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Abstract

IVF-events is important notion. Interval valued event (IVF event) is a pair

A = (µA, νA) of fuzzy events such that µA ≤ νA. The paper contains one

main result: central limit theorem. At the begin we define joint observable.

Keywords: IV-events, central limit theorem.

1 Introduction

We shall start with a measurable space (Ω, S), where Ω is a non-empty set and

S a σ-algebra of subsets of Ω, i.e. S is closed under complements and countable

unions. Usually a fuzzy event is a measurable mapping f : Ω → [0, 1], i.e.

f−1(J) = {ω ∈ Ω; f(ω) ∈ J} is a set belonging to S for every interval J ⊂

[0, 1]. Interval valued event (IVF event) is a pair A = (µA, νA) of fuzzy events

(i.e. µA, νA : (Ω, S) → [0, 1] are fuzzy events such that µA ≤ νA. Let F be the

set of all IVF events.

Definition 1 We define two binary operations ⊞,⊡: F × F −→ F as follows:

A⊞B = ((µA + µB) ∧ 1, (νA + νB) ∧ 1),

A⊡B = ((µA + µB − 1) ∨ 0, (νA + νB − 1) ∨ 0),
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and a partial ordering as follows

A ≤ B ⇐⇒ µA ≤ µB , νA ≤ νB .

Evidently (0Ω, 0Ω) is the least element of F , (1Ω, 1Ω) is the greatest element of F .

In the classical probability space (Ω, S, P ) a random variable is consider as

an S-measurable mapping

ξ : Ω −→ R,

if I ⊂ R is an interval then ξ−1(I) ∈ S.

Definition 2 An observable is a mapping

x : σ(J) −→ F

satisfying the following conditions

i) x(R) = (1, 1), x(∅) = (0, 0),

ii) A ∩B = ∅ ⇒ x(A)⊡ x(B) = (0, 0), x(A ∪B) = x(A)⊞ x(B)

iii) An ր A ⇒ x(An) ր x(A)

Definition 3 Every mapping m : F −→ [0, 1] satisfying the conditions:

i) m(0Ω, 0Ω) = (0),m(1Ω, 1Ω) = (1)

ii) A⊡B = (0Ω, 0Ω) =⇒ m(A⊞B) = m(A) +m(B)

iii) An ր A ⇒ m(An) ր m(A).

Proposition 1 If x : σ(J) −→ F is an observable, and m : F → 〈0, 1〉 is a state,

then

mx = m ◦ x : σ(J) → 〈0, 1〉,

defined by

mx(A) = m(x(A))

is a probability measure.

Proof 1

i) mx(R) = m(x(R)) = m(1, 1) = 1

ii) If A ∩B = ∅, then x(A)⊡ x(B) = (0, 0) hence
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mx(A ∪B) = m(x(A ∪B)) = m(x(A)⊞ x(B)) = m(x(A)) +m(x(B)) =
mx(A) +mx(B).

iii) An ր A implies x(An) ր x(A) hence

mx(An) = m(x(An)) ր m(x(A)) = mx(A).

Proposition 2 Let x : σ(J) −→ F be an observable, m : F −→ [0, 1] be a state.

Define F : R −→ [0, 1] by the formula

F (s) = m(x(−∞, s)).

Then F is non-decreasing, left continuous in any point s ∈ R,

lims→∞F (s) = 1 , lims→−∞F (s) = 0.

Proof 2 If s < t, then x((−∞, t)) = x((−∞, s)) ⊞ x(〈s, t〉) ≥ x((−∞, s))
hence

F (t) = m((−∞, t)) ≥ m(x((−∞, s)) = F (s),

F is non decreasing. If sn ր s then x((−∞, sn)) ր x((−∞, s)), hence

F (sn) = m(x((−∞, sn))) ր m(x((−∞, s))) = F (s),

F is left continuous in any s ∈ R.

Similarly,

sn ր ∞ =⇒ x((−∞, sn)) ր x((−∞,∞)) = (1, 1).

Therefore

F (sn) = m(x((−∞, sn))) ր sn((1, 1)) = 1

for every sn ր ∞, hence lims→∞F (s) = 1.

