POLISH ACADEMY OF SCIENCES SYSTEMS RESEARCH INSTITUTE

THE INTERNATIONAL ECONOMIC COOPERATION

 THEORETICAL FOUNDATIONS
STANIStAW PIASECKI

THE INTERNATIONAL ECONOMIC COOPERATION

 THEORETICAL FOUNDATIONS
STANISLAW PIASECKI

PREFACE

The main difference between the work here presented and the other studies related to the same, generally speaking, domain, consists in the fact that considerations contained in this book indicate the possibility of resolving questions concerning the choice of the subject and establishment of profitability of international trade and cooperation in conditions when:

- prices on the internal maricet do not correspond to social costs,
* there is lack of conviction as to correctness of exchange rates,
- prices in international trade are subject to manipulations, resulting froe definite interests of some countrias, or they simply cannot follow the development of world production system.

As can easily be noticed these are just the conditions in which currently the international trade and cooperation system is being shaped. These particular conditions result, for instance, from governmental subsidies oriented at "individual commodities or groups of commodities (e.g. food products), from existing custom tax barriers and from an extremely quick pace of technological progress in the techniques of production.

INTRODUCTION

The problem of international exchange was presented for the first time in precise mathematical terms by Wassily Leontief in his paper entitled."Factor Proportions and the Structure of American Trade", published in Review of Economics and Statistics (1956, vol. 38, no. 4).

The first mathematical approach to the problem presented in Poland, was of international industrial cooperation formulated in the Doctoral dissertation of Andrzej Ameljanczyk (Military Technical Academy, 1975), supervised by this author.

Earlier, a similar formulation of the problem of internetional trade exchange had been forwarded in the Doctoral dissertation of J. Kotyriski (Main School of Plannimg and Statistics, Harsaw, 1968).

If we distinquish the specific problew of international economic cooperation within the broader domain of international trade exchange then the first monograph devoted entirely to economic cooperation is the book in Polish by S.Piasecki. J. Holuniec and A.Ameljaniczyk, entitled "International economic cooperation - Modelling and Optiaization" (PWN, Warsaw-Lódź, i982).

The assumption of complementarity of goods, characteristic for the problem of cooperation, was first introduced by D.Graham in 1923 in his paper "The Theory of International Values Examined" (Quarterly Journal of Economics, vol. 38, no.1).

The present publication contains the original results of studies conducted during the years 1982-1985, being a continuation of work started a dozen years before.

Models of international cooperation considered there (see Chapters 1 to 3) were much simpler than in the ones 'presented here. Still, they are, alas, only theoretical models, which cannot be practically applied in economic activity.

Notwithstanding this situation, the models give certain possibilities with respect to applications. I am convinced that
further in-depth studies in and broadoning of the theory presented here will make out of it in the future a perfect instruent for economic practice. I. think that conclusions resulting from it may contribute to quicker reequilibration of the international economic system, which has been put so much off the equilibrius by the existing debts.

Against the background of existing numerous publications dealing with international trade and cooperation, as well as Intermational specialization, the theory here presented does not require acceptance of the comonly up to date adopted assup'tion concerning economic equilibrie within the cooperating countries, and, furthernore, this theory has much greater practical potential than the previous theories, in which it has been necessary to assume existence of economic equilibrium prices for comparing profitability of trade.

Since the theory presented in this book is independent of existence of prices, it can also be used in deteraination of the price structure of goods included in the trade, profitable for the partners in such an international trade deal. Thus, the structure determined ("terms of trade") guarantees stimulation of International cooperation and inprovement of international specialization.

On the other hand, the theory can also be used in deciding whether the etructure of prices actumlly existing in the intermational market is enhancing or, to the contrary, hindering, the development of trade, whether it does not lead to an unsound development of some of the partners at the expense of the other ones. It is not difficult to realize that the theory presented, and especially its results, concern one of the essential economic problens of present time.

The theory has, indeed, its weak pointe as well. A number of technical simplifying assumptions put aside (their number shall be decreasing as the theory develops), there is one fundamental assumption. It says that every participant of cooperation relation (of international trade) tries to produce the maximu of necessary goode of a given structure, entering the group
considered.
When these ones are consumption goods, we are dealing with the situation, when every partner (every national economy) participating in international exchange, is geared towards maximization of the living standard of own population, given a consumption structure characteristic for this population.

When, however, these are not consurption goods, but, e. g. seniproducts, then this corresponds to the situation in which every participant-producer tries to naxinize own production, this production determining the structure of demand for semi-products enconpassed by cooperation. From this point of view the theory presented may get applied beyond the domain of international cooperation.

Technical: simplifications adopted in the book result from the wish of possibly clear and understandable presentation of the theory. Thus, wanting to show graphically the mechanism of cooperation and to illustrate the results of the theory, the present author emphesizes in the book bilateral cooperation encompassing only two kinds or groupe of commoditien. Analysis of the thus sieplified problen is contained in first seven chapters of the book.

