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Chapter 4

The method of the
indifference areas

The digital filters resulting from the implementation of linear time–
invariant systems on digital computers or on dedicated hardware are nec-
essarily nonlinear due to the finite wordlength of the processors, which
causes signal quantization and overflow [1], [2]. The effect of these non-
linearities is particularly important in the digital filters realized with
fixed–point arithmetic that is still used in most low–cost embedded mi-
croprocessors and microcontrollers [3]. Even if the internal wordlength
is long, so that the digital filter “approaches” the behaviour of its linear
prototype, undesirable phenomena arise, such as the presence of limit
cycles for parameter values that belong to the stability region of the
linear prototype. These phenomena are still considered with interest in
the recent literature (see, e.g., [4], [5] and bibliographies therein).

Quantization is responsible for small–amplitude limit cycles, whereas
large–amplitude limit cycles are due to overflow [6]. Usually, the effects
of quantization and overflow can be considered as noninteracting [7].
The occurrence and form of the cycles depend on the quantization and
overflow characteristics as well as on the filter realization (see, e.g., [8]).
Since digital filters are often realized as a single second–order unit or as
a cascade or parallel of second–order cells, a large part of the literature
deals with them. This chapter focuses on second–order filter sections,
too. In particular, it concentrates on the quantization effets in direct–
form filters with the quantizers located after each multiplication or after
summation. The purpose is to determine the regions of the parameter
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plane where such filters are globally asymptotically stable and where
they exhibit zero–input limit cycles of given period and amplitude. It
turns out that the method of the indifference areas, illustrated in [9]
for the case of two quantizers (one after each multiplier) and in [10] for
that of one quantizer (after the adder), is more effective than the general
method suggested in [11] since it allows us to find the entire parameter
region where the filter is globally asymptotically stable, as well as the
whole existence area of a given cycle [12].

Section 4.1 briefly recalls the filter equations. Section 4.2 derives
bounds on the possible cycle amplitude depending on the adopted quan-
tization characteristic. Based on these bounds, Section 4.3 shows how
the parameter plane can be partitioned into regions whose points are
characterized by the same filter behaviour, and Section 4.4 determines
the entire region where the filter is globally asymptotically stable. A pro-
cedure to find the region supporting a given cycle is outlined in Section
4.5. Some concluding remarks are drawn in Section 4.6.

4.1 Direct–form filters

The direct–form state equations of the linear prototype of a second–order
filter are:

x1(n) = x2(n− 1) , (4.1)
x2(n) = ax2(n− 1) + bx1(n− 1) + u(n). (4.2)

Assuming u(n) = 0, ∀n, the unforced evolution of the output y(n) =
x2(n) is described by the recurrence relation:

y(n) = ay(n− 1) + by(n− 2). (4.3)

In the plane of parameters a and b, the stability region is the triangle
ABC of Figure 4.1. In fact, for parameter values inside this triangle the
poles of the filter transfer function:

H(z) =
z2

z2 − az − b (4.4)

are inside the unit circle centred at the origin of the z–plane.
The homogeneous equation of the corresponding digital filter output

with the quantizers placed after each multiplication is

y(n) = [ay(n− 1)]Q + [by(n− 2)]Q , (4.5)
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Figure 4.1: Stability regions for the linear prototype.

whereas the equation of the digital filter output with the quantizer placed
after summation is

y(n) = [ay(n− 1) + by(n− 2)]Q , (4.6)

where [·]Q denotes quantization. By normalizing the quantization step
q to unity, y(n) ∈ Z, ∀n (integer arithmetic).

The free response of (4.5) or (4.6) can be expressed as the response
of the associated linear filter to a fictitious input u(n) = e(n):

y(n) = ay(n− 1) + by(n− 2) + e(n), (4.7)

where

e(n) = [ay(n− 1)]Q − ay(n− 1) + [by(n− 2)]Q − by(n− 2) (4.8)

or, respectively,

e(n) = [ay(n− 1) + by(n− 2)]Q − ay(n− 1)− by(n− 2) (4.9)

is the quantization error. For example, the value of |e(n)| for (4.8)
satisfies the inequality:

|e(n)| < 1 (4.10)

in the case of roundoff quantization, the inequality:

|e(n)| < 2 (4.11)
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in the case of magnitude truncation quantization, and the inequality:

|e(n)| ≤ 2 (4.12)

in the case of value (or two’s complement) truncation quantization (see
p. 45 of [13]).

