
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A method of approximating 

Pareto sets for assessments  

of implicit Pareto set elements 
 

 

 

I. Kaliszewski 

Instytut Badań Systemowych 
Polska Akademia Nauk 
 

Systems Research Institute 
Polish Academy of Sciences 

 

Raport Badawczy 

Research Report 

RB/88/2007 



Control and Cybernetics

vol. 36 (2007) No. 2

A method of approximating Pareto sets for assessments

of implicit Pareto set elements

by

Ignacy Kaliszewski

Systems Research Institute, Polish Academy of Sciences
ul. Newelska 6, 01-447 Warszawa, Poland
e-mail: ignacy.kaliszewski@ibspan.waw.pl

Abstract: Deriving efficient variants in complex multiple crite-
ria decision making problems requires optimization. This hampers
greatly broad use of any multiple criteria decision making method.

In multiple criteria decision making Pareto sets, i.e. sets of effi-
cient vectors of criteria values corresponding to feasible decision al-
ternatives, are of primal interest. Recently, methods have been pro-
posed to calculate assessments for any implicit element of a Pareto
set (i.e. element which has not been derived explicitly but has been
designated in a form which allows its explicit derivation, if required)
when a finite representation of the Pareto set is known. In that case
calculating respective bounds involves only elementary operations
on numbers and does not require optimization.

In this paper the problem of approximating Pareto sets by fi-
nite representations which assure required tightness of bounds is
considered for bicriteria decision making problems. Properties of a
procedure to derive such representations and its numerical behavior
are investigated.

Keywords: multiple criteria decision making, bi-criteria prob-
lems, Pareto set, efficiency, convex function approximation, sand-
wich algorithms.

1. Introduction

In multiple criteria decision making, Pareto sets, i.e. sets of efficient vectors
of criteria values corresponding to feasible decision alternatives, are of primal
interest.

In this paper we are concerned with the problem of providing finite repre-
sentations of Pareto sets with the required accuracy. We focus on a class of
problems in which Pareto sets possess the property of convexity.

This research is motivated by the earlier works of the author in which meth-
ods to calculate assessments for any implicit efficient element of a Pareto set (i.e.
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element which has not been derived explicitly but has been designated in a form
which allows its explicit derivation, if required) were proposed (Kaliszewski,
2004, 2006). These methods rely on finite representations (subsets) of Pareto
sets, and bound tightness depends on accuracy of those representations. As-
sessments have forms of bounds, lower and upper, on element components. Cal-
culating bounds involves only elementary operations on numbers and does not
require optimization. Bounds of sufficient tightness are an attractive alternative
to deriving Pareto sets elements explicitly, which, as a rule, involves optimiza-
tion (Kaliszewski, 2004, 2006).

We confine ourselves here to bi-criteria decision making problems in which
Pareto sets have forms of convex curves. This class of problems includes various
models resulting from portfolio investment, which have gained much popularity
in finance and optimization literature (Markowitz, 1959; Elton, Gruber, 1995;
Ogryczak, 2002).

To ensure required accuracy of finite representations of Pareto sets we follow
in broad lines a stream of papers devoted to approximations of convex curves by
a finite number of points (Cohon, 1978; Burkard et al., 1987; Fruhwirth et al.,
1988; Ruhe, Fruhwirth, 1989; Yang, Goh, 1997), where algorithms with guaran-
teed quadratic convergence were proposed. However, the specific application of
Pareto set approximations to calculate assessments of Pareto set elements ren-
ders arguments presented in those works not directly applicable for our purpose.

The plan of the paper is as follows. In Section 2 we recall the formulation of
the underlying model for multiple criteria decision making (MCDM) problems.
In Section 3 we recall how assessments for implicit elements of Pareto sets
can be calculated for an instance of the underlying model considered in this
paper. Section 4 is devoted to the problem of controlling bound tightness by a
method proposed for that purpose. Section 5 contains results of investigations
of numerical behavior of this method, whereas Section 6 concludes.

2. Preliminaries

We consider the following underlying model for MCDM problems:

vmax f(x), x ∈ X0 ⊆ X , (1)

where vmax stands for the identification of all efficient alternatives (we assume
that all criteria are of "better if more" type), X is the set (space) of potential
alternatives, X0 is the set of feasible alternatives, f : X → Rk is the criteria
map in which f = (f1, ..., fk), and fi : X → R are criteria functions, i =
1, ..., k, k ≥ 2.

