
INSTYTUT BADAŃ SYSTEMOWYCH
POLSKIEJ AKADEMII NAUK

TECHNIKI INFORMACYJNE
TEORIA I ZASTOSOWANIA

Wybrane problemy
Tom 4 (16)

poprzednio

ANALIZA SYSTEMOWA W FINANSACH
I ZARZĄDZANIU

Pod redakcją
Andrzeja MYŚLIŃSKIEGO

Warszawa 2014ISBN 83-894-7555-3

A
. M

yś
liń

sk
i,

re
d.

 –
 T

E
C

H
N

IK
I I

N
FO

R
M

A
C

Y
JN

E
 -

TE
O

R
IA

 I
ZA

S
TO

S
O

W
A

N
IA

, t
om

 4
 (1

6)

INSTYTUT BADAŃ SYSTEMOWYCH
POLSKIEJ AKADEMII NAUK

TECHNIKI INFORMACYJNE
TEORIA I ZASTOSOWANIA

Wybrane problemy

Tom 4 (16)

poprzednio

ANALIZA SYSTEMOWA W FINANSACH
I ZARZĄDZANIU

Pod redakcją
Andrzeja Myślińskiego

Warszawa 2014

iBS PAN

Wykaz opiniodawców artykułów zamieszczonych
w niniejszym tomie:

Prof. Bernard De BAETS

Dr hab. Ewa BEDNARCZUK, prof. PAN

Dr hab. inż. Wiesław KRAJEWSKI, prof. PAN

Dr hab. inż. Andrzej MYŚLIŃSKI, prof. PAN

Dr inż. Jan W. OWSIŃSKI

Dr hab. Dominik ŚLĘZAK, prof. UW

Prof. dr hab. inż. Andrzej STRASZAK

Prof. dr hab. inż. Stanisław WALUKIEWICZ

Copyright © by Instytut Badań Systemowych PAN
Warszawa 2014

ISBN 83-894-7555-3

SOLVING THE DENSITY CLASSIFICATION TASK
WITH THE USE OF THE CONTINUOUS CELLULAR

AUTOMATA

Witold Bołt1,2

1 Systems Research Institute, Polish Academy of Sciences,
Ph. D. Studies, Warsaw, Poland

2 Department of Mathematical Modelling, Statistics and Bioinformatics, KERMIT,
Ghent University, Ghent, Belgium

wbolt@ibspan.waw.pl

Abstract. The Density Classification Task (DCT) is one of the most studied prob-
lems in the context of Cellular Automata (CAs) computation capabilities. In this
paper we propose a novel, relaxed variant of this task, namely the α–DCT, which
could be solved with the use of the Continuous Cellular Automata (CCAs). The
paper is accompanied with the presentation of the results of simulations utilizing
evolutionary algorithm for constructing CCA–based solutions of the α–DCT.
Keywords: cellular automata, density classification task

1 INTRODUCTION

Cellular Automata introduced in [22], form a widely studied and exploited
class of discrete dynamical systems. The simplicity of CA–based models
originating from local–only interactions, finite state space and the lack of
memory, makes them really attractive when it comes to practical applica-
tions. Numerous models simulating many natural phenomenons, based on
CAs, were introduced through the years [6].

Aside from applications to problems in mathematical modeling of nat-
ural systems, CAs are often studied within the field of information and
computation theory, as one of the models of parallel computation. One of
the most often–studied problems in this field is the DCT. The problem was
initially implicitly defined in [12] and then formally presented in [19]. The
formulation of DCT is straight forward. Given a final lattice, filled with 0s
and 1s, the desired goal of the system is to evolve to a homogenous state
(all cell in the lattice being in the same state), that corresponds to one of the
states that was initially assigned to the majority of cells. Such a task could
be trivially solved by many computation models with global memory, but
since CAs exhibit only local interactions, the task becomes non–trivial.

Many attempts were made to construct CAs that could solve the prob-
lem. Most notably various techniques utilizing evolutionary algorithms for

8 Witold Bołt

discovery of rules solving the DCT were proposed [7], which resulted in
the development of relatively effective methods for the automatic construc-
tion of the rules of CAs with different properties. Further examination
shown that the DCT problem could not be solved using classical CAs [17].
Although currently proven only for 1D and 2D CAs, it is believed [18] that
there is no CA solving the DCT in any of the dimensions, no matter how
many (finite) states are available.

