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Chapter 3

Common setting of
stability tests

Stability–test algorithms are applied in many contexts, such as stability
analysis, model reduction, signal processing, filter synthesis and robust
control. Therefore, many authors have carefully studied and compared
their properties in both the s–domain (continuous–time systems) and
the z–domain (discrete–time systems) [1] ÷ [18].

A unified interpretation of the available algorithms provides a new
insight into their operation [13], [14] and may help find new procedures
with specific characteristics. This chapter shows that all of the recursive
stability–test algorithms can be given a common setting that is sugges-
tive of new algorithms. Attention is limited to continuous–time systems,
but similar considerations could be developed for discrete–time systems.
It turns out that the aforementioned procedures can conveniently be
classified according to the configuration of the root loci into which their
basic recursions can be embedded.

3.1 General two–term recursions

A number of recursive stability–test algorithms have been proposed in
the literature. Concerning continuous-time systems, besides the classi-
cal Routh test, mention can be made of the Lepschy test [9], [13] and
the Euclid–type procedure suggested in [9]. All of these algorithms can
be expressed in (at least) two different forms that, excluding the critical
cases, allow us to generate recursively a sequence {Pi(s), i = n, · · · , 0}
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of n+ 1 polynomials Pi(s) of descending degree i starting from an orig-
inal polynomial Pn(s) of degree n. This section concentrates on their
two–term recursive form, by which every complete polynomial Pi−1(s)
currently generated by their basic step–down recursion is related to the
complete polynomial Pi(s) of immediately higher degree. The alterna-
tive three–term (or split [2], [3]) form, which relates either the even or
the odd parts of three consecutive complete polynomials, is analyzed in
[8]

The two–term step–down form of Routh’s algorithm, already consid-
ered in Chapter 2, is:

Pi−1(s) =
(

1 +
qi−1

2
s
)
Pi(s)− (−1)i

qi−1

2
sPi(−s). (3.1)

The basic recursion of Lepschy’s test [13] is instead:

(s+ 1)Pi−1(s) = hi

[
Pi(s) + qL,i−1Pi(−s)

]
(3.2)

with
hi =

1
1 + qL,i−1

(3.3)

and that for the Euclid–type test [9] is:

(s2− 1)Pi−1(s) =
1
2

[
s(s− qE,i−1)Pi(s)− (−1)i(s2− qE,i−1s− 2)Pi(−s)

]

(3.4)
which, like the Routh algorithm (2.2), admits a much simpler three–term
form. As is known, the location of the n roots of the original polynomial
Pn(s) can be related to the values taken by the n parameters qi, qL,i or
qE,i, i = n− 1, n− 2, · · · , 1, at every step of the above procedures.

In (3.1), (3.2) and (3.4), the polynomial Pi−1(s) of lower degree
is obtained from a suitable combination of the polynomials Pi(s) and
Pi(−s) whose roots are symmetric with respect to the imaginary axis.
To achieve this result, either some coefficients in the highest powers of s
in this combination are forced to be zero as in (3.1), or this combination
is forced to have s+ 1 or s2 − 1 as a factor (see (3.2) and (3.4), respec-
tively). It follows that the previous recurrence relations are particular
cases of the more general recursion:

Ri(s)Pi−1(s) = Fi(s)Pi(s) +Gi(s)Pi(−s), (3.5)
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where the polynomials Ri(s), Fi(s) and Gi(s) must satisfy the following
conditions:
(i) the roots ofRi(s) are roots of the polynomial Fi(s)Pi(s)+Gi(s)Pi(−s),
(ii) Pi(s) is Hurwitz if and only if Pi−1(s) is Hurwitz and the coefficients
of Fi(s) and Gi(s) belong to suitable domains that depend on the choice
of Ri(s).

Once Ri(s) has been chosen, the first condition can easily be ex-
pressed in analytic terms leading to a set of equations linear in the
coefficients of Pi−1(s), Fi(s) and Gi(s). It is more difficult to translate
the second condition into constraints on the remaining free parameters.
In any case, conditions (i) and (ii) do not uniquely determine all of
the available parameters, so that different families of stability–test algo-
rithms may be generated.

In the following, attention is focused on the simplest form of (3.5)
capable of generating both the Routh and the Lepschy algorithm, that
is,

(ri,0 + ri,1s)Pi−1(s) = (fi,0 + fi,1s)Pi(s) + (gi,0 + gi,1s)Pi(−s) (3.6)

which reduces to (3.1) for ri,0 = 1, ri,1 = 0, fi,0 = 1, fi,1 = qi−1/2,
gi,0 = 0, gi,1 = −(−1)iqi−1/2 = −(−1)ifi,1 and to (3.2) for ri,0 = 1,
ri,1 = 1, fi,0 = 1/[1 + qL,i], fi,1 = 0, gi,0 = qL,i/[1 + qL,i] = qL,ifi,0,
gi,1 = 0. Since ri,0 = 0 cannot lead to a stability test and the results
obtainable for fi,0 = 0 correspond to those for gi,0 = 0 by replacing Pi(s)
with Pi(−s), the analysis can be restricted to the relation:

(1 + ri,1s)Pi−1(s) = (1 + fi,1s)Pi(s) + (gi,0 + gi,1s)Pi(−s), (3.7)

where ri,0 = fi,0 = 1, thus excluding from consideration the polynomials
that differ from Pi(s) and Pi−1(s) by a real proportionality factor.

