Settling time t s is in the range (25 ... 30)r. 

lms' 

Res' 

Fig.4. Root-locus plot for s12 + PID k (s+,d + P% = O, t,, . . 
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2 --t + PID k ~ + p % = O, t s . This is the problem of tuning 

a current (iriven DC servo (Sec.2). Here 

G ( ) = k (s + zl = k' (s' + 1)2 
open s 3 ,3 

s s 
(34) 

with s' = s/ z, k' = k/ z . Root-locus plot is showu in Fig.4. The breakpoint 

sb = -3 results from k' = 27/4 ( P% = O) (lrzeński, Trybus 1992). The 

third pole is then s3 = - 3/ 4 , w hat allows one to estimate settling time as 

t; = 3/ls3 I = 4 . Finał settings are gi ven by 

4 
z=-, (35) 

ts 

Due to (s + z) 2 in the numerator of Gclosed the step response exhibits 

17.9% overshoot. This is removed by -1 1 1 set-point filter. 
S Zz+ 

Others. Designs for the other plants in (7), (8) are carried out as 
follows: 

• T}+I e --r s +PI+ P% . PI controller is suitable for such plant. T is 

• 

• 

cancelled by z= l/T (in PI k s+z ). Theo G (s) = ls:..e-1:s as in (27) s open T s 

(see also Fig.2). 

-TS I e + + P% . I controller 
s 

suits pure delay plant. Since 

-l'.\' 

Gopen(s) = k7 the problem is the same as above. 

I PID k (s+z1)(s+z2) O Th' 
s(Ts+I) + s + P% = , ts. 1s represents a voltage 

driven DC servo. We take z1 = l/T and get Gopen(s) =; s+;z . Root
s 

locus is a circle with breakpoint at -2z2- Hence z2 = 2/ts and 

k =4Tz2-
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5. Frequency designs 

Here the plant is given by the magnitude IG P (jw)I and phase 

LG P (jw) frequency characteristics whose samples are shown in Fig.5. We 

stress that the transfer function representation is not needed. The 
characteristics in frequency range necessary for the design can be obtained 
by slight extension of relay control experiment used for self-tuning (Astrom 
at al. 1993 and Astrom, Wittenmark 1995). After bringing the relay 
controlled system to ultimate oscillation the relay hysteresis must be 
gradually increased to keep oscillation frequency decreasing. Recorded input 
and output are then processed by FFf. Such experiment resembles excitation 
by "chirp" signal recommended for open-loop identification (Franklin et al. , 
1996). 

P + P% . Phase margin PM of the open-loop system is defined by 

. _ . ~ j(-180°+PM) 
G0 pen(]W1)-kGp(JW1)-l·e . (36) 

Since the closed-loop system is expected to behave similarly as the 2nd order 
system, the PM must be equal to · 

PM = 90° - atan~✓-✓_4~_4_+_l_--~-2 
~ 

(37a) 

(Phillips, Harbor 1991). For ~ <0.7 (oscillatory responses), (37a) can be 

approximated by 

PM ::::100-~ (~<0.7). (37b) 

Since ~ follows from P%, the phase margin PM computed from (37a) or 
(37b) becomes now direct data for the design. 

The frequency w1 in (36) is read out from the LG P (jw) 

characteristic employing the phase condition 

LG0 penUw1) = LGP(jw1) = -180°+ PM (38) , 

(see Fig.5). k follows from the magnitude condition IGapen (jw1 )I= 1 

k=-1 
M 
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where M =IGP(jw1)1 is read out from IGP(jw)I. Settling time is evaluated 

as 

(Phillips, Harbor 1991). 