The elghth chapter is in way ganeralization of considerations presented in the provious chapters so as to account for the case of multilateral cooperation, involving multiple goods. This chapter may constitute a separate whole - a sumary of the contents of the book.

Note, then, that we can express the product $b_{12} b_{21}$ in the following manner:

$$
b_{12} \cdot \frac{1}{\frac{1}{b_{21}}}=\frac{b_{12}}{a_{21}} ; \quad \text { where } \quad a_{21}=\frac{1}{b_{21}}
$$

with q_{21} denoting the "energy effectiveness" of coal. meaning the amount of energy (in kilowatt hours) produced out of one unit (ton) of coal (when the amount of coal used up in producing one unit of energy is b_{21}).

The quotient b_{12} / q_{21} can be interpreted therefore, as the amount of energy used up in producing one ton of coal divided by the quantity of energy obtained from this ton of coal.

It is therefore obvious that for all the domains of economy this "quotient must be less - or even much less - than 1. It is only namely then that a pair of coupled economic activities can bring a positive economic effect.

In our example this pair produces coal or energy, or - coal and energy. Thus, if the use of electric power per unit of coal produced was greater than the amount of electricity which can be obtained from this unit of coal then such a system would have to be supplied from outside with energy since the coal produced would not compensate for the energy used up.

Summing up we can assume that in the real econumic systems the product $b_{12} b_{21}$ is always less than one, so that the quantity $1-b_{12} b_{21}$ is strictly positive.

4. A MODEL OF AN OPEN ECONOMY UITH UNLIMITED EXCHANGE CAPACITIES

We shall consider now the previous case assuming, however, that there exists a possibility of buying from an external market both products - "1" and "2", with no limitations (besides the necessity of balancing exports and imports), with their prices being,
respectively, C_{1} and C_{2}. The statement that there are no limitations on purchases of commodities " 1 " and " 2 ", with prices c_{1} and c_{2}, is equivalent to the assumption that buying of " 1 " and "2" for our purposes is possible, that it does not exceed the capacities of our partners in the market (meaning that these quantities are much smaller than total trade volumes in the market), and that it would not lead to price increase in the market - would not disequilibrate the supply/demand system in a significant way. This assumption is also equivalent to accepting that in case we were selling goods we have produced in surplus quantities the market is capable of absorbing this surplus without a drop in the price of the goods we would be selling.

Since the accurate values of the goods considered are of lesser importance, while we are primarily interested in their relation, the "terms of trade", then we put:

$$
\omega_{2}=\frac{c_{2}}{c_{1}}
$$

If we now denote by μ_{i} the magnitude of exports (when $\mu_{i}>0$) or imports (when $\mu_{i}<0$) in a year, then the requirement of financial balancing of foreign trade is expressed as the equality

$$
\mu_{1} c_{1}+\mu_{2} c_{2}=0
$$

where

$$
\begin{aligned}
& \mu_{1}=\varepsilon_{1}-\beta_{1}=\alpha_{1}-\alpha_{2} b_{21}-\beta_{1} \\
& \mu_{2}=\varepsilon_{2}-\beta_{2}=a_{2}-\alpha_{1} b_{12}-\beta_{2}
\end{aligned}
$$

with condition

$$
\frac{\beta_{1}}{\beta_{2}}=\gamma_{2}
$$

On the other hand the requirement of maximum use of production capacities is expressed by the equality

$$
\frac{\alpha_{1}}{\lambda_{1}}+\frac{\alpha_{2}}{\lambda_{2}}=1
$$

Since, from the first equality, we have

$$
\mu_{1}=-\mu_{2} \omega_{2}
$$

then, after substituting this expression and the equality

$$
\beta_{2}=\beta_{1} \gamma_{2}
$$

in the formulae defining the magnitude of exports (or imports) of goods we get

$$
\begin{aligned}
-\mu_{2} \omega_{2} & =\alpha_{1}-\alpha_{2} b_{21}-\beta_{1} \\
\mu_{2} & =a_{2}-\alpha_{1} b_{12}-\beta_{1} r_{2}
\end{aligned}
$$

or. hiaving solved this with respect to μ_{2} :

$$
\alpha_{1}\left(1-w_{2} b_{12}\right)-\alpha_{2}\left(b_{21}-v_{2}\right)=\beta_{1}\left(1+\omega_{2} \gamma_{2}\right)
$$