By y and Z we denote

y = f(x), Z = f(X0).

The set of all y efficient (in this paper we refer to standard definitions of proper
efficiency, efficiency, and weak efficiency, see, e.g., Miettinen, 1999; Ehrgott,
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2006; Kaliszewski, 2006) in f(X0) we call Pareto set. Z is said to be Rk
+-convex

if Z − Rk
+ is convex, where Rk

+ = {y | yi ≥ 0, i = 1, ..., k}.
Below we make use of selected element y∗ defined as

y∗

i = ŷi + ǫ, i = 1, ..., k,

where ŷ is calculated as

ŷi = maxy∈Z yi, i = 1, ..., k,

(we assume that all these maxima exist), ǫ is any positive number.

3. Bounds on Pareto set elements

In Kaliszewski (2004, 2006) methods to calculate lower and upper bounds on
components of elements of Pareto sets were proposed. The methods require that
a finite subset S, called shell, of a Pareto set is explicitly given. It is assumed
that elements of S are derived by solving the optimization problem

min
y∈Z

∑

i

λiyi, (2)

or
min
y∈Z

max
i

λi(y
∗

i − yi) + ρek(y∗ − y), (3)

or
min
y∈Z

max
i

λi((y
∗

i − yi) + ρek(y∗ − y)),

where λi > 0, i = 1, ..., k, ρ ≥ 0, ek = (1, 1, ..., 1).
Any of these optimization problems could also be used to derive explicitly

an implicit element y(λ) of the Pareto set (i.e. an element which has not been
derived but has been designated by selecting the optimization problem and
vector of weights λ). An alternative to this is to calculate bounds such that

Li(S, λ) ≤ yi(λ) ≤ Ui(S, λ), i = 1, ..., k,

and those calculations involve only elementary operations on numbers. For
bound formulas see Kaliszewski (2006).

In the same work another and more straightforward method to calculate
parametric bounds was proposed for k = 2 under the assumption that Z is
R2

+-convex and optimization problem (3) with ρ = 0 would be used to derive
explicitly the elements of the Pareto set. Below we briefly present that method.

If Z is R2
+-convex, then deriving elements of the Pareto set by solving op-

timization problem (3) with ρ = 0 is equivalent to finding the intercept of the
half line y = y∗ − τt, t ≥ 0, with Z, where

τi = λ−1

i , i = 1, 2, (4)
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Figure 1. An interpretation of solving the optimization problem (3) with ρ = 0
when Z is R

2
+-convex.

(see Fig. 1, this is in fact true for any k).
Suppose that shell S has been derived by solving optimization problem (2)

for n vectors λ
s
, λ

s
i > 0, i = 1, 2, s = 1, ..., n. In other words, S = {y(λ

s
)}, s =

1, ..., n, where each y(λ
s
) is a solution (an explicit element of the Pareto set, as

opposed to implicit elements defined above) of (2).
Without loss of generality we can assume that elements of S are ordered

with respect to decreasing values of the first component. Pairs of elements of S

which correspond to two successive values of this component are called neighbor

elements. Neighbor elements y
′
, y

′′
define a cutting line

y = αy
′
+ (1 − α)y

′′
, α ∈ R.

There are n − 1 neighbor elements and n − 1 cutting lines.
Cutting lines form a lower approximation of the Pareto set (see Fig. 2).
A lower bound L(S, λ) for y(λ) is given by the intercept of the half line

y = y
∗
− τt, t ≥ 0, with that cutting line for which t has the largest value (see

Fig. 2, a lower bound marked by diamond).
Indeed, since Z is R

k
+-convex, no Pareto set element can be found "below" (in

the sense that y
∗

lies "above") any line segment connecting neighbor elements
of the shell.

Elements of S define n supporting lines

λ
s
y = λ

s
y(λ

s
), y(λ

s
) ∈ S.

Supporting lines form an upper approximation of the Pareto set (see Fig. 2).
An upper bound U(S, λ) for y(λ) is given by the intercept of the half line

y = y
∗
− τt, t ≥ 0, with that supporting line for which t has the largest value

(see Fig. 2, an upper bound marked by an asterisk).
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Figure 2. Lower (thin) and upper (thick) approximations of the Pareto set
(dotted).