Knowing that the general problem, for classically defined CAs cannot
be solved, the further research activities were divided into two groups. The
first one relates to the imperfect solutions of the DCT, i.e. rules that could
solve the task for the highest possible number of initial configurations. It
is not yet known what is the upper–limit for the classification correctness.
Best rules known so–far are able to correctly classify up to 90% of initial
configurations under consideration, but even the method of comparing the
efficiency and correctness of different rules is still a topic for a scientific
discussion [18].

The second problem group under active investigation, relates to the
DCT in different, relaxed settings, where some of the constrains of the
classical CAs are altered. Approaches studied so far include: rule chang-
ing CAs [16], programmable CAs [20], asynchronous CAs [14], different
types of multi–state rules [11], CAs with memory [21], discretized contin-
uous CAs [5], as well as Stochastic CAs (SCAs) and stochastic mixtures
of deterministic CAs [8, 10]. Depending on the setting, the DCT prob-
lem might remain unsolvable, but in some cases the situation differs com-
pared to the classical formulation. For example in the stochastic setting,
it is know that there exist rules that can solve the problem with any, arbi-
trary precision [8], with the cost of high accuracy being reflected in long
computing times.

In this paper we follow the later of the two presented research paths. A
new kind of relaxed DCT formation along with an alternative CA–inspired
computation model is presented. The model used here, namely the CCAs,
is the natural extension of binary (2–state) CAs. In addition to presenting
the initial definition of the novel α–DCT problem, we present a summary
of experiments based on evolutionary computing, with the goal of finding
a CCA rule solving the α–DCT.

The paper is organized as follows. In Section 2 we formally introduce
the concept of the CA, which is further extended in Section 3 to the context
of the continuous state space. In Section 4 we present the definition of the
α–DCT problem and discuss some of its formal properties. After that, in

SOLVING THE DCT WITH THE USE OF THE CCA 9

Section 5, we describe the Genetic Algorithm (GA) used to find candidate
solutions of the α–DCT. The paper is concluded with Section 6, where the
results of running the GA are presented. A brief summary is presented in
Section 7.

2 PRELIMINARIES

We start by formulating the definition of a CA. In this paper, by a CA we
understand a 1D, discrete (both in time and space) dynamical system with
finite states and a local, deterministic transition function. Due to discrete
nature, the space of such a system is divided into discrete elements referred
to as cells. We consider only the systems with a finite number of cells. Let
C denote the set of all cells, and N = |C|. Normally, we will presume that
cells are ordered and thus we will treat the set C as a sequence C = (ci)

N
i=1.

For each cell we define a neighborhood consisting of “nearby” cells.
We consider only symmetric neighborhoods, therefore the cells included
in the neighborhood can be expressed with the use of radius r ≥ 0. Radius
indicates how many cells belong to the neighborhood on either side of the
given cell (either left or right). For a given r, the neighborhood contains
2 r + 1 cells (including the cell for which the neighborhood is defined).
Typically, it is desired to satisfy that r � N , but formally it is only re-
quired that r < N/2. When the number of cells is finite (as it is in our
case), we assume that the cells are placed on a circle, so that for each cell
the neighborhood can be easily defined. For convenience, we assume that
for any i ∈ Z we have: ci = ci+N = ci−N , and thus for any cell ci the neigh-
borhood is defined as: N (ci) = (ci−r, ci−r+1, . . . , ci, . . . , ci+r−1, ci+r).

At a given time step t, each cell can be in one of the pre–defined states.
Let S denote the set of possible states. We assume that the set S is finite.
Let s(ci, t) ∈ S denote the state of the i–th cell, at the time step t. For given
t, the sequence s(·, t) = (s(ci, t))

N
i=1 will be called the configuration of the

CA at time step t. The configuration I = s(·, 0), will be referred to as the
initial configuration or initial condition. For given i and t, the sequence
(s(ci−r, t), . . . , s(ci+r, t)) will be called the neighborhood configuration of
the cell ci at the time step t.

The changes of states assigned to cells are described by a function called
the local rule, which fulfills the following condition:

s(ci, t+ 1) = fA(s(ci−r, t), . . . , s(ci, t), . . . , s(ci+r, t)). (1)

The local nature of the CA is expressed in the local rule, by the fact that the
future state of a given state, depends only on the states of its neighborhood.