The, solving this latter equation together with equation

$$
\alpha_{1} A_{2}+\alpha_{2} A_{1}=A_{1} A_{2}
$$

we get

$$
\alpha_{1}=A_{1} \cdot \frac{1+\frac{\beta_{1}}{A_{2}} \cdot \frac{1+\omega_{2} \gamma_{2}}{b_{21}^{-\omega_{2}}}}{1+\frac{A_{1}}{A_{2}} \cdot \frac{1-\omega_{2}^{b} 12}{b_{21}{ }^{-\omega_{2}}}}=\frac{A_{2}\left(b_{21}-\omega_{2}\right)+\beta_{1}\left(1+\omega_{2} \gamma_{2}\right)}{1+\frac{A_{2}}{A_{1}} b_{21}-\omega_{2}\left(b_{12}+\frac{A_{2}}{A_{1}}\right)}
$$

$$
\alpha_{2}=\frac{A_{2} \cdot \frac{\beta_{1}}{1+\frac{1}{A_{2}} \cdot \frac{\omega_{2} \gamma_{2}}{1-\omega_{2} b_{12}}}}{1+\frac{A_{2}}{A_{1}} \cdot \frac{b_{21}-\omega_{2}}{1-\omega_{2} b_{12}}}=\frac{A_{1}\left(1-\omega_{2} b_{12}\right)-\beta_{1}\left(1+\omega_{2} \gamma_{2}\right)}{1+\frac{A_{2}}{A_{1}} b_{21}-\omega_{2}\left(b_{12}+\frac{A_{2}}{A_{1}}\right)} \cdot \frac{A_{1}}{A_{1}}
$$

Graphical solution to this problem is show in Figure 3.

This solution determines the magnitudes of production of goods ${ }^{-1 "}$ and " $2^{\prime \prime}$, i.e. α_{1}, α_{2}, such that their "consumption" β_{1}, β_{2} have a given structure γ_{2}, that imports (purchases) be financially fully compensated by the exports, and the productive potential be fully utilized.

We would like, though, to have the value β_{1} of consumption for satisfaction of demand possibly high, Just as we postulated in the previous case. In order to determine this value let us consider the problen assuming that the inequality given below holds:

$$
\frac{A_{1}}{A_{2}}=\omega_{2}
$$

This assumption is in fact inessential, for it only requires such a numbering of the two goods considered that the inequality

$$
\frac{A_{1}}{A_{2}}=\frac{c_{2}}{c_{1}}
$$

holds. Adoption of such an indexing of comodities facilitates further considerations, and also wakes it simpler to graphically dllustrate the method of solving the problem of maximization of quantity $\boldsymbol{\beta}_{1}$.

Figure 3.

Let us turn attention at Figure 3, in which indexing was adopted satisfying the above inequality. Analysing possible locations of the point $\alpha_{1} ; \alpha_{2}$ on the straight line limiting production, which passes through points $\left(0, A_{2}\right)$ and ($\left.A_{1}, 0\right)$, we can conclude that β_{1} will grow when α_{1} grows and α_{2} decreases.

Since relations involved are linear, it would be the best from the point of view of maximization of β_{1} to take values $\alpha_{1}=\Lambda_{1}$ and $\alpha_{2}=0$ or a maximum value $\alpha_{1}<A_{1}$, the latter together with

$$
a_{2}=a_{1} b_{12}
$$

a. Consider the first case, 1.e. when

$$
\alpha_{1}=1_{1}, \alpha_{2}=0
$$

For this case, in order to ensure the given magnitude of production of commodity "1", we need to import, for production purposes, $A_{1} b_{12}$ of comodity " 2 ". irrespective of imports meant to satisfy internal consumption demand, $\beta_{2}=\beta_{1} \gamma_{2}$.

Look at Figure 4 illustrating the solution to our problem for the first case:

The magnitude of exports of the commodity " 1 " equals

$$
\begin{aligned}
& { }^{A}{ }_{1}{ }^{1} 12^{\omega_{2}} \text { - when meant for financial balancing of purchases } \\
& \text { (imports) of commodity " } 2 \text { " for purposes: of } \\
& \text { producing comodity " } 1 \text { " in quantity } \alpha_{1}=\Lambda_{1} \text { and } \\
& \beta_{2} \omega_{2} \text { - meant for balancing purchases (imports) of } \\
& \text { commodity " } \mathbf{2 " ~}^{\text {" for satisfaction of consumption }} \\
& \text { demand, } \beta_{2}=\beta_{1} \boldsymbol{\gamma}_{2}
\end{aligned}
$$

Figure 4.

