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Abstract

Human intelligence is able to solve problems with high amount of uncer-

tainty. Also artificial intelligence tries to solve similar problems. Towards

realizing this aim it uses probability theory (PrTh), fuzzy set theory, pos-

sibility theory, Dempster-Shafer theory, info-gap theory, etc. PrTh as the

oldest one (XVII century) seems to be a ripe and well grounded scientific

method. However, according to many opinions, it is not true. In this paper

the author shows that the basic and commonly used formula for calculation

probability of an event A, p(A) = nA/n, is both qualitatively and quanti-

tatively rather incorrect. This formula was suggested by the frequency in-

terpretation of probability. Furthermore, the author presents the evidential-

completeness interpretation of probability that seems better suited to de-

scribe uncertainty. This interpretation explains why in most cases probabil-

ity cannot be determined precisely and that only an uncertainty interval of

probability can be found.

Keywords: uncertainty, probability, probability interpretations, the com-

pleteness interpretation of probability, evidential completeness.

1 Introduction

Probability theory (PrTh) is the oldest and the most developed scientific method

of investigating uncertainty. The first definition of probability was formulated by
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Laplace in 1814 [10]. His definition is referred to as the classical one. Since

then multiple of books and papers on PrTh have been published. Therefore one

could think that PrTh is a very strongly based science. However, it appears that

the truth is quite different. Uncertainty and disagreement among scientist as to

the sense o probability is very large. There is a great number of questions, doubts

and paradoxes concerning understanding probability. Some scientists are even

of the opinion that PrTh has met with a repulse. An example of such opinion

is shown in a book with a very meaningful title “The search for certainty - On

the clash of philosophy of probability”, [1], written by Professor K. Burdzy from

University of Washington and published in 2009. This book has aroused a vivid

discussion among scientists, see e.g. [5]. Some scientists gave whole hearted

support to Professor Burdzys opinion; other criticized it, but rather in a moderate

way. Defenders of the present PrTh mainly quote practical usefulness of PrTh in

statistics. Views of Professor Burdzy are not at all individual ones. In literature

some very strong opinions can also be found: “Probability does not exist” and “No

matter how much information you have there is no scientific method to assign a

probability to an event”, de Finetti in [4]. Because of limited volume of this paper

not all critical opinions can be quoted.

However, these can be easily found in [1], [5], and [6]. There are at least

5 main interpretations of probability that result from various understanding of

probability [6]. These are presented below, with comments of Professor Burdzy.

1. The classical probability (Laplace [10], 1814]),

“which claims that probability is symmetry”.

2. The logical probability (Carnap [2], 1950),

“which claims that probability is ‘weak’ implication”.

3. The frequency theory (von Mises [12], 1957),

“which claims that probability is long run frequency”.

4. The subjective theory (de Finetti [4], 1975),

“which claims that probability is personal opinion”.

5. The propensity theory ( Popper [13], 1957),

“which claims that probability is physical property”.

Particular interpretations reveal large qualitative differences in explanation of

probability and try to remove weaknesses of other interpretations. There exists

also an interesting opinion of Hajek [6]: “. . . there is still much work to be done
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regarding the interpretation of probability. Each interpretation that we have can-

vassed seems doing complete justice to it. Perhaps the full story about probability

is something of a patchwork, with overlapping pieces. In that sense, the above

interpretations might be regarded as complementary, . . . ” .

2 Classical and frequency interpretations of probability

The classical interpretation with its main representative Laplace [10], (1814), “as-

signs probabilities in the absence of any evidence or in the presence of symmet-

rically balanced evidence. The guiding idea is that in such circumstances prob-

ability is shared equally among all the possible outcomes, so that the classical

probability of an event is simply the fraction of the total number of possibilities in

which the event occurs”, [6]. “Mathematically, this can be represented as follows:

If a random experiment can result in N mutually exclusive and equally likely out-

comes and if NA of these outcomes result in the occurrence of the event A, the

probability of A is defined by (1).

p(A) =
NA

N
(1)