Indeed, no Pareto set element can be found "above" (in the sense that y
∗

lies
"above") any line λ

s
y(λ

s
) = λ

s
y, y(λ

s
) ∈ S, because y(λ

s
) solves maxy∈Z λ

s
y.

Some precautions are to be taken for half line y = y
∗
− τt, t ≥ 0, not to

miss the Pareto set, and this amounts to putting some bounds on values λ1 and
λ2, depending on the value of parameter ǫ used to define y

∗
(see Kaliszewski,

2006).

4. Controlling bound tightness

Given λ > 0, bound tightness can be defined by

err(λ) = ||U(λ, S) − L(λ, S)||2, (5)

where || · ||2 is the Euclidean norm.
Clearly, bound tightness increases (err(λ) decreases), not necessarily mono-

tonously, with the growing number of elements in S. Here we propose a metod
to control bound tightness, which ensures that

err = max
λ

err(λ)

is kept within the required limit. The method consists of shell building by a
"check and expand" procedure.

Observe that in each triangle formed by the lower and upper approximation
of the Pareto set err(λ) takes its maximal value for that λ, for which half line
y = y

∗
− τt, t ≥ 0, where τi = λ

−1

i , i = 1, ..., k, passes through the outer vertex
of the triangle (see Fig. 3, length of segment AB is equal to maximal value of
err(λ) in the triangle).
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Figure 3.

For a given shell S (initially S should be composed of at least the "leftmost"
and the "rightmost" element of the Pareto set), err is, presumedly, reduced if
a new element of the Pareto set is derived (and S is expanded by that element)
in the triangle in which err(λ) takes the maximal value.

In order to derive a new element of the Pareto set, following Yang and Goh
(1997) we propose to maximize over Z the function

y1 + ry2 , (6)

where r =
y
′′

1 −y
′

1

y
′

2−y
′′

2

.

Graphically, this is equivalent to shifting a hyperplane parallel to the cutting
line

y = αy
′
+ (1 − α)y

′′
, α ∈ R,

where y
′
, y

′′
are neighbor elements in the triangle, till it becomes a supporting

line of Z at an element y
′′′

of the Pareto set (see Fig. 4). We assume that the
newly derived element of the Pareto set does not belong to line segment y

′
y
′′
,

for otherwise err in this triangle would be equal to 0. The new supporting line,
together with the new cutting lines formed by neighbor elements y

′
, y

′′′
and y

′′′
,

y
′′

give rise to a more tight approximation of the Pareto set and, presumedly,
to lower value of err (see Fig. 5).

To establish convergence of this bound tightness enforcement method, we
should establish a relation between the maximal err(λ) in a triangle (e.g. the
length of line segment AB in Fig. 4) and the maximum err(λ) in two new
triangles resulting from shell expansion by an element (e.g. the length of line
segment CD in Fig. 5).
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Figure 5.

The maximal err(λ) in the new lower triangle occurs when the new element
is located at point X (Fig. 6) (in this case the upper triangle reduces to a line
segment). Symmetrically, the maximal err(λ) in the new upper triangle occurs
when the new element is located at the point C (in this case the lower triangle
reduces to a line segment). Let us assume that the former case holds (Fig. 6).

Below, to find length of line segment AB we derive points A and B. Then,
we look for a formula giving length of line segment CD as a function of element
y
′′′

, which can lie anywhere on the line segment Ay
′
.
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Derivation of point A

Point A is found as the intersection of the supporting line at y
′

and the
supporting line at y

′′
.

The supporting line at y
′

has the form λ
′
y = a

′
where a

′
= λ

′
y
′

and the
supporting line at y

′′
has the form λ

′′
y = a

′′
where a

′′
= λ

′′
y
′′
. Vectors λ

′
and

λ
′′

are known since they are the vectors used to derive shell elements y
′
and y

′′
,

respectively, by solving the optimization problem (2).
Point A is then given by the formula

A1 =
1

λ
′

1

(a
′
− λ

′

2

λ
′

1a
′′
− λ

′′

1a
′

λ
′

1λ
′′

2 − λ
′′

1λ
′

2

) ,

A2 =
λ
′

1a
′′
− λ

′′

1a
′

λ
′

1λ
′′

2 − λ
′′

1λ
′

2

.