According to condition (i) above, Pi−1(s) is indeed of degree i − 1
only if

gi,1 = −(−1)ifi,1, (3.8)

and the right–hand side of (3.7) admits a root in 1/ri,0 only if

gi,0 = ki −
fi,1
ri,1

[ki + (−1)i] (3.9)

with
ki = −Pi(−1/ri,1)/Pi(1/ri,1). (3.10)
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The next section shows that (3.7) gives rise essentially to three families
of stability–test algorithms that differ from one another by the configu-
ration of the root loci into which their basic recursions can be embedded.

3.2 Lepschy–like algorithms

Taking (3.8), (3.9) and (3.10) into account, for fi,1 = 0 relation (3.7)
becomes

(1 + ri,1s)Pi−1(s) = Pi(s) + kiPi(−s) (3.11)

which includes (3.2) as a particular case (except for the normalization
factor hi).

The roots of the left–hand side of (3.11) belong to the complete root
locus (k ∈ R) of the equation:

Pi(s) + kPi(−s) = 0 (3.12)

for k = ki. Assuming Pi(s) and Pi(−s) coprime, this locus is a real
algebraic variety consisting of i branches on which k is a coordinate.
These branches “depart” from the i roots of Pi(s) for k = 0 and “arrive”
at the i opposite roots of Pi(−s) as k → ±∞. Therefore, the locus is
symmetric with respect to the imaginary axis and the intersection of its
branches with the same axis, if any, occur for |k| = 1.

When Pi(s) is a Hurwitz polynomial, all of the roots of (3.12) are in
the LHP for |k| < 1. If ri,1 > 0 and, thus, the root of 1 + ri,1s lies in
the LHP, the corresponding value ki of the current parameter k is in the
open interval (−1,+1) and all of the roots of (3.12) are in the LHP. A
typical root locus for a Hurwitz polynomial Pi(s) is shown in Fig. 3.1.

On the basis of these considerations, a family of stability tests can
be derived depending on the value of ri,1. For a proof of the Lepschy
stability test, which corresponds to ri,1 = 1, the interested reader is
referred to [13]. It is straightforward to extend the proof to the case of
arbitrary ri,1 > 0.

3.3 Routh–like algorithms

A different family of algorithms that includes the Routh test is obtained
by setting gi,0 = 0 in (3.7). Precisely, the classical Routh algorithm
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Figure 3.1: Root locus for (3.12) with Pi(s) = P4(s) = (s+ 1)4.

corresponds to the additional constraint ri,1 = 0, but similar properties
hold for arbitrary ri,1 < 0.

The recurrence relations characterizing all of these algorithms can be
embedded in an asymmetric root locus whose branches never cross the
imaginary axis except for one branch laying over the real axis (at least
partly). Under the present assumptions and taking (3.8) into account,
(3.7) particularizes to

(1 + ri,1s)Pi−1(s) = Pi(s) + 2fi,1sQi,i−1(s), (3.13)

where
Qi,i−1(s) =

1
2

[Pi(s)− (−1)iPi(−s)] (3.14)

is the odd part of Pi(s) if i is even and its even part otherwise.
The roots of (3.13) belong to the complete root locus (k ∈ R) of the

equation:
Pi(s) + ksQi,i−1(s) = 0 (3.15)

for
k = 2fi,1 = ri,1

Pi(−1/ri,1)
Qi,i−1(−1/ri,1)

. (3.16)

The departure and arrival points of this locus are: (i) the roots of Pi(s)
for k = 0, and (ii) the roots of sQi,i−1(s) for k = ±∞. Following a
procedure similar to that adopted in Section 1.2 of Chapter 1, it can
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be shown that, excluding the case in which Pi(s) and sQi,i−1(s) have
common factors, i − 1 locus branches never touch the imaginary axis
for a finite value of k (and, thus, they never cross it) and the remaining
branch passes through the point at infinity going from the right half of
the real axis to the left half of the real axis, or vice versa, for the (finite)
value of k that lowers the degree of (3.15) by one. Denoting again Pi(s)
by

Pi(s) =
i∑

j=0

ai,k s
k, (3.17)

this value is
k = − ai,i

ai,i−1
. (3.18)

A typical root locus for a Hurwitz polynomial Pi(s) is shown in Fig. 3.2.
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Figure 3.2: Root locus for (3.15) with Pi(s) = P4(s) = (s+ 1)4.

