POLISH ACADEMY OF SCIENCES SYSTEMS RESEARCH INSTITUTE

THE INTERNATIONAL ECONOMIC COOPERATION

 THEORETICAL FOUNDATIONS
STANIStAW PIASECKI

THE INTERNATIONAL ECONOMIC COOPERATION

 THEORETICAL FOUNDATIONS
STANISLAW PIASECKI

PREFACE

The main difference between the work here presented and the other studies related to the same, generally speaking, domain, consists in the fact that considerations contained in this book indicate the possibility of resolving questions concerning the choice of the subject and establishment of profitability of international trade and cooperation in conditions when:

- prices on the internal maricet do not correspond to social costs,
* there is lack of conviction as to correctness of exchange rates,
- prices in international trade are subject to manipulations, resulting froe definite interests of some countrias, or they simply cannot follow the development of world production system.

As can easily be noticed these are just the conditions in which currently the international trade and cooperation system is being shaped. These particular conditions result, for instance, from governmental subsidies oriented at "individual commodities or groups of commodities (e.g. food products), from existing custom tax barriers and from an extremely quick pace of technological progress in the techniques of production.

INTRODUCTION

The problem of international exchange was presented for the first time in precise mathematical terms by Wassily Leontief in his paper entitled."Factor Proportions and the Structure of American Trade", published in Review of Economics and Statistics (1956, vol. 38, no. 4).

The first mathematical approach to the problem presented in Poland, was of international industrial cooperation formulated in the Doctoral dissertation of Andrzej Ameljanczyk (Military Technical Academy, 1975), supervised by this author.

Earlier, a similar formulation of the problem of internetional trade exchange had been forwarded in the Doctoral dissertation of J. Kotyriski (Main School of Plannimg and Statistics, Harsaw, 1968).

If we distinquish the specific problew of international economic cooperation within the broader domain of international trade exchange then the first monograph devoted entirely to economic cooperation is the book in Polish by S.Piasecki. J. Holuniec and A.Ameljaniczyk, entitled "International economic cooperation - Modelling and Optiaization" (PWN, Warsaw-Lódź, i982).

The assumption of complementarity of goods, characteristic for the problem of cooperation, was first introduced by D.Graham in 1923 in his paper "The Theory of International Values Examined" (Quarterly Journal of Economics, vol. 38, no.1).

The present publication contains the original results of studies conducted during the years 1982-1985, being a continuation of work started a dozen years before.

Models of international cooperation considered there (see Chapters 1 to 3) were much simpler than in the ones 'presented here. Still, they are, alas, only theoretical models, which cannot be practically applied in economic activity.

Notwithstanding this situation, the models give certain possibilities with respect to applications. I am convinced that
further in-depth studies in and broadoning of the theory presented here will make out of it in the future a perfect instruent for economic practice. I. think that conclusions resulting from it may contribute to quicker reequilibration of the international economic system, which has been put so much off the equilibrius by the existing debts.

Against the background of existing numerous publications dealing with international trade and cooperation, as well as Intermational specialization, the theory here presented does not require acceptance of the comonly up to date adopted assup'tion concerning economic equilibrie within the cooperating countries, and, furthernore, this theory has much greater practical potential than the previous theories, in which it has been necessary to assume existence of economic equilibrium prices for comparing profitability of trade.

Since the theory presented in this book is independent of existence of prices, it can also be used in deteraination of the price structure of goods included in the trade, profitable for the partners in such an international trade deal. Thus, the structure determined ("terms of trade") guarantees stimulation of International cooperation and inprovement of international specialization.

On the other hand, the theory can also be used in deciding whether the etructure of prices actumlly existing in the intermational market is enhancing or, to the contrary, hindering, the development of trade, whether it does not lead to an unsound development of some of the partners at the expense of the other ones. It is not difficult to realize that the theory presented, and especially its results, concern one of the essential economic problens of present time.

The theory has, indeed, its weak pointe as well. A number of technical simplifying assumptions put aside (their number shall be decreasing as the theory develops), there is one fundamental assumption. It says that every participant of cooperation relation (of international trade) tries to produce the maximu of necessary goode of a given structure, entering the group
considered.
When these ones are consumption goods, we are dealing with the situation, when every partner (every national economy) participating in international exchange, is geared towards maximization of the living standard of own population, given a consumption structure characteristic for this population.

When, however, these are not consurption goods, but, e. g. seniproducts, then this corresponds to the situation in which every participant-producer tries to naxinize own production, this production determining the structure of demand for semi-products enconpassed by cooperation. From this point of view the theory presented may get applied beyond the domain of international cooperation.

Technical: simplifications adopted in the book result from the wish of possibly clear and understandable presentation of the theory. Thus, wanting to show graphically the mechanism of cooperation and to illustrate the results of the theory, the present author emphesizes in the book bilateral cooperation encompassing only two kinds or groupe of commoditien. Analysis of the thus sieplified problen is contained in first seven chapters of the book.

