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Abstract: We consider a vector generic combinatorial optimiza
tion problem in which initial coefficients of objective functions are 
subject to perturbations. For Pareto and lexicographic principles of 
efficiency we introduce appropriate measures of quality of a given 
feasible solution from the point of view of its stability. These mea
sures correspond to so-called stability and accuracy functions defined 
earlier for scalar optimization problems. Then we study properties 
of such functions and calculate the maximal norms of perturbations 
for which an efficient solution preserves the efficiency. 

Keywords: multicriteria combinatorial optimization, sensit ivity 
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1. Introduction 

Many real-life optimization models which arise in different areas, e.g. in schedul
ing, vehicle routing, location modeling and design, must be stated as multicrite
ria problems. Their solving consists in finding feasible decisions which provide a 
compromise between multiple objectives (see e.g. Sawaragi et al. , 1985, Steuer, 
1986, Ehrgott, 1997). An immanent property of real-life problems is also un
certainty of dat a which can be handled by different approaches, like stability 
and sensitivity analysis (see e.g. Sotscov et al. , 1995, 1998, Chakravarty and 
Wagelmans, 1999), stochastic programming (see e.g. Kall and Wallace, 1994) , 
robust optimization (see e.g. Kouvelis and Yu, 1997, Ben-Tal and Nemirowski , 
1998, Bertsimas and Sim, 2002) etc. 
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This paper concerns stability analysis for multicriteria optimization prob
lems. Recently we observe a growing stream of papers devoted to this direction. 
Most of them concentrate on finding maximal perturbations of the problem 
data, for which the optimality (efficiency) of a given solution can be preserved 
(see e.g. Emelichev, 2002) . An important drawback of this approach consists in 
the fact that such maximal perturbations appear to be very small or , frequently, 
equal to zero. Therefore it is necessary to analyze what is happening with a 
particular solution in the case when data perturbations destroy its efficiency. In 
that case we want to know what is the value of relative quality measure for this 
solution, which can be defined in a special appropriate way depending on the 
considered particular optimality principle. Such quality measures lead to the 
concepts of stability and accuracy functions . 

The first attempt to analyze the quality of a solution in single objective 
case for facility location problem was done in Labbe' et al. (1991). In Libura 
(1999, 2000) explicit formulae of stability and accuracy functions were obtained 
for scalar linear combinatorial optimization problems. These functions under 
multiobjective framework were first studied in Libura and Nikulin (2003). In 
this paper we present an extension of results Libura and Nikulin (2003) for the 
case when the considered optimization criteria have more general forms called 
I;-MINMAX and I;-MINMIN. 

The paper is organized as follows. In Section 2 we consider vector combina
torial optimization problem with I;-MINMAX and I;-MINMIN partial criteria 
which consists in finding the set of Pareto optimal solutions. In analogy to 
Libura and Nikulin (2003), for a given Pareto optimal solution we introduce 
the relative error as a function of the norm of data perturbations. This leads 
us to natural extension of the stability function and the accuracy functions for 
the type of criteria we consider to the multiobjective case. We give formulae to 
cc.lculate values of both functions. Afterward, we define the so called stability 
(respectively - accuracy) radius as extreme norm of perturbations of problem 
parameters for which stability (accuracy) function is equal to zero. In Section 3 
analogous results are stated for the case of lexicographic optimality. In this 
section both functions are redefined in order to reflect specific of lexicographic 
efficiency. 