0.5 

8 
fs=---

W1 tan PM 

IGP(jw)I t 
MO - --------.-------.-----------: ; 

LG"(Jw) t 1.4 liwi 

-180,PM = ]' .,_ 5 • f 
-180 - -- _PM 0 

-
w 2 

Fig.5. Frequency characteristics of a sample plant ( e--0·2·',). 
(s+J)· 

(39) 

Ex. Data: IGp(Jw)I, L..GP(jw) in Fig.5, P% =16.3. Results: 

~ = 0.5, PM = 50°, w1 = 1.5, M = 0.31, t s = 4.5. The characteristics 

represent the plant e -0.2s / (s + 1)2 . For 3rd order Pade approximation of the 

delay one gets P% = 34.6. 

PI+ P% . Zero of k s+ z is chosen as Phillips and Harbor ( 1991) 
s 

z = (0.1... l.O)W1 , (40) 

so the corresponding angle LPI at w1 equals - 5 ... - 45°. To keep 

LGopenUcv1) at -180° + PM , the frequency cv1 must be determined for 

the phase margin PM enlarged by IL.PIi, i.e. 

Gp(JW1) =-180°+PM +ILPII. (41) 

Naturally, such w1 is )ower than the one in (38). Having w1 , we choose z 

according to ( 40) and calculate k from the magnitude condition 
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k = W1 1 

.Jw;+z2 M 
(42) 

Ex. Data as before, 0.3 in (40) (almost half of decade). Results: 
LPI=-16.7°, w1 =1.19, z=0.357, M=0.41, k=2.31, ts =5.6, 

P%,actual = 13.6% · 

We remark that the !ower factor 0.1 in ( 40) yields short rai se time 
(10% to 90%) but transients settle down quite slowly. Choice of the upper 
1.0 gives the transients similar to 2nd order and may be compared to pole
zero cancellation. 

PD + Po/o, ts. Recall from (16a) that PD controller is equivalent to 

lead compensator. Zero of k s+z is chosen according to (17) ( z = 4/t s ). 
s+p 

Having PM and t s we calculate w1 from (39), so 

8 
W1=---. 

tstanPM 

Now p and k follow from the phase and magnitude conditions, i.e. 

where 

z+w1tan0 
p= , 

I-...Ltan0 
W1 

k=J_ 
M 

wl +p2 

w; +z 2 ' 

0 = -180°+ PM -LG p (jw1) 

represents the lead compensator phase at w1 ( 0 = LLead(jw1) ). 

(43) 

(44a) 

(44b) 

Ex. Data as before, t s = 2.5 (less than t s,P = 4.5 ). Results: z = 1.6, 

ro1 = 2.67, M = 0.12, LGµ= -170°, 0 = 40°, p = 7.54, k = 21, ts = 8.6, 

P%,actual = 14.0 · 

2 
PID k (s+z) H · · t d f (43) + Po/o, ts. ere agam w1 ts campu e rom . 

s ---------
P has e and magnitude conditions yield 

W1 
z=---====, 

tan0 + .Jtan 20 + 1 
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Now 0 = -180° +PM-LG P (jw1) represents LPID(Jw1). 

Ex. Data as before. Results: w1 = 2.67, 0 = 40°, z = 1.25, k = 2.5, 

P%,actual = 18.1. 

P % only. We take t 5 ~ts,P (compare Secs.2,3). This means that 

LGP(}W1) = -180°+PM, so 0 =0°. Hence z =W1, k =l/(2w1M) or 

1 
kp=-, 

M 

2 
T=-

1 ' 
Wt 

T 
Td =-' . 

4 
(46) 

For our example: k P = 3.2, Ti = 1.3, T d = 0.33 ( w1 = 1.5, M = 0.31 ). 

PID k s+zi · s+ z2 + P % , t s. z1 is chosen according to (40), i.e. as for 
s s+ 

PI controller. The plant "seen" by the remaining lead compensator k s+z2 
s+p 

has the transfer function 

(47) 

so the original plant characteristics must be modified accordingly: 

IG;(jw)I = IGP(jw)l• ✓w2 + zł/w ,LG;(jw) = LGP(jw)+atan ~ -90° . 