28

Thus, quantities β_{1} and β_{2} satisfy the system of equations (see Fig. 4):

$$
\beta_{2}=\beta_{1} \gamma_{2} \quad \text { and } \beta_{1}+\beta_{2} \omega_{2}+A_{1} b_{12} \omega_{2}=A_{1}
$$

which, when solved, yields:

$$
\begin{gathered}
\beta_{1}=A_{1} \cdot \frac{1-\omega_{2}{ }^{b}{ }_{12}}{1+\omega_{2}^{\gamma} 2} \\
\beta_{2}=\gamma_{2} \beta_{1}=A_{1} \gamma_{2} \cdot \frac{1-\omega_{2} b_{12}}{1+\omega_{2}^{\gamma}{ }_{2}}
\end{gathered}
$$

with

$$
\begin{aligned}
& \frac{1}{\omega_{2}} \cdot \mu_{1}=\beta_{2}+A_{1} b_{12}=b_{12}+\gamma_{2} \cdot \frac{1-b_{12} \omega_{2}}{1+\gamma_{2} \omega_{2}} \\
& -\mu_{2}=A_{1}\left(b_{12}+\gamma_{2} \cdot \frac{1-\omega_{2} b_{12}}{1+\omega_{2} \gamma_{2}}\right)
\end{aligned}
$$

If, besides this, in the formula given before defining the production magnitude α_{1}, we substitute β_{1} as defined above then we conclude, in fact, that in order to secure the given level of consumption we have to take $\alpha_{1}=A_{1}$
b. Consider now the second case, i.e." when commodity " 2 " is produced in just such quantity as to secure production of commodity "1". Then, the whole of imports is directed solely to satisfaction of consumption demand:

$$
\mu_{2}=-\beta_{2}
$$

We shall determine for each case the maximum value of β_{1}, with

$$
\beta_{2}=\gamma_{2} \beta_{1}
$$

Since we have, in general,

$$
\begin{aligned}
& \mu_{1}=\alpha_{1}-\alpha_{2} b_{21}-\beta_{1} \\
& \mu_{2}=\alpha_{2}-\alpha_{1} b_{12}-\beta_{2}
\end{aligned}
$$

and there is, in our case, $\mu_{2}=\beta_{2}$ then $\alpha_{2}=c_{1} b_{12}$
On the other hand we have (see Fig.5.):

$$
a_{1}=A_{1}-a_{2} \frac{A_{1}}{A_{2}}
$$

so that by solving this system we get

$$
a_{1} \frac{A_{2}}{b_{12}+\frac{A_{2}}{A_{1}}} \quad a_{2}=\frac{b_{12} A_{2}}{b_{12}+\frac{A_{2}}{A_{1}}}
$$

Now, by substituting these quantities in the formula for μ_{1} and taking into account that

$$
\mu_{1}=-\mu_{2} \omega_{2}=\beta_{2} \omega_{2}
$$

we obtain the follouing equation:

$$
\beta_{2} \omega_{2}=\frac{A_{2}}{b_{12}+\frac{A_{2}}{A_{1}}}-b_{21} \cdot \frac{b_{12} A_{2}}{b_{12}+\frac{A_{2}}{A_{1}}}-\beta_{1}
$$

from which, having introduced $\beta_{2}=\beta_{1} \gamma_{2}$ we can deternine the quantity we are looking for:

$$
A_{1}=\frac{A_{2}}{1+\omega_{2} \gamma_{2}} \cdot \frac{1-b_{12} b_{21}}{b_{12}+\frac{A_{2}}{A_{1}}}
$$

The magnitudes of exports and imports shall be equal, respectively:

$$
\begin{gathered}
\mu_{1}=A_{1} \cdot \frac{\omega_{2} \gamma_{2}}{1+\omega_{2}^{\gamma} \gamma_{2}} \cdot \frac{1-b_{12}^{b_{21}}}{b_{12}+\frac{A_{2}}{A_{1}}} \\
\quad \mu_{2}=-\mu_{1} \cdot \frac{1}{\omega_{2}}
\end{gathered}
$$

Figure 5

Let us summarize now the possibilities of maximization of consumption, in case of an open economy with unlimited possibilities of exchange. Thus, we can state that:
f the optimal production level for the open economy with unlimited possibilities of exchange is defined by the quantities

$$
\alpha_{1}= \begin{cases}A_{1}, & \text { if } \beta_{1}^{a)} z \beta_{1}^{b)} \\ \frac{A_{2}}{b_{12}+\frac{A_{2}}{A_{1}}} & \text { in the opposite case }\end{cases}
$$

and

$$
\alpha_{2}=\left\{\begin{array}{l}
0, \text { if } \beta_{1}^{a)} s \beta_{1}^{b)} \\
\frac{\Lambda_{2}^{b} 12}{b_{12}+\frac{A_{2}}{A_{1}}}, \\
\text { in the opposite case }
\end{array}\right.
$$

under the assumption that $\frac{C_{2}}{C_{1}}=\frac{A_{1}}{A_{2}}$. In the above the quantities $\beta_{1}^{a)}$ and $\beta_{1}^{b)}$ are defined with the formulae

$$
\begin{gathered}
\beta_{1}^{a)}=A_{1} \cdot \frac{1-b_{12}^{\omega_{2}}}{1+\gamma_{2}^{\omega_{2}}} \\
\beta_{1}^{b)}=A_{2} \cdot \frac{1}{1+\gamma_{2}^{\omega_{2}}} \cdot \frac{1-b_{12}^{b_{21}}}{b_{12}+\frac{A_{2}}{A_{1}}}
\end{gathered}
$$