2. Stability and accuracy functions of Pareto optimal 
solution 

Let E = {e1,e2, ... , en}, n > 1, be a given set , and let T <:;;; 2E, ITI > 1, be a 
family of non-empty subsets of E . Denote R+ = { u E R : u > 0}. For e E E 
and m ::=: 1, we define 

c(e) = (cl(e),c2(e), .. . ,cm(e)) ER~ 

and a matrix C = {ci(ej)} E R~xn _ Put fork E N , Nk = {1, 2, ... , k} and let 
fort E T , N(t) = {j: e j Et}. 
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We will consider so-called ~-MINMAX or ~-MINMIN multiobjective opti
mization problem (see e.g. Girlich et al. , 1999). Namely, we want to minimize 
o·:er t E T the following vector objective function: 

f(C, t) = (h(C, t), h(C, t), ... , fm(C, t)), 

where fori E Nm, 

fi(C, t) = max {2.: ci(e) : q <:;;; t, jqj = min{ltl, ki}}, 
eEq 

(1) 

or 

fi(C , t) = min {2.: ci(e): q <:;;; t , jqj = min{ltl, ki}}. 
eE q 

(2) 

Here ki, i E Nm, are given a priori numbers such that for i E Nm and K = 
max{ltl : t ET}, 1 :'::: ki :'::: K. 

When ki = K , i E Nm, then both functions (1) and (2) transform into a 
linear objective function: 

fi(C,t) = :Lci(e), 
eEt 

which leads to the MINSUM criterion. When ki = 1, then function (1) converts 
into the function 

fi(C, t) = max{ci(e): e Et} 

and we have a bottleneck criterion (MINMAX). Similarly, for k; = 1 function 
(2) turns into 

fi(C,t) = min{ci(e): e Et}, 

which leads to the MINMIN criterion. 
Let for a matrix C E R~xn and a feasible solution t ET, 

1r(C,t) = {t' ET: f(C,t') :'::: f(C, t), f(C,t') -:f. f(C,t)}. 

The Pareto set pm (C) is defined in a traditional way, namely: 

pm( C)= {t ET: 1r(C, t) = 0}. 

In other words, a feasible solution t is Pareto optimal if and only if there is 
no solution t' E T such that fi(C , t') :'::: fi(C , t) for all i E Nm and at least 
one strict inequality holds. If the sets E and T are fixed , then an instance of 
m-criteria combinatorial optimization problem is uniquely determined by the 
matrix C E R~xn. Therefore, we will denote it by Z[>'(C). 
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It is assumed that the set T is fixed , but the matrix of weights C may vary 
or is estimated with errors. Moreover, it is assumed that for some originally 
specified matrix C0 = { c? ( ej)} E R~ X n we know one Pare to optimal solution 
t0 ET. 

When coefficients of objective functions change, then an initially efficient 
solut ion may become no longer efficient. We will evaluate the quality of this 
solution from the point of view of its robustness with respect to data perturba
tions. Namely, we will calculate for a given norm of perturbations the maximal 
possible 'inefficiency' of this solution. The measure of this 'inefficiency' depends 
on the optimality principle for the multiobjective problem. 

In case of Pareto optimality the 'inefficiency' of the solut ion t0 E pm( C0 ) 

for a given matrix C may be measured by the value of the relative error of this 
solution: 

(c o) . fi(C,t0 )- f i(C,t) 
E:p , t = max .mm f (C ) 2: 0. 

tET tEN= i , t 
(3) 

Observe, that if t0 E pm(C), then r::p (C, t0 ) = 0. If t0 loses Pareto optimality in 
an instance problem Zpt (C), then the relative error r:: p ( C, t 0 ) > 0 characterizes 
the 'inefficiency' of t0 . 

T he considered measure (3) is a natural analogue of the suboptimality mea
sure of feasible solution in the scalar case. Indeed, for m=1 , t he Pareto set 
transforms into the set of optimal solutions. Therefore relative error r::p(C, t0 ) 

converts into (see Libura, 1999) : 

h(C, t0)- min h(C, t) 
(C 0) t ET 

E:p ,t = minfl (C,t) 
tET 

In fact , we are interested in the maximal value of the error E:p(C, t0 ) when 
the matrix C belongs to some specified set. Two particular cases are considered 
in the following. 