On the basis of the previous considerations, the following theorem
can be proved along lines similar to those followed in Section 1.2 of
Chapter 1 (see [17]).

Theorem 3.3.1 The polynomial Pi(s) is Hurwitz and ri,1 ≤ 0 if and
only if Pi−1(s) is Hurwitz and

0 ≥ ri,1 > ri,c := −ai−1,i−1

ai−1,i−2
, (3.19)
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fi,1 < fi,c := −1
2

ri,1ri,c
ri,1 − ri,c

. (3.20)

�

From the above proposition, a stability criterion generalizing the
standard Routh criterion can be obtained easily. In fact, starting from
the nth–degree polynomial Pn(s) to be tested, a sequence of polynomials
Pi(s), i = n, n− 1, · · · , 1, 0, is formed according to (3.13) with ri,1 ≤ 1.
If (3.19) and (3.20) are satisfied at every step, then Pn(s) is Hurwitz.
The algorithm can also be used to evaluate the numbers of LHP and
RHP roots of a polynomial [17].

3.4 Mixed–type algorithms

Relation (3.7) gives rise to yet another interesting family of stability–
test procedures that have been called mixed–type algorithms [17] because
they exhibit intermediate characteristics between those of the Routh–like
and Lepschy–like algorithms. To show this, consider, besides constraints
(3.8) and (3.9), the further constraint:

gi,0 = −gi,1 = (−1)ifi,1. (3.21)

Then, recursion (3.7) takes the form:

(1 + ri,1s)Pi−1(s) = (1 + fi,1s)Pi(s) + (−1)ifi,1(1− s)Pi(−s), (3.22)

which may be rewritten as

1
1− fi,1

(1+ ri,1s)Pi−1(s) = Pi(s)+
2fi,1

1− fi,1
[Qi,i(s)+sQi,i−1(s)], (3.23)

where Qi,i−1(s) is given by (3.14),

Qi,i(s) =
1
2

[Pi(s) + (−1)iPi(−s)] (3.24)

and, according to (3.9) and (3.10),

fi,1 =
kiri,1

ki + (−1)i(1 + ri,1)
. (3.25)
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In this case, the roots of (3.22) belong to the root locus of

Pi(s) + k[Qi,i(s) + sQi,i−1(s)] = 0 (3.26)

for

k =
2fi,1

1− fi,1
. (3.27)

Excluding again the case of common roots between Qi,i(s) and Qi,i−1(s),
the locus consists of i branches on which k is a coordinate. Such branches
cross the imaginary axis for k = ±∞ at the imaginary roots of Qi,i(s) +
sQi,i−1(s), if any, and for k = −1 at the imaginary roots of Qi,i−1(s),
if any. In fact, both the even and the odd part of the left–hand side
of (3.26) are equal to zero when Qi,i−1(s) = 0 and k = −1. One locus
branch passes through the point at infinity for

k = − ai,i
ai,i + ai,i−1

(3.28)

since then the degree of (3.26) becomes i − 1. A typical root locus for
(3.26) is shown in Fig. 3.3.
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Figure 3.3: Root locus for (3.26) with Pi(s) = P4(s) = (s+ 1)4.

On the basis of the previous considerations, the following result,
whose proof can be found in [17], holds.
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Theorem 3.4.1 The polynomial Pi(s) is Hurwitz and −1 < ri,1 ≤ 0 if
and only if Pi−1(s) is Hurwitz and

0 ≥ ri,1 ≥ ri,c := − ai−1,i−1

ai−1,i−1 + ai−1,i−2
, (3.29)

−1 < fi,1 < fi,c :=
ri,1ai−1,i−1

(2 + ri,1)ai−1,i−1 + 2ri,1ai−1,i−2
. (3.30)

�

A great saving in the computations required by the implementation
of the considered stability–test procedures is obtained, in general, by re-
sorting to their split forms [2], [3]. Since these recursive forms relate the
even or odd parts of three consecutive polynomials in the correspond-
ing sequences, they are called three–term or immittance–domain forms
(see [7] concerning the z–domain Levinson algorithm). The interested
reader is referred to [8] for a detailed analysis and classification of all
such forms.

3.5 Concluding remarks

The classic stability–test algorithms have been expressed in their two–
term recursive form. Then, a general recurrence relation capable of gen-
erating both the Routh–like and the Lepschy–like algorithms has been
derived. The constraints that the parameters of this general recursion
must satisfy to produce a stability–test algorithm have been pointed out.

Three main families of algorithms have been distinguished according
to the shape of the root loci in which their two–term recursions can be
embedded. Using this geometric approach, the stability criteria as well
as the rules for counting the number of RHP and LHP roots of a given
polynomial can be proved in a suggestive way. However, the two–term
form of these algorithms is not the most efficient from the computational
point of view.
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