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Chapter 6

Optimality conditions in H>
approximation

A reasonable criterion to obtain a reduced—order model of a high—order
original system consists in the minimization of the Hy norm of the out-
put error, which is the difference between the transfer functions of the
original and approximate model. One reason of the continual interest
in this approch to model reduction (see, e.g., [1] + [14]) is the appeal-
ing interpretation of the aforementioned norm as an energy. However,
finding the Ho—optimal reduced—order model of a complex system is a
computationally hard task. Indeed, many of the available techniques are
rather difficult to implement (see, e.g., [6], [7], [9]). Also, even when the
convergence of the algorithm is ensured, the attainment of the global
optimum, which is in general unique [15], is not guaranteed because
more local minima may exist, so that the result depends on the initial
guess. To avoid these difficulties, resort has been made to procedures
that partly constrain the structure of the approximant [16] <+ [18] or
refer to suitably modified performance indices [10] which, however, alter
substantially the original problem.

The rational Hy approximation problem is a classic topic in approx-
imation theory [20]. In particular, it has been shown that the best
approximating function must satisfy some necessary conditions that can
be expressed in terms of interpolation constraints. In the context of cir-
cuit and system theory, these conditions have been derived in [21] and
[1] for SISO systems, even if they were already known in classical analy-
sis since the 1920s [22]. These conditions have been extended to MIMO
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systems in [16] where, however, attention is limited to the case in which
the poles of the approximating function are fixed.

This chapter is organized as follows. Section 6.1 states the Hy ap-
proximation problem. Necessary conditions of optimality for the general
MIMO case are derived along the lines of [23] in Section 6.2. In Section
6.3, these conditions are expressed in a compact form that is suggestive
of an efficient search algorithm [23]. Section 6.3 shows that this proce-
dure can conveniently be translated into a fixed—point algorithm [10] +
[12] whose convergence is discussed in Section 6.5. The treatment is lim-
ited to frequency—domain input/output representations. Its extension to
state—space models can be found in [13] and [14].

6.1 Problem statement

Consider a continuous—time linear system with m, outputs and m; in-
puts and denote by

F(s)=[fni(s)], h=1,...,mp; i=1,...,my (6.1)

its real rational transfer matrix which is assumed to belong to the real
Hardy space Ha (fni(s) stable and strictly proper). Indicating with
dr(s) the least common denominator of all f3;(s), with degldr(s)] = n,
matrix (6.1) can be written as

Nr(s)

F(s) dr(s)’ (6.2)
where Np(s) = [nf.(s)] is an m, x m; polynomial matrix whose elements
nf’(s) have degree, at most, n — 1.

Similarly, denote the m, x m; transfer matrix G(s) of the reduced—
order system by
_ Ng(s)

dg(s)’
where deg[dc(s)] = r < nand Ng(s) = [n$.(s)] is an m,xm; polynomial
matrix whose elements have degree, at most, r — 1. By assuming for
technical simplicity that the r roots pp of dg(s) are simple (but not
necessarily real), G(s) can be expanded into partial fractions as

G(s)=> il (6.4)

)
S —
k=1 Pk

G(s) = [gni(s)] (6.3)
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where Ry = [rf,] € C™*™i and

r k

grils) = > —hi (6.5)

o
1 Pk
Consider the m, x m; approximation error matrix:

E(s) = [eni(s)] = F(s) = G(s) = [fni(s) — gni(s)] (6.6)

and define the scalar product of two m, x m; rational matrices A(s) and
B(s) as:

1 [t
< A(s), B(s) >:= 2 ] tr[A(s)B*(—s")]ds =
1 +o0 1 : +o0
5 | tr[A(yw)B* (yw)]dw = 3 | tr[A*(yw)B(jw)]dw,  (6.7)

where the asterisk denotes complex conjugate transpose. This product
induces in Ho the norm:

JA(s)] = /< A(s), A(s) > (6.8)

The Hs approximation problem can now be stated as follows.

Approximation problem: Find a reduced—order transfer matrix
G(s) that minimizes the index

J = || B(s)|? (6.9)

with respect to the parameters r,’ji and pg or, alternatively, to the coef-
ficients of the polynomials n{,(s) and dg(s).

6.2 Necessary conditions

The index to be minimized can be written as
1 [t
tr[E" (yw) E(jw)]dw =

:% .