In the first case we are interested in absolute perturbations of the weights of 
elements and the quality of a given solution is described by the so-called stability 
function. For a given p 2: 0 the value of the stability function is equal to the 
maximal relative error of a given solution under the assumption that no weights 
of elements are increased or decreased by more than p. 

In the second case we deal with relative perturbations of weights . This leads 
to the concept of accuracy function. The value of the accuracy function for a 
given o E [0, 1) is equal to the maximum relative error of the solution t0 under 
the assumpt ion that the weights of the elements are perturbed by no more than 
o · 100% of their original values. 

Let X ~ E be the set of non-stable elements, i.e. elements for which weights 
may change, and let 

C0 (X) = {C E R~>xn: ci(ej) = c~(ej), e j E E\X, ·i E Nm j E Nn} · 
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For a given p E [O,q(C0 ,X)), where q(C0 ,X) = min{c?(e1) : e1 E X, i E 

Nm, j E Nn}, we consider a set 

For a Pareto optimal solution t0 E pm(C0 ), an arbitrary set of non-stable 
elements X, and p E [0, q( C0 , X)), the value of the stability function is defined 
a;:; follows: 

Sp(t0 ,X,p) = max cp(C, t0 ). 
CE0p(C0 ,X) 

In a similar way, for a given 8 E [0, 1), we consider a set 

For a Pareto optimal solution t 0 E pm(C0 ), an arbitrary set of non-stable 
elements X and 8 E [0, 1), the value of the accuracy function is defined as 
follows: 

Observe that Sp(t0 , X,p) 2 0 for any p E [0, q(C0 , X)) as well as Ap(t0 , X, 8) 
2 0 for each 8 E [0, 1) . Moreover, if we consider two initially efficient solutions 
t' , t" E pm(C0 ) such that Sp(t',X,p)::; Sp(t",X,p) for p ~ [O,q(C0 ,X)) or 
Ap(t',X,8)::; Ap(t",X,8) for 8 ~ [0, 1) , then the solution t' may be regarded 
as 'at least as good' as the solution t" from the stability (robustness) point of 
view, because it guarantees the same or smaller 'inefficiency ' for the considered 
data perturbations. 

For any t, t' ET let t 181 t' = (t\t') U (t'\t). Thus it 181 t'l = l(t\t') U (t'\t)l = 
ltl + it'l- 2lt n t'l- Let for any t :f. t', 

t.(t t' X)= { l(t 181 t') n XI if i E I suM, 
' ' rnin{ lt n XI, ki} + min{lt' n XI, ki} otherwise, 

and t.(t, t',X)=O if t = t'. Here I suM = {i E Nm: ki = K}. 

THEOREM 2.1 For an optimal solution t0 E prn(C0 ), an arbitrary set X of non
stable elements, and p E [0, q( C 0 , X)), the stability function can be expressed by 
the formula: 

S ( oX )- . . fi(C 0 ,t0 )-fi(C0 ,t)+pl:i(t,t',X) 
p t , , p - max .mm ( 0 ) . { I I } . 

tET tEN,. fi c 't - p mm t n X ' ki 
(4) 

For an optimal solution t0 E pm(C0 ), an arbitrary set X of non-stable elements, 
and 8 E [0 , 1), the accuracy function can be described by the formula: 

A ( 0 v ')- . fi(C 0 ,t0 )-fi(C0 ,t)+8fi(C0 ,(t 0 t0 )nX) (5) 
p t ,./\. , u - max .m1n ! ·(CO ) _'!·(CO X) . tET tENm , , t u , , t n 
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Proof. We will prove only (4). The proof of (5) is analogous. 

< max min max 
- tET iENm CEO.p(CD,X) 

fi((7 , t 0)- f i((7, t) 
fi(C7 , t) 

For any fixed t E T and i E Nm the maximum of the ratio f;(C,~~(:.;,{j(C,t) over 

(7 E Dp( (7°, X) is attained when 

·( ·)- { c?(ej)+p ifj EN(t0 nX), 
c,e1 - c?(ej)-p ifj EN(tnX) . 