Similarly, we obtain sn ց −∞ =⇒ −sn ր ∞, hence

m(x((sn,−sn))) ր m(x(R)) = 1.

1 = limn→∞F (−sn) = limn→∞(x(〈sn,−sn))) + limn→∞F (sn) =

1 + limn→∞F (sn),

hence

limn→∞F (sn) = 0

for any sn ց −∞.
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2 Central limit theorem

If we want to define the sum ξ + η of two observables, one of possibilities is the

following formulation. Put

T = (ξ, η) : Ω −→ R2,

g : R2, g(s, t) = s+ t,

ξ + η = g ◦ T : Ω −→ Ω.

Namely, it is convenient for the constructing of preimages:

(ξ + η)−1(A) = T−1(g−1(A)).

In our IV-case, we have two observables

x, y : σ(J) −→ F,

hence x+ y could be define as a morphism

(x+ y)(A) = h(g−1(A)),

where h : σ(J2) −→ F is a morphism connecting with x, y. In the classical case

it was realiyed by the formula

T−1(C ×D) = ξ−1(C) ∩ η−1(D).

In our IV-case, instead of intersection, we shall use the product of IV-sets.

A⊡B = (µA, νA)⊡ (µB, νB) = (µA.µB , (1− νA).(1 − νB)) =
(µA.µB , 1− νA + νB − νA.νB).

Definition 4 Let x1, x2, ..., xn : σ(J) −→ F be observables. By the joint ob-

servables of x1, x2, ..., xn we consider a mapping h : σ(Jn) −→ F (Jn being the

set all intervals of Rn satisfying the following conditions:

i) h(Rn) = (0, 1)

ii) A ∩B = ∅ =⇒ h(A ∪B) = h(A) ⊞ h(B), and h(A) ⊡ h(B) = (0, 1)

iii) An ր A =⇒ h(An) ր h(A)

iv) h(C1 × C2 × ...Cn) = x1(C1).x2(C2.....xn(Cn)), for any C1, C2, ...Cn ∈ J.

Theorem 1 For any observables x1, x2, ..., xn : σ(J) −→ F there exits their

joint observable h : σ(Jn) −→ F .
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Proof 3 We shall prove it for n = 2. Consider two observables x, y : σ(J) −→
F . Since x(A) ∈ F , we shall write

x(A) = (x♭(A), x∗(A))

and similarly

y(B) = (y♭(B), y∗(B)).

By the definition of product x(C).y(D), we have

x(C).y(D) = (x♭(C), x∗(C)).(y♭(D), y∗(D)) =

= (x♭(C).y♭(D), (1− (1− x∗(C))).(1 − (1− x∗(D)))) =

= (x♭(C).y♭(D), x∗(C).y∗(D)).

Therefore we shall construct similarly

(h♭(K), h∗(K).

Fix ω ∈ Ω and put

µA = x♭(A)(ω),

νB = x♭(B)(ω),

h♭(K) = µ× ν(K).

µ× ν is the product of probability measures µ, ν. Then

h♭(C ×D)(ω) = µ× ν(C ×D) = µ(C).ν(D) = x♭(C).y♭(D)(ω),

hence

h♭(C ×D) = x♭(C).y♭(D).

Analogously

h∗(C ×D) = x∗(C).y∗(D).

If we define

h(A) = (h♭(A), h∗(A)), A ∈ σ(J2),

then

h(C ×D) = (x♭(C), y♭(D), x∗(C).y∗(D)) = x(C).y(D).
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Then previous theorem can be applied for obtaining the sum

x1 + x2 + ...+ xn = h ◦ g−1

with

g(u1, ...un) = u1 + ...+ un

or for the arithmetic means

1
n(x1 + x2 + ...+ xn) = h ◦ g−1,

with

g(u1, ...un) =
1
n(u1 + ...+ un)

Consider again a probability measure space (Ω, S, P ) and a sequence (ξn)n
of square integrable, equally distributed variables with E(ξn) = a, D(ξn) = σ2

n = 1, 2, .... Then

limn→∞P (ω ∈ Ω;
1
n

∑n
i=1 ξi(ω)− a

σ
√
n

< t) = φ(t)

for any t ∈ R. (Here φ(t) = 1
√

2π

∫ t
−∞

e
−u

2

2 du.) We shall translate the theorem

in our IV-case.