10 Witold Bołt

The evolution of cell states of the CA, from time step t to time step t + 1
is synchronous, i.e. the local rule is applied to all of the cells simultane-
ously. With the use of the local rule fA, we can also define a global rule A
satisfying:

s(·, t+ 1) = A(s(·, t)). (2)

For the sake of simplicity and convenience, we will encode local rules
in the form of tables. Such tables are called lookup tables (LUTs). For a
given rule, the LUT lists all possible neighborhood configurations together
with the output of the local rule. If we assume that there exists some order-
ing in the state set, we can write down all possible neighborhood config-
urations in lexicographical order. Consequently, to encode any local rule,
we only need to store its values written in the fixed order of neighborhood
configurations.

In subsequent sections, we consider CAs with the state set consisting of
only two elements. Such automata will be called binary CAs. Binary CAs
with neighborhood radius equal to one are called Elementary CAs (ECAs).
ECAs are the most studied and well–understood group of CAs, due to low
number of possible local rules (there are only 256 such rules).

In the case of binary CAs, we will always use the state set S = {0, 1}.
Hence, the LUT of a local rule, for a CA with radius r, will be a bit string
of length 22 r+1. Such a bit string can be interpreted as an integer written in
the base of 2, such that a unique number can be assigned to every rule [23].
Table 1 shows the general form of the LUT for a local rule of some ECA,
as well as the numbering scheme.

Table 1: LUT of ECA local rule n = (l7, l6, l5, l4, l3, l2, l1, l0)2.
(1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)

l7 l6 l5 l4 l3 l2 l1 l0

Summing up, a 1D, deterministic CA A with a symmetric neighbor-
hood as discussed above, could be represented by:

A = 〈C, N, r,N ,S, A, fA〉, (3)

C is the cell set containing N elements, r is the neighborhood radius defin-
ing neighborhood N , S is the state set, A is the global rule and fA is the
local rule.

SOLVING THE DCT WITH THE USE OF THE CCA 11

3 CONTINUOUS CELLULAR AUTOMATA

As mentioned in Section 2, CAs are traditionally defined with the use of
finite state spaces. Various methods of relaxing this constraint were pro-
posed – most notably the use of so–called Fuzzy CAs (FCAs) [1, 2, 9].
Based on the construction of FCAs, we present a richer class of CAs,
namely CCAs, which were introduced in [4].

Assume that we consider 1D CAs with a symmetric neighborhood of
radius r. The definition of a CCA is analogous to the CA case except for
two differences. The first one is the change of the state set S. For CCAs we
assume S = [0, 1]. The second difference is that the local rule of a CCA is
represented by a multivariate, real–valued polynomial:

f(s(ci−r, t), . . . , s(ci+r, t)) =
22 r+1−1∑

j=0

lj

(
r∏

k=−r

nf (s(ci+k, t), j)

)
, (4)

where li ∈ [0, 1] are parameters characterizing the rule, which are a gener-
alization of the entries from the LUT, and nf (s(ci+k, t), j) is defined as:

nf (s(ci+k, t), j) =

{
s(ci+k, t), if bin(j)[k + r + 1] = 1,

1− s(ci+k, t), if bin(j)[k + r + 1] = 0.
(5)

The bin function corresponds to the binary representation of integers. It is
defined in such a way that bin(j)[k] is the k-th digit, from left to right, of
the binary representation of an integer j, satisfying j =

∑
m bin(j)[2 r +

1−m] 2m.
It is easy to check that the definition of a CCA is formally correct.

Indeed, the values taken by the function f defined in Eq. (4) are guaranteed
to belong to [0, 1].

The definition of CCAs discussed here is consistent with binary CAs in
the sense that the local rule of any binary CA could be written in the form
of Eq. (4), with parameters lj ∈ {0, 1} taken directly from the LUT (see
Table 1). Therefore, CCAs could be considered as an extension of binary
CAs.

As an example we consider the Elementary CA (ECA) rule 150. Its
local rule can be represented in the form of Eq. (4) as:

f150(p, q, r) = pqr+p(1−q)(1−r)+(1−p)q(1−r)+(1−p)(1−q)r, (6)

where variables p, q, r correspond to the states of right–most, central, and
left–most cell in the neighborhood.