Thus, we get 

Now it remains to prove that 

S (oX ) . fi(C7°,t 0 )-J;(C7°,t)+p/'::;.(t,t0 ,X) 
P t ' ,p ~ %'¥\~).,~ j;(C7°,t) -pmin{ lt nXI,ki} · 

Consider a matrix (7* = {ci(ej)} E Rm xn with elements defined for any index 
i E Nm as follows: 

c*(e ·) = { c?(ej) + p if j E N(t0 n X), 
' 1 c? ( ej) - p otherwise. 

T hen 

. j;((7*,t0 )-fi((7* , t) . fi(C7°,t 0 )-f;(C7° ,t)+p/'::;.(t,t0 ,X) 
max _m1n . * = max _m1n . 0 . . . 
tET ,ENm j ,(C7 ' t) tET ,ENm j,(C7 't)- pmm{lt n XI, k,} 

So, we have that 

S ( 0 X ) . fi(C7°,t 0 )-fi(C7°,t)+p/'::;.(t,t0 ,X) 
p t , , p > max mm . 

- tET iENm J;(C7°, t) - pmm{ lt n X I, ki} 

• 
Observe that t0 is a Pareto optimal solution of Z?'(C7°) if and only if 

Sp(t0 , X,p) = Ap(t0 , X, J) = 0. So, it is of special interest to know the largest 
values of p and J, for which Sp(t0 , X,p) = 0 and Ap(t0 , X, J) = 0, respectively. 
Therefore, for any arbitrary set of non-stable elements X we will introduce the 
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stability radius R~(t0,X) and the accuracy radius R~ (t0 ,X) in the following 
way: 

R~(t0 ,X) = sup{p E [O,q(C0 ,X)): Sp(t0 ,X,p) = 0}, 

R~(t0 ,X) = sup{J E [0 , 1): Ap(t0 ,X, J) = 0} . 

THEOREM 2.2 For an optimal solution t 0 E pm(C0 ) and an arbitrary set X of 
non-stable elements, 

s( o ) · { (Go ) . fi(C0 ,t) - fi(C0 ,t0)} Rp t , X = mm q , X , mm0 max A( 0 v) , 
tET\{i } t EN, u t, t , A 

(6) 

and 

A ( 0 ) . { . f i ( C0 , t) - /i ( C0 , t0 ) } 
Rp t , X =mm 1, mm max f (CO ( 0 ) v ) ' 

tET., tEN, i , t @ t n .A 
(7) 

Proof. We will prove only (6). The proof of (7) is analogous. If p = 0, then 
Sp(t0 , X , 0) = 0. Let Sp(t0 , X,p) > 0. This inequality holds if and only if 

. fi(Co , to) -fi(Co,t) +pi:l(t , to ,X) 0 
max mm > . 
t ET i E Nm fi(C0 , t) -pmin{ltnXI,ki} 

But the latter means that 

- · f i ( C0 , t) - fi ( C0 , t 0 ) 
p > p = mm m~ . 

tET\{tD}iENm f:l(t,t0 ,X) 

Thus, if j5 ::; q( C0 , X), then we get that S p ( t0 , X , p) = 0 on interval [0, p) . 
Otherwise, stability function is equal to zero on [0 , q( C0 , X)). • 

3. Stability and accuracy functions of lexicographically 
optimal solution 

The lexicographic optimality principle is widely spread in optimization (see e.g. 
Ehrgott, 1997, Ehrgott and Gandiebleux, 2000). This principle is used, for ex
ample, for solving stochastic programming problems and to define a priority in 
complex systems which consist of different sublevels. Observe that any scalar 
constrained optimization problem may be transformed to unconstrained bicrite
ria lexicographic problem by using as first criterion some exact penalty function 
for problem constrains, and an original objective function as second criterion. 