There are two clear limitations of the classical definition. Firstly, it is ap-

plicable only in situations in which there is only a ‘finite’ number of possible

outcomes. But some important random experiments, such as tossing a coin until

it rises heads, give rise to an infinite set of outcomes. And secondly, you need to

determine in advance that all the possible outcomes are likely without relying on

the notion of probability to avoid circularity - for instance by symmetry consider-

ations” [7]. On the ground of classical interpretation many problems could not be

explained. A trial of improvement of the classical interpretation and of removal

of at least some weaknesses has been undertaken by ‘frequentists’ with their main

representative von Mises [12]. “Frequentists posit that the probability of an event

is its relative frequency over time, i.e. its relative frequency of occurrence after

repeating a process a large number of times under similar conditions . . . . If we

denote by nA the number of occurrences of an event A in n trials, then if:

lim
n→∞

nA

n
= n , (2)

we say that P (A) = p”, [6].

This interpretation is also called the long-run frequency interpretation (LRFr-

interpretation). Because in practice a very large (infinite) number of experiments
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cannot be realized or the number of pieces of data (e.g. of statistical data) is lim-

ited we have to use the finite-frequency interpretation (FFr-interpretation) accord-

ing to which the probability is calculated on the basis of data we have at disposal.

The definition of probability according to FFr-interpretation is as follows: “the

probability of an attribute A in a finite reference class B is the relative frequency

of actual occurrences of A within B”, Hajek in [6]. Thus:

p(A) =
nA

n
, (3)

where: n – a finite number.

3 Main objections to classical and frequency interpreta-

tions of probability

The number of all objections and questions is very large [1, 6]. Only few of them

are presented below.

1. “Since the (classical) definition applies only to those situations in which all

outcomes are equally ‘possible’ it does not apply to a single toss or multiple

toss of a deformed coin”, [1].

2. The classical definition seems to be circular because it refers to “equally

possible cases – and so probability is defined using the notion of probabil-

ity”, [1].

3. “According to the finite frequentist, a coin that is never tossed and thus

yields no actual outcomes whatsoever, lacks a probability for heads alto-

gether; yet a coin that is never measured does not thereby lack a diameter”,

[6]. This problem can be called ‘the zero-evidence problem’ or ‘the zero-

case problem’.

4. “According to the frequency theory one can not apply the concept of prob-

ability to individual events”, [1], such as a single coin tossing. “ . . . a coin

that is tossed exactly once yields a relative frequency of heads of either 0 or

1, whatever its bias. . . . this is so called ‘problem of the single case’, [6].

5. The ‘small number of data pieces’-problem. In many real problems we

have only small or very small number of data pieces. It strongly constraints

applicability and credibility of the frequency interpretation of probability.
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6. The fluctuation problem. Even if in some problems we can realize a large

number of experiments, frequently no stable convergence of probability oc-

curs and its fluctuations in a long-run calculations are observed, [1, 11].

4 Proposed ‘completeness interpretation’ of probability

In this chapter the completeness interpretation of probability will be presented

that according to the authors knowledge is new and lacks certain faults of the

frequency interpretation. The completeness interpretation was discussed on a sci-

entific seminar in Faculty of Computer Science and Information Systems, where

the author works.

Before all, the author believes that mathematical formulas (2) and (3) of the

type pA = nA/n for calculation of probabilities are generally incorrect. The fact,

that these formulas, suggested by the frequency interpretation, are not able to give

reasonable results for a single case problem or at small number of data pieces

means that they are qualitatively incorrect (their mathematical form is incorrect).

It seems that reason of this qualitative incorrectness is lack of some important

element in the whole frequency-interpretation concept. According to the author,

the lacking element is ‘evidential completeness’. Its meaning will be explained

below. In Polish probability is called ‘prawdopodobieństwo’, which means ‘sim-

ilarity to the truth’. In Latin also : ‘verisimilitudo or probabilitas’, (veritas means

the truth and probabilis means credible or probable). Perhaps probability has sim-

ilar meaning in other languages too. Thus, if we want to determine probability

of a given hypothesis h concerning an event on the basis of evidence pieces ehi ,

i = 1, . . . , k, that confirm the truth of hwe should have an image of what would be

the complete set EC (EC={eh1, . . . , ehk}) of such evidence pieces, which would

fully prove the truth (with certainty 1) of this hypothesis. Such evidential set is

proposed to be called ‘evidential completeness’ (EC) or ‘evidence complete-set’

(ECS). Further into this chapter the case of a discrete random variable X will be

discussed. Let us assume that the variable can take k possible values in a future

event. Then we can formulate a hypothesis set H for this variable (as below).