The elghth chapter is in way ganeralization of considerations presented in the provious chapters so as to account for the case of multilateral cooperation, involving multiple goods. This chapter may constitute a separate whole - a sumary of the contents of the book.

Let us note that the vaiues determined, $\alpha_{1}, \alpha_{1}^{I I}$ (and $\alpha_{2}^{I} \alpha_{2}$) define the optimun cooperation, that 18 - the one which guarantees maximization of the value of $\beta_{1}^{I}+\beta_{1}^{I I}$ (and of $\beta_{2}^{I}+\beta_{2}^{I I}$), uith the following inequality being always satisfied:

$$
\beta_{1}^{I}+\beta_{1}^{I I}={ }_{\beta}^{\varrho}+\beta_{1} I I
$$

where, as before, ${ }^{\Theta_{1}}$ and $\beta_{1}{ }_{1}$ are consumption levels which can be ensured separately by each side for itself.

This, however, does not mean at all that inequalities

$$
\begin{aligned}
& \beta_{1}^{I}=\beta_{1}^{I} \\
& \beta_{1}^{I I}=\beta_{1}^{I I}
\end{aligned}
$$

will hold. Thus, there may occur a situation when optimum cooperation guaranteeing the possibility of significant increase of the overall consumption would turn out. disadvantageous for one of the participants, for it would only produce for this participant a level of consumption lower than the one that could be attained by his independent action. Obviously, the other participant of coaperation would gain the whol profit fron cooperation - and even somewhat more than that.

Such a situation would of course be instable, and it could not be inintalned over a longer period of time. That is why the two Inequalities,

$$
\begin{aligned}
& \beta_{1}^{I}=\beta_{1}^{I} \\
& \beta_{1}^{I I} \beta_{1}^{I I}
\end{aligned}
$$

shall further on be referred to as the conditions of existence of
stable cooperation.
Note that this condition actually concerns existence of a stable optimum cooperation. In order, therefore, to be able to call this condition the condition of existence of any stable cooperation, we would have to demonstrate that if there is no stable optimim cooperation then there is no other stable cooperation at all.

We must then, analyse in more detail the factors, upon which the division of the quantity $\beta_{1}^{I}+\beta_{1}^{I I}$, maximized in optimum cooperation, into two components - β_{1}^{I} and β_{1}^{II} - depends. It is not difficult to notice that this division depends upon the value of the ratio ω_{2} ("terms of trade"). And conversely - the condition for existence of stable cooperation defines the range of values of. ω_{2} for which cooperation has stable nature.

Let us now put our considerations in order from the point of view of determination of the ranges of values of ω_{2}, for which cooperative exchange shall be materially and financially balanced and shall additionally fulfill the stability condition, meaning that the division of advantages accruing from cooperation shall guarantee that individual advantages of each of the sides. be greater than the ones they can ensure themselves acting in isolation.

Let us also recall that the values of $\alpha_{1}^{I}, \alpha_{1}^{I I}$ are defined with the formulae

$$
\dot{\alpha}_{1}^{I}= \begin{cases}\max \left\{0, \frac{D-A_{1}^{I I}{ }_{B}}{B^{I}}\right\} & \text { when } E \leq 0 \\ \left.\operatorname{man} \frac{D}{B^{I}}, A_{1}^{I}\right\} & \text { when } E>0\end{cases}
$$

$$
\stackrel{\alpha}{\alpha}_{1}^{I I}=\left\{\begin{array}{cc}
\max \left\{0, \frac{D-A_{1}^{I} B^{I}}{B^{I I}}\right\} & \text { when } E>0 \\
\min \left\{\frac{D}{B^{I I}}, A_{1}^{I I}\right\} & \text { when } E \leq 0
\end{array}\right.
$$

where

$$
\begin{aligned}
& D=G+\frac{1}{\gamma_{2}\left(A_{2}^{I}+A_{2}^{I I}\right) \quad G=A_{2}^{I} b_{21}^{I}+A_{2}^{I I} b_{21}^{I I}} \\
& B^{I}=B_{21}^{I}+\frac{1}{\gamma_{2}} B_{12}^{I} \quad B^{I I}=B_{21}^{I I}+\frac{1}{\gamma_{2} B_{12}^{I I}} \\
& B_{21}^{I}=1+b_{21}^{I} \cdot \frac{A_{2}^{I}}{A_{1}^{I}} \quad B_{12}^{I}=b_{12}^{I I}+\frac{A_{2}^{I}}{A_{1}^{I}} \\
& B_{21}^{I I}=1+b_{21}^{I I} \cdot \frac{A_{2}^{I I}}{A_{1}^{I I}} \quad B_{12}^{I I}=b_{12}^{I I}+\frac{A_{2}^{I I}}{A_{1}^{I I}} \\
& E=B_{21}^{I}-\frac{B^{I}}{B^{I I} B_{21}^{I I}}=\frac{B_{21}^{I} B_{12}^{I I}-B_{12}^{I} B_{21}^{I I}}{\gamma_{2} B_{21}^{I I}+B_{12}^{I I}}
\end{aligned}
$$