Comparing of quantities β is not straightforward so that let us better try to establish whether inequality $\beta_{1}^{a)}>\beta_{1}^{b}$) does not
hold, Incidentally, always. In order to do so we shall calculate the difference $\beta_{1}^{a)}-\beta_{1}^{b)}$. After simple transformations we obtain:

$$
\beta_{1}^{a)}-\beta_{1}^{b)}=\frac{A_{1} b_{12} Q}{\left(1+\gamma_{2} \omega_{2}\right)\left(b_{12}+\frac{A_{2}}{A_{1}}\right)}
$$

with

$$
Q=1-b_{12} \omega_{2}-\frac{A_{2}}{A_{1}}\left(\omega_{2}-b_{21}\right)=\frac{1}{c_{1} A_{1}}\left[A_{1}\left(c_{1}-c_{2} b_{12}\right)-A_{2}\left(c_{2}-c_{1} b_{21}\right)\right]
$$

The sign of the difference depends upon the sign of expression defining Q. Note that quantities $1-b_{12} \omega_{2}$ as well as $\omega_{2}-b_{21}$ are. always positive, since

$$
\begin{aligned}
& 1-b_{12} \omega_{2}=1-b_{12} \cdot c_{2}=\frac{1}{c_{1}}\left(c_{1}-b_{12} c_{2}\right) \\
& \omega_{2}-b_{21}=\frac{c_{2}}{c_{1}}-b_{21}=\frac{1}{c_{1}}\left(c_{2}-b_{21} c_{1}\right)
\end{aligned}
$$

The terms $C_{1}-b_{12} C_{2}$ and $C_{2}-b_{21} C_{1}$, which define the prices of units of commodities " 1 " or ${ }^{\prime \prime} 2$ " decreased by the cost of one of the components necessary for their production must be positive quantities.

Consequentily, the sign of the expression defining Q depends upon the difference:

$$
A_{1}\left(C_{1}-b_{12} C_{2}\right)-A_{2}\left(C_{2}-b_{21} C_{1}\right)
$$

Thus, if inequality

$$
\frac{c_{1}-b_{12} c_{2}}{C_{2}-b_{21} C_{1}}>\frac{A_{2}}{A_{1}}
$$

or

$$
\frac{1-\omega_{2} b_{12}}{\omega_{2}-b_{21}}>\frac{A_{2}}{A_{1}}
$$

holds, then $\beta_{1}^{a)}>\beta_{1}^{b}$ and the optinal value or α_{1} is $\alpha_{1}=A_{1}$.
Then:

$$
\beta_{1}=A_{1} \cdot \frac{1-w_{2}^{b} 12}{1+\omega_{2}{ }^{7} 2}
$$

Let us consider other characteristic cases of possible production strategies. They are as follows:
c. We are producing primarily the commodity $\mathbf{2}^{2}$. and also commodity "1" in such quantities as to ensure its supplies necessary for producing comeodity " $2^{\prime \prime}$. An adequate level of consuption of comodity $1^{\prime \prime}$ is ensured through imports. In this situation we have

$$
a_{1}=\frac{a_{2} b_{21}}{A_{1}}=\frac{A_{2}}{b_{21}+\frac{1}{A_{2}}}=\frac{b_{21} \cdot \frac{A_{1}}{A_{1}}}{1+}
$$

and

$$
\begin{aligned}
\beta_{1}^{c)} & =\frac{A_{1} \omega_{2}}{b_{21}+\frac{A_{1}}{A_{2}} \cdot \frac{1-b_{12} b_{21}}{1+\gamma_{2} \omega_{2}}=} \\
& =\frac{A_{2} \omega_{2}}{1+b_{21} \cdot \frac{1}{A_{1}}} \cdot \frac{1-b_{12} b_{21}}{1+\gamma_{2}{ }_{2}}
\end{aligned}
$$

d. We are producing molely the comodity " 2 ". The inports of comodity "1" are used to satisfy the demands related to the necessity of meeting the needs for comodity " 2 " as well as those resulting fron a definite consumption level.