12 Witold Bołt

Note that some authors opt for a different definition of CCAs, and relate
it to the concept of Coupled Map Lattices (CMLs) [15]. The exact relation
between CCAs defined here, and CMLs is not yet known, and thus we
consider only systems following the above CCA definition.

4 PROBLEM FORMULATION

In this paper we consider the DCT problem in the continuous setting. It
is required to redefine (extend) the problem statement, to account for the
real–valued states. Although we are considering states from the set S =
[0, 1], we assume that the initial conditions, contain only cells in states 0
or 1. This technical simplification, which in fact results in finiteness of
the number of possible initial conditions, enables us to relate the variant
of the DCT presented here, to the classical formulation. Additionally, we
will only consider CCAs with an odd number of cells, so that the majority
could be always defined.

For simplicity we will denote the configurations of a CCA with capital
letters, and treat the states of cells in the configuration as vector positions.
So if J is a configuration of a CCA, for some time step, we will write
J = (J1, . . . , JN), where N denotes the number of cells, and Ji ∈ [0, 1].
Letter I will be reserved for initial configurations.

Informally speaking, the desired outcome of a CCA “solving the DCT”
is to evolve, in the finite time, to a configuration which is “close” to “all–
0s” or “all–1s” configuration, depending on the number of 0s and 1s in the
initial configuration.

We will now formalize this concept. For any configuration J in [0, 1]N

we define the density of the configuration ρ(J) as:

ρ(J) = N−1
N∑
i=1

Ji. (7)

For the initial configuration I , we know that ρ(I) > 0.5 or ρ(I) < 0.5, due
to the fact that N is odd. Obviously, for any configuration J we know that
ρ(J) ∈ [0, 1].

We introduce a new class of configurations named α–homogenous con-
figuration. Recall that a homogenous configuration is a configuration in
which all cells are in the exact same state. The α–homogenous configura-
tion is the generalization of this concept. We say that J is an α–homogenous
configuration, if and only if, for any i, k we know that |Ji − Jk| ≤ α. We

SOLVING THE DCT WITH THE USE OF THE CCA 13

will only consider α ∈ [0, 1]. In other words, cells in α–homogenous con-
figurations are in states which are relatively close to each other.

Obviously all possible configurations in our setting, are 1–homogenous.
Additionally the 0–homogenous configurations are equivalent to the ho-
mogenous configurations. Directly from the definition we can check that
α–homogenous configurations fulfill the property described by the follow-
ing proposition.

Proposition 1. Assume that J is a α–homogenous configuration, for some
α ∈ [0, 1]. Then J is also α′–homogenous for any α′ ≥ α.

Using the concept of α–homogenous configurations, we will define the
α–DCT problem, which will generalize the standard DCT. Let A be a
CCA. We say that A solves the α–DCT if and only if, for any initial con-
figuration I ∈ {0, 1}N , there exist a time step τ such that, for any t > τ ,
after t time steps, the automaton A evolves to an α–homogenous config-
uration J t, such that if ρ(I) < 0.5 then ρ(J t) ≤ α, and if ρ(I) > 0.5 then
ρ(J t) ≥ 1− α,

Note that if α = 0 then the α–DCT is equivalent to the standard DCT
formulation. It is relatively easy to check that 1–DCT is trivial, i.e. every
CCA A solves the 1–DCT.

The choice of a reasonable range of values for the parameter α should
be based on the two following properties of the α–DCT problem. The first
one is a direct consequence of Proposition 1.

Proposition 2. Let A be a CCA, which solves the α–DCT for some α ∈
[0, 1]. Then A solves the α′–DCT for any α′ ≥ α.

The second of the properties is more important, as it ties the α–DCT
with the direct meaning of the standard DCT. Before stating the proposition
we need to introduce an auxiliary definition.

We say that a CCA A , which solves the α–DCT for some α, is an
unambiguous density classifier if the determination of the initial density is
possible by examining the state of a single cell, after a finite number of
time steps. Additionally, the minimum number of time steps needed, needs
to be depended only on the initial configuration in question. If the state
of the cell is lower than 0.5 then the initial density was lower than 0.5.
Similarly if the state of the cell is higher than 0.5, the initial density was
higher than 0.5. The word unambiguous refers to the requirement, that the
choice of the cell could not impact the classification.