On the other hand the values of $\stackrel{\odot 1}{1}_{1}^{Q_{1} I I}$ satisfy the systen of equations of an autarchic economy:

$$
\begin{gathered}
\alpha_{1}^{I}-\alpha_{2}^{I} b_{21}^{I}-\beta_{1}^{I}=0 \\
\alpha_{2}^{I}-\alpha_{2}^{I} b_{12}^{I}-\gamma_{2} \beta_{1}^{I}=0 \\
\frac{\alpha_{1}^{I}}{A_{1}^{I}}+\frac{\alpha_{2}^{I}}{A_{2}^{I}} \leq 1
\end{gathered}
$$

with the postulate of maximization of the value of $\boldsymbol{\beta}_{1}^{I}$:

$$
\beta_{1}^{I} \Rightarrow \max
$$

By solving the above problem we obtain:

$$
\varnothing_{1}^{I}=\frac{A_{2}^{I}}{\gamma_{2} B^{I}}\left(1+\gamma_{2} b_{21}^{I}\right)
$$

and

$$
\hat{\beta}_{1}^{c_{1}}=\frac{\Lambda_{2}^{I}}{\gamma_{2} B^{I}}\left(1-b_{12}^{I} b_{21}^{I}\right)
$$

Similarly, we shall obtain for the second economy

$$
\dot{\varepsilon}_{1}^{I I}=\frac{A_{2}^{I I}}{\gamma_{2}^{B^{I I}}\left(1+\gamma_{2}^{b}{ }_{21}^{I I}\right)}
$$

and

$$
{ }_{\beta_{1}}^{\mathrm{II}}=\frac{\mathcal{A}_{2}^{I I}}{\gamma_{2} B^{I I}}\left(1-b_{12}^{I I} b_{21}^{I I}\right)
$$

Recall that for the materially balanced exchange, that is - for the one which satisfies the conditions

$$
\begin{aligned}
& \mu_{1}^{I}+\mu_{1}^{I I}=0 \\
& \mu_{2}^{I}+\mu_{2}^{I I}=0
\end{aligned}
$$

but which is not necessarily financially balanced, the following equation also holds:

$$
\alpha_{1}^{I} B^{I}+\alpha_{1}^{I I_{B}^{I I}=D}
$$

with

$$
\beta_{1}^{I}+\beta_{1}^{I I}=\alpha_{1}^{I} B_{21}^{I}+\alpha_{1}^{I I} B_{21}^{I I}-G
$$

On the other hand, for the financially balanced exchange, lie. for the one satisfying the conditions

$$
\begin{gathered}
\mu_{1}^{I}+\mu_{2}^{I} \omega_{2}=0 \\
\mu_{1}^{I I}+\mu_{2}^{I I} \omega_{2}=0
\end{gathered}
$$

but not necessarily materially balanced, we have

$$
\begin{aligned}
& \beta_{1}^{I}=\frac{\alpha_{1}^{I}\left(B_{21}^{I}-\omega_{2}^{\left.B_{12}^{I}\right)+v^{I}}\right.}{1+\omega_{2}^{\gamma} 2}, \quad v^{I}=A_{2}^{I}\left(\omega_{2}-b_{21}^{I}\right), \\
& \beta_{1}^{I I}=\frac{\alpha_{1}^{I I}\left(B_{21}^{I I}-\omega_{2} B_{12}^{I I}\right)+v^{I I}}{1+\omega_{2}^{I} 2}, \quad v^{I I}=A_{2}^{I I}\left(\omega_{2}-b_{21}^{I I}\right),
\end{aligned}
$$

In every case, obviously, exchange guarantees an adequate structure of consumption, so that

$$
\frac{\beta_{2}^{I}}{\beta_{1}^{I}}=\gamma_{2}=\frac{\beta_{2}^{I I}}{\beta_{1}^{I I}}
$$

Consequently, the materially and financially balanced exchange is defined by equations

$$
\begin{gathered}
\alpha_{1}^{I} B^{I}+\alpha_{1}^{I I} B^{I I}=D \\
\beta_{1}^{I}=\frac{\alpha_{1}^{I}\left(B_{21}^{I}-\omega_{2} B_{12}^{I}\right)+v^{I}}{I+\omega_{2}^{I} 2} \\
\beta_{1}^{I I}=\frac{\alpha_{1}^{I I}\left(B_{21}^{I I}-\omega_{2} B_{12}^{I I}\right)+v^{I I}}{1+\omega_{2}^{I}{ }_{2}}
\end{gathered}
$$

with - as can be easily verified - the following equation holding in this case:

$$
\beta_{1}^{I}+\beta_{1}^{I I}=\alpha_{1}^{I} B_{21}^{I}+\alpha_{1}^{I I} B_{21}^{I I}-G
$$