Definition 5 Let m : F −→ 〈0, 1〉 be a state, (xn)
∞

n=1 be a sequence of observ-

ables, hn : σ(Jn) → F be the joint observable of x1, x2, ..., xn, (n = 1, 2, ...).
Then (xn)n is called independent, if

m(hn(C1 × C2 × ...× Cn)) = m(x1(C1)).m(x2(C2))...m(xn(Cn))

for any n ∈ N and any C1, ..., Cn ∈ σ(J).

Theorem 2 Let (xn)
∞

n=1 be a sequence of square integrable, equally distributed,

independent observables, with E(xn) = a, D(xn) = σ2 (n = 1, 2, ...). Then

limn→∞ = (
√
n
σ )( 1n

∑n
i=1 xi − a)((−∞, t)) = φ(t)

for any t ∈ Ω.

Proof 4 Put gn : Rn → R

gn(u1, u2, ..., un) =
√
n
σ ( 1n

∑n
i=1 ui − a)
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so that
√
n
σ ( 1n

∑n
i=1 ui − a)(−∞, t) = g−1

n ((−∞, t))

and
√
n
σ ( 1n

∑n
i=1 ui − a)(−∞, t) = hn ◦ g−1

n .

Consider now sequence (m ◦hn)n of probability measures m ◦hn : σ(Jn) →
〈0, 1〉. By the definition of hn we have

(m ◦ hn+1)(A×R) = (m ◦ hn)(A), A ∈ σ(Jn).

Therefore (m ◦ hn)n forms a consisting system of probability measures

m ◦ hn : σ(Jn) → 〈0, 1〉.

Consider the space RN , the projections Πn : RN → Rn

Πn((ui)
∞

i=1) = (u1, ...un)

and the family of all cylinders in RN , i.e. sets of the form

ε = {Π−1
n ;n ∈ N,A ∈ σ(Jn)}.

By the Kolmogorov consistency theorem there exists a probability measure

P : σ(ε) → 〈0, 1〉 such that P ◦ Π−1
n = m ◦ hn for any n ∈ N. Return now to

our sequence (xn)
∞

n=1 of observables. Define on RN the sequence (ξn)
∞

n=1 by the

formula

ξn((u
∞

i=1) = un

Then

m(xn(C)) = m(hn(R× ...×R× C ×R× ...×R)) =

P (Π−1
n (R × ...×R× C ×R× ...×R)) = P (ξ−1

n (C)).

Therefore

E(ξn) =
∫
∞

−∞
tdmξn(t) =

∫
∞

−∞
tdmξn(t) = E(xn)

and similarly

D(ξn) = D(xn).
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Moreover

P (ξ−1
1 (C1) ∩ . . . ∩ ξ−1

n (Cn)) = P (Π−1
n (C1 × . . . ×Cn)) =

= m(hn(C1 × . . .× Cn)) = m(x1(C1)) . . . m(xn(Cn)) =

= P (ξ−1
1 (C1)) . . . P (ξ−1

n (Cn))

hence ξ1, ξ2, ... are independent. Put gn : Rn → R by the formula

gn(t1, t2, ..., tn) =

√
n

σ
(
1

n

n∑

i=1

ui − a),

ηn = gn(ξ1, ..., ξn) =

√
n

σ
(
1

n

n∑

i=1

ui − a) = gn ◦Πn.

Then

limn→∞P (η−1
n ((−∞, t))) = φ(t)

for any t ∈ R. But
√
n
σ ( 1n

∑n
i=1 ui − a) = hn ◦ g−1

n .

Therefore

limn→∞m(

√
n

σ
(
1

n

n∑

i=1

ui − a))(−∞, t) =

limn→∞m(hn(g
−1
n (−∞, t))) =

limn→∞P (Π−1
n (g−1

n )((−∞, t)))) =

limn→∞P (η−1
n ((−∞, t))) = φ(t).
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