H = {h∗1, . . . , h
∗

k}

It can be easily shown that each finite set of k hypotheses can be transformed

in k binomial sets of the form,

H = {h,NOT h} = {h, h} ,

where h = h∗i , i = 1, . . . , k and h = H − h∗i . E.g. in the case of a dice

h∗1 = h can mean ‘1’ and h – ‘NOT 1’. Thus, for each discrete variable we
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can apply the basic, binomial pattern ‘hypothesis, anti-hypothesis’ that is well

represented by coin tossing: h = head domination, h = NOT head domination.

Also continuous random variable can be treated this way after their discretization.

Therefore the completeness interpretation of probability will now be explained

on an example of the binomial hypothesis-pattern {h,NOT h} as the basic one.

In authors opinion, probability should not be assigned to (future or past) events

but rather to hypotheses concerning the events. Thus, before coin tossing we can

formulate the hypothesis h (head domination) and the anti-hypothesis NOT h =

h (tail domination) and assign their probabilities. After coin tossing, we have to

do with realization r = (head) or r = (tail). However, their probabilities were

assigned not by us but by the experiment. Probabilities can only have values

1 or 0. Fractional values are not possible. One coin tossing delivers only one

confirmation: either it confirms the hypothesis h (head domination) or the anti-

hypothesis h (NOT head domination). One coin tossing delivers only one piece of

evidence. If n tosses were realized that ended with k heads and (n− k) tails, then

we have k confirmations of the hypothesis h and (n−k) confirmations of the anti-

hypothesis h at disposal. The number n of all confirmations can be different, e.g. 1

or 5 or 21, etc. An important question arises: can we infer and assign probabilities

to hypotheses on the basis of any number n of evidence pieces? If yes, then how

accurate these probabilities will be? In that case, does accuracy depend on the

number n of evidence pieces or not? These questions should be answered. As

proposed, the set of evidence pieces that fully proves the hypothesis h and makes

it certain (ph = 1 and p
h

= 0) has been called evidential completeness and

denoted by EC. In certain problems an ideal EC can be determined by experts. As

an example we can use a crime, e.g. a murder. Let person A be suspect of murder

(SP-suspected person). The evidential completeness EC can be as below.

EC = {SP has no alibi for the murder time, SP had strong motives for

the murder commission (e.g. large inheritance), SP was seen by few

witnesses in time of the murder, on the knife which was the murder

tool experts found some genetic matter of SP} = {eEC1, . . . , eEC4}

If we have such evidence against the person A we can be sure of the hypothesis

hA (A is the murderer). However, if against A we only have an evidential set EA

as below:

EA = {A has no alibi for the murder time, A had strong motives for

the murder commission},

then we cannot be sure of this hypothesis. Then it is only probable. Its approx-

imate probability can be assigned by criminal experts as conformability degree
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of the evidence set EA with the completeness EC. The above example shows that

probability is (perhaps not always) of a mixed, objective-subjective character. Ev-

idence pieces are most often objective. However, their meaning and weighing,

their evaluation and aggregation to determine the probability value must be done

by experts. In case of coin tossing each trial delivers one piece of evidence. Sig-

nificance of each evidence piece has to be evaluated too. As long as we have no

reason for different weighing of particular tosses they will be assigned the same

weight. However, what will be evidential completeness EC in the case of coin

tossing? The ideal EC would consist of an infinitely large number n of tossing

results. But, it is impossible to realize such number of trials. With similar sit-

uation we may have to deal also in other cases. Sometimes no ideal evidential

completeness is possible. Therefore, to solve some real problems we will have to

use ‘satisfactory evidential completeness’, (SEC). It is such set of evidence pieces,

which as a matter of fact does not ensure the full truth of a given hypothesis, how-

ever, it insures this truth to a satisfactory degree, e.g. to 0.99 or to 0.95 etc, in

the scale [0,1]. This degree should be determined by experts. In the case of coin

tossing SEC will contain such number nSEC of trial results that is sufficient for