Note that not all of the solutions to the α–DCT are unambiguous den-
sity classifiers. Obviously for α = 1, we can take any rule as a solution,

14 Witold Bołt

for example a rule that transfer any initial configuration to a homogenous
configuration with all 0s. In such case, configurations with density higher
then 0.5, will always be incorrectly classified. Therefore such a rule is not
a valid unambiguous density classifier. The following propositions shows
a simple criteria, describing some of the unambiguous density classifiers.

Proposition 3. Assume that A is the solution of the α–DCT problem for
some α ≤ 0.25. Then A is an unambiguous density classifier.

As a consequence, we will be interested in solving the problem for α ≤
0.25.

As noted earlier, it is known that there are no binary CAs that can fully
solve DCT. The situation for CCAs and α–DCT is not yet understood.
We know that 1–DCT is trivially solved by any CA and CCA rule. Is is
expected that the situation is similar for α close to 1. Unfortunately we are
not able to answer the general question regarding existence of solutions for
any α within the scope of this paper. Instead we will concentrate of finding
best possible CCAs that “almost” solve the DCT, i.e. CCAs that exhibit
correct behavior for the highest possible number of initial conditions.

5 FINDING THE SOLUTION OF AN α–DCT WITH THE USE
OF A GA

Starting from this section we will concentrate on CCAs with neighborhood
radius r = 1, which could be considered as a generalization of ECAs. This
choice is motivated by the fact, that there are known SCAs with neigh-
borhood of radius 1, that solve the classical DCT with an arbitrary preci-
sion [8].

The proposed approach of finding the solutions of the α–DCT is to use
a heuristic search technique, namely a GA [13], which is often used to find
CA rules based on various conditions [3].

We start with the outline of the GA used for our problem. The algorithm
starts with a random selection of a set of CCA local rules. Such a set will
be called the initial population. Each of the elements in the population, ref-
ereed to as an individual, is assigned a fitness value. Fitness value, which
is a number from the unit interval, measures how well a given rule is per-
forming in solving the α–DCT. The fitness is calculated by examining the
rule over a test set of initial conditions. After that, a new population is be-
ing built by transforming existing individuals. Individuals from the current
population are selected for “reproduction” in such a way, that the fittest in-
dividuals have the highest probability of selection. Individuals are selected

SOLVING THE DCT WITH THE USE OF THE CCA 15

in pairs, called the “parent” pairs. Each pair of parents is then transformed
to one “offspring” individual with the use of the genetic operators. Firstly
the cross–over operator is applied on the pair of parents, which results in
creating the one offspring rule. The goal is to transfer some of the features
of both of the parents to the offspring. Then the mutation operator is ap-
plied on the offspring individual, with the goal of brining innovation into
the population. After building a new population, the fittest individuals from
the previous one, forming so–called elite, are transferred to the new popu-
lation without any changes, which increases the chances of gaining a stable
growth between populations. The process is then repeated many times. The
test set, used for fitness calculations, is being updated after evolving each
of the populations. This gives the ability to evolve more generalized solu-
tions. Below each of the aforementioned steps is defined more precisely.

The population consist of the local rules of CCAs, encoded by the vec-
tors of parameters li ∈ [0, 1]. Since the radius of the neighborhood is
known to be 1, such vectors contain L = 8 elements. So if A is an ele-
ment of the population, then A = (l0, l1, . . . , lL−1) and li ∈ [0, 1].

By means of Pi we will denote the population at the i–th iteration of the
GA. Initial population P0 is created by selecting vectors randomly, while
populationsPi, for i > 0, are composed using the genetic operators defined
below. We will use fixed–size populations containg P rules.

The goal of a GA is to maximize a predefined fitness function. In our
case, the fitness function will be defined as a ratio of successful classifica-
tions of the test initial configurations to the total number of test cases in a
test set I.

To improve the quality of solutions obtained by the algorithm, the test
set I used for fitness calculations is being updated constantly. The algo-
rithm starts with predefined test set I containing randomly selected ini-
tial conditions. We assume that elements of I are numbered, i.e. I =
(I(0), . . . , I(M−1)). After i–th population of the GA is created, the initial
condition I(i mod M) is being replaced with a new, randomly selected initial
condition. Such approach makes the problem harder, since individuals in
the population need to adapt constantly to the new environment. On the
other hand, for high M , the impact of replacing one of the test cases is
small enough, to allow the population to progress.