In this situation we have $a_{2}=0_{1} a_{2}=\mu_{2}$, and

$$
\beta_{1}^{d)}=A_{2} \cdot \frac{\omega_{2}-b_{21}}{1+\omega_{2}^{\gamma} 2}
$$

By comparing the two above strategies we deternine the value of the difference $\beta_{1}^{()}-\beta_{1}^{d)}$ sinilarly as we did before. After simple transformations we obtain, therefore

$$
\beta_{1}^{()}-\beta_{1}^{d)}=0-\frac{L_{2} \omega_{21}}{1+\omega_{2}{ }^{7}}
$$

The sign of this difference depends upon the sign of Q.
If we deternine in a sililar way the difference

$$
\beta_{1}^{b)}-\beta_{1}^{c)}=0 \cdot \frac{A_{1}\left(1-b_{12} b_{21}\right)}{\left(1+a_{2}^{z_{2}}\right)\left(b_{12}+\frac{A_{2}}{A_{1}}\right)\left(b_{21}+\frac{A_{1}}{A_{2}}\right)}
$$

then we can formulate the following conclusion:
If QO, that is, if the following inequality

$$
\frac{1-c_{2} b_{12}}{a_{2}-b_{21}}>\frac{A_{2}}{A_{1}}
$$

holds, then

$$
\beta_{1}^{()}>\beta_{1}^{b)}>\beta_{1}^{()}>\beta_{1}^{d)}
$$

and, in the opposite case

$$
\beta_{1}^{a)}<\beta_{1}^{b)}<\beta_{1}^{c)}<\beta_{1}^{d)}
$$

Thus, we have altogether proved the following

Theoren 1.

If the following inequality

$$
\frac{1-\omega_{2} b_{12}}{\omega_{2}-b_{21}}>\frac{A_{2}}{A_{1}}
$$

then $\dot{\alpha}_{1}=A_{1}$, and $\dot{\beta}_{1}=\Lambda_{1} \cdot \frac{1-\omega_{2} b_{12}}{1+\omega_{2}^{\gamma} 2}$.
while in the opposite case there is: $\alpha_{2}=A_{2}$, and $\beta_{1}=A_{2} \cdot \frac{\omega_{2}-b_{21}}{1+\omega_{2} \gamma_{2}}$ If inequality becomes equality then every strategy is equally optimal and

$$
\beta_{1}=A_{1} \cdot \frac{1-\omega_{2} b_{12}}{1+\gamma_{2}^{\omega}}=A_{2} \cdot \frac{\omega_{2}^{-b} \cdot 21}{1+\omega_{2} \gamma_{2}}
$$

The proof of this theorem is constituted by the considerations given previously.

Note that if the commodities considered are consumption goods of industrial origin (such as e.g. home appliances - washing machines, refrigerators,...), the economic agent is national economy, and the outside market is the international one, that the demand structure $\hat{\gamma}$ can be interpreted as the structure of consumption of the society of a given country, while Theorem 1 determines the optimal production, exports and imports policy for these commodities.

If population number is equal L then the "living standard", defined as the level P_{1} of per capita consumption of commodity " 1 " (together with the corresponding consumption level of commodity "2"), will be equal

$$
P_{1}=\frac{\beta_{1}}{L}
$$

It is obvious that we try to make this "standard of living P_{1} " as high as possible, meaning that we tend to maximize the supplies ensuring satisfaction of demand at the possibly high level.

For an enterprise producing two kinds if semi products, of which eventually a final product is made. Theorem 1 makes it possible to perform a choice of specialization. Thus, namely, it is attained through giving up of production of one of the semi
products t.o the advantage of the production intensity of the other, in such a way as to purchase as much of the non-produced semi-product for the money accruing from the sales of the surplus of the produced semi-product, as to ultimately increase the production of the final good. Since with increase of production of the innal product production value as well as profit increase, too, then it is understandable that the growth of final production magnitude of an enterprise is almost always advantageous for an enterprise.

5. MODEI OF COOPERATION OF TWO ECONOMIC ORGANIZATIONS (UITH LIMITED EXCHANGE)

The model-considered in the previous chapter assumed that exchange of goods is not anyhow linited (both at the sales end of the good we have in surplus ard the purchase end of the good which we are in need of) and that this exchange takes place at the constant price ratio ω_{2}.

Such a situation does not exist when economic cooperation takes place between two economic organizations having limited capacities of absorbing exports. Exchange between them is then limited by the finits capacities of importing the surpluses of products turned out within the other organization, this limitation being a mutual one. Besides that, in bilateral agreenents it is not necessary that existing international or national prices of products in question be valid. It may happen that, for instance, "contractual prices" are introduced, for purposes of keeping financial balances, these prices, in some cases, depending also upon the magnitude of exchange.

Consequently, we can approach the problem of determination of optimal cooperation strategies in a somewhat different manner.