Derivation of point B

Point B is found as the intersection of the line passing through y
′
and y

′′
,

which is given by formula (6), and the line passing through y
∗

and A. The latter
has the form

y1 + sy2 = y
∗

1 + sy
∗

2 ,

where s =
A1−y

∗

1

y
∗

2−A2 . Clearly (see Fig. 6), r 6= s .

Thus, point B is given by the formula

B1 = y
∗

1 + sy
∗

2 − s
y
′

1 + ry
′

2 − y
∗

1 − sy
∗

2

r − s
,

B2 =
y
′

1 + ry
′

2 − y
∗

1 − sy
∗

2

r − s
.
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Derivation of point C

Point C is found as the intersection of the new supporting line passing
through y′′′ and the line passing through y′′ and A.

The new supporting line has the form

y1 + ry2 = y′′′

1 + ry′′′

2 ,

where r is given by formula (6) (the new supporting line is parallel to the line
segment y′y′′).

The line passing through y′′ and A has the form

y1 + uy2 = A1 + uA2 ,

where u =
A1−y′′

1

y′′

2
−A2

. Clearly (see Fig. 6), r 6= u .

Thus, point C is given by the formula

C1 = y′′′

1 + ry′′′

2 − r
A1 + uA2 − y′′′

1 − ry′′′

2

u − r
,

C2 =
A1 + uA2 − y′′′

1 − ry′′′

2

u − r
.

Derivation of point D

Point D is found as the intersection of the line passing through y∗ and point
C, and the line passing through y′′ and y′′′.

The line passing through y∗ and C has the form

y1 + wy2 = C1 + wC2 ,

where w =
C1−y∗

1

y∗

2
−C2

.

The line passing through y′′ and y′′′ has the form

y1 + zy2 = y′′′

1 + zy′′′

2 ,

where z =
y′′′

1
−y′′

1

y′′

2
−y′′′

2

. Clearly (see Fig. 6), w 6= z .

Thus, point D is given by the formula

D1 = y′′′

1 + zy′′′

2 − z
C1 + wC2 − y′′′

1 − zy′′′

2

w − z
,

D2 =
C1 + wC2 − y′′′

1 − zy′′′

2

w − z
.

To establish convergence of the method one needs to know the maximal
errors at successive iterations. It is easy to observe that at any iteration the
maximal value of the error is attained for y′′′ somewhere in the interior of the
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line segment Ay′ since the error approaches zero as y′′′ approaches either A or
y′.

The square of length of line segment CD (square of err) is given by

L = (||C − D||2)
2

=

(

(r − s)y′′′

2 − r
A1 + uA2 − y′′′

1

u − r
+ z

C1 + wC2 − y′′′

1 − zy′′′

2

w − z

)2

(7)

+

(

A1 + uA2 − y′′′

1 − ry′′′

2

u − r
−

C1 + wC2 − y′′′

1 − zy′′′

2

w − z

)2

and is a function of y′′′. With y′′′ constrained to the line segment Ay′, i.e.
y′′′ = αA + (1−α)y′, α > 0, L is to be maximized with respect to α. However,
this is a highly nonlinear problem and does not offer an analytical solution.
Therefore, in the next section we investigate the convergence behavior of the
method numerically.

5. Numerical experiments

To investigate the numerical behavior of the method, we tested it on a set of
problems.

Test problems

The set of test problems consisted of two groups.
The first group consisted of shells of five mean-variance portfolio problems.

As known, Pareto sets of mean-variance efficient portfolios are R2
+-convex if

represented with y1 = −variance and y2 = mean. Data were taken from
Chang T.-J. et al. (2000) (they are accessible via Internet from the so-called
Beasley’s OR-Library, see references).

The second group consisted of shells of four quadratic curves y1 = −a∗y2
2+10

with a equal to 1, 5, 50, 500, selected to represent Pareto sets of R2
+-convex

problems.
Each test problem was a collection of 2000 elements yi = {(yi

1, y
i
2)} ordered

with respect to decreasing values of the first component. To simplify calculations
vector λ maximizing λy at given y was approximated by the normal vector of
the line passing through y′, y′′, where (y′, y), (y, y′′) are neighbor elements. To
make this procedure applicable for elements 1 and 2000 two additional elements
y0 and y2001 were constructed in the following way: y0

i = y1
i − (y2

i − y1
i ) and

y2001
i = y2000

i + (y1999
i − y2000

i ), i = 1, 2. Thus, (y0, y1) and (y2000, y2001) are
neighbor elements.

