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FUZZY LOGIC AND RELATIONAL DATABASES: 
SELECTED APPLICATIONS 

Sławomir Zadrożny 

Systems Research Institute, Polish Academy of Sciences 

Abstract. The applicability of the selected fuzz.y log ie related concepts 
for the purposes of data representation and manipulation in relational 
databases is considered. The concepts discussed include fuzz.y logical 
connectives for data querying and possibility distributions for data 
representation. 

Keywords: relational databases, fuzzy logic, possibility distributions, 
fuzzy logical connectives. 

1. Introduction 

Among the main issues of any data model there are a data 
representation scheme and a data manipulation formalism. In case of the 
farmer, the main concern is the logical data representation, i.e., how the data 
are arranged from the user perspective, rather than how they are physically 
represented on some storage devices. For the latter, the data retrieval is the 
most important operation. Bath issues are successfully addressed within the 
relational data model (Codd 1970). The consistent use of the mathematical 
concept of relation and the relational algebra for data representation and 
manipulation proved to be adequate and made the model widely accepted. 
However, there are stili same issues that require further research. One of 
such issues is dealing with imperfect information. In many typical 
applications it may be assumed that the user possesses complete knowledge 
about all relevant facts and relationships in the modelled segment of the real 
world. Thus, in such a context, for both representation and retrieval of data 
crisp, precise values are sufficient. However, such an ideał situation cannot 
be assumed for all the areas of potentia) application of the database 
supported systems. Severa) approaches have been proposed to deal with this 
problem. None of them obtained a widespread acceptance so far. 
Nevertheless, this seems to be an important and current problem. The 
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problem of representation and processing of imperfect information may be 
seen as an important element of human consistency of any software system. 
In a real life situation we usually possess only a partia!, incomplete 
information. Moreover, we are accustomed to express our requirements in 
the natura] language which is inherently vague, imprecise. Thus, we expect 
the software systems will help us to solve our problems and will be able to 
accept incomplete parameters as well as imprecisely stated goals, 
preferences etc. Fuzzy logic has been conceived exactly to the aim of 
dealing with such questions. In this paper we will briefly present selected 
concepts of fuzzy logic that are applicable for data representation and 
retrieval within the generał framework of the relational data model. 

The essence of the relational model (Date 1995) is providing the user 
with a unified logical perspective of a database as a collection of relations. 
Basically, all information about the modelled part of the world is 
represented in the form of tables being a more down-to-earth metaphor for 
the mathematical relations. We can make a more precise distinction 
assurning the following terminology. A relation is, as usually, a subset of the 
Cartesian product of certain sets (called here domains) D1,- .. ,Dn. Thus, 
a relation may be characterized by a name, R, and a set of attributes, 
A1,---.An, where each attribute Ai may take on a value from the 
corresponding domain Di. The set of pairs (Ai, Di) is referred to as the 
scheme of the relation R. A table is a data structure suitable to host the 
tuples of a relation of a certain scheme. Thus, the colurnns of the table 
correspond to the attributes of the relation and the rows of the table 
correspond to the tu pies of this relation. The value of an attribute A in tuple 
t will be denoted with t[A]. 

In the next section we discuss the querying of the regular (crisp) 
relational databases. It is shown how the fuzzy logic based concepts make it 
possible to go beyond the classical Boolean scheme of querying and grasp 
the imprecision typical for the natura! language related queries. Section 3 
deals with the representation of the incomplete information in a database 
using the concept of possibility distribution. The question of the querying of 
such a database is also discussed. 

2. Fuzzy logical connectives in queries to a crisp database 

The retrieval of relevant data from a database is by far the most 
important operation. In the framework of the relational data model there are 
two basie formalisms to specify a query, i.e., what data is sought for: the 
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relational algebra and the first order predicate calculus. The result of a 
query is always a relation containing the required data. The query in the first 
formalism is a sequence of the operations of the relational algebra such as 
selection (restriction), projection, join, union or intersection. When this 
sequence of operations is executed against a database one obtains the 
required data. The second formalism is of mare declarative character and 
employs the predicate calculus formula to describe the relevant data as the 
data satisfying the formula. How it is to be found in a database is a matter of 
the database management system. 

