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Abstract: The paper deals with the well known set packing
problem and its special case, when the number of subsets is maxi-
mized. It is assumed that some of the problem coefficients are re-
alizations of mutually independent random variables. Average case
(i.e. asymptotical probabilistic) properties of selected problem char-
acteristics are investigated for the variety of possible instances of the
problem. The important results of the paper are:

• Behavior of the optimal solution values of the set packing prob-
lem is presented for the special asymptotic case, where mutual
asymptotical relation between m (number of elements of the
packed set) and n (number of sets provided) is playing an es-
sential role.

• Probability of reaching feasible solution is reasonably high (i.e.
> 2/e,2/e ≈ 0.736); moreover, it may be set arbitrarily close
to 1 (e.g. 0.999), although the deterioration in the quality of
approximation of the behavior of the optimal solution values
may be substantial.

• Some relations between the general case of the set packing prob-
lem and its maximization for the special case are investigated.

1. Introduction

Let us consider an m element set M and Φ a collection of n subsets Mi,
i = 1, . . . , n, of the set M , Φ = {M1,M2, . . . ,Mn}. The set packing problem
consists in finding a set of disjoint subsets Ψ in Φ,Ψ ⊆ Φ, where, Mi,Mk ∈ Ψ if
and only if Mi∩Mk = ∅, for every i, k, i 6= k, i, k ∈ {1, . . . , n}. The set packing

∗The original version of this paper was presented at the BOS 2014 (Operations and Systems
Research) Conference in September 2014 in Warsaw. Submitted: August 2014; Accepted:
December 2014
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problem is often formulated as the binary multiconstraint knapsack problem,
see Nemhauser and Wolsey (1988):

zOPT (n) = max
n
∑

i=1

ci · xi

subject to
n
∑

i=1

aji · xi 6 1

where j = 1, ...,m, xi = 0 or 1.

(1)

It is assumed that:

ci > 0, aji = 0 or 1, i = 1, . . . , n, j = 1, . . . ,m.

In fact, aji, i = 1, . . . , n, j = 1, . . . ,m, j ∈ M , are defining Φ, as the set of
subsets of M, namely Mi, i = 1, . . . , n, Φ = {M1,M2, . . . ,Mn}, in the following
way

aji =

{

1 if j ∈ Mi

0 if j /∈ Mi
,

where ci is the value expressing the preference assigned to the set Mi. Let us
observe that the definition of the sets Mi, i = 1, . . . , n, does not require them to
be disjoint. Namely, if there exists j ∈ {1, . . . ,m}, k 6= l, k, l ∈ {1, . . . , n}, such
that ajk = ajl = 1, then j ∈ M belongs to both Mk and Ml, i.e. Mk ∩Ml 6= ∅.
The choice of xi, fulfilling the constraints imposed in (1), is defining the packing
of the set M into disjoint subsets Mi, Mi ∈ Ψ, where Mi ∩ Mk = ∅ i 6= k,
i, k ∈ {1, . . . , n}, for every Mi, Mk ∈ Ψ. Namely, in (1)

∀ k, k ∈ {1, . . . , n}, Mk ∈ Ψ, if and only if ∃ j ∈ Mk : ajk · xk = 1. (2)

Each of the constraints
∑n

i=1 aji · xi 6 1, j = 1, . . . ,m is guaranteeing that
each of the items j of the set M is assigned to at most one of the subsets
Mi, Mi ∈ Ψ. Optimisation criterion in (1) is securing the choice of the best
possible packing, according to preferences expressed by ci, i = 1, . . . , n. If ci = c,
i = 1, . . . , n, c - constant (e.g. c = 1), then the optimisation problem consists
in seeking the maximum amount of subsets Mi to pack the set M , known as
the Maximum Set Packing Problem. The maximum set packing problem maybe
also formulated as the binary multiconstraint knapsack problem, similarly to
(1), namely:

zOPT (n) = max
n
∑

i=1

xi

subject to
n
∑

i=1

aji · xi 6 1

where j = 1, ...,m, xi = 0 or 1.

(3)
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Set packing problems arise in partitioning applications, where there is strong
requirement that no elements of the set M be permitted to be included in more
than one subset Mi. The set packing problem (1) is well known to be an
NP hard combinatorial optimisation problem, see Garey and Johnson (1979).
Moreover, the Set Packing Problem is one of the 21 first Karp’s NP complete
problems, see Karp (1972). There are also two closely related combinatorial
problems, namely the set covering problem and the set partitioning problem
(also known as exact covering), where in both of them one is looking for the
subsets Mkj , j = 1, ..., r, of the collection Φ of n subsets of Mi, i = 1, . . . , n,
where demand

⋃r
j=1 Mkj = M holds, moreover, in the set partitioning problem

there is an additional demand, namely that all Mkj be pairwise disjoint, i.e.
Mkj

∩ Mkl
= ∅, for every kj , kl, kj 6= kl, j, l ∈ {1, . . . , r}. Both problems

may be also formulated as special cases of the binary multiconstraint knapsack
problem, see Nemhauser and Wolsey (1988). The maximum set packing problem
is also known as the Maximum Hypergraph Matching. The latter, under certain
additional conditions, is equivalent to the well known Maximum Clique problem,
see Ausiello, D’Atri and Protasi (1980). Another example of the application of
the set packing problem in the graph theory is the so called independent set, i.e.
the set of graph vertices having no common edges.