probability determining with a satisfactory accuracy. To find this number we can

use the so called Chernoff bound [3, 8]. However, other mathematical tools, if

suited, can also be used. Chernoff derived a formula that is given below with a

slightly changed denotation (4):

nSEC ≥
1

(phc − 0.5)2
ln

1
√
ǫ
, (4)

where: ǫ represents the maximal error of the result, ǫ = 1 − accuracy. E.g.: ǫ = 0.01

means accuracy = 0.99. phc means an assumed, higher limit of the excluded prob-

ability of head, e.g.: if we suspect on the basis of introductory experiments with

the coin that its asymmetry is so large, that the head probability ph /∈ [0.4, 0.6],
then we assume phc = 0.6. The smaller the coin asymmetry (bias) the more tri-

als are necessary for accurate determining the ph-probability. If this probability

lies outside the interval [0.45, 0.55] then at the minimal accuracy 0.99, Chernoff

bound (4) delivers the number of required trials nSEC = 921. If the head proba-

bility is outside the interval [0.499, 0.501], then nSEC = 2302 586 trials. In case

of a continuous random variable, the asymmetry of probability exists between e.g.

two parts in which the probability density function can be partitioned. Therefore,

also here the binomial pattern hypothesis, anti-hypothesis as coin tossing can be

applied. Further on, the following definition of probability will be proposed.

The minimal probability phmin of the hypothesis h concerning a given

event is the conformability degree of the evidence collected in the ev-
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idence set Eh that we have at disposal for confirmation of the hypoth-

esis h, with the evidence required for full confirmation of the hypoth-

esis, which is contained in the set ECh of evidential completeness of

the h-hypothesis.

The maximal probability phmax of the hypothesis h is equal to one minus the

minimal probability pNOThmin of the anti-hypothesis NOT h.

phmax = 1− pNOThmin

The exact probability ph of the hypothesis h can be determined only if the follow-

ing condition is satisfied:

IF (phmin + pNOThmin = 1) THEN (phmin = ph) .

If the above condition is not satisfied then the exact probability ph can not be

determined.

However, if collecting the evidence required by the ideal evidential complete-

ness would for a given problem be impossible a satisfactory evidential complete-

ness can be used that allows to prove the hypothesis not fully but to a certain,

satisfactory degree of accuracy.

5 Uncertainty of probability

Let us now come back to the binomial problem with the hypothesis set H =
{h,NOT h} = {h, h} which is well represented by coin tossing. Let us assume,

that we know from introductory experiments that the coin is biased so, that as-

sumption can be made concerning the excluded ph-interval: ph /∈ [0.45, 0.55]. It

means phc = 0.55 and with Chernoff bound (4) the number nSEC = 921 trials

required by SEC for calculation accuracy 0.99 has been determined. Let us fur-

ther on assume that only 5 coin tosses were realized (n = 5): 3 tosses gave heads

(nh = 3) and 2 tosses gave tails (n
h
= 2). The number n = 5 of evidence pieces

is considerably smaller than the number nSEC = 921 of trials required by SEC.

The situation is illustrated in Fig. 1.

As Fig. 1 shows, probability ph cant be precisely determined because 5 trails

are not enough and further 916 trials are necessary for sufficiently precise de-

termination. In an extreme case, all these 916 trials can give heads. Then the

hypothesis h (head domination) would have 919 confirmations (nh = 919). It is

also possible that all lacking 916 trials will give tails. Then the anti-hypothesis

h would have 918 confirmations (n
h
= 918). Because we dont know what next
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  0     1     2     3      nh                                                              nh              2     1     0

nh  = 3                            nu nc  = nSEC  – n = 921 – 5 =916                       nh  = 2

uncertainty

satisfactory evidential completeness        nSEC  = 921

  confirmations of the                                                      confirmations of the anti-

  hypothesis h  (head)                                                       hypothesis h  (NOT  head)

Figure 1: Illustration of the uncertainty existing in determining probability ph of

the hypothesis h from the binomial hypothesis set H = {h, h} in the example of

coin tossing.