+oo
%/Oo Zh:zezz‘(ﬂﬂ)@m(]w) = Zh:zjhi’ (6.10)
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where
Ji= o [ el (6.11)
hi = 5o N eni(Jw|”dw. .
By Parseval’s theorem
Jni = / |LT[eni(s)]]dt, (6.12)
0

where LT 1] denotes the inverse Laplace transform.
The partial derivative of J with respect to rﬁi is

oJ  OJy I 1
E ZZ = - ehi(—5") + eni(s) - |ds
ory,  0ry. 21 J_ ) S — Pi s+ pf
1 +j00 1 J
= — epi(s)——ds. (6.13
7Tj o hl( )S‘i_p;; ( )

Equating (6.13) to zero and using Cauchy’s integral formula leads to
eni(—px) = fri(=pk) — gni(—px) =0 (6.14)
which holds for all k, h and i, so that
F(—pp) —G(—pr) =0, k=1,...,r, (6.15)

where O is the zero matrix. Relation (6.15) clearly amounts to r inter-
polation constraints at the opposites of the poles of the approximant.
The partial derivative of J with respect to pg is

o0J 1
IO |

o0 r’}fb. 'r’]fb’f‘
_Thi_er (—*) 4 eps(s) M| ds
[(S —p)? (s —pp)?

%ezi(—s*) ds. (6.16)
k

Equating (6.16) to zero and using the residue theorem leads to
2 > [Fi=pk) = g (=pi) ki = 0, (6.17)
oo

where the expression between square brackets corresponds to the deriva-
tive of e*(—s*) at s = pg. Relation (6.17) holds for all k, so that

tr[F™*(—pi) — G*(—pp)| Rk =0, k=1,...,r (6.18)
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where, again, the prime denotes derivative.
The following proposition summarizes the previous results that ex-
tend to MIMO systems the conditions derived in [1].

Proposition 6.2.1 If the roots of dg(s) are simple, necessary condi-
tions for the transfer matriz G(s) to be the optimal rational Ha approz-
imant of F(s) are (6.15) and (6.18).

The unknowns in (6.15) and (6.18) are the m,m; r residues r, and

the r poles pi. To determine these r(1 + m,m;) unknowns (or the
parameters of an equivalent parametrization), an equal number of scalar
equations need be formed. In fact, the matrix equation (6.15) gives rise
to m, m;r scalar equations and (6.18) provides the remaining r scalar
equations.

If the poles of G(s) are not simple, conditions (6.15) and (6.18)
should be modified, respectively, to

FO(—pt) =GO (—pp) =0, i=1,...,up—1, k=1,...,7 (6.19)

where the superscript (i) denotes ith derivative, py is the multiplicity of
P, and 7 is the number of distinct poles, and

tr[F* (—pi) — GUO*(—pi) Ry = O, k=1,...,7, (6.20)

where Ry, is the coefficient of 1/(s — py)** in the partial fraction ex-
pansion of G(s) replacing (6.4).

6.3 Compact form

The necessary conditions of optimality in Proposition 6.2.1 can be con-
verted into another set of equivalent conditions that refer to a different
parametrization of G(s), that is, to the coefficients of its numerator
polynomials nfz(s) and to those of its monic denominator polynomial
da(s).

Taking into account (6.2) and (6.3), conditions (6.15) imply

Nr(=pp)da(=pr) = No(=pp)dr(=py) = O, k=1,...,r.  (6.21)

In other words, every entry of the polynomial matrix at the numerator
of the error function (6.6), that is,

NEg(s) := Np(s)dg(s) — Ng(s)dp(s), (6.22)



66 Chapter 6. Optimality conditions in Ho approximation

is a polynomial of degree at most n+r—1 admitting d,(—s*) as a factor,
so that

Ng(s) = Qi(s)dg(—s7), (6.23)

where @1(s) is an m, X m; matrix of polynomials whose degree is at
most n — 1. Similarly, conditions (6.18) imply

tr[NE (—pi)dp(—pi) — N (—pp)dgp(—pi)| Rk =0, VE, (6.24)

where dg(s) := dp(s)da(s).
Equation (6.23) implies Nj,(—pj) = O, so that (6.24) reduces to

trNg (—pg)Re = 0, Vk. (6.25)
Since the derivative of (6.23) is
Ni(s) = Qi(s)dg(—s") + Qu(s)dg(—s") (6.26)

and dg(pr) = 0 with di;(pr) # 0 (pg is a simple pole of G(s)), eqn.s
(6.25) lead to

trQ7(—pi)Rr = 0, Vk. (6.27)
Therefore
trQ7(—pk)Na(pr) = 0, VEk, (6.28)
because 1
R, = ——Na(pr) (6.29)
d&.(pk)
with .
d&(s)= T (s—pe). (6.30)
0=1,0+k

It follows that the polynomial trQj(s)Ng(—s*) must have dg(—s*) as a
factor, that is,

trQ7(s)Ng(—s") = q2(s™)dg(—s"), (6.31)

where ¢2(s*) is a polynomial of degree at most n — 2.

Equations (6.23) and (6.31) are valid in the general case of polyno-
mials with complex coefficients. In the case of polynomials with real
coefficients, they can be rewritten in the simpler form:

Ng(s) = Q1(s)dg(—s), (6.32)
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trQ1 (s)Na(—s) = q2(s)da(—s), (6.33)

to which reference is made in the sequel.
On the basis of the previous considerations, the following proposition
can be stated.