Scheduling of an airline flight crews with respect to airplanes is a good
example of a practical application of the set packing problem. Each airplane
must have a crew assigned to it, consisting of a pilot, a copilot, and a navigator.
There is a set of possible crew members, based on their training in operating
the relevant types of airplanes, as well as any personality conflicts. Considering
all possible crews and airplane combinations, each represented by a subset of
items, our goal is to find such an assignment of crews to airplanes that each
airplane and each crew member is in exactly one selected combination. From
the mathematical point of view, one is looking for a set packing, taking into
account subset constraints. Simply, in the considered time period the same
crew members cannot be on two different airplanes and every airplane must
have a crew, but not all of the crew members must be assigned. In the case of
the set partitioning problem all of the crew members must be assigned and in
the case of the set covering problem some crew members may be assigned to
multiple airplanes.

As it was already mentioned, the set packing problem is often formulated
as the binary multiconstraint knapsack problem, see (1) and (3). However, the
above formulations constitute a rather special case of it, see Martello and Toth
(1990). Its peculiarity consists in the following facts:

• All the coefficients of the left hand sides of constraints are equal either to
1 or to 0:

aji = 0 or 1, i = 1, . . . , n, j = 1, . . . ,m.

• All of the coefficients of the right hand sides of constraints are equal to 1.
• The number of constraints m maybe arbitrarily big in comparison with n

(number of decision variables).
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In the general formulation of the binary multiconstraint knapsack problem it
is only required that all of the knapsack problem coefficients, i.e. goal function,
constraints’ left and right hand sides, be non-negative or, in order to avoid
unclear interpretations, strictly positive. The latter especially applies to goal
function and coefficients of the right hand sides of constraints. It is usually also
assumed that m (the number of constraints) is not large with respect to the
number of decision variables n.

This does mean that the results obtained for the general knapsack problem,
e.g. in the case of Lagrange and dual estimations or asymptotic probabilis-
tic analysis of the optimal solution value behavior, may not be valid in the
case of the set packing problem specific formulations provided in (1) or (3).
In the present paper, the set packing problem (1) The specific Lagrange and
dual estimations are provided. Then, for the random model of the problem
(1) interesting results concerning the feasibility of the obtained solutions and
asymptotical growth of the optimal solution values zOPT (n), when n → ∞, are
provided.

2. Definitions

The following definitions are necessary for further presentation:

Definition 1 We denote Vn ≈ Yn, where n → ∞, if

Yn · (1 − o(1)) 6 Vn 6 Yn · (1 + o(1))

when Vn, Yn are sequences of numbers, or

lim
n→∞

P{Yn · (1 − o(1)) 6 Vn 6 Yn · (1 + o(1))} = 1

when Vn is a sequence of random variables and Yn is a sequence of numbers or
random variables, where limn→∞ o(1) = 0 as it is usually presumed.

Definition 2 We denote Vn � Yn(Vn � Wn) if

Vn 6 (1 + o(1)) · Yn (Vn > (1 − o(1)) ·Wn)

when Vn, Yn (Wn) are sequences of numbers, or

lim
n→∞

P{Vn 6 1 + o(1) · Yn} = 1 lim
n→∞

P{Vn > 1 − o(1) ·Wn} = 1

when Vn is a sequence of random variables and Yn (Wn) is a sequence of numbers
or random variables, where limn→∞ o(1) = 0.

Definition 3 We denote Vn ≅ Yn if there exist constants c′′ > c′ > 0 such that

c′ · Yn � Vn � c′′ · Yn

where Yn, Vn are sequences of numbers or random variables.
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The following random model of (1) will be considered in the paper:

• m, n, 0 < n 6 m!, are arbitrary positive integers and, moreover, n → ∞.
• ci, aji, i = 1, . . . , n, j = 1, . . . ,m, are realizations of mutually independent

random variables and, moreover, ci are uniformly distributed over (0, 1]
and P{aji = 1} = p, where 0 < p ≤ 1.

Let us observe that asymptotical relations 0 < n 6 m! and n → ∞ require
that also m → ∞. As the matter of fact, mutual asymptotic relation of the
values of m and n may vary between two extreme cases: n/m ≈ 0 or n ≈ m! as
n → ∞

Under the assumptions made about ci, aji, and taking into account model,
(1) the following always holds

0 6 zOPT (n) 6

n
∑

i=1

ci 6 n. (4)

Moreover, from the strong law of large numbers it follows that

n
∑

i=1

ci ≈ E(c1) · n = n/2,

n
∑

i=1

aji ≈ p · n,
m
∑

j=1

aji ≈ p ·m. (5)

Therefore, it is justified to enhance formulas (4) and (5) in the following way:

0 6 zOPT (n) � n/2,

n
∑

i=1

aji � 1, if p <
1

n
or

n
∑

i=1

aji � 1 when p >
1

n
. (6)

Formula (6) shows that the random model of the set packing problem (1)
is complete in the sense that nearly all possible instances of the problem are
considered.