Whatever querying formalism is used always a part of the query may 
be a set of conditions (criteria) specifying which rows will be selected to be 
included in an answer to the query. Thus, it is interesting to study the 
retrieval process from the perspective where a query is meant to define by 
means of these conditions a prototype of data to be retrieved. Then, during 
the retrieval process for every row a matching degree of its content and the 
prototype is calculated. In classical crisp approach this matching degree is 
binary: a row matches the prototype or not. In the practical situations, the 
description of the prototype may be imprecise what in a natura! way leads to 
a partia! matching degree. Such an approach has severa! advantages. First, 
the user is not forced to specify the criteria unnecessarily precisely. For 
example, while looking for a house it may be much mare natura! to require it 
to be "cheap" or "large" instead of specifying exactly the acceptable price 
interval or the size of the land area. Moreover, there may be houses almost 
meeting our criteria that would be excluded by crisp Boolean conditions and 
will be included in the answer to a fuzzy query with just reduced matching 
degree. Next, the matching degree makes it possible to order the results of 
the query from best to least satisfying our criteria. These may be very 
convenient when the result set is large. These benefits of fuzzy queries are 
widely advocated (Bose, Pivert 1992, 1995 and Kacprzyk, Zadrożny 1995, 
1997). In what follows we will be concerned with an important issue of the 
fuzzy queries processing: the aggregation of the partia! matching degrees. In 
case of the crisp, Boolean queries the aggregation of the partial matching 
degrees is naturally carried on using classical logical connectives. Thus, we 
start with a brief review of their counterparts proposed within the fuzzy 
logic. Then, we discuss various types of fuzzy queries proposed in the 
literature. We focus on the sophisticated aggregation schemes involving 
fuzzy linguistic quantifiers, importance weights, hierarchies of the partial 
conditions. 

There are severa! possible generalizations of the classical logical 
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connectives within the fuzzy logic. Among them, the most commonly 
adopted are the following, originally introduced by Zadeh: 

x I\ y = min (x, y) 

x v y = max (x, y) 

---.x=l-x 

for conjunction, disjunction and negation connectives, respectively. 

(1) 

(2) 

(3) 

Severa! fuzzy implication operators have been proposed in the 
literature. The most commonly used are: 

- Kleene-Dienes: l(x,y) = max(l -x, y) (4) 

- Łukasiewicz: l(x,y) = min(l,1-x+y) (5) 

- Godeł: {1 if X Ś y (6) l(x,y)= . 
y otherwtse 

- Goguen: l(x,y) = min(y/x,l) (7) 

Zadeh (1983) introduced two types of linguistically quantified 
propositions: 

Q X's are C's (type I); 

QB X's are C's (type Il), 

(8) 

(9) 

where Q is a linguistic quantifier, and C and B are fuzzy sets in the universe 
U. Fuzzy linguistic quantifiers are represented by fuzzy sets defined in an 
appropriate universe. The absolute linguistic quantifiers such as 
"approximately 3", "severa!" are represented as fuzzy subsets on the 
positive real numbers R+ domain; proportional linguistic quantifiers such as 
"most", "almost all", etc. are represented by fuzzy subsets on the interval 
[O, 1]. Zadeh proposed the interpretation for proportional linguistic 
quantifiers such that the truth degree T of the proposition (8) is computed 
using the following formula: 

T=µ ( card(c))=µ (Lµc(xi)) Ql card(X) Q · n 
(10) 

where µQ is the membership function of the quantifier Q and n is the 
cardinality of the universe U. For propositions of the type (9) we have: 
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(11) 

Tahani (1977) was first to propose the use of the elements of fuzzy 
logic to enhance the flexibility of crisp database queries. He proposed a 
formal approach and architecture to deal with simple fuzzy queries for crisp 
relational databases. The idea may be best illustrated on an example of a 
query: 

"Pind the names and department numbers of employees who 
are young and have a high salary OR those who are young and 
have low commission". 