Thus, we can write down the condition of naterially and financially belanced exchange in the form of the system of inequalities:

$$
\begin{aligned}
& \alpha_{1}^{I}\left(B_{21}^{I}-\omega_{2} B_{12}^{I}\right)+v^{I}>\stackrel{\beta}{1}_{I}^{I}\left(1+\omega_{2} \gamma_{2}\right) \\
& \alpha_{1}^{I I}\left(B_{21}^{I I}-\omega_{2} B_{12}^{I I}\right)+y^{I I}>\stackrel{\ominus}{\beta}_{1}^{I I}\left(1+\omega_{2} \gamma_{2}\right)
\end{aligned}
$$

and the quantities $\alpha_{1}^{I}, \alpha_{1}^{I I}$ are linked by equation

$$
\alpha_{1}^{I} B^{I}+\alpha_{1}^{I I} B^{I I}=D
$$

On the other hand the overall consumption,

$$
\beta_{1}^{I}+\beta_{1}^{I I}=\alpha_{1}^{I} B_{21}^{I}+\alpha_{1}^{I I} B_{21}^{I I}-G
$$

after substitution of

$$
\alpha_{1}^{I I}=\frac{D-\alpha_{1}^{I} B^{I}}{B^{I I}}
$$

shall be equal

$$
\beta_{1}^{I}+\beta_{1}^{I I}=\alpha_{1}^{I} E+C, \quad c=\frac{D}{B^{I I}} \cdot B_{21}^{I I}-G
$$

with the value of α_{1}^{I} selected from the range defined by

$$
\max \left\{0, \frac{D-A_{1}^{I I} B^{I I}}{B^{I}}\right\} \leq \alpha_{1}^{I} \leq \min \left\{\frac{D}{B^{I}}, A_{1}^{I}\right\}
$$

By solving the inequalities of the condition for stability of cooperation with regard to ω_{2} we can obtain the condition on the value of ω_{2}. This value must namely be contained in the range defined by the pair of numbers $v^{I}\left(\alpha_{1}^{I}\right), v^{I I}\left(\alpha_{1}^{I I}\right), 1 . e$.

$$
\begin{gathered}
U^{I}\left(\alpha_{1}^{I}\right)=\frac{\alpha_{1}^{I} B_{21}^{I}-\left(\beta_{1}^{I}+A_{2}^{I} b_{21}^{I}\right)}{\alpha_{1}^{I} B_{12}^{I}-\left(A_{2}^{I}-\gamma_{2} \beta_{1}^{I}\right)} \\
U^{I I}\left(\alpha_{1}^{I I}\right)=\frac{\alpha_{1}^{I I} B_{21}^{I I}-\left(\beta_{1}^{\circ I}+A_{2}^{I I} b_{21}^{I I}\right)}{\alpha_{1}^{I I} B_{12}^{I I}-\left(A_{2}^{I I}-\gamma_{2}^{\left.\beta_{1}^{I I}\right)}\right.}
\end{gathered}
$$

This range of values is defined for the optimum cooperation in the following way:
I. If $E<0$, that is - when the inequality

$$
\frac{B_{21}^{I}}{B_{12}^{I}}<\frac{B_{21}^{I I}}{B_{12}^{I I}}
$$

is satisfied, then $U^{I}\left(\alpha_{1}^{I}\right) \leq \omega_{2} \leq V^{I I}\left(\alpha_{1}^{I I}\right)$, and, for $D \leq A_{1}^{I I} B^{I I}$. or, otherwise, for

$$
A_{2}^{I}\left(1+\gamma_{2} b_{21}^{I}\right) \leq A_{1}^{I I}\left(\gamma_{2}+b_{12}^{I I}\right)
$$

we have $\alpha_{1}^{I}=0, \alpha_{1}^{I I}=\frac{D}{B^{I I}}$ while in the opposite case:

$$
\alpha_{1}^{I}=\frac{D-A_{1}^{I I} B^{I I}}{B^{I}} \quad \alpha_{1}^{I I}=A_{1}^{I I}
$$

Having introduced the above values of α_{1}^{I} and $\dot{\alpha}_{1}^{I I}$ to the inequality we obtain the condition of stabillity of cooperation in the form of

$$
\frac{B_{21}^{I}}{B_{12}^{I}}=\theta_{2}=\frac{B_{21}^{I I}}{B_{12}^{I I}}
$$

Independently of relations between the quantities D and $A_{1}^{I I} B^{I I}$
II. In a similar maniner, as can easily be verified, we can
establish that when $E>0$ the following inequality must hold:

$$
\frac{B_{21}^{I}}{B_{12}^{I}} \leq \omega_{2} \leqslant \frac{B_{21}^{I I}}{B_{12}^{I I}}
$$