The growth of zOPT (n), i.e. value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, m, ci, aji, where i = 1, . . . , n, j = 1, . . . ,m.

We have assumed that ci, aji are realizations of the random variables and there-
fore their impact on the zOPT (n) growth is in this case indirect. Moreover, we
have also assumed that m, n are arbitrary positive integers and n → ∞.

The main aim of the present paper is to perform probabilistic analysis of the
considered class of random set packing problems in the asymptotical case, i.e.
when n → ∞. For the considered random model, the probabilistic analysis has
two strategic goals, namely:

• To examine the existence of the feasible solutions.
• To investigate the asymptotic behavior of zOPT (n).

Existence of the feasible solution, provided by x1, . . . , xn, means that
∑n

i=1 aji ·
xi 6 1 for all j = 1, . . . .m. If any of the constraints is violated, i.e. ∃ j′ such
that

∑n
i=1 aj′i · xi > 1, then solution, provided by x1, . . . , xn, is not feasible.
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3. The Lagrange and dual estimations

When the general knapsack type problem, with one or many constraints, is
considered, then the Lagrange function and the corresponding dual problems,
see Averbakh (1994), Meanti et al. (1990), Szkatu la (1994, 1997) are very useful
tools to perform various kinds of analyses of the original problem. In the specific
case of the set packing problem (i.e. all of the coefficients of the right hand sides
of constraints are equal to 1) the Lagrange function of the problem (1) may be
formulated as follows:

Ln(x) =

n
∑

i=1

ci · xi +

m
∑

j=1

λj ·

(

1 −
n
∑

i=1

aji · xi

)

=

=

m
∑

j=1

λj +

n
∑

i=1



ci −
m
∑

j=1

λj · aji



 · xi

where x = [x1, . . . , xn] and Λ = [λ1, . . . , λm] - vector of Lagrange multipliers.
Moreover, let for every Λ, λj ≥ 0, j = 1, . . . ,m :

φn(Λ) = max
x∈{0,1}n

Ln(x,Λ) = max
x∈{0,1}n







m
∑

j=1

λj +
n
∑

i=1



ci −
m
∑

j=1

λjaji



 xi







.

Taking the following notation:

xi(Λ) =







1 if ci −
m
∑

j=1

λj · aji > 0

0 otherwise.
(7)

ci(Λ) =







ci if ci −
m
∑

j=1

λj · aji > 0

0 otherwise.

aji(Λ) =







aji if ci −
m
∑

j=1

λj · aji > 0

0 otherwise.

we have for every Λ, λj ≥ 0, j = 1, . . . ,m:

φn(Λ) =

m
∑

j=1

λj +

n
∑

i=1



ci −
m
∑

j=1

λj · aji



 · xi(Λ) =

=

m
∑

j=1

λj +

n
∑

i=1



ci(Λ) −
m
∑

j=1

λj · aji(Λ)



 .

Obviously, for i = 1, . . . , n, j = 1, . . . ,m,

ci(Λ) = ci · xi(Λ), aji(Λ) = aji · xi(Λ).
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The dual problem to the set packing problem (1) may be formulated as follows:

Φ∗
n = min

Λ≥0
φn(Λ). (8)

For every Λ ≥ 0 the following holds:

zOPT (n) ≤ Φ∗
n ≤ φn(Λ) = zn(Λ) +

m
∑

j=1

λj(1 − sj(Λ)). (9)

Let us denote:

zn(Λ) =

n
∑

i=1

ci · xi(Λ) =

n
∑

i=1

ci(Λ), sj(Λ) =

n
∑

i=1

aji · xi(Λ) =

n
∑

i=1

aji(Λ),

Snm(Λ) =

m
∑

j=1

λj · sj(Λ), Λ̃(m) =

m
∑

j=1

λj .

By definition of ci(Λ) and aji(Λ), see also (7), we have:

ci(Λ) ≥
m
∑

j=1

λj · aji(Λ), i = 1, . . . , n,

and therefore

zn(Λ) ≥ Snm(Λ). (10)

For certain Λ, xi(Λ), given by (7), may provide feasible solution of (1), i.e.:

sj(Λ) ≤ 1 for every j = 1, . . . ,m. (11)

Then:

zn(Λ) ≤ zOPT (n) ≤ Φ∗
n ≤ φn(Λ) = zn(Λ) + Λ̃(m) − Snm(Λ). (12)

If (11) holds, then the inequality below also holds:

Λ̃(m) − Snm(Λ) ≥ 0.

From (10) we get:

φn(Λ)

zn(Λ)
=

zn(Λ)

zn(Λ)
+

Λ̃(m) − Snm(Λ)

zn(Λ)
≤ 1 +

Λ̃(m) − Snm(Λ)

Snm(Λ)
.