In this section we will consider a variant of lexicographic optimization with 
respect to all permutations of partial criteria. 

Let Sm be the set of all permutations of Nm . For s = (s1 , s2, ... , sm) E S m, 
the binary relation -<s of a lexicographic order is defined as follows: t -<s t' if 
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and only if f(C, t) = j(C, t ' ) or there exists an index j E Nm such that for all 
k E Nj-1 we have f si(C, t) < fsi(C,t') and f sk(C,t) = fs , (C,t' ). Here No= 0 
for j = 1. 

Under the vector (m-criteria) combinatorial optimization problem Z£l(C) 
we understand the problem of finding the lexicographic set Lm (C) defined in 
the following way: 

L'n(C) = U L'n(c, s), 
sESm 

where 

L'n(C,s) = {t ET: t -<s t' 'V t' ET}. 

The elements of the set Lm( C) are called lexicographic optima of the problem 
Z£l (C) . It is easy to see that any lexicographic optimum belongs to the Pareto 
set. 

For a given matrix C, we will measure the quality of t0 E Lm(C0 ) by the 
v2.lue of t he relative error c£(C, t0 ), which is introduced as follows: 

(c o) . fi(C, t0)- f i(C, t) 
E L , t =mmmax . 

iENm t E T fi(C, t) 

Ift0 E L'n(C) for any instance of problem Z£l(C), then c:L(C, t0 ) = 0. Ift0 looses 
lexicographic optimality in an Z£l(C), then the relative error c:L(C, t 0 ) > 0 
characterizes t he quality of t0 . 

For a lexicographical optimal solution t0 E Lm(C0 ) , an arbitrary set of non
stable elements X and p E [O,q(C0 , X)), the value of the stability function is 
defined as follows: 

Similarly, for a lexicographical optimal solution t0 E pm( C0 )) an arbitrary 
set of non-stable elements X and () E [0, 1) , the value of the accuracy function 
is defined as follows: 

AL(t0 ,X, 6) = max c:L(C,t0 ). 
CE88 (CO,X) 

The two subsequent theorems provide the formulae for calculating t he values 
of stability and accuracy functions and corresponding radii in lexicographic case. 
Vve will omit their proofs because they are similar to the Pareto case. 

THEOREM 3.1 For a lexicographical optimal solution t0 E Lm(C0 ), an arbitrary 
set X of non-stable elements, and p E [0, q( C0 , X)), 

S ( oX ) . fi (C0 ,t0 )- f i(C0 ,t) +p/:,. (t,t' ,X) 
L t , , p = mm max . . 

i E Nm tET fi(C0 ,t) -p mm{jtnX j,ki} 
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For a lexicographical optimal solution t0 E Lm ( C0 ), an arbitrary set X of non
stable elements, and 5 E [0, 1), 

A ( o X J:) _ . • fi(C0 , t0 ) -fi(C0 , t) + 5fi(C0 , (t 0 t 0 ) n X) 
L t , , u - .mm max (CO ) J: ( 0 ) · 

,ENm tET f i , t - u f ; c ) t n X 

By analogy, for an arbitrary set of non-stable elements X, we define the 
stability radius and the accuracy radius as follows: 

Rf(t0 ,X) =sup {p E [O, q(C0 ,X)): SL(t0 ,X,p) = o} ) 

Rf(t0 ,X) = sup { 8 E [0, 1): AL(t0 ,X,5) = 0} . 

THEOREM 3. 2 For a lexicographical optimal solution t0 E L'n ( C0) and an ar
bitrary set of non-stable elements X 

Rs( o ) . { (Co ) . f ;(C0 ,t)- f;(C0 , t0 )} 
L t , X = mm q , X , max mm A ( 0 ) , 

iEN,tET\{tD} u t, t ,X 

RA( o ) . { . fi(C0,t) - f i (C0 ,t0)} 
L t , X = mm 1, max mm f (CO ( 0 ) ) · 

'ENm tETa i ) t 0 t n X 

4. Examples 

Consider the vector traveling salesman problem defined on graph G = K 4 . Let 
the ground set E be equal to the set of all edges of G, i.e., E = { e1 , e2 , . . . , e6 } . 