III: If $E=0$ then, of course, we have an equality condition, that is

$$
\omega_{2}=\frac{B_{21}^{I}}{B_{12}^{I}}=\frac{B_{21}^{I I}}{B_{12}^{I I}}
$$

Conclusion

The condition for existence of a stable optimum cooperation is the requirement that the value of ω_{2} (the "terms of trade") belonged to the interval defined by the numbers

$$
\frac{1+b_{21}^{I} \frac{A_{2}^{I}}{A_{1}^{I}}}{b_{12}^{I}+\frac{A_{2}^{I}}{A_{1}^{I}}} \frac{1+b_{21}^{I I} \cdot \frac{A_{2}^{I I}}{A_{1}^{I I}}}{b_{12}^{I I}+\frac{A_{2}^{I I}}{A_{1}^{I I}}}
$$

What still remains is to answer the following question: does there exist a materially and financially balanced cooperation, which would be advantageous for both sides in case when optimus cooperation 18 unprofitable?

The answer to this question can be brought by the relation between the intervals of tolerance for ω_{2} in case when $\alpha_{1}^{I}=\alpha_{1}$ I

Assume that

$$
\bar{a}_{1}^{I}=e_{1}^{I}+\Delta a_{1}^{I}
$$

Then, from equation

$$
\alpha_{1}^{I}\left(B_{21}^{I}+\frac{1}{\gamma_{2}} B_{12}^{I}\right)+\alpha_{1}^{I I}\left(B_{21}^{I I}+\frac{1}{\gamma_{2}} B_{12}^{I I}\right)=D
$$

we can conclude that

$$
\Delta \alpha_{1}^{I I}=-\frac{B^{I}}{B^{I I}} \cdot \Delta \alpha_{1}^{I}
$$

and therefore

$$
\alpha_{1}^{I I}=\alpha_{1}^{I I}-\frac{B^{I}}{B^{I I}} \cdot \Delta \alpha_{1}^{I}
$$

I. Let first consider the case when $E \leq 0$. Then, the optimum value is the lowest of all the possible ones. In connection with this in the relation

$$
\bar{\alpha}_{1}^{I}=\alpha_{1}^{I}+\Delta \alpha_{1}^{I}
$$

quantity $\Delta \alpha_{1}^{I}$ may only take positive values. Since the tolerance interval for the value of ω_{2} is for $E \leq 0$ defined by the pair of numbers

$$
\left(v^{I}\left(\bar{\alpha}_{1}^{I}\right), v^{I I}\left(\bar{\alpha}_{1}^{I I}\right)\right)
$$

then, if we develop function U in a Taylor series around the point ${ }^{*}$ I the condition of stability of cooperation shall take on the form of

In order for the interval of tolerance for the value of ω_{2} was 4 n the case of $\alpha_{1}^{1}-\alpha_{1}^{-I}$ not greater than in the case of $\alpha_{1}^{I=\alpha_{1}^{2}}$, the following inequalities must hold (considering that $\Delta a_{1}^{I}>0$ and $\Delta_{1}^{I I}>0$):

$$
\frac{d}{d x_{1}^{I I}}{ }^{I I}\left(\alpha_{1}^{I I}\right) \left\lvert\, \begin{aligned}
& -\Delta x_{1}^{I I}+\ldots \geq 0 \\
& \alpha_{1}^{I I}-I I
\end{aligned}\right.
$$

$$
\frac{d}{d \alpha_{1}^{I}} v^{I I}\left(a_{1}^{I}\right) \left\lvert\, \begin{aligned}
& -\Delta \alpha_{1}^{I}+\cdots \geq 0 \\
& \alpha_{1}^{I}=\alpha_{1}^{I}
\end{aligned}\right.
$$

Consequently, in order to prove that if there does not exist a stable optimum cooperation then there does not exist any other stable cooperation, it is sufficient to demonstrate that the two inequalities given above are satisfied.

For this purpose we shall prove the following Lemma. The series

$$
\sum_{n=1}^{\infty} \frac{d^{n}}{d \alpha^{n}} U(\alpha) \cdot \Delta \alpha^{n}, \quad \Delta \alpha=0
$$

converges and its limit is 0.

Proof.