Now we design the lead k s+z2 for GP" . 
s+p 

Ex. Data as before, t s = 4.5 ( = ts,P ). Results: z1 = 0.357 (see Pl), 

w1 = 1.5, !G; (Jw1 )I= M = o.32, LG; (Jw1) = -143°, e = 13°, z2 = o.89, P = 

= 1.65, k = 4.04, P%,actual = 8.2. 

PID k (s+ d 
s(s+v z) + P % , t s, V given. The condition LPID(Jw1) = 0 

yields the following equation for z 

2atan Wi -atan~-90° =0 
z v z 

(48) 

Now 
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(49) 

If ts = ts,P, then 0 = 0°. 

Ex. Data as before Cts=ts ,P)- Results: z=O.95, k=5 .5, 

P%,actual = 17.5% · 

6. Conclusions 

Quick selection of PID settings for typical industrial plants given basie 
specifications, such as overshoot and settling time, is still a skill not so 
commonly encountered among control engineers and students. Familiarity of 
Polish control community with root locus method also seems inadequate. 
Therefore presentation of typical design problems solved quickly by means 
of root locus or frequency methods has been basie objective of this tutorial. 
Standard process control plants and DC servos, whose models include time 
constants, delays and integrators, have been considered. A few design cases 
related to commercial self-tuning controllers have been solved analytically. 
1 st order Pade approximation of the delay has turned out sufficient for the 
design, confirming robustness of the PID control (3rd order have been used 
for simulations). Transfer function of the plant, which is necessary for root 
locus design, is usually obtained from step response identification. 
Frequency characteristics are generated by fast Fourier transform (FFT) 
employing periodic excitation with varying frequency ("chirp"-type). 

References 

Astrom K.J., Hiigglund T., Hang C.C., Ho W.K. (1993) Automatic tuning 
and adaptation for PID controllers - a survey. Control Engineering 
Practice. 1, 699-714. 

Astrom KJ., Wittenmark B. (1995) Adaptive Control (2nd edn.). Addison
Wesley, Reading, MA. 

Bibbero R.J. (1977) Microprocessors in Instrumentation and Control. 
Wiley, New York. 

Findeisen W. (1969) Poradnik inżyniera automatyka. WNT, Warszawa. 

481 



Leszek TRYBUS 

Franklin G.F., Powell J.D., Emami-Naeini A. (1995) Control of Dynamie 
Systems (3rd ed.). Addison-Wesley, Reading. 

Franklin G.F., Powell J.D., Workman M.L. (1996) Digital Control of 
Dynamie Systems. Addison-Wesley, Reading. 

Irzefiski W., Trybus L. (1992) Fixed-gain PID class servo for industrial 
robots. Archives of Control Sciences. 1 (XXXVII), 285-303. 

Lewis R.W. (1995) Programming Industrial Control Systems using /EC 
1131-3. IEE, London. 

Linzenkirchner E. (1980) Ein adaptives Filter for gestorte Messignale. 
Regelungs-technische Praxis. 22, 392-395. 

Ljung L. (1987) System ldentification - Theory for the User. Prentice Hall, 
London. 

Mm'iczak K. (1971) Metody identyfikacji wielowymiarowych obiektów 
sterowania. WNT, Warszawa. 

Niederlifiski A., Mościński J., Ogonowski Z. (1997) Regulacja adaptacyjna. 
PWN, Warszawa. 

Phillips C.L., Harbor R.D. (1991) Feedback Control Systems (2nd ed.). 
Prentice Hall, New York. 

Świder Z., Trybus L. (1998) Adaptive tuning of PID controller using 
template surfaces. /FAC Workshop on Adapt. Syst. in Control & 
Signal Proc. Glasgow, 327-333. 

Unbehauen H., Rao G.P. (1987) ldentification of Continuous Systems. 
North-Holland, Amsterdam. 

482 