Let us look at Figure 6 (and at Figure 7). In the first "quarter" of the coordinate systen $\left(\alpha_{1}, \alpha_{2}\right)$ the characteristics of

BIBLICRAPHY

1. Aganbegyan, A., Bagrinovski, K. Granberg, A.: Modele matematyczne w planowaniu gospodarczym (mathematical models in economic planning, in Polish). PWE, Warszawa 1974.
2. Ameljanczyl, A.: Niefinansowy model sterowania wspólpraca miedzynarodowa (A non-financial model of controlling the international cooperation, In Polish). Organizacja i Kierowanie, No. 3/1976.
3. Amel jariczyk, A., Holubiec, J. Piasecki, S. : Optiaisation of international economic cooperation. Ricerche Econoniche, no.1, 1978.
4. Ameljanczyk, A. Holubiec, J.: Optimal international economic cooperation and solution of a multi-person cooperative game. Ricerche Ecorioniche, no. 1/2, 1981.
5. Amel Janiczyk, A.: Multicriterial optimisation of international economic cooperation. Vth International Conference on Systems Science, Hrockaw (Poland), 1978. Prace Naukowe ICT Politechniki Uroclawskiej, no.39, 1978.
6. Anel Janczyk, A., Holubiec, J.: Modelling of international cooperation in energy by multiperson cooperative game. Proc. of the First International Conference on Applied Modelling and SImulation, ANSE, Lyon, 1981 (vol.V).
7. AmelJanczyk, A., Holubiec, J.: Compromise solution of multiperson cooperative game and its application to international energy consumption. Large Scale systems. Theory and Applications. Pergamon Press, London, 1983.
8. Amel janczyk, A., Holubiec, J.: The influence of political conditions on the international economic cooperation. Proc. of SWIIS Workshop: Supplemental Ways for Improving International Stablifty. Pergamon Press, Oxford, 1984.
9. Amel janczyl, A. Holubiec, J.: Modelling of economic cooperation among blocks of countries with different politico-economic objectives. 9th VorIt Congress of IFAC. Pergamon Press (IFAC Proc. Series, no.6); Oxford 1985.
10. Aumann, R.J.: Existence of competitive equilibria in markets with a continum of traders. Econometrica, 34/1966.
11. Bondareva, O.N.: 0 teoretiko-igrovykh model'akh v ekonomik'e (On game theoretical models in economics, in Russian). Izd. Leningradskogo Universiteta, Leningrad 1974.
12. Czerwiniski, Z.: Problematyka planowania cen w. ujeciu matematycznym (The problem of price planning in the mathematical perspective, in Polish). PTPN PAN, Poznan 1963.
13. Czerwinski, 2.: Podstawowe problemy konstrukcji racjonalnego systemu cen. Poznańskie Roczniki Ekonomiczne. Poznań 1969.
14. Debreu, G.: Economies with a finite set of equilibria. Econometrica, 38, 1970.
15. Debreu, G., Scarf, H.: A limit theorem on the core of an econony. Internat. Econ. Rev., 4, no. 3, 1963.
16. Gale, D.: On optimal development in a multi-sector economy. Review of Economic Studies, 34/1, no.97, 1976.
17. Gale, D.: The Thory of Linear Economic Models. MoGraw-Hill, New York 1960.
18. Gale, D.: On optimal development in a multi-sector economy. Rev. Econ. Stidies, 34, no. 1, 1967.
19. Georgesen-Roegen, N.: Some properties of a generalized Leontief model. Activity Analysis of Production and Allocation, T. C. Koopmans, ed. , New York 1951.
20. Gamberelli, G. Holubiec, J.: Modelling and optinization of international economic cooperation via fuzzy mathematical progranming and cooperative games. Control and Cybernetics, no.4, 1988
21. Graham, D.: The theory of international values examined. Qarterly Journal of Economics, 38, no.1:
22. Hahn, F., Matthews, R.C.O.: The theory of economic growth. A survey. Economic Journal, 74, 1964.
23. Holubiec, J., Plasecki, S.: La collaborazione economica Internazionale e la uniforita dei prezzi internazionali (Intermational economic cooperation and the uniformity of
international prices, in Italian). Rivista di Politica Econonica, no. 12. 1978.
24. Holubiec, J.: Modelling of the International Economic Cooperation. System Theory and Hathematical Economics. Pitagora Ed., Bologna, 1986.
25. Intriligator, M. : Mathematical Optimization and Economic Theory. Prentice Hall, New York 1971.
26. Kemeny, J.G., Morgenstern, O., Thompson, G.L.: A generalization of the von Neumann model of an expanding economy. Econometrica, 24, no. 2, 1956.
27. Kotynski, J.: Teoria wymiany miedzynarodowej a programowanie liniowe. PVE, Warszawa 1970.
28. Kulikowski, R., ed.: Modelowanie systemowe spoleczno gospodarczego rozwoju kraju (Systems modelling of the socioeconomic development of a country, in Polish). PWN, Warszawa 1979.
29. Leontief, W.: Factor proportion and the structure of American trade. Further theoretical and empirical analysis. Review of Economics and Statistics, 38, no. 4.
30. Leontief, W.: Structure of American economy 1919-1929

Cambridge-Masschusetts, Harvard Univ. Press 1941.
31. Leontief, W., Carter A.P.i. Petri P.A.: The Future of the World Econony, New York 1977, Oxford Univ. Press.
32. Luce R.D., Reiffa H.: Gamés and Decisions.