Thus, Tahani proposed to use in query's condition vague terms typical for 
natural language. The semantics of these vague terms is provided by 
appropriate fuzzy sets. Then, the main question is how the matching degree , 
for the query is computed. For that purpose Taha-ńi defines the matching 
function y. For a tuple t and a simple query q of ,type A = F, where A is an 
attribute (e.g. , "age") and F is a vague (fuzz/ ) term (e.g., "young"), the 
value of the function yis: 

y(q,t) = µF{u) 
I',.. 

(12) 

where u is A(t), i.e. the value of tupie t for the attribute A. The matching 
function y for more complex queries involving logical connectives is as 
follows: 

y(p AND q, t) = min (y(p , t), y(q, t)) 

y(p OR q, t) = max'(y(p, t), y(q, t)) 
..,,.•·' 

y(-, q, t) = i -"(; 't) 

(13) 

(14) 

(15) 

. ~rjes (partial conditions). Thus, the logical connectives in 
reted as the original Zadeh's fuzzy connectives. 

Kacprzyk and Ziółkowski (1986) were among the first to propose the 
aggregation of partial conditions of a query to be guided by a linguistic 
quantifier. Thus, they proposed to extend the querying language so that the 
query's condition would be expressed as: 

(16) 

where Q is a linguistic (fuzzy) quantifier and p; are partial conditions 
(queries) to be aggregated. Thus, the overall matching degree is computed 
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using the semantics of the quantifier involved and (8) becomes 

(17) 

wh~re y(q,t) is, as in (12), the matching degree of the overall query. 
In Kacprzyk and Ziółkowski (1986) the original Zadeh's approach, leading 
to ( 17), has been adopted and la ter (Kacprzyk and Zadrożny 1997) the O W A 
operators (Yager 1988) were employed to model the linguistic quantifier. 
Both type I and type II of linguistically quantified propositions were studied 
in this context. In the latter case the query of (16) may be extended to: 

"q = Q important out of {p1, ... , Pk} (18) 

where the importance is represented by a fuzzy set of partia! conditions in 
sucha way that the value of the membership function of given p; is equal to 
its importance weight. 

Another scheme for the aggregation of fuzzy conditions of varying 
importance has been studied by Bose and Pivert (1993). They proposed a 
fuzzy operator for the hierarchical aggregation of fuzzy conditions, which 
starts from the concept of hierarchical aggregation introduced by Lacroix 
and Lavency (1987) for crisp conditions. Lacroix and Lavency proposed to 
extend the concept of classical crisp queries in the following way. A query q 
has two parts: a selection part, S, and a set of crisp conditions, PRF, called 
preferences. The semantics of this query is the following: select the tuples 
satisfying Sand rank them according to the PRF. More precisely, if there are 
no tuples satisfying condition S then the answer to the query is empty. 
Otherwise, the answer comprises the tuples that verify S and at the same 
time best satisfy PRF. In the latter case, various assumptions on the 
interrelation of the conditions belonging to the PRF may be made. Two 
cases are considered: (1) the conditions are equally important, (2) there is a 
(linear) hierarchy of conditions - those higher in hierarchy are more 
important. Thus, in the second case we have the importance of conditions 
imposed not by the numerical weights, but by their position in the hierarchy. 
The ranking of the tuples depends on what assumption is made: (1) or (2). In 
the first case, the count of the conditions in PRF that are satisfied by a tupie 
is taken into account. In the second case, the lexicographic ordering of the 
tuples according to their fulfilment of particular conditions belonging to 
PRF (taken in order imposed by the hierarchy) is employed. Bose and Pivert 
(1993) proposed a fuzzy operator y to model the hierarchical aggregation 
described above, in which the contribution of a condition Pi E PRF to the 
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overall matching degree is less or equal than the contribution of conditions 
higher in the hierarchy. Let us assume that the conditions are ordered 
according to the hierarchy, i.e., if i<} then p; is higher in the hierarchy (is 
more important) than Pj· The fuzzy operator proposed is defined as a 
combination of two operators. The first, denoted with TJ limits the 
contribution of the condition pj relative to the contributions of all preceding 
conditions p; (i<}), while the second combines all contributions to obtain the 
finał value for the aggregation of the fuzzy conditions, 