Therefore, if (11) holds, then the following inequality also holds:
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1 ≤
zOPT (n)

zn(Λ)
≤

Φ∗
n

zn(Λ)
≤

φn(Λ)

zn(Λ)
≤

Λ̃(m)

Snm(Λ)
. (13)

Formula (13) shows that if there exists such a set of the Lagrange multipliers
Λ(n) which fulfills the formula (11) and if the formula below holds:

lim
n→∞

Λ̃(m)

Snm(Λ(n))
= 1 (14)

then, due to (13), limn→∞
zOPT (n)
zn(Λ) = 1, and, therefore, xi(Λ(n)), i = 1, . . . , n,

given by (7), is the asymptotically sub-optimal solution of the set packing prob-
lem (1). Moreover, the value of zn(Λ(n)) is an asymptotical approximation of
the optimal solution value of the set packing problem, i.e. zOPT (n).

In the case of the maximum set packing problem (3) ci ≡ 1, i = 1, . . . , n, and,
moreover, ci are no longer realizations of the random variables. Therefore, in the
case of the maximum set packing problem (3) in the above formulas ci should
be replaced with 1. As the consequence, the formulas where ci was involved
will look differently, e.g. in (7) ci −

∑m
j=1 λj · aji > 0 should be replaced by

1 −
∑m

j=1 λj · aji > 0. So, we obtain:

ci(Λ) = xi(Λ) =







1 if 1 −
m
∑

j=1

λj · aji > 0

0 otherwise.
(15)

aji(Λ) =







aji if 1 −
m
∑

j=1

λj · aji > 0

0 otherwise.
.

In turn, this means that ci(Λ) ≡ xi(Λ), i = 1, . . . , n, and therefore
zn(Λ) =

∑n
i=1 xi(Λ).

In either case, according to (2), aji(Λ) = 1 is guaranteeing that item j is
assigned to set Mi. Obviously, this also implies that sj(Λ) = 1.

4. Probabilistic analysis

In the present section of the paper some probabilistic properties of the set pack-
ing problems (1) and (3) will be investigated. In the paper by Vercellis (1986)
some results of the probabilistic analysis of the set packing problems were pre-
sented. In the present paper a different approach is exploited. The random
model of the specific knapsack problems (1) and (3) is significantly different
from the one considered in the case of the general knapsack problem in the
earlier papers, see Szkatu la (1994, 1997). Namely, coefficients of the left hand
sides of constraints aji, i = 1, . . . , n, j = 1, . . . ,m, have in the present case
discrete probability distribution, while in the general case they have uniform
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(continuous) distribution. Moreover, all of the coefficients of the left hand sides
of constraints are equal to 1 and m may be arbitrarily large in comparison with
n. Therefore, probabilistic analysis of the set packing problem (1) requires a
specific approach.

Let us first observe that due to the assumptions made, the following holds,
for j = 1, . . . ,m:

P{aji = 1} = p, P{aji = 0} = 1 − p, P{aji(Λ) = 1} = 1 − P{aji(Λ) = 0},

P (ci < x) =







0 when x 6 0
x when 0 < x 6 1
1 when x > 1

. (16)

Moreover, for the random variable
∑m

k=1,k 6=j aji, due to the binomial distribu-
tion, the following holds for every integer r, 0 6 r 6 m− 1:

P







m
∑

k=1,k 6=j

aki = r







=

(

m− 1

r

)

· pr · (1 − p)m−r−1. (17)

Let us also assume that

Λ = {λ, · · · , λ}, i.e. λj = λ, λ > 0, j = 1, · · · ,m.

In the case of the set packing problem (1) the following results hold.

Lemma 1 If aji are realizations of mutually independent random variables where
P{aji = 1} = p, 0 < p ≤ 1, then

P{aji(Λ) = 1} = p− p

m−1
∑

r=0

(

m− 1

r

)

· pr · (1 − p)m−r−1 min{1, λ(r + 1)}.

Moreover, if λ 6 1/m then:

P{aji(Λ) = 1} = p · (1 − λ · (m · p + 1 − p)).

Proof. From (7), (16) and (17), and taking into account the fact that
random variable

∑m
k=1,k 6=j aji may take any integer value r from the range

[0,m− 1] with the probability given in (17) it follows that:
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P{aji(Λ) = 0} = P







aji = 0 ∪ aji = 1 ∩ ci < λ ·





m
∑

k=1,k 6=j

aki + 1











=

= 1 − p + p · P







ci < λ ·





m
∑

k=1,k 6=j

aki + 1











=

= 1 − p + p

m−1
∑

r=0

(

m− 1

r

)

· pr · (1 − p)m−r−1 min{1, λ(r + 1)}.

Due to (16) the first formula of the Lemma is proven. Because

(

m− 1

r

)

=
(m− 1)!

r! · (m− 1 − r)!
,

then, when λ 6 1/m, the following holds

P{aji(Λ) = 0} = 1− p+λ
m−1
∑

r=0

(m− 1)! · (r + 1)

r! · (m− 1 − r)!
· pr+1 · (1− p)m−r−1. (18)

Let us observe that for every integers l, m, l, > 1, m > 2, and 0 6 p 6 1 the
following hold

l
∑

k=0

(

l

k

)

· pk · (1 − p)l−k = (p + 1 − p)l = 1

r + 1 = m− (m− 1 − r).