4.2 Bounds on the cycle amplitude

If the linear filter is asymptotically stable, its free response tends to zero.
Its forced (or driven) response yd(n) to the bounded input e(n) is also
bounded. Precisely, yd(n) is given by

yd(n) = h(n) ∗ e(n), (4.13)

where h(n) denotes the unit–sample response and ∗ denotes convolution.
It follows that, in the case of roundoff and magnitude truncation, the
maximum amplitude of the limit cycles, if any, cannot exceed the bound:

B = [supn |e(n)|] · Σn|h(n)| (4.14)

and, in the case of value truncation, the bound:

B = [supn |e(n)|]S, (4.15)

with
S := sup {Σn h+(n),−Σn h−(n)}, (4.16)

where h+(n) and h−(n) denote, respectively, the positive and negative
values in the unit–sample response. These bounds can be evaluated
numerically or approximated by means of suitable formulae that depend
on the parameter values in a simple way (see, e.g., [14]).

To detect all of the zero–input limit cycles, if any, it is therefore
enough to consider, for any parameter pair (a, b), the free evolution of
the nonlinear filter from the initial conditions [y(−2), y(−1)] satisfying
the inequalities:

|y(−2)| ≤ B, |y(−1)| ≤ B. (4.17)

Since the same cycles can be found starting from either

|y(−2)| ≤ |y(−1)| ≤ B (4.18)
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or
|y(−1)| ≤ |y(−2)| ≤ B, (4.19)

the number of free evolutions to be considered is actually less than 4B2.
This number can be further reduced when the quantization characteristic
is symmetric (roundoff and magnitude truncation) because in this case
the evolution from [y(−2), y(−1)] is the negative of the evolution from
[−y(−2),−y(−1)], so that the analysis can be limited only to the initial
conditions satisfying

|y(−2)| ≤ y(−1) ≤ B, (4.20)

whose number is about B2.

4.3 Indifference areas

The signal boundedness induces a quantization of the (a, b)–plane in-
dependent of the finite–wordlength representation of the parameters.
Precisely, given a parameter region where the output amplitude cannot
exceed an upper bound B, this region can be subdivided into a finite
number of areas such that all sequences {y(n)}, with |y(n)| ≤ B, are
the same for all of the points inside the same area and, therefore, only
one point for each area need be considered. This is the reason why such
areas have been called indifference areas in [9] and [10].

Quantization after multiplication

If the quantizers are placed after each multiplication as in (4.5), the in-
difference areas are rectangles whose sides are parallel to the coordinate
axes [9]. To see this, consider the product ak with k integer and assume
that [·]Q denotes magnitude truncation so that [ak]Q = b|ak|c · sgn(ak).
Then [ak]Q takes the same integer value at all a–points in an inter-
val of length 1/|k|; for instance, if k > 0 and a > 0, [ak]Q = i for
a ∈ [i/k, (i+ 1)/k]. The same is true for b.

If in a region R internal to the stability triangle of the linear proto-
type the upper bound of (4.13) is B, then the minimal partition of the
(a, b)–plane that ensures the exhaustive analysis of the nonlinear filter
behaviour inside R is obtained by drawing the horizontal lines b = i/k
and the vertical lines a = i/k with i = 0,±1 and k = 1, 2, . . . , B (clearly,
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it is enough to consider only positive values of k since the magnitude
truncation characteristic is symmetric). In this way, the side length ` of
the resulting indifference rectangles takes the values:

` =
∣∣∣h
l
− m

n

∣∣∣, 0 ≤ h ≤ l ≤ B, 0 ≤ m ≤ n ≤ B, (4.21)

with
∣∣∣h
l
− m

n

∣∣∣ ≥ 1
B(B − 1)

and hn − lm 6= 0. Fig. 4.2 shows the

parameter plane partition for the magnitude–truncation quantization
after each multiplication and B = 4.
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Figure 4.2: Parameter–plane grid for a direct–form filter with
magnitude–truncation quantization after each multiplication and B = 4.