916 trials will give we can understand them as uncertainty of probability. How-

ever, because we have 3 confirmations for head, we can be sure that the head

probability ph will be not less than nh/nSEC = 3/921 and not higher than

(1− nh/nSEC) = (1− 2/921) = 919/921.

ph ∈

[
nh

nSEC
, 1−

n
h

nSEC

]
=

[
3

921
,
919

921

]
= [0.0033, 0.9978] (5)

p
h
= 1− ph p

h
∈

[
2

921
,
918

921

]

The result given in (5) is the one and only knowledge about the head proba-

bility after 5 trials. The value of this probability is still unknown. It can be any

value lying between the borders phmin = 3/921 and phmax = 919/921. How-

ever, these 5 trials decreased the uncertainty from the initial one 921/921 = 1 to

916/921. Thus, the trials were useful. Let us see now, what result we will get if

we apply the frequency interpretation of probability, formula (6).

ph =
nh

n
=

3

5
(6)

The result delivered by the FFr-interpretation and by the completeness inter-

pretation are shown in Fig. 2.

The example in Fig. 2 shows that the estimation of probability delivered by

the commonly used formula (6) suggested by the FFr-interpretation is slightly
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ph

set of possible

combinations

(ph , ph )

        3/921                  3/5       919/921          head

       0.0033                 0.6                              hypothesis h

         ph min                   FfrI         ph max

          interval of possible ph  values

ph  +  p h  = 1

ph

tail

antihypothesis h

918/921

0.9967

2/921

0.0022

2/5

0.4000

ph max

ph min

FFrI

Figure 2: Illustration of uncertainty of probability ph of the hypothesis h (head

domination) after only 5 trials. The result ph = 3/5 is delivered by the FFr-

interpretation of probability.

doubtful. Is there a reason to assume that this result ph = 3/5 = 0.6 is more

credible than any other value from interval [3/921, 919/921], e.g. 1/5 or 2/5
or 4/5 etc. Now, let us assume, that we have some evidence in form of n =
700 trials from which 399 trials gave heads (nh = 399) and 301 gave tails

(n
h

= 301). These results mean, that the lowest limit of probability of head

equals phmin = nh/nSEC = 399/921 = 0.4332 and the highest limit phmax =
1 − nh/nSEC = 620/921. The FFr-representation gives a ‘precise’ result ph =
nh/n = 399/700 = 0.5700. Results of both interpretations are shown in Fig. 3.

Let us assume now that the full complete set of n = 921 trials required by

the satisfactory evidential completeness was realized with 531 heads (nh = 531)

and 390 tails (n
h
= 390). Thus nh + n

h
= 531 + 390 = 921 = n = nSEC.

According to the completeness interpretation we get the lower probability con-

straint phmin = nh/nSEC = 531/921 = 0.5765 and the higher constraint

hmax = 1 − nh/nSEC = 531/921 = 0.5765. Thus phmin = phmax = ph.

Uncertainty of the probability decreased to the minimum in terms of Chernoff

bound (the possible error ǫ = 0.01). If we apply the FFr-interpretation, formula
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ph

set of possible

combinations

(ph , ph )

              399/921  399/700  620/921             head

               0.4332    0.5700     0.6732             hypothesis h

                  ph min        FfrI         p h max

ph  +  ph  = 1

ph

tail

antihypothesis h

522/921

0.5668

301/921

0.3268

301/700

0.4300

ph max

ph min

FFrI

interval of

possible ph

values

Figure 3: Illustration of uncertainty of probability ph of the hypothesis h (head

domination) after 700 trials. The result ph = 399/700 was delivered by the FFr-

interpretation of probability.

(3) we get ph = nh/n = 531/921 = 0.5765. In this case results delivered by both

the completeness- and by the FFr-interpretation are the same. They are shown in

Fig. 4.

On the basis of the completeness interpretation the following first conclusion

can be formulated: If we have nh confirmations of the hypothesis h and n
h

con-

firmations of the anti-hypothesis h and nh + n
h
< nSEC then the probability ph

lies in interval (7).

ph =

[
nh

nSEC
, 1−

n
h

nSEC

]
(7)

In real decision-making problems often the simplified singleton-representation

is necessary (one, single number is easily understandable for non-specialists).