Using the above mentioned, the formulas (18) may be rewritten as:

P{aji(Λ) = 0} = 1 − p + λ · p

(

m−1
∑

r=0

(m− 1)! ·m

r! · (m− 1 − r)!
· pr · (1 − p)m−1−r−

−
m−1
∑

r=0

(m− 1)! · (m− 1 − r)

r! · (m− 1 − r)!
· pr · (1 − p)m−1−r

)

=

= 1 − p + λ · p

(

m
m−1
∑

r=0

(

m− 1

r

)

· pr · (1 − p)m−1−r−

−p · (m− 1) · (1 − p)
m−2
∑

r=0

(

m− 2

r

)

· pr · (1 − p)m−2−r

)

=

= 1 − p + λ · p · (m− (m− 1) · (1 − p)) =

= 1 − p + λ · p · (m · p + 1 − p).

Finally, the above formulas can be summarized as:

P{aji(Λ) = 0} = 1 − p + λ · p · (m · p + 1 − p). (19)
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Due to the formulas (16) and (19) we have

P{aji(Λ) = 1} = 1 − P{aji(Λ) = 0} =

= p− λ · p · (m · p + 1 − p) = p · (1 − λ · (m · p + 1 − p)).

As the direct consequence of the above formulas we have

E(aji(Λ)) = 1 · P{aji(Λ) = 1} + 0 · P{aji(Λ) = 0} = P{aji(Λ) = 1}. (20)

Now, instead of Λ we will consider Λ(n). This means that for every value of
integer n, we may consider different vectors Λ(n) = {λ(n), · · · , λ(n)}, λ(n) > 0.
For every j, j = 1, · · · ,m, we have:

E(sj(Λ(n))) =

n
∑

i=1

E(aji(Λ(n))) = n · P{aji(Λ(n)) = 1} = (21)

= n · p(1 − λ(n) · (m · p + 1 − p)).

The above equation, (21), provides the opportunity to determine λ(n) by
solving E(sj(Λ(n)) = α, where α > 0. When α = 1, then λ(n) is solving all
of the constraints in (1) as equations, in the sense of average (mean) values,
E(
∑n

i=1 aji · xi(Λ(n))) = 1 for all j = 1, . . . .m. Unfortunately, there is no
guarantee that the solution obtained is feasible, i.e.

∑n
i=1 aji · xi(Λ(n)) 6 1,

for all j = 1, . . . .m. Therefore, one may try to consider smaller values of α,
0 < α 6 1, in order to increase the chance of obtaining the feasible solution of
the set packing problem (1). Below, those ideas are considered in a formalized
manner.

Lemma 2 For every α, α > 0 there exist m′, n′ > 1 such that for every m > m′

and n > n′, the following choice of λ(n) :

λ(n) =
1 − α/(n · p)

m · p + 1 − p

is solving the equations E(sj(Λ(n))) = α.

Corollary 1 If E(sj(Λ(n))) = α, then P{aji(Λ(n)) = 1} = α/n.

Proof. Proof of Lemma and Corollary follows immediately from formulas
(20) and (21) and the following fact, namely that for all m > m′ and n > n′:

λ(n) 6
1

m
.

Solution of the set packing problem (1) given by formula (7) is feasible
(provides packing of the set M) if and only if the formula (11) holds.
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Theorem 1 For every α, 0 < α 6 1 there exist m′, n′, m′, n′ > 1, such that
for Λ(n), providing E(sj(Λ(n))) = α, the following hold

P{sj(Λ(n)) 6 1} =
(

1 −
α

n

)n−1

· (1 + α−
α

n
).

Moreover, for every fixed value of α, α > 0, we have

lim
n→∞

P{sj(Λ(n)) 6 1} =
1 + α

eα
.

Proof. As it was already mentioned, the solution of the problem (1), given
by formula (7) is feasible if and only if formula (11) holds i.e. sj(Λ(n)) = 0 or
sj(Λ(n)) = 1. For every Λ(n), random variable sj(Λ(n)) =

∑n
i=1 aji(Λ(n)) may

take any integer value r from the range [0, n] with the probability given by the
following formula:

P

{

n
∑

i=1

aji(Λ(n)) = r

}

=

(

n

r

)

· p̃r · (1− p̃)n−r, where p̃ = P{aji(Λ(n)) = 1}.

From the above formula and Corollary 1 it follows that

P{sj(Λ(n)) 6 1} = P

{

n
∑

i=1

aji(Λ(n)) = 0 ∪
n
∑

i=1

aji(Λ(n)) = 1

}

= (22)

=
(

1 −
α

n

)n

+ α
(

1 −
α

n

)n−1

=
(

1 −
α

n

)n−1

· (1 + α−
α

n
).

The proof is finished by observing that lim
n→∞

(

1 − α
n

)n−1
= e−α and lim

n→∞

α
n = 0.

Corollary 2 P{sj(Λ(n)) 6 1} = 1 if and only if n = 1. When α → 0 as
n → ∞ then

lim
n→∞

P{sj(Λ(n)) 6 1} = 1.