Note that in the definition of the α–DCT, the requirement is that the
specified conditions are fulfilled for all of the time steps, starting from
some time step τ , and there are no restrictions on the value of τ . Due to
practical reasons, we impose a limit τ < 10N , and additionally assume

16 Witold Bołt

that if the condition is fulfilled for the time step t = 10N , then it is also
fulfilled for all of further time steps. This simplification enable us to cal-
culate fitness in practice. Having defined the fitness function, we now turn
to the definition of the genetic operators.

Selection and reproduction – those operators are responsible for se-
lecting individuals from population Pi−1 to build population Pi. Individ-
uals are selected at random with replacement, with a selection probability
proportional to the fitness value. Selections are being made in pairs and
there are P pairs of parents selected from the population Pi−1. From each
pair, one offspring rule is built with the use of the cross–over operation.
After that, the mutation operator is applied and the individual is placed in
the population Pi.

Cross–over – assume that A and B are two individuals selected from
Pi−1 for which holds that A = (lj) and B = (mj). For such a pair, a
random number r ∈ [0, 1] is selected (with uniform distribution). The re-
sulting rule C = (nj) is built by following formula:

nj = rmj + (1− r) lj. (8)

Mutation is done by introducing small perturbations to some of the
components of vectors defining individuals. The mutation procedure ran-
domly selects one entry lj in the vector, and then picks a random number
m ∈ [−µr, µr] for small µr > 0 with uniform distribution. The component
lj is then updated with the value l′j calculated according to the formula:

l′j = max(0,min(1, lj +m)). (9)

This procedure is repeated µc > 0 times for each individual, so at most µc

vector positions are mutated.
Normally the GA stops when a perfect solution is found. In our case the

maximum possible value of the fitness function is 1, therefore one could
consider stopping the algorithm after finding such a rule. Taking into ac-
count that the test set I is constantly being updated, also the fitness func-
tion changes. Therefore obtaining the maximum possible value of fitness
at some point in the evolution of populations is not necessarily a desired
stopping condition, since the value could decrease at any of the next steps.
Due to this we opt for a simple stoping condition relating to a pre–define
number of allowed GA iterations, denoted by Λ. The algorithm runs for Λ
iterations and returns the rule that was fittest after the last iteration. Such an
approach can be successful only coupled with the application of the elite
survival scheme. After evolving population Pi, we pick the “elite” consist-
ing of PE � P of the fittest individuals from the populationPi−1 and place

SOLVING THE DCT WITH THE USE OF THE CCA 17

them at random positions in Pi replacing the formerly evolved individuals.
This gives that algorithm a chance to evolve generalized solutions, which
are likely to behave correctly on a large number of initial conditions.

6 RESULTS OF THE EXPERIMENT

In this section we present a summary of the results obtained by imple-
menting the GA method presented in Section 5. We considered N = 69
cells, and α = 0.1. The GA was using populations of P = 60 individuals,
with the elite containing PE = 6 fittest individuals. The test set contained
|I| = 500 initial conditions. Mutation parameters were set to µc = 6,
µr = 0.015, and the GA was executed for Λ = 2000 iterations.

In this experiment we selected the initial conditions for I, using a se-
lection procedure that guarantees equal selection probability for each of
the possible densities. Our initial experiments shown, that such a selection
procedure increases the performance of the GA.

To verify how performant were the rules obtained in the experiment,
we selected a validation set of initial conditions I?, containing |I?| = 105

elements. This set was not used by the GA directly. Instead, at every 20–th
iteration of the GA, we calculated the fitness for the elite individuals using
I?, for diagnostic purposes. The results are shown on Fig .1. Each line
corresponds to one of 20 GA executions. At each examined iteration, we
plotted the maximum fitness of the elite in given GA execution.

Fig. 1: Plot showing the change of the maximum fitness over the validation set, for the
elite during GA iterations

As you can see, in all of the cases, the elite progresses toward the op-
timal value, which means that the elite individuals are indeed generalizing

1i
ł
j
I
!