Therefore a question arises: “Which probability value from interval (7) could

in the best way fulfill this task?”. To answer this question an optimality criterion

has to be chosen. One of possible criteria is given by (8). It minimizes the maxi-

mal possible error of the representation phR in relation to the precise but unknown

probability value ph. Let us denote by phR the best representation of the probabil-

ity interval (7) among all possible representations p∗hR contained in this interval.
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ph

1-element set of

possible

combinations

(ph , ph )

                               531/921                          head

                                0.5765                           hypothesis h

                        ph min  = ph max = ph

                       FFr-Interpretation

ph  +  p h  = 1

ph

tail

antihypothesis h

390/921

0.4235

ph max = ph min= ph

FFr-Interpretation

0
1

1

±  0.01

Figure 4: Illustration of results of determining the ph-probability at the number n
of trials equal to the number nSEC = 921 required by the satisfactory evidential

completeness. The possible error of ph = 0.5765, ǫ = 0.01.

The best representation is determined by criterion (8).

phR = min
p∗
hR

∈[phmin,phmax]
[max (|p∗hR − phmin|, |phmax − p∗hR|)] (8)

This optimal value is simply the mean of the constraints phmin and phmax (9).

phR = 0.5(phmin + phmax) (9)

A very important remark: the optimal representation phR given by (9) is not

a statement that it is the true and precise value of probability ph, because this

value is not known. We only know that it lies in the interval [phmin, phmax]. The

optimal representation is only a single value chosen from this interval as our best

guess, chosen to help us in decision-making. Use of this representation prevents

very large and maximal errors of problem solutions. An interesting question is

how do the lower and higher limits and the optimal representation change with

increasing number n of trials, at n ≤ nSEC. Because of the limitations of the

paper volume a table with detailed results can’t be shown here. However, the

results of investigation are shown in Fig. 5.
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Figure 5: Illustration of the process of decreasing uncertainty of probability with

increasing number n of trials.

As Fig. 5 shows, at small number n of trials (small amount of evidence) the

uncertainty (phmax − phmin) of probability ph is very large but with increasing

number of trials it gradually decreases to the minimum (to the possible error in

terms of Chernoff bound ǫ = 0.01) at n = nSEC . The optimal representation phR
of the uncertainty interval slowly and gradually, without oscillations converges

into the highly precise (in the sense of Chernoff bound accuracy 0.99)) value ph
of probability. Fig. 5 presented results of investigations for n ∈ {0, . . . , 921}.

An investigation was also made for smaller numbers of trials n ∈ {0, . . . , 10}.

Table with detailed results cant be presented here because of the paper volume

limitation, but the results achieved are shown in Fig. 6.

6 Conclusions

In situation of limited number of data pieces it is not possible to precisely deter-

mine probability. It is uncertain and the uncertainty can be very large. The com-

pleteness interpretation allows for determining this uncertainty. As Fig. 6 shows,

the values nh/n calculated by the FFr-interpretation are some kind of representa-

tion of the uncertainty interval [phmin, phmax] of probability. But such represen-

tation seems not optimal and has many faults. Its first fault is lack of optimality

criterion. We don’t know in which sense the FFr- representation would be opti-
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Figure 6: Results of determining the head probability ph for number of trials

n ∈ {0, . . . , 10}.

mal. The second fault is that it creates considerable variations and oscillations

of the nh/n-value with increasing number of evidence pieces (see Fig. 6). Single

pieces strongly change ‘the opinion’ of the FFr-interpretation about probability

estimation. Thus, this representation resembles an undecided and hesitant person.

From this point of view the completeness interpretation looks better. The optimal

representation phR is not ‘hesitant’. It is stable. It gradually changes its value after

adding next pieces of evidence because this representation ‘knows’ that weight of

a single piece of evidence is not large (1/921 in the example) and that this weight

depends proportionally on the number nSEC of evidence pieces required by SEC.

The third fault of the FFr-representation is that it is not able to account for the

zero-evidence case (n = 0) whereas the completeness interpretation is (see Fig. 6

and formula (9)). The fourth fault of the nh/n representation is that it calculates

incredible values (0 or 1) for the single case (only 1 piece of evidence, n = 1).

The fifth fault of this representation and next faults can be found e.g. in [1]. All

the above faults of the nh/n representation of probability do not mean that this

representation is completely incorrect. It is strongly incorrect at small numbers

of evidence pieces n ≪ nSEC . If the number n approaches the number nSEC

required by satisfactory completeness, then its accuracy improves.
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