However, if α, α > 0, is a constant, then:

lim
n→∞

P{sj(Λ(n)) 6 1} < 1. (23)

Proof. Formula (23) follows immediately from Theorem 1.
The above Theorem 1 and Corollary 2 to it have interesting interpretation,

which may be observed on few examples presented below.

Example 1

When α = 0.01 then lim
n→∞

P{sj(Λ(n)) 6 1} = 0.999

When α = 0.1 then lim
n→∞

P{sj(Λ(n)) 6 1} = 0.995

When α = 0.5 then lim
n→∞

P{sj(Λ(n)) 6 1} = 0.9098

When α = 1 then lim
n→∞

P{sj(Λ(n)) 6 1} =
2

e
≈ 0.736.
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Interpretation of the above examples is as follows. The closer the value of α
is to 1, the better approximation of the optimal solution values may be provided,
with, however, less satisfactory value of the limn→∞ P{sj(Λ(n)) 6 1}. Yet, for
any value of α, 0 < α 6 1, limn→∞ P{sj(Λ(n)) 6 1} � 2/e, where 2/e ≈ 0.736.
Due approximations of the optimal solution values are provided in the next
section.

In the case of the maximum set packing problem (3) the situation is signifi-
cantly different. Namely, according to (17), where γ = 1

λ − 1, λ = 1
γ+1 :

P{aji(Λ) = 1} = P







aji = 1 ∩ λ ·





m
∑

k=1,k 6=j

aki + 1



 ≤ 1







= (24)

= p · P







λ ·





m
∑

k=1,k 6=j

aki + 1



 ≤ 1







=

= p · P







m
∑

k=1,k 6=j

aki ≤
1

λ
− 1







=

= p ·

⌊γ⌋
∑

r=0

P







m
∑

k=1,k 6=j

aki = r







=

= p ·

⌊γ⌋
∑

r=0

(

m− 1

r

)

· pr · (1 − p)m−r−1.

It is pretty obvious that only m values of γ (and respectively λ) should be
considered, namely γ = 0, 1, . . . ,m− 1, (λ = 1

m , 1
m−1 , . . . , 1) because

P







m
∑

k=1,k 6=j

aki = r







= 0 for r < 0 and r > m− 1.

The above facts have very serious consequences for the probabilistic analysis of
the maximum set packing problem (3). Namely, using formula (24) with γ = 0
and γ = m − 1 (λ = 1

m and λ = 1) and taking into account (20) we conclude
that

p · (1 − p)m−1 ≤ E(aji(Λ)) = P{aji(Λ) = 1} ≤ 1.

The latter means that, when considering Λ(n), n → ∞, in order to solve

E(sj(Λ(n))) = α or P{aji(Λ(n)) = 1} =
α

n
, i = 1, . . . , n, j = 1, . . . ,m (25)

the following condition should hold:

n ≤
α

p · (1 − p)m−1
.
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As the matter of fact, (25) is implying asymptotic relations between n,m, p and
α. It may be difficult to obtain exact solution of (25) due to the finiteness of the
set of values of the Lagrange multipliers λ (λ = 1

m , 1
m−1 , . . . , 1) and the formula

(24). Frequently, there may exist only approximate solutions of (25).

5. Behavior of the optimal solution values

The main goal of this paper is to analyze the behavior of the optimal solu-
tion value of the set packing problem (1) in the asymptotical probabilistic case.
Moreover, it was the author’s intention to use a simple and easy to follow prob-
abilistic apparatus. In order to proceed with this analysis one may need to ex-
ploit the probabilistic properties of the random variables ci(Λ(n)), i = 1, · · · , n.
The construction of the random variables ci(Λ(n)) is defined by formulas (7)
and (16), respectively. Distribution functions of the random variables ci(Λ(n)),
i = 1, · · · , n are given by the following formulas, where 0 < x ≤ 1:

P{ci(Λ(n)) < x} = P{ci < x ∪ ci ≥ x ∩ ci ≤ Λ(n) ·
m
∑

j=1

aji} = (26)

= x + P{x ≤ ci ≤ Λ(n) ·
m
∑

j=1

aji}.

Let us observe that P{x ≤ ci ≤ Λ(n) ·
∑n

i=1 aji} is by definition equal to zero
if ci < x or ci > Λ(n) ·

∑n
i=1 aji. Therefore, (26) may be rewritten as

P{ci(Λ(n)) < x} = x +

m
∑

r=1

P{x ≤ ci ≤ Λ(n) · r ∩
m
∑

j=1

aji = r} = (27)

= x +

m
∑

r=1

(rΛ(n) − x)+P{
m
∑

j=1

aji = r}. (28)

The above formula may enable us to calculate the mean value of the random
variables ci(Λ(n)), i = 1, · · · , n. Namely:

E(ci(Λ(n))) =

∫ 1

0

x · d(P{ci(Λ(n)) < x}) = (29)

=
1

2
+

Λ(n)·m
∫

0

x ·





m
∑

r=1

(rΛ(n) − x)′+ · P{
m
∑

j=1

aji = r}



 =

=
1

2
+

m
∑

k=1

Λ(n)·k
∫

Λ(n)·(k−1)

x





m
∑

r=k

(rΛ(n) − x)′+ · P{
m
∑

j=1

aji = r}



 dx =

=
1

2
−

m
∑

k=1

Λ(n)·k
∫

Λ(n)·(k−1)

x · P{
m
∑

j=1

aji = r}dx.
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Let us observe that, similarly to the formula (17), the random variable
∑m

k=1 aji,
due to having binomial distribution, has the following distribution function for
every integer r, 0 6 r 6 m:

P

{

m
∑

k=1

aki = r

}

=

(

m

r

)

·pr ·(1−p)m−r and, moreover,

(

r
∑

k=1

(2k − 1)

)

= r2.