The set of feasible solut ions T represents a family of all subsets of edges which 
form the Hamiltonian cycles in the graph G. T here are only three such subsets 
(see Fig. 1) , t hus we have T = {t1,t2,t3}, where t1 = {e1, e2,e5,e6}, t2 = 
{e1,e3,e4,e6 }, t3 = {e2 ,e3,e4,e5}. 

Figure 1. All Hamiltonian cycles in graph K 4 

We will consider 2-criteria optimization problem with the initial matrix of 
weights 

1 
3 

2 
1 

3 
1 

1 
2 
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Assume parameters ki = 3, i = 1, 2. It means that we calculate the value of 
objective function with respect to all the possible Hamiltonian paths in a given 
Hamiltonian cycle. Let our partial criteria, which we want to minimize, have 
the form: 

h(C, t) = max {2::>1(e): q ~ t, lql = 3}. 
eEq 

fz(C,t) = min {2::c2(e): q ~ t, lql = 3}. 
eEq 

Then f(C 0 , tl) = (5,5), j(C0 ,t2) = (7,3), j(C0 ,t3) (6,4), P 2(C0 ) = 
{h , t2,t3 }. Let all elements of E be non-stable, i.e. X= E. By Theorem 2.1, 
we calculate that 

6p- 1 6p - 2 { o if p E [o, n 
Sp(h,E,p) = max{O, 6 _ 3 , 7 _ 3 } = 6p-1 ·f E (l 1) 

p p 6-3p l p 6' ' 

6p - 2 . 6p + 1 6p - 1 6p+1 . 1 5 { 
0 ifpE[O,tJ, 

Sp(t2, E,p) = max{O, 5=3' mm{ 6 _ 3 , 4 _ 3 } } = 6_ 3P 1f PE (6, 9], 
p p p 6P- 1 .f E (~ 1) 

4-3p 1 p 9' ' 

6p _ 1 6p _ 1 { o if p E [o, n 
Sp(t3, E,p) = max{O , 5- 3p' 7- 3p} = ~~~~ if p E (t, 1). 

Observe that for any solution t1, t2 , t3 , the stability radius is equal to t. But 
for instance, it is 'better' than t 2 and t3 , since S p (it, E, p) :::; S p ( t2 , E, p) and 
Sp(t1, E,p) :::; Sp(t3, E,p) for all p E [0, 1), with strict inequalities on some 
subinterval of [0, 1) (see Fig. 2). 

If we consider lexicographic optimality principle, then we get L 2 (C0 ) = 
{h, t2 }. By Theorem 3.1, we obtain that 

{ o if p E [o, n 
SL(t1,E,p) = 6p-1 f (1 ) 

6-3p i pE 6,1, 

if p E [o, n 
.f [ 1 13] t p E 6, 15 , 

ifpE(i~,1). 

We can see now that Rf(t1 , E)= Rf(t2 , E)= 1/6, whereas for p E (1/6, 1), 
wP. get SL(h, E,p) < SL(t2 , E,p) (see Fig. 3). Altogether, this implies that t1 
is 'better ' than t2 . 
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Figure 2. Stability functions Sp(t1 ,E, p), Sp(t2 , E,p), Sp(t3 ,E,p) 
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Figure 3. Stability functions SL(t1 ,E,p), SL(t2 ,E,p) 
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Now assume that the set of feasible solutions T represents a family of all sub
sets of edges which form the Hamiltonian paths in the graph G. Thus T = { tj : 

j = 1, ... , 12}, where t1 = {e1 ,e2,e5 }, t2 = {e1,e5,e5}, t3 = {ez ,e5,e5}, t4 = 
{e1 ,e2,e5 }, t5 = {e1, e3 ,e5} , t6 = {ez,e4,e5 }, t7 = {e3 ,e4,e5 }, ts = {e1 ,e3 , e4} , 
tg = {ez,e3 ,e4 }, t10 = {e2 , e4,e5}, tn = {e3,e4 ,e5} , t12 = {ez ,e3,e5 }. 