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.8

0.56~-~--~-~--~--~-~--~--~-~--~
o 200 400 800 800 1000

GAitellllion

1200 1400 1600 1800 2000

18 Witold Bołt

their abilities to correctly classify diverse cases. On the other hand, none
of the rules evolved by the GA was able to correctly classify all of the test
cases in I?. As mentioned earlier, it is not yet known if such rule exists for
small α. Further experiments are planned in order to better understand the
properties of the proposed GA, as well as properties of the rules discovered
by the GA.

7 SUMMARY

In this paper the α–DCT problems was proposed, as a new variant of the
classical DCT. Such a problem, coupled with CCAs was not yet discussed
in the literature. Heuristic strategy of solving this problem, based on a GA
was proposed. Both the problem statement and the solution strategy pre-
sented in the paper open few new, interesting research topics. Most impor-
tantly it is not yet known what are the conditions for the existence of the
solution of the α–DCT problem. The α–homogenous configurations were
introduced in this paper, as an auxiliary definition for the α–DCT. Under-
standing the behavior of CCAs on such configurations is an interesting,
and difficult problem on its own and it will be further investigated.

References

1. Betel, H., Flocchini, P., (2009) On the Asymptotic Behavior of Fuzzy Cellular Automata. Elec-
tronic Notes in Theoretical Computer Science 252, 23–40

2. Betel, H., Flocchini, P., (2009) On the Relationship Between Boolean and Fuzzy Cellular Au-
tomata. Electronic Notes in Theoretical Computer Science 252, 5 – 21

3. Bołt, W., Baetens, J.M., De Baets, B., (2013) Identifying CAs with evolutionary algorithms. In:
Proceedings 19th International Workshop on Cellular Automata and Discrete Complex Systems
(AUTOMATA 2013). Exploratory Papers, 11–20

4. Bołt, W., Baetens, J.M., De Baets, B., (2014) Analysis of stochastic CAs with the use of deter-
ministic rules. In: Proceedings 20th International Workshop on Cellular Automata and Discrete
Complex Systems (AUTOMATA 2014). Exploratory Papers

5. Briceño, R., de Espanés, P.M., Osses, A., Rapaport, I., (2013) Solving the density classification
problem with a large diffusion and small amplification cellular automaton. Physica D: Nonlin-
ear Phenomena 261, 70 – 80

6. Das, D., A (2012) Survey on cellular automata and its applications. In: Krishna, P., Babu, M.,
Ariwa, E. (eds.) Global Trends in Computing and Communication Systems, Communications
in Computer and Information Science, vol. 269, pp. 753–762. Springer Berlin Heidelberg

7. Das, R., Crutchfield, J.P., Mitchell, M., Hanson, J.E., (1995) Evolving globally synchronized
cellular automata. In: Proceedings of the Sixth International Conference on Genetic Algo-
rithms. pp. 336–343. Morgan Kaufmann

8. Fatès, N., (2013) Stochastic Cellular Automata Solutions to the Density Classification Problem
- When Randomness Helps Computing. Theory of Computing Systems 53(2), 223–242

9. Flocchini, P., Geurts, F., Mingarelli, A., Santoro, N., (2000) Convergence and Aperiodicity in
Fuzzy Cellular Automata: Revisiting Rule 90. Physica D: Nonlinear Phenomena 142(1), 20–28

SOLVING THE DCT WITH THE USE OF THE CCA 19

10. Fukś, H., (1997) Solution of the density classification problem with two cellular automata rules.
Phys. Rev. E 55, R2081–R2084

11. Gabriele, A., (2005) The density classification problem for multi-states cellular automata. In:
Capcarrére, M., Freitas, A., Bentley, P., Johnson, C., Timmis, J. (eds.) Advances in Artificial
Life, Lecture Notes in Computer Science, vol. 3630, pp. 443–452. Springer Berlin Heidelberg

12. Gács, P., Kurdyumov, G.L., Levin, L.A., (1978) One-dimensional uniform arrays that wash out
finite islands. Problemy Peredachi Informatsii 14(3), 92–96

13. Holland, J., (1975) Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. University of Michigan Press

14. Jeanson, F., (2008) Evolving asynchronous cellular automata for density classification. In: Bul-
lock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the
Eleventh International Conference on the Simulation and Synthesis of Living Systems. pp.
282–288. MIT Press, Cambridge, MA