Therefore, the formula (29) could be further simplified as follows:

E(ci(Λ(n))) =
1

2
−

m
∑

k=1







Λ(n)·k
∫

Λ(n)·(k−1)

xdx






·

(

m
∑

r=k

(

m

r

)

· pr · (1 − p)m−r

)

=

=
1

2
−

(Λ(n))2

2

m
∑

k=1

(2k − 1) ·

(

m
∑

r=k

(

m

r

)

· pr · (1 − p)m−r

)

=

=
1

2
−

(Λ(n))2

2

m
∑

r=1

(

r
∑

k=1

(2k − 1)

)

·

((

m

r

)

· pr · (1 − p)m−r

)

=

=
1

2
−

(Λ(n))2

2

m
∑

r=1

r2 ·

((

m

r

)

· pr · (1 − p)m−r

)

.

Let us observe that the following formula holds for 0 < p ≤ 1 and m = 1, 2, . . .:

m
∑

r=1

r2 ·

((

m

r

)

· pr · (1 − p)m−r

)

= m · p · (1 + p · (m− 1)).

From Lemma 2 (where E(sj(Λ(n))) = α, and λ(n) = 1−α/(n·p)
m·p+1−p ) and due to the

formula (9) we will therefore obtain

E(zn(Λ)) =
n

2

(

1 −

(

1 − α/(n · p)

m · p + 1 − p

)2

·m · p · (m · p + 1 − p)

)

=

=
n

2






1 −

m · p · (1 −
α

n · p
)2

m · p + 1 − p






=

n

2






1 −

(1 −
α

n · p
)2

1 + (1 − p)/(m · p)






.

If (11) holds then, due to the formulas (12) and (13), where Λ̃(m) =
m
∑

j=1

λj(n) =

m · λ(n), E(Snm(Λ(n))) = α · m · λ(n) and λ(n) = 1−α/(n·p)
m·p+1−p , one may obtain

much stronger results for 0 < α 6 1, namely:

1 6 E

(

zOPT (n)

zn(Λ(n))

)

6
1

α
, where E

(

Λ̃(m,n)

Snm(Λ(n))

)

=
1

α
and (30)
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E(zn(Λ(n))) =
n

2
·

(

1 −
(1 − α/(n · p))2

1 + (1 − p)/(m · p)

)

. (31)

Formulas (30) and (31) may provide us with some estimations in the increase
of the set packing problem (1) optimal solution values zOPT (n), when n → ∞.

Corresponding to Example 1, the estimations of the E
(

zOPT (n)
zn(Λ(n))

)

for the differ-

ent values of α are provided in the Example 2 below, where appropriate value
of E(zn(Λ(n))) is given in the formula (31):

Example 2

When α = 0.01 then 1 6 E
(

zOPT (n)
zn(Λ(n))

)

6 100 with approximate probability

0.999
When α = 0.1 then 1 6 E

(

zOPT (n)
zn(Λ(n))

)

6 10 with approximate probability 0.995

When α = 0.5 then 1 6 E
(

zOPT (n)
zn(Λ(n))

)

6 2 with approximate probability 0.9098

When α = 1then E
(

zOPT (n)
zn(Λ(n))

)

= 1 with approximate probability 2
e ≈ 0.736.

The smaller is the value of α, the higher is probability of providing a feasible
solution of the set packing problem (1), but the quality of the approximation,
provided by (30) and (31) is deteriorating. Obviously, approximation is not
”strict” in the sense that, as α increases, only the upper bound on the expected
value of the approximation quality increases. However, when α is very small, e.g.
α = 0.01 in the above example, then the expected values of all left hand side of
constraints in (1) are very small either, i.e. E(sj(Λ(n))) = α, j = 1, . . . ,m. This,
in turn may indicate that only the trivial solution like xi(Λ(n)) = 0, i = 1, . . . , n,
of the original problem may be provided. Anyhow, moderate values of α, e.g.
α = 0.5 or α = 1, in the example above are providing a reasonable compromise
between quality of the approximation and the feasibility of the solution.

Since n 6 m! and, moreover, n → ∞, then, obviously also m → ∞. Accord-
ing to formula (31), asymptotic growth of the E(zn(Λ(n))) may be influenced
by both n and m. Let us consider the following mutual asymptotic dependence
of both parameters:

n = β ·mγ , where β is constant, 0 < γ 6 m, β > 0. (32)

If 0 < γ 6 m, then condition n 6 m! is always fulfilled asymptotically since, due
to the Stirling’s formula, for every constant β > 0 there exists constant m′ > 1
such that for all m > m′ the inequality n 6 m! holds.