Willey and Sons, New York 1957.
33. Maciejowski, W.: Algorytmy optymalizacji struktury handlu zagranicznego 1 kursów kierunkowych (Algorithms of optimization of the structure of foreign trade and the directional rates, in Polish). Zastosowanie metod matematycznych do analizy ekonomiczne J. ZBKS HZ, Warszawa, 1968.
34. Maclejewski, W.: Ekonometryczne modele wymiany miedzynarodowej (Econometric models of international trade, in Polish). PWN, Warszawa 1981.
35. Mycielski, J. Trzeciakowski, W.: Criteres du choix des investissements rapidement rentables (Criteria of choice of quick
repayment investments, in French). Economies and Societies, no. 1, 1970.
36. Mycielski, J., Rey, K., Trzeciakowski, W.: Decomposition and Optimization of Short-Run Planning in a Planned Econowy (I.Barna, ed.). London 1963.
37. Nash, J.F.: Equlibrium points in n-person games. Proc. Nat. Acad. Sciences, USA, 36, 1950.
38. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton 1974.
39. Nikaido, H.: Convex Structures and Economic Theory. Academic Press, New York - London 1968.
40. Pawlowski, 2.: Ekonometria (Econometrics, in Polish) PWN, Warszawa 1978 (fifth edition).
41. Piasecki, St.; Ameljanczyk, A.: A control of international economic cooperation. IVth International Conference on Systems Science, Urociaw, Poland, 1977. Prace Naukowe ICT Politechniki Urocławskiej, no.47, 1977.
42. Plasecki, St., Holubiec, J.: Sterowanie wyilana gospodarcza (Controlling the economic exchange, in Polish) Prace IBS-PAN, no. 32, Warszawa 1979.
43. Piasecki, St., Holublec, J.: Wieloletnia koordynacja miedzynarodowego rozwoju gospodarczego (Multiannual coordination of the international economic development, in Polish). Prace IBS PAN, no. 52. Warszawa 1980.
44. Piasecki, St., Holubiec J.: International economic cooperation and the uniform international prices (in polish). Prace IBS PAN Nr 52, Warszawa 1980.
45. Plasecki, St., Holubiec, J.: Pewne zagadnienie miedzynarodowej wspolpracy gospodarczej (On a certain problem in international economic cooperation, in Polish). Prace IBS PAN, no. 77, 1981.
46. Piaseck, St.; Holubiec, J., Aneljariczyk, A.: Miedzynarodowa kooperacja gospodarcza (The Internatiomal Economic Cooperation, in Polish). PWN, Lódえ - Harszawa 1982.
47. Piasecki S.: Model of Socio-Economic National Development
(in polish). Prace IBS PAN, No 164 Warszawa 1988.
48. Plaszczyriski, W.: Matematyczne modele teorl! handlu miedzynarodowego (Mathematical Models of the Theory of International Trade, in Polish). PWE, Warszawa 1974.
49. Rosati, D.: Polityka eksportowa. PRE, Harszawa 1990.
50. Rosenmüller, J.: Kooperative Spiele und Market (Cooperative Games and Market, in German). Springer Verlag, Berlin - Heidelberg - New York 1971.

51 .Roth, A.E.: Subsolutions and supercore of cooperative games. Hathematics of Operations Research, voi.1, no.1, 1976.
52. Shapley, L.S., Shubik, M.: On market games. J.Economic Theory 1, no. 1, 1969.
53. Shubik, M.: Edgeworth market games. Annals of Math. Studies, vol.IV, no. 40, 1959.

54 .Solow, R.M.: A contribution to the theory of economic growth. Quarterly Journal of Econonics, 70, 1956.
55. Shagalov, G.L.: Problemy optimalnogo planirovaniya vneshne-ekononicheskikh sviazey (Problems of optimum planning of external econonic relations, in Russian). Izd. Moskva 1973
56. Trzeciakowski, K.: Modele pośredniego kierowania gospodarka planowa w sterowaniu handlen zagranicznym (Models of indirect management of a planned economy in the control of foreign trade, in Polish). PWE, Warszawa 1975.
57. Tsukui, J.: Turnpike theorem in a generalized dynamic input-output system. Econometrica, 34, no. 2̀, 1966.
58. Uzawa, H.: Optimal growth in a'two-sector model of capital accumatation. Review of Econonic Studies, 31, 1964.

For order and other information, please write to:
Systems Research Institute, Polish Academy of Sciences ul. Newelska 6, 01-447 Warsaw, Poland

$$
\text { Fax: +4822/37 } 2772
$$

ISBN 83-90-00412-5-1