Similar considerations can be made for the roundoff quantization,
even if the number of indifference rectangles corresponding to the same
upper bound B increases. Fig. 4.3 shows the parameter partition for
the roundoff quantization after each multiplication and B = 4.

A little more complex is the case of two’s complement truncation be-
cause of the asymmetry of the quantization characteristic: in particular,
it is not possible to associate a side to either of the adjacent rectangles,
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Figure 4.3: Parameter–plane grid for a direct–form filter with roundoff
quantization after each multiplication and B = 4.

and the vertices need be considered separately. Therefore, in this case,
the exhaustive analysis of a parameter region requires the consideration
of: (i) one point inside each rectangle, (ii) one point for every side, and
(iii) all vertices. The parameter plane grid for the two’s complement
truncation is similar to that for the magnitude truncation shown in Fig.
4.2.

Quantization after summation

When the quantizer is placed after summation as in (4.6), the indif-
ference areas turn out to be convex polygons [10]. To understand this
result with reference to the magnitude truncation quantization, consider
the (a, b)–region leading from [y(n − 2) = j, y(n − 1) = k] to y(n) = i,
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which is defined by the following inequalities:

i ≤ ak + bj < i+ 1 for i > 0, (4.22)
−1 < ak + bj < 1 for i = 0, (4.23)

i− 1 < ak + bj ≤ i for i < 0. (4.24)
1
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Figure 4.4: Parameter–plane grid for a direct–form filter with
magnitude–truncation quantization after summation and B = 2.

Each of the above relations defines a stripe of the (a, b)–plane between
parallel lines having slope equal to −k/j. Therefore, to draw the grid
lines in the region where the output magnitude cannot exceed the upper
bound B, it is necessary: (i) to consider the points ±|i/k| and ±(|i| +
1)/|k| on the a–axis and the points ±|i/j| and ±(|i| + 1)/|j| on the b–
axis with |j|, |k|, |i| ≤ B, and (ii) to connect each of the points on the
a–axis with all of the points on the b–axis, excluding those for which
the slope of the connecting straight line is different from ±|k/j| with
|j|, |k| ≤ B. In this way, the grid corresponding to B = 2 in the region
R = {(a, b) : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1} turns out to be the one shown in
Fig. 4.4: there are 38 indifference areas in the first quadrant, but only
17 of these lie inside the stability triangle of the linear prototype.
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The grid for the filter with one roundoff quantizer can be built ac-
cording to a similar procedure, but the resulting indifference areas are
more numerous, because the stripes to be considered in this case, that
is:

i− 1
2
≤ ak + bj < i+

1
2

for i > 0, (4.25)

−1
2
< ak + bj <

1
2

for i = 0, (4.26)

i− 1
2
< ak + bj ≤ i+

1
2

for i < 0, (4.27)

determine a more closely–woven grid than that corresponding to inequal-
ities (4.22).

The grid for the filter with one value truncation quantizer is again
influenced by the asymmetry of the quantization characteristic. It is
formed by the same lines as in the case of magnitude truncation with
the addition of the straight lines through the origin having slope ±|k/j|
with |j|, |k| ≤ B. Moreover, the filter behaviour inside the indifference
areas is different from that corresponding to each side and vertex. Note,
however, that, due to the finite wordlength representation of a and b, not
all of the points on the boundaries of the indifference areas can actually
be attained.

4.4 Global asymptotic stability

The parameter plane partition illustrated in Section 4.3 can be used to
find the entire parameter region where the digital filters with roundoff
quantizers are globally asymptotically stable. This result cannot be
achieved with the alternative methods suggested in the literature (cf.,
e.g., [11]).

