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1 . Overview

The essential distinctive feature of statically exact and conventional shell theories is the existence of drill mo-
ments and drill rotations which are present in the former and absent in the latter. The present contribution
immerses into the formulation of prototypical theories, addresses their individual shortcomings, and proposes
related remedies in some generality. Therefore it is postulated that both theories shall lead to the same results
as long as no external drill moments and no boundary conditions related to the drill rotations are applied. This
postulate is supported by the observation that the drill moments can be eliminated from the statically exact ba-
lance equations to obtain a set of equations which formally coincide with the ones of the ‘canonical’ linear shell
theory. Remarkably, these equations are obtained without the application of any approximate assumption. This
considerations lead to a novel constitutive relation which couples the antisymmetric part of the membrane for-
ces and the drill moment components. The parameters involved in this relation can be determined such that the
non-standard strains do not produce extra strain energy, which guarantees that the initial postulate is satisfied.
It is emphasized that there are no tuning parameters involved. This newly introduced coupling turns out to be
essential to achieve correct results for some in-plane bending problems. Further numerical results of prominent
benchmark problems confirm the general serviceability of the proposed constitutive law.

2 . General

Shell theory has a long history with many doubts and discussions about the ‘best’ way to obtain an essen-
tially two-dimensional description of an inherently three-dimensional (3D) structure. In particular, two well-
established theories have emerged from this process, which are commonly agreed and have proved to be well-
suited for the derivation of numerical procedures. In both cases, the shell balance equations are derived from
the 3D balance laws giving rise to the definition of resultant shell forces nα and moments mα, where the
α = 1, 2 refer to the two lateral directions a1 and a2. A statically exact theory is characterized by the fact that
no approximations are involved in this derivation, see [1] and references therein. In contrast, ‘conventional’
shell theories are of the first-order shear deformation (FOSD) type relying on the Reissner-Mindlin kinematic
assumption, see [2] for a contemporary treatment of the topic. With other words, warping of transverse ma-
terial fibres is allowed in the former and prohibited in the latter case, where it gives rise to the definition of
a distinguished transverse direction g3, not necessarily coinciding with the geometric normal direction a3. In
the statically exact case there is no such direction other than a3 and so-called drill moments m3α = a3 ·mα

naturally enter the theory, whilst the relevant transverse component g3 ·mα = 0 in the FOSD case. The shell
strains εα and curvatures κα are defined to be the work conjugate counterparts of nα and mα, respectively.
They rely on non-symmetric Biot strains in the statically exact and on symmetric Green-Lagrange strains in the
FOSD case. The exact role of the kinematic variables is discussed in the presentation. It is frequently ignored
that even membrane deformations come along with a warping of transverse material fibers due to the Poisson
effect, as long as drill strains κ3α = a3 · κα occur. The primary variables are constituted of displacements and
rotations. Roughly speaking, three/two rotational degrees of freedom (dofs) are required to specify the orien-
tation of a curved/straight material fiber, respectively. In the latter case, the rotational dofs immediately refer
to the orientation of the transverse material fiber indicated by g3. In the former case, Q represents an averaged
rotation, which does not necessarily coincide with the rotation of a specific material point. This is basically the
reason why the g3 is the only feasible choice for the transverse basis vector in FOSD theories. In contrast, for
statically exact theories the geometrical normal direction a3 can serve as a transverse basis vector in a natural
way, and the benefits of differential geometry apply. On the other hand, statically exact theories come along
with practical drawbacks. In the geometrically linear case, membrane states of stress are commonly considered

41st Solid Mechanics Conference (SOLMECH 2018) Warsaw, August 27-31, 2018

444
http://rcin.org.pl



to be statically determinate. This is no longer the case in the context of theories involving drill moments. Ge-
nerally, the question arises which constitutive relation applies to the drill moments. Even for the simplest cases
this question has remained a matter of ambiguity so far.

3 . Equilibrium equations

Referring to the basis (aα,a3), the balance equations of the statically exact theory read

(1)
{
nβα|α − bβα n3α + pβ = 0 , n3α|α + bαβ n

βα + p3 = 0

mβα|α − n3β − εβγ bαγm3α + lβ = 0 , m3α|α − εβγ
(
nβγ + bβαm

γα
)
+ l3 = 0

with pα, p3 and lα, l3 being the distributed external forces and moments, respectively, bαβ and εαβ the
components of curvature and permutation tensor referring to the deformed configuration. The common no-
tations and conventions of Ricci calculus are applied. Introducing effective membrane and shear forces,
n̂βα := nβα − εµαm3β|µ and n̂3α := n3α + εαµ bβµm

3β , respectively, the drill moments m3α can be eli-
minated and the balance equations transform into

(2)
{
n̂βα|α − bβα n̂3α + pβ = 0 , n̂3α|α + bβα n̂

βα + p3 = 0

mβα|α − n̂3β + lβ = 0 , εβα
(
n̂βα + bαµm

βµ
)
+ l3 = 0

It is emphasized that the balance equations (2) are fully nonlinear, but formally coincide with the balance
equations of the linear FOSD theory, if no external drill moments are applied, i.e. l3 = 0. Note that analo-
gous component equations can not be obtained from the geometrically nonlinear FOSD approach, due to the
mentioned restrictions concerning the choice of the basis vectors.

4 . Constitutive law

For l3 = 0, the effective pseudo membrane forces ˆ̃nβα := n̂βα + bαµm
βµ are symmetric. Consequently,

conventional constitutive equations can be applied for the effective variables. The standard pseudo membrane
forces ñβα := nβα+bαµm

βµ need not being symmetric any more. For a membrane state of stress and geometric
linearity, the symmetric ˆ̃nβα are uniquely determined by the equilibrium equations (2) and thus coincide with
the membrane forces of the conventional theory. This observation together with the definition of the ˆ̃nβα have
an important impact on the possible structure of the constitutive relation from which the antisymmetric part of
the membrane forces, n[12], and the m3α result. The simplest possible choice is given by

(3)



ñ[12]

m31

m32


 = tG




β δ lc −δ lc
δ lc γ l2c 0
−δ lc 0 γ l2c





ε[12]
κ31
κ32




with G being the in-plane shear modulus. The elastic energy produced by the non-standard strains ε[12] :=
1
2 (ε12 − ε21) and κ3α is minimum if the related stiffness matrix is nearly singular, i.e. if δ ≈

√
βγ/2. The

appearance of a characteristic length lc reflects the fact that (3) is a localized form of a relation which is, in
principle, non-local. The lc can be chosen as a typical lateral dimension of the problem and is not related to
the shell thickness t. For finite element calculations, the square root of the element area has turned out to be a
feasible choice. Then, the independent, dimensionless parameters can vary in a large range without affecting
the numerical results, i.e. 10−2 ≤ β ≤ 106 and 10−8 ≤ γ ≤ 10−3, as long as δ obeys the relation given
above. The parameter β can be interpreted as a penalty parameter enforcing the drill rotation to coincide with
the in-plane material rotation, whereas γ plays the role of a (small) stabilization parameter.
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