Take

$$
U(\alpha)=\frac{L(\alpha)}{H(\alpha)}=\frac{\alpha B_{21}-\left(\beta+A_{2} b_{21}\right)}{\alpha_{12}-\left(A_{2}-\gamma_{2} \beta\right)}
$$

Then, for $n=1$ we have

$$
\frac{d}{d \alpha} U(\alpha)=\frac{d}{d \alpha} \frac{L(\alpha)}{M(\alpha)}=\frac{M(\alpha)}{H^{2}(\alpha)}
$$

where

$$
W(\alpha)=L(\alpha) B_{12}-M(\alpha) B_{21}
$$

Similarly, for $n=2$ we obtain

$$
\frac{d^{2}}{d \alpha^{2}} U(\alpha)=\frac{d}{d \alpha}\left(\frac{d}{d a} J(\alpha)\right)=(-1)(-2) B_{12} \frac{W(\alpha)}{h^{3}(\alpha)}
$$

since

$$
\frac{d}{d \alpha}(\alpha)=B_{21} B_{12}-B_{12} B_{21}=0
$$

Generally, as can easily be verified, we have, for any n,

$$
\frac{d^{n}}{d \alpha^{n}} U(\alpha)=(-1)^{n} n!\frac{W(\alpha)}{H^{n+1}(\alpha)}
$$

But

$$
\begin{aligned}
& W(\alpha)=L(\alpha) B_{12}-H(\alpha) B_{21}=\left[\alpha B_{12}-\left(A_{2} \gamma_{2} \beta\right)\right] \cdot B_{21}-\left[\alpha B_{21}-\left(\beta+A_{2} b_{21}\right)\right] B_{12}= \\
& =B_{12}\left(\beta+A_{2} b_{21}\right)-B_{21}\left(A_{2}-\gamma_{2} \beta\right)= \\
& =\gamma_{2} \beta\left[1+b_{21} \cdot \frac{A_{2}}{A_{1}}+\frac{1}{\gamma}\left(b_{12}+\frac{A_{2}}{A_{1}}\right)\right]-A_{2}\left(1-b_{12} b_{21}\right)= \\
& =\gamma_{2} B \cdot\left[\beta-\frac{A_{2}}{\gamma_{2} B_{2}}\left(1-b_{12} b_{21}\right)\right]=\gamma_{2} B \cdot[\beta-\beta]=0
\end{aligned}
$$

so that

$$
\frac{d^{n}}{d \alpha^{n}} U(\alpha)=(-1)^{n} n!\frac{W(\alpha)}{H^{n+1}(\alpha)}=0
$$

as well as

$$
\sum_{n=1}^{\infty} \frac{d^{n}}{d \alpha^{n}} U(\alpha) \Delta a^{n}=0
$$

QED.

Consequently, by making use of the lemma proved above we have also demonstrated that the following theorem is true:

Theorem 4.
If for a given value of ω_{2} ("terms of trade") there does not exist a stable optimum cooperation, then there does not exist any other stable cooperation, materially and financially balanced.

This theorem is very important, for it allows abandoning of the search of other cooperation solutions when optimum cooperation is
disadvantageous for one of the partners in view of the current value of ω_{2} ("terms of trade") valid on the international market.

Since optimum cooperation scheme guarantees an increase of the overall consumption, then, in the case when the sharing of this increase, defined by the value of ω_{2}, is unfair - that is: one of the sides obtains less than could be secured by it when acting separately - this does not mean that optimum cooperation is wrong, but only - that the current value of ω_{2} is inappropriate.

In such a situation one should, of course, adopt some other value of ω_{2} through negotiations, with the new value stlll being contained within the tolerance interval, but irrespective of the value of ω_{2} valid in the international trade, and to strike an adequate bilateral deal.

8. COOPERATION OF MULTIPLE PARTNIRRS IN PRODUCTION OF hULTIPLE COMNODITIES

Every participant of cooperation is defined by characteristics of its economy and society, forming a state or regional organism of high autonomy.

Let us denote by α_{j} the magnitude of production (e.g. in the annual period) of the commodity ρ. Then, if the technological coefficient $b_{i j}$ defines the normative use of commodity J per unit of commodity i produced, we have

$$
\varepsilon_{j}=\alpha_{j}-\sum_{i} \alpha_{i} b_{i j}
$$

as the definition of the resulting output of commodity J in the economy. Using vector notation we may write

$$
\hat{\varepsilon}=\hat{\alpha}[I-B]
$$

where

$$
\begin{aligned}
& \hat{\varepsilon}=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{i}, \ldots, \varepsilon_{I}\right\rangle \text { is the vector of net product, } \\
& \alpha=\left\langle\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{I}\right\rangle \text { is the vector of global production } \\
&(\alpha \neq 0) .
\end{aligned}
$$