We consider 2-criteria linear (MINSUM) optimization problem with the same 
initial matrix of weights 

1 
3 

2 3 
1 1 

1 
2 ~ ] . 

The partial criteria which we want to minimize with respect to all possible 
Hamiltonian paths in graph G have the form: 

J;(C, t) = 2::: ci(e), i = 1, 2. 
eEt 

T!:J.en f(C0,tl) = (5,6), f(C0,tz) = (5,5), j(C0, t3) = (4, 7) , f (C0,t4) = (4, 6), 
j(C0, t5) = (6,4), f(C0, tG) = (7,4), j(C0, t7) = (7, 4), f(C0, ts) = (7, 3) , 
f(C0,tg) = (6,5), f(C0, ho) = (5 , 6) , f(C0, tn) = (6 , 4) , f(C0,t12) = (4, 6) . In 
this case we have 

P 2(C0) = {tz,t4,t5,ts , tn,t12} · 

Let all elements of E be non-stable, i.e. X = E . Using Theorem 2.1, we 
constructed the plots for stability functions of Pareto optimal solutions (see 
Fig. 4). 

1. 

Se [ t2 , E , p ) 
1. 2 Se[ t4 , E , p ) 

Sp( t 5 , E, p ) 
Sp( t 8 , E , p) 
Sp( tu , E , p ) 
se[ t12 , E , p ) 

0 .7 

0. 

0 . 2 

0 . 2 0.4 0.6 0 . 8 p 

Figure 4. Stability functions Sp(ti, E,p) fori= 2, 4, 5, 8, 11,12 
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It is easy to see that solution t8 is 'the most preferable' because it has the 
largest stability radius equal to ~ and the stability function which dominates 
almost all other stability functions. Observe that t8 does not belong to the 
'best' Hamiltonian cycle considered earlier. If we continue our analysis we can 
definitely say that solutions t 4 , t 5 , tn, h 2 are non-stable, i.e. they have stability 
radius equal to 0. But stability radius of t 2 is equal to i and it means that t2 is 
'more preferable' (at least inside its stability area) than t4 , t 5 , t 11 , t12 . 

5. Conclusions 

The accuracy and stability functions describe the quality of efficient solution in 
the situation when coefficients in criteria are subject to uncertainty. The defi
nitions of these functions are directly related to a specific optimality principle. 
The stability and accuracy radii give us the maximum values of independent 
perturbations which preserve the efficiency of a given solution. 

Examples in previous section suggest that changes or inaccuracies in esti
mating objective function coefficients may influence significantly the set of effi
cient solutions of multicriteria combinatorial optimization problem. Moreover, 
some initially efficient solutions cannot be considered 'robust', because very 
small changes of data destroy their efficiency. Therefore, a possibility of rank
ing initially efficient solutions from the 'robustness' point of view is of special 
importance for a decision maker. 

The simplest measure of the 'robustness' of the efficient solution is its sta
bility radius or the accuracy radius. But frequently these radii are not sufficient 
to rank the efficient solutions and it is necessary to calculate complementary 
more general characteristics of solutions like stability and accuracy functions. 

The formulae proved in the paper do not lead directly to efficient methods of 
calculating the values of defined functions and radii. Nevertheless, we see some 
possibility of extending to multicriteria case results of Libura (1999, 2000) and 
Libura et al. (1998), which are based on subsets of so-called k-best solutions 
(Hamacher and Queyranne, 1985/6). 

This work was partially supported through NATO Science Fellowship grant. 
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