( ) 2.1!:1TJ(pj,t) 
r ą,t =----

n 
(19) 

where TJ(Pi ,t) = min(j:5i) (y(p J ,t)) and 'y(pj,t), as in (12), denotes the matching 

degree of partial condition Pi and tupie t. 

Bose and Pivert adopt here a different interpretation of hierarchy of 
conditions than originally assumed by Lacroix and Lavency. Namely, in the 
latter case, if no tupie satisfies a condition from, e.g., k-th level of the 
hierarchy then the conditions of the lower levels do play a role in ranking 
the tuples. In the farmer approach, all these lower levels are neglected. 

Dubois and Prade (1997) studied the question of conditions p; with 
varying degrees of importance forming together a compound condition q via 
the conjunction. The first model considers some importance (weight) w; for 
each elementary condition p; and the matching degree of the weighted 
condition p; against a tupie t is given by the following equation: 

y(p;, t) = max(y(pj, t),1- Wj), (20) 

where P7 denotes the condition p; with an importance associated to it. Then, 

the matching degree of the condition q is calculated using standard min 
operator: 

y(p, t) = min y(p;, t) = min max(y(pj, t),1- Wj) 
j j 

(21) 

Hence, when the importance is minimal (w; = O), the condition p; is not 
considered in the evaluation. On the other hand, with w;= 1, the evaluation 
of condition p; highly influences the evaluation of the overall condition q. 
This model has been refined (Dubois, Prade 1997) to deal with a variable 
importance w; - depending on the matching degree of the associated 
elementary condition. For example, in a specific context it may be useful to 
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assume w; constant for relatively high satisfaction of the elementary 
condition, but the extremely low satisfaction should be stronger reflected in 
the overall matching degree by automatically increased w;. For instance, 
when we look for a car and we prefer one having a moderate price, but it is 
not our primary criterion (condition), then we assume the importance weight 
for it smaller than 1.0. However, if a particular car has a very high price, the 
price criterion becomes mare important (w;= 1) in order to reject that car. 

The second model, originally proposed by Yager in 1984 (Dubois, 
Prade 1997) considers a threshold 0; for each elementary condition p;. If the 
condition p; is satisfied to a degree above the threshold 0;, that is, y(pi,t) ~ 0;, 

then the resulting partia! matching degree becomes 1, i.e., y(p7,t) = 1. On 

the other hand, if the threshold is not reached, i.e., y(p;,t) < 0;, we may . 

consider two ways for the evaluation of the condition: (AA) y(p7 ,t) = 'y(p;,t) 

or (B) y(p7 ,t) = Y(Pi,t). It turns out, that both ways may be expressed with 
ei 

a formula: 

y(q, t) = min y(p;, t) = min 0i ~ y(pi, t) (22) 
i i 

where ~ is the implication logical operator. Then, using the Godeł 

implication (6) and the Goguen implication (7) we obtain (A) and (B), 
respectively. Note that the first model of importance, proposed by Dubois 
and Prade and formalized by the equation (20), is also covered by the 
generał formula of (22) when the Kleene-Dienes implication (4) is assumed. 