15. Kaneko, K., (1993) Theory and Applications of Coupled Map Lattices. Wiley
16. Kanoh, H., Wu, Y., (2003) Evolutionary design of rule changing cellular automata. In: Palade,

V., Howlett, R., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Sys-
tems, Lecture Notes in Computer Science, vol. 2773, 258–264. Springer Berlin Heidelberg

17. Land, M., Belew, R.K., (1995) No Perfect Two-State Cellular Automata for Density Classifi-
cation Exists. Phys. Rev. Lett. 74, 5148–5150

18. de Oliveira, P., (2013) Conceptual connections around density determination in cellular au-
tomata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) Cellular Automata and Discrete Complex
Systems, Lecture Notes in Computer Science, vol. 8155, pp. 1–14. Springer Berlin Heidelberg

19. Packard, N.H., (1988) Adaptation toward the edge of chaos. University of Illinois at Urbana-
Champaign, Center for Complex Systems Research

20. Sahoo, S., Pal Choudhury, P., Pal, A., Nayak, B.K., (2009) Solutions on 1D and 2D Density
Classification Problem Using Programmable Cellular Automata. ArXiv e-prints

21. Stone, C., Bull, L., (2009) Solving the density classification task using cellular automaton 184
with memory. Complex Systems 18(3), 329

22. Von Neumann, J., (1966) Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign, IL, USA

23. Wolfram, S., (1983) Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644

KLASYFIKACJA GȨSTOŚĆI KOMÓREK PRZY UŻYCIU
CIA̧GŁYCH AUTOMATÓW KOMÓRKOWYCH

Streszczenie. Jednym z czȩściej studiowanych problemów z obszaru analizy możliwości oblicze-
niowych automatów komórkowych jest problem klasyfikacji gȩstości, zwany też problemem głoso-
wania wiȩkszościowego (ang. density classification problem lub majority classification problem).
Sformułowanie problemu jest nastȩpuja̧ce. Startuja̧c z dowolnej konfiguracji pocza̧tkowej mamy
dojść do konfiguracji homogenicznej, w której wszystkie komórki sa̧ w tym ze stanów, w którym
była wiȩkszość komórek w konfiguracji pocza̧tkowej. Tak postawiony problem nie jest żadnym
wyzwaniem, jeśli dysponujemy globalna̧ pamiȩcia̧ lub możliwościa̧ inspekcji globalnego stanu,
czego brakuje automatom komórkowym z definicji. Dla skończonej liczby komórek problem klasy-
fikacji gȩstości nie ma rozwia̧zania. W literaturze rozwia̧zuje siȩ problemy zbliżone m. in. przez
modyfikacjȩ definicji samych automatów komórkowych. W niniejszej pracy poda̧żamy ta̧ droga̧ i
definiujemy nowy problem, który nazywamy α–klasyfikacja̧ gȩstości dla α ∈ (0, 1). Ma on być
rozwia̧zywany przez tzw. cia̧głe automaty komórkowe. W pracy zaproponowano algorytm gene-
tyczny, który poszukuje rozwia̧zania przedmiotowego problemu. Wstȩpne wyniki eksperymentów
pokazuja̧, że dla α = 0.1, jesteśmy wstanie znaleźć rozwia̧zania poprawne dla ponad 95% ze
100 000 losowo wybranych konfiguracji pocza̧tkowych.
Słowa kluczowe: automaty komórkowe, problem głosowania wiȩkszościowego

INSTYTUT BADAŃ SYSTEMOWYCH
POLSKIEJ AKADEMII NAUK

TECHNIKI INFORMACYJNE
TEORIA I ZASTOSOWANIA

Wybrane problemy
Tom 4 (16)

poprzednio

ANALIZA SYSTEMOWA W FINANSACH
I ZARZĄDZANIU

Pod redakcją
Andrzeja MYŚLIŃSKIEGO

Warszawa 2014ISBN 83-894-7555-3

A
. M

yś
liń

sk
i,

re
d.

 –
 T

E
C

H
N

IK
I I

N
FO

R
M

A
C

Y
JN

E
 -

TE
O

R
IA

 I
ZA

S
TO

S
O

W
A

N
IA

, t
om

 4
 (1

6)