$$
I \text { - unit matrix, }
$$

BIBLICRAPHY

1. Aganbegyan, A., Bagrinovski, K. Granberg, A.: Modele matematyczne w planowaniu gospodarczym (mathematical models in economic planning, in Polish). PWE, Warszawa 1974.
2. Ameljanczyl, A.: Niefinansowy model sterowania wspólpraca miedzynarodowa (A non-financial model of controlling the international cooperation, In Polish). Organizacja i Kierowanie, No. 3/1976.
3. Amel jariczyk, A., Holubiec, J. Piasecki, S. : Optiaisation of international economic cooperation. Ricerche Econoniche, no.1, 1978.
4. Ameljanczyk, A. Holubiec, J.: Optimal international economic cooperation and solution of a multi-person cooperative game. Ricerche Ecorioniche, no. 1/2, 1981.
5. Amel Janiczyk, A.: Multicriterial optimisation of international economic cooperation. Vth International Conference on Systems Science, Hrockaw (Poland), 1978. Prace Naukowe ICT Politechniki Uroclawskiej, no.39, 1978.
6. Anel Janczyk, A., Holubiec, J.: Modelling of international cooperation in energy by multiperson cooperative game. Proc. of the First International Conference on Applied Modelling and SImulation, ANSE, Lyon, 1981 (vol.V).
7. AmelJanczyk, A., Holubiec, J.: Compromise solution of multiperson cooperative game and its application to international energy consumption. Large Scale systems. Theory and Applications. Pergamon Press, London, 1983.
8. Amel janczyk, A., Holubiec, J.: The influence of political conditions on the international economic cooperation. Proc. of SWIIS Workshop: Supplemental Ways for Improving International Stablifty. Pergamon Press, Oxford, 1984.
9. Amel janczyl, A. Holubiec, J.: Modelling of economic cooperation among blocks of countries with different politico-economic objectives. 9th VorIt Congress of IFAC. Pergamon Press (IFAC Proc. Series, no.6); Oxford 1985.
10. Aumann, R.J.: Existence of competitive equilibria in markets with a continum of traders. Econometrica, 34/1966.
11. Bondareva, O.N.: 0 teoretiko-igrovykh model'akh v ekonomik'e (On game theoretical models in economics, in Russian). Izd. Leningradskogo Universiteta, Leningrad 1974.
12. Czerwiniski, Z.: Problematyka planowania cen w. ujeciu matematycznym (The problem of price planning in the mathematical perspective, in Polish). PTPN PAN, Poznan 1963.
13. Czerwinski, 2.: Podstawowe problemy konstrukcji racjonalnego systemu cen. Poznańskie Roczniki Ekonomiczne. Poznań 1969.
14. Debreu, G.: Economies with a finite set of equilibria. Econometrica, 38, 1970.
15. Debreu, G., Scarf, H.: A limit theorem on the core of an econony. Internat. Econ. Rev., 4, no. 3, 1963.
16. Gale, D.: On optimal development in a multi-sector economy. Review of Economic Studies, 34/1, no.97, 1976.
17. Gale, D.: The Thory of Linear Economic Models. MoGraw-Hill, New York 1960.
18. Gale, D.: On optimal development in a multi-sector economy. Rev. Econ. Stidies, 34, no. 1, 1967.
19. Georgesen-Roegen, N.: Some properties of a generalized Leontief model. Activity Analysis of Production and Allocation, T. C. Koopmans, ed. , New York 1951.
20. Gamberelli, G. Holubiec, J.: Modelling and optinization of international economic cooperation via fuzzy mathematical progranming and cooperative games. Control and Cybernetics, no.4, 1988
21. Graham, D.: The theory of international values examined. Qarterly Journal of Economics, 38, no.1:
22. Hahn, F., Matthews, R.C.O.: The theory of economic growth. A survey. Economic Journal, 74, 1964.
23. Holubiec, J., Plasecki, S.: La collaborazione economica Internazionale e la uniforita dei prezzi internazionali (Intermational economic cooperation and the uniformity of
international prices, in Italian). Rivista di Politica Econonica, no. 12. 1978.
24. Holubiec, J.: Modelling of the International Economic Cooperation. System Theory and Hathematical Economics. Pitagora Ed., Bologna, 1986.
25. Intriligator, M. : Mathematical Optimization and Economic Theory. Prentice Hall, New York 1971.
26. Kemeny, J.G., Morgenstern, O., Thompson, G.L.: A generalization of the von Neumann model of an expanding economy. Econometrica, 24, no. 2, 1956.
27. Kotynski, J.: Teoria wymiany miedzynarodowej a programowanie liniowe. PVE, Warszawa 1970.
28. Kulikowski, R., ed.: Modelowanie systemowe spoleczno gospodarczego rozwoju kraju (Systems modelling of the socioeconomic development of a country, in Polish). PWN, Warszawa 1979.
29. Leontief, W.: Factor proportion and the structure of American trade. Further theoretical and empirical analysis. Review of Economics and Statistics, 38, no. 4.
30. Leontief, W.: Structure of American economy 1919-1929

Cambridge-Masschusetts, Harvard Univ. Press 1941.
31. Leontief, W., Carter A.P.i. Petri P.A.: The Future of the World Econony, New York 1977, Oxford Univ. Press.
32. Luce R.D., Reiffa H.: Gamés and Decisions.