The element maximizing the function (6) was found by enumeration over
2000 points. Because of the large number of points (dense discrete representa-
tions of the Pareto sets) this was an insignificant simplification to maximizing
this function by optimization.
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Test problems are graphically represented in Fig. 7 (the first group), in Fig. 8
(the second group, problems with a = 1 and a = 5), and in Fig. 9 (the second
group, problems with a = 50 and a = 500). Because of large number (2000)
of elements in each test problem all those figures look like graphs of continuous
curves, but in fact they represent finite sets.
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Computations

For each test problem 100 iterations were performed and on each iteration error
||A − B||2 was calculated.

For all nine test problems in 100 iterations the initial error was reduced by
four orders of magnitude. To approximate the error reduction rate quadratic
curves were fitted to logarithm of errors (Fig. 10 represents errors and the fitted
curve for the first test problem from the first group). The parameters of best
fit curves for all nine test problems are given in Table 1.

As seen from the parameters of fitting curves the method to control bound
tightness behaved in a very stable manner over a set of varied test problems. The
error reduction speed, represented by parameters a and b of the fitting curves,
differed over test problems insignificantly (standard deviation of 0.000053 and
0.006137, respectively), despite the different ranges of component values in the
test problems.

It is not so that the error is always nonincreasing, as shown by the test
problem Portef-gen4, for which the error of the first iteration 4.82 increased
in the second iteration to 35.89 to drop to 12.110 in the third iteration and to
decrease monotonously on succeeding iterations. This phenomenon is attributed
to very different ranges of component values in this test problem and can be
explained as in Figs. 11 and 12. In the first iteration (Fig. 11) line segment
AB (between shaded triangle and shaded diamond) is almost parallel to the
vertical axis, so that its length is small. In the second iteration (Fig. 12) line
segment AB (between triangle and diamond) is extended along the horizontal
axis, which results in its length being greater than it was in the first iteration. In
general, because of error dependence on the element y∗ (shaded disc in Figs. 11
and 12), two identical triangles formed by the lower and upper approximations
of a Pareto set in two different locations can yield two different errors (see
Fig. 2).

Table 1. Parameters of best fit curves.

Group Problem a b c

1 Portef1 0.000787 -0.135603 -7.746731
1 Portef2 0.000805 -0.136914 -7.946023
1 Portef3 0.000796 -0.136594 -8.546667
1 Portef4 0.000806 -0.137219 -7.780915
1 Portef5 0.000829 -0.139572 -8.737797
2 Portef-gen1 0.000840 -0.141076 -3.111671
2 Portef-gen2 0.000884 -0.144575 -1.694186
2 Portef-gen3 0.000885 -0.144247 0.090437
2 Portef-gen4 0.000697 -0.122615 1.586368

mean 0.000814 -0.137601 -4.876353
standard dev. 0.000053 0.006137 3.860863
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6. Concluding remarks

Assessments of Pareto set elements allow to carry out decision making processes
in a unified way, regardless of model (1) complexity. Model complexity plays a
role only when the shell is derived, but shell derivation can be made prior to the
start of the decision making process by a person (or a team) independent of the
decision maker. Thus, computational complexity of decision making processes
can be reduced to elementary operation on numbers easily realisable e.g. with
a spreadsheet.

The numerical results presented in the previous section constitute additional
argument to those given in earlier works (Kaliszewski, 2004, 2006), that assess-
ments of Pareto set elements are a viable and versatile tool to ease decision
making processes from the burden of optimization computations. This time we
showed that for the bicriteria case the process of shell building to achieve the
required bound tightness can be reasonably fast. This, we believe, opens a way
to a broader use in MCDM methods of Pareto set elements assessments, instead
of deriving such elements explicitly by optimization.

Unfortunately, the procedure for shell derivation discussed in this paper
does not offers a straightforward generalization to k > 2. In that case other
procedures (see Kaliszewski, 2006) have to be employed and their effectiveness
investigated.
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