Still another model of importance applicable for the aggregation of 
partia] matching has been proposed by Dubois and Prade (1997), in which 
they used conditional requirements p;• pj to provide an interpretation for the 
hierarchical aggregation of fuzzy predicates. The authors consider sirnilar 
context to that of the paper by Lacroix and Lavency (1987). An overall 
condition q is considered to be a sequence of elementary conditions Pi=l,n 
accompanied by importance weights (called here priorities). It is interpreted 
in such a way that "p 1 should be satisfied (with priority 1) and among the 
solutions meeting p 1 (if any) the ones satisfying pz are preferred (with 
priority a2), and among those satisfying both Pi and pz, those satisfying p3 
are preferred with priority a 3 (a3 < a 2 < 1) and so on". This may be 
interpreted as nested implication operators: Pi • (p2• (p3• .... The overall 
matching degree (the results of the aggregation) may be thus represented by 
the following membership function defining a fuzzy set of elements (rows) 
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satisfying q (when q consists of 3 partia! predicates): 

. (Y(P1, t), max(y(p2, t),1- min(Y(P1, t), a2 )),) 
y(q,t)=mm 

max(y(p3 , t),1- min(y(p1, t), y(p2 ,t),a3 )) 
(23) 

where min(y(p1,t),a2) and min(y(p1,t),y(p2,t),a3 ) are the priority 

levels (corresponding to w; in equation (20)) of partia! fuzzy conditions 
(predicates) pz and p3, respectively. Hence, conceming the condition p 2, its 
priority is a.2 if PI is fully satisfied and is zero if PI is not at all satisfied, 
which reflects the fact that pz is conditioned by PI. Thus, this is another 
example of the variable importance weight, but this time depending on the 
satisfaction of the "preceding" partia! condition (predicate). Notice, that the 
hierarchy (nesting) of the conditions is here meant rather in the same sense 
as in Bosc's approach than in Lacroix and Lavency's. 

3. Possibility theory for incomplete data representation 

Classical relational data model offers only limited means to represent 
incomplete information. Namely, the NULL may be used instead of an 
unknown value. However, our knowledge about certain value, while 
incomplete, is often still not completely missing. This is especially true if 
our knowledge is of the Iinguistic type. For example, Iet us consider the 
employees characterized by the attributes NAME and AGE. Using classical 
relational database model we can easily represent information that, e.g., 
"John is 25". However, what if we know only that "John is young"? It is an 
imprecise proposition because it does not assign a particular value to John's 
age. The fuzzy logic has been conceived to deal with exactly this type of 
propositions. Thus, it is assumed that such proposition provides a possibility 
distribution of values for a variable under consideration (here: John's age), 
associating with each possible value a number in the interval [0,1]. In this 
case, we say (Zadeh 1978) that the proposition of the type p = "X is young" 
induces a possibility distribution n (the notation nx is often used to indicate 
what variable is considered): 

X is young • n = YOUNG 

or, equivalently: 

VuE U 7t (u)= µYOUNG(u) 

(24) 

(25) 

that is, the possibility that a certain uE U is an actual value of X is equal to 
the u's membership degree to the fuzzy set YOUNG, which models the 
fuzzy term young. This framework makes it possible to represent also such 
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propositions as: 

XE [20,25] • 7t(u) = 1 for u E [20,25] and n(u) = O for u E [20,25] (26) 

or 

X is unknown • n(u) = l VuE U (27) 

Knowing a possibility distribution 7tx we may be also interested what 
is the possibility that X' s value belongs to a set A~U. This leads to the 
concept of the possibility measure, i.e., function IT such that: 

IT: 2u • [0,1] (28) 

From the postulated properties of the possibility measure 1t 1s 
assumed that (in fact, usually we start with the concept and properties of the 
possibility measure and only then the notion of the possibility distribution is 
introduced): 

IT(A)= sup n(u) 
uEA 

(29) 

The possibility measure alone does not tell us enough about the actual 
value of X. Thus, it is usually supplemented with the possibility measure of 
the complement of A. More precisely, the necessity measure, N, is defined, 
expressing the "impossibility" of the set A , i.e.: 

N(A)=l-IT(A )=inf1t(u) (30) 
UEA 

This may be easily extended to the case where A is a fuzzy set. Then: 

Possibility(X is A)=IT(A)= sup rnin(n(u),µA(u)) (31) 
uEU 

and: 

Necessity(X is A)=N(A)= inf max(l-n(u),µA(u)) 
uEU 

(32) 

Now, if we know that the possibility distribution of the X's value is n 
then the degree to which the actual value of X belongs to A (often denoted as 
"X is A") belongs to the interval [N(A), IT(A)]. 