Consider, for example, the filter (4.5) with two roundoff quantizers.
This filter can be globally asymptotically stable only inside the octagonal
region internal to the stability region of the linear prototype depicted in
Fig. 4.5, because limit cycles have been detected outside it [15].
Above the parabola a2 + 4b = 0, where the poles of the linear prototype
are real, according to [16] the amplitude of the possible limit cycles
cannot exceed B = 3.
Below the same parabola, where the poles of the linear prototype are
complex, the bound on the limit cycle amplitude derived in [17] is B = 2.
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To check stability, it is enough to test the filter behaviour only at the
16 points marked in Fig. 4.6.
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Figure 4.5: Stability region of the filter with two roundoff quantizers
(after multiplications).
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Figure 4.6: Minimal grid for cheking the stability of the filter with two
roundoff quantizers.

Concerning the initial state [y(−2), y(−1)], owing to the symmetry
of the roundoff characteristic, it suffices to consider the pairs such that
1 ≤ y(−1) ≤ B and |y(−2)| ≤ y(−1). Moreover, if a trajectory leads to
|y(i)| > B for some i, the corresponding computation can be stopped
since all of the trajectories starting from the considered initial states
tend either to the origin or to a limit cycle with maximum amplitude
less than B, so that the final part of the trajectories passing through
|y(i)| > B will be found starting from some other initial conditions
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satisfying the bound. By performing the computations for the marked
points, it is straightforward to verify that all of the trajectories converge
to zero. Therefore, the filter is globally asymptotically stable all over
the internal octagonal region shown in Fig. 4.5 (and only there).1
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Figure 4.7: Stability region (unhatched and vertically hatched) of the
filter with one roundoff quantizer after summation.

As another example, consider the filter (4.6) with one roundoff quan-
tizer. According to previous literature, this filter exhibits limit cycles
in the horizontally hatched region of Fig. 4.7, it is stable inside the
unshaded region internal to the triangular stability region of its linear
prototype, whereas no conclusion can be drawn concerning the vertically
hatched region.

The method of the indifference areas shows instead that the filter is
stable there, too. In fact, B < 2 inside the triangle defined by −1/2 <
b < 1/2 − |a|. Therefore, it is enough to consider the coarse parameter
grid shown in Fig. 4.7, and the analysis reduces to checking stability
at a single point for each of the three triangular areas denoted by α, β
and γ with initial conditions [y(−2), y(−1)] equal to either [1, 1] or [0, 1].
Anyway, since stability has already been proved for the entire region α
and for parts of β and γ, stability is guaranteed also in the remaining
parts of β and γ.
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4.5 Existence area of a cycle

The method of the indifference areas can be applied to determine the
entire region of the parameter plane where a given limit cycle is sup-
ported [12]. To this purpose it is enough to find the regions where every
sequence of three consecutive output values in the cycle is supported.
The region where the cycle is supported will be given by the intersection
of the regions corresponding to all of these triplets. 1
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Figure 4.8: Region (shaded) where the sequence {−1, 1, 2} of output val-
ues is supported by a direct–form filter with two magnitude–truncation
quantizers (after multiplications).
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Figure 4.9: Region (shaded) where the sequence {−1, 1, 2} of output val-
ues is supported by a direct–form filter with one magnitude–truncation
quantizer (after the adder).

In the case of quantization after multiplication, the region supporting
a sequence is formed by a family of rectangles whose diagonals lie on the
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Figure 4.10: Existence area (shaded) of the limit cycle {3, 5} for the
filter with two magnitude–truncation quantizers (one after each multi-
plication).

same straight line within each quadrant, as shown in Fig. 4.8, whereas,
in the case of quantization after summation, the region for the sequence
is a stripe between slanted parallel lines, as shown in Fig. 4.9. In this
way, if it is known that a cycle is sustained at a point, then it is possible
to determine all of the points where the cycle can occur.

Fig. 4.10 shows the existence area of the cycle {3, 5} for the filter with
two magnitude–truncation quantizers. The cycles {−3, 5} and {3,−5}
are possible in the areas symmetric about the b–axis to those represented
in Fig. 4.10.

4.6 Concluding remarks

The method of the indifference areas allows us to find the entire param-
eter region where second–order digital filters are globally asymptotically
stable as well as the regions where given limit cycles exist.

The method is effective and conceptually simple. Moreover, its com-
putational complexity is less than that of alternative techniques that do
not even ensure the exhaustive analysis of the region where the linear
prototype is stable.
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