Under the above assumption, the following Lemma holds

Lemma 3 If asymptotical dependence (32) holds then:

E(zn(Λ(n))) ≈
2 · α + β · (1 − p) ·mγ−1

2 · p
when n → ∞. (33)
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Proof. When (32) holds, then (31) may be reformulated as follows:

E(zn(Λ(n))) =
2m · α · β · p + mγ · β2 · p · (1 − p) − α2 ·m−γ+1

2β · p · (m · p + 1 − p)
.

Taking into account the previously made assumptions on α, β, γ and p, the proof
of the formula (33) is straightforward.

Corollary 3 Depending on the value of γ, 0 < γ 6 m, the following cases of
the asymptotical behavior of E(zn(Λ(n))) may be distinguished:

lim
m→∞

E(zn(Λ(n))) =



















α

p
when 0 < γ < 1

2α + β · (1 − p)

2p
when γ = 1

∞ when γ > 1.

(34)

Due to the formulas (13) and (30), E(zn(Λ(n))) is a reasonable asymp-
totic approximation of the optimal solution of the set packing problem (1), i.e.
E (zOPT (n)). The above Lemma and Corollary, especially formulas (33) and
(34), provide interesting insight into the asymptotical behavior of the value of
E(zn(Λ(n))). Namely:

when n = o(m) then lim
m→∞

E(zn(Λ(n))) =
α

p
.

The above does mean that in this case the values of β and γ are negligible and
so is the mutual asymptotic dependence of both n and m:

when n ≅ m then E(zn(Λ(n))) ≈
2α + β · (1 − p)

2p
.

In this case level of proximity of n and m is substantial and is expressed by the
value β.

When m = o(n) then E(zn(Λ(n))) ≈
β · (1 − p)

2 · p
·mγ−1.

In the latter case dependence on α is negligible, β and p are defining a constant
multiplier.

In two first cases, where γ 6 1, there is no asymptotical influence of the
value of m (and therefore of n either) on the asymptotical value of E(zn(Λ(n))).
However, in the case when γ > 1, there is very strong dependence on both m
and γ.

On the other hand, the parameters α and p have substantial influence on the
asymptotical behavior of E(zn(Λ(n))), when γ 6 1. Namely the bigger is the
value of α, α > 0, and/or smaller is the value of p, 0 < p 6 1, the bigger is the
value of E(zn(Λ(n))). The consequence of the above statement is as follows:
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• The bigger is the value of α, the lower is the probability of feasibility of
the corresponding solution of the set packing problem (1), see Theorem 1.

• The smaller the value of p, the sparser the initial subsets Mi, i = 1, · · · , n,
of the original set M may be.

In the case of the maximum set packing problem (3), the situation is different.
Namely

P{ci(Λ) = 1} = P{xi(Λ) = 1} = P

{

λ ·

(

m
∑

k=1

aki + 1

)

≤ 1

}

=

= P

{(

m
∑

k=1

aki + 1

)

≤
1

λ

}

=

⌊1/λ⌋
∑

r=0

P







m
∑

k=1,k 6=j

aki = r







=

=

⌊1/λ⌋
∑

r=0

(

m

r

)

· pr · (1 − p)m−r where λ ∈

{

1

m
,

1

m− 1
, . . . , 1

}

.

If there exist Λ(n) and α solving (25), with sufficient level of accuracy, and
assuring sj(Λ(n)) 6 1, j = 1, · · · ,m, then

E(zn(Λ(n))) = n ·

⌊1/λ(n)⌋
∑

r=0

(

m

r

)

· pr · (1 − p)m−r

may serve as an appropriate approximation of the value of zOPT (n) as it was in
the case of the set packing problem (1) before.

6. Concluding remarks

In the present paper some results describing the probabilistic properties of the
set packing problem (1) and the maximum set packing problem (3) are summa-
rized.

The distribution functions of the various random variables, representing im-
portant problem characteristics are presented. Moreover, some results concern-
ing the feasibility of the obtained solutions and estimations of the asymptotic
growth in the optimal solution values zOPT (n) of the set packing problem (1),
when n → ∞, are provided.

Examples 1 and 2 show that the higher is the accuracy of approximation of
the optimal solution value, the lower is the probability of the feasibility of corre-
sponding solution. For example, when α = 0.5, the quality of approximation is
pretty tolerable, with relatively high probability of the feasibility of the solution.
Moreover, when α = 1, the quality of approximation is very good with reason-
able probability of the feasibility of the solution, approximately equal to 0.736.
Lemma 3 shows the possible asymptotical behavior of the optimal solution val-
ues when there is certain mutual asymptotic dependence of the parameters n
and m.
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In the case of theMaximum Set Packing Problem there are some problem
specific peculiarities, which have been preliminarily investigated in the present
paper.

Some of the important avenues for the future research are the convergence of
the approximate solutions to the optimal solution and possibility of investigating
realistic approximations of their values.
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