Prade and Testemale (1984) generalize the concept of the relational 
database in sucha way that the value A(t) of a tupie t for an attribute A may 
be given as a possibility distribution defined on the dornain of this attribute 
(extended by adding a special element meaning "inapplicable"). They 
adapted classical relational algebra to the case of the possibilistic database. 
In order to illustrate the algebra, we discuss only the selection and give a 
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relevant example of the query. The selection cr(R, C) of a relation R upon 
the condition C may refer to two types of atomie conditions for C: 

I. A 0 a, where A is the name of an attribute, 0 is a comparison 
operator (fuzzy or not) and a is a constant (fuzzy or not); (33) 

II. A 0 B , where B is also an attribute name. (34) 

More complex conditions may be built using the above atomie 
conditions and the logical connectives of negation, disjunction and 
conjunctions. 

The matching degree of an atomie query and a tuple t is computed as 
a pair: possibility and necessity measure (with respect to the possibility 
distributions A(t) and B(t)) of relevant sets. In case of (I.) it is the set, crisp 
or fuzzy, of the elements belonging to the domain of A and being in relation 
0 (crisp or fuzzy) with the constant a. In the second case (II.) it is the subset 
of the Cartesian product of domains of A and B containing only the pairs of 
elements being in relation 0. In this case a joint possibility distribution over 
the Cartesian product of the domains of A and B is used. 

Formally, the matching degree for the case (I.) is computed as 
follows . Let us denote with F the set (in generał fuzzy) whose possibility 
and necessity measures have to be computed. lts membership function for 
the elements of the domain of the attribute A is: 

µ F (d) = sup min(µ0 (d, d' ), µa (d' )) d E Dom(A) 
d 'ED 

(35) 

Now, the possibility and necessity measures of the set F with respect 
to the possibility distribution 7tA<O being the value of the attribute A for the 
tupie t are computed as usually: 

ITA(t) (F) = sup min(1rA(t/d),µF(d)) (36) 
. dED 

(37) 

In case (Il) the set F comprises the pairs of elements (d, d'), 
dEDom(A), d'EDom(B) such that d 8 d' is satisfied. Thus, its membership 
function is identical with that of 8: 

µ F ( d, d ') = µ0 ( d, d ') (38) 

This time we have to compute the possibility and necessity measures 
with respect to a joint possibility distribution 1t(A(x),B(x)) : 
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n(A(t),B(t))(d,d') == min(n A(rld), n B(l) (d')) (39) 

Then, the possibility and necessity measures are computed as previously: 

rr(A(r),B(t)) (F) == sup min(nA(ild),n8 cn(d'),µF(d,d')) (40) 
dED 

N(A(t),B(r)lF) == J~t max( I-nAuld),l-n8uld'),µF(d,d')) (41) 

This type of the querying and the matching degree computation is 
referred to as juzzy pattern matching (Dubois, Prade 1995). Using the 
previous notation: the pattern is a fuzzy set F and the matching data sought 
is represented by a possibility distribution A(t). 