Willey and Sons, New York 1957.
33. Maciejowski, W.: Algorytmy optymalizacji struktury handlu zagranicznego 1 kursów kierunkowych (Algorithms of optimization of the structure of foreign trade and the directional rates, in Polish). Zastosowanie metod matematycznych do analizy ekonomiczne J. ZBKS HZ, Warszawa, 1968.
34. Maclejewski, W.: Ekonometryczne modele wymiany miedzynarodowej (Econometric models of international trade, in Polish). PWN, Warszawa 1981.
35. Mycielski, J. Trzeciakowski, W.: Criteres du choix des investissements rapidement rentables (Criteria of choice of quick
repayment investments, in French). Economies and Societies, no. 1, 1970.
36. Mycielski, J., Rey, K., Trzeciakowski, W.: Decomposition and Optimization of Short-Run Planning in a Planned Econowy (I.Barna, ed.). London 1963.
37. Nash, J.F.: Equlibrium points in n-person games. Proc. Nat. Acad. Sciences, USA, 36, 1950.
38. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton 1974.
39. Nikaido, H.: Convex Structures and Economic Theory. Academic Press, New York - London 1968.
40. Pawlowski, 2.: Ekonometria (Econometrics, in Polish) PWN, Warszawa 1978 (fifth edition).
41. Piasecki, St.; Ameljanczyk, A.: A control of international economic cooperation. IVth International Conference on Systems Science, Urociaw, Poland, 1977. Prace Naukowe ICT Politechniki Urocławskiej, no.47, 1977.
42. Plasecki, St., Holubiec, J.: Sterowanie wyilana gospodarcza (Controlling the economic exchange, in Polish) Prace IBS-PAN, no. 32, Warszawa 1979.
43. Piasecki, St., Holublec, J.: Wieloletnia koordynacja miedzynarodowego rozwoju gospodarczego (Multiannual coordination of the international economic development, in Polish). Prace IBS PAN, no. 52. Warszawa 1980.
44. Piasecki, St., Holubiec J.: International economic cooperation and the uniform international prices (in polish). Prace IBS PAN Nr 52, Warszawa 1980.
45. Plasecki, St., Holubiec, J.: Pewne zagadnienie miedzynarodowej wspolpracy gospodarczej (On a certain problem in international economic cooperation, in Polish). Prace IBS PAN, no. 77, 1981.
46. Piaseck, St.; Holubiec, J., Aneljariczyk, A.: Miedzynarodowa kooperacja gospodarcza (The Internatiomal Economic Cooperation, in Polish). PWN, Lódえ - Harszawa 1982.
47. Piasecki S.: Model of Socio-Economic National Development
(in polish). Prace IBS PAN, No 164 Warszawa 1988.
48. Plaszczyriski, W.: Matematyczne modele teorl! handlu miedzynarodowego (Mathematical Models of the Theory of International Trade, in Polish). PWE, Warszawa 1974.
49. Rosati, D.: Polityka eksportowa. PRE, Harszawa 1990.
50. Rosenmüller, J.: Kooperative Spiele und Market (Cooperative Games and Market, in German). Springer Verlag, Berlin - Heidelberg - New York 1971.

51 .Roth, A.E.: Subsolutions and supercore of cooperative games. Hathematics of Operations Research, voi.1, no.1, 1976.
52. Shapley, L.S., Shubik, M.: On market games. J.Economic Theory 1, no. 1, 1969.
53. Shubik, M.: Edgeworth market games. Annals of Math. Studies, vol.IV, no. 40, 1959.

54 .Solow, R.M.: A contribution to the theory of economic growth. Quarterly Journal of Econonics, 70, 1956.
55. Shagalov, G.L.: Problemy optimalnogo planirovaniya vneshne-ekononicheskikh sviazey (Problems of optimum planning of external econonic relations, in Russian). Izd. Moskva 1973
56. Trzeciakowski, K.: Modele pośredniego kierowania gospodarka planowa w sterowaniu handlen zagranicznym (Models of indirect management of a planned economy in the control of foreign trade, in Polish). PWE, Warszawa 1975.
57. Tsukui, J.: Turnpike theorem in a generalized dynamic input-output system. Econometrica, 34, no. 2̀, 1966.
58. Uzawa, H.: Optimal growth in a'two-sector model of capital accumatation. Review of Econonic Studies, 31, 1964.

For order and other information, please write to:
Systems Research Institute, Polish Academy of Sciences ul. Newelska 6, 01-447 Warsaw, Poland

$$
\text { Fax: +4822/37 } 2772
$$

ISBN 83-90-00412-5-1