Bose et al. (2000) introdueed a new type of queries for possibilistie 
databases that do not rely on the fuzzy pattern matehing. In this approach the 
parameters (syntax) of the possibility distributions are eompared rather than 
their semantics. The formulas for the matehing degree ealculation refer to 
the following three auxiliary funetions: 

Poss(A(t),{d,, . .. ,dn}) == min(n:A(l)(d,), .. . , (7tA(1i(dn)) 

Card_eut(A(t),A) == l{d E D: nAco(d) ~ A}I 

Card_supp(A(t)) == l{d E D: 1tAc1i(d) > 0}1 

(42) 

(43) 

(44) 

where d 1, ••• ,dn E Dom(A), and A E [0,1). A value of the funetion 
Poss(A(t),{d1, ••• ,dn}) may be interpreted as the truth degree of the statement 
"all the values d 1, ••• , d11 are possible for A(t)". The values of the funetions 
Card_eut(A(t), A) and Card_supp(A(t)) eorrespond to the number of 
elements for whieh the possibility distribution A(t) takes on a value above or 
equal to A and O, respeetively. 

Then, we can eompute a matehing degree for the queries of the type 
(Bose et al. 2000): "Find the houses for whieh the priee value $100.000 is 
eonsidered more possible than the value $80.000" or "Find the houses for 
whieh $100.000 is the only price value whieh is completely possible", whieh 
can be expressed, respeetively, using: 

Poss(PRICE(t), { 100.000}) ~ Poss(PRICE(t), { 80.000}) 

Poss(PRICE(t),{ 100.000}) =land Card_eut(PRICE(t),1) = 1. 

In order to use two possibility distributions in the same query we need 
some indices to eompare them. Obviously, one eandidate for sueh an index 
is the semantie eomparison defined with (40) and (41), but some other 
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alternative approaches do exist. Raju and Majumdar (1988) assume a 
resemblance relation defined on the interval [0,1]. Then, their fuzzy equality 
measure is defined as follows: 

(45) 

where 7tA, n8 are two possibility distributions on D to be compared and \jf is 
a resemblance relation (reflexive and symrnetric) defined on [0,1]. Bose et 
al. (2000) generalize this measure. They assume the existence of a 
resemblance relation RES defined on the domain D, upon which compared 
possibility distributions are defined. Their measure of the fuzzy equality 
between two possibility distributions is based both on the resemblance 
relation RES, and the resemblance relation over [0,1), named in their 
approach a proximity relation and denoted with 0: 

µs (A,ai(u) = sup vE o rnin(µRES(u,v), µe(7tA(u), 7ta(v)) (46) 

The equation above measures the degree to which the possibility 
distribution 7tA can replaced by the possibility distribution 7ta with respect to 
an element u belonging to the support of n8 . Such an replacement is 
acceptable (the computed degree is high) if there exist v belonging to the 
support of 7ta such that u and v are similar (in the sense of RES) and the 
values 7tA(u) and n8(v) are similar (in the sense of 0). Then, the degree in 
which we can replace a possibility distribution 7tA with a possibility 
distribution 7ta with respect to the whole domain D is given by the following 
equation: 

µrep1(A,B) = inf uE o max(l-7tA(u), µs(A,ai(u)) (47) 

Finally, the fuzzy equality measure between two possibility distributions 7tA 
and 7ta (equated here with A and B, respectively) is given by: 

µEQ(A,B) = min(µrep1(A,B), µrep1(B,A)) (48) 

Hence, a condition of a representation-based (syntactic) query 
involving two possibility distributions can be expressed as: 

REP(A) ::::: REP(B) (49) 

where REP(A) and REP(B) are the representations (possibility distributions) 
of the values of attributes A and B, respectively, which have the same 
domain D or fuzzy sets defined on D and used in a query ( or more precisely 
possibility distributions induced by such fuzzy sets). For example, the 
condition REP(AGE) :::: REP(middle_aged) will be true to a degree to which 
a value of attribute AGE (possibility distribution) is syntactically sirnilar to 
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the possibility distribution induced by a fuzzy set corresponding to the 
middle_aged concept. Notice, that in the case of fuzzy pattern matching a 
similar query may be used. However, it would produce a 
possibility/necessity measures of the event that the value of the AGE 
attribute belongs to fuzzy set middle_aged provided that all we know about 
the age is a possibility distribution. 
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