Proposition 6.3.1 If the roots of dg(s) are simple, necessary condi-
tions for the transfer matriz G(s) to be the optimal real rational Ho
approximant of F(s) are (6.32) and (6.33).

Note that in the scalar case the two conditions (6.32) and (6.33) can
be merged into the single polynomial equation:

nr(s)da(s) — na(s)dr(s) = a(s)dg(—s), (6.34)

where ¢(s) is a polynomial of degree at most n — r — 1.

6.4 Fixed—point algorithm

The alternative optimality conditions derived in Section 6.3 are ex-
pressed by the simple polynomial identities (6.32) and (6.32) or (6.34).
This is achieved, however, by increasing the number of unknowns.

By equating the coefficients of the equal powers of s at both sides of
these identities, a set of (n + r)(m,m; + 1) — 1 equations in the same
number of unknowns is obtained. Precisely, in the multivariable case,
the unknowns are: (i) the r coefficients of the monic polynomial dg(s),
(ii) the rm,m; coefficients of the polynomial matrix Ng(s), (iii) the
nm,m; coefficients of the polynomial matrix @;(s), and (iv) the n — 1
coefficients of polynomial ga(s).

Since the unknowns appear nonlinearly in the considered equations,
an efficient procedure for their solution is required. To this purpose,
resort can be made to the following iterative scheme.

Denoting by superscript (h + 1) the quantities to be computed in
the current (h + 1)th iteration and by superscript (h) the quantities
computed in the preceding hth iteration (or guessed at the beginning
of the procedure), the basic equation of the aforementioned iterative
scheme is:

Np(s)d% ™ (s) = NSO (s)de(s) = QP (5)d (=), (6.35)
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QT MY ()N (—s) = ' (5)dW) (), (6.36)

which give rise to linear equations at each iteration. KEssentially, at
every iteration eqn.s (6.35) and (6.36) allow us to determine the “new”
denominator dg”H)(s) from the “old” denominator d(Gh )(s) only.

Algorithm (6.35)—(6.36) can be formulated [7], [10] in a more sug-
gestive form as:

d"D = @ (dM), (6.37)

where d, i = h,h + 1, is a vector formed from the coefficients of the
monic polynomial dg)(s), and ® : R” — R" is a continuously differen-
tiable function. In this way, the solution of the approximation problem

corresponds to a fixed point d of ®, that is,
d = &(d). (6.38)

By indicating with p(@ the properly—ordered vector consisting of the
roots of d(é)(s), there exists a one-to—one mapping I" : R” — C” such

that p() = F(c(i)). Therefore, (6.37) is equivalent to
p) = w(pt), (6.39)

where ¥ = To®ol'"! : C" — C" is a continuously differentiable function

whose fixed points p are given by p = I'(d).

6.5 Algorithm convergence

Concerning the convergence of the fixed—point algorithm (6.39), the fol-
lowing proposition is proved in [7].

Proposition 6.5.1 Let
Jy(p) := 0¥ /0p (6.40)

be the Jacobian of the function in (6.39). Then:

(i) at every fized point p of W the eigenvalues of (6.41) are real,

(ii) at a fized point of ¥ that does not correspond to a minimum of the
indez (6.9), at least one eigenvalue is greater than 1, so that such a point
is repelling for (6.39), and

(iii) at a fized point of ¥ corresponding to a minimum of (6.9), every
eigenvalue is less than 1 (but not necessarily greater than —1).
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The convergence properties of (6.37) are the same as those of (6.39)
because Jg(p) is similar to:

Jo(d) := 0®/dd| ,_; (6.41)

and has the same eigenvalues.

Point (iii) of Proposition 6.5.1 implies that there may be fixed points
corresponding to minima of (6.9) where (6.37) does not converge. To
avoid this problem, ® can be replaced by another continuously differen-
tiable function ®,,, with the following properties: a) it has the same fixed
points d as @, b) all of the eigenvalues of the Jacobian of ®,, at every
d have magnitude less than 1, and ¢) ®,, can easily be obtained from @
without a priori information about d. Functions with these properties
can be formed in a systematic way according to [11] and [12]. A simpler
but heuristic procedure to find a function of this kind is based on the

following proposition that draws on [10].

Proposition 6.5.2 The function ®, : R" — R" related to ® in (6.37)
by means of
Q. (d) = a®(d) + (1 — a)d (6.42)

has the same fized points d as ® and, for suitably small positive values of
a, all of the eigenvalues of the Jacobian of @, at every d have magnitude
less than 1.

Proof Proving that the fixed points d of ® and ®, are the same is
trivial. Concerning the eigenvalues of

Ja(d) := 094/0d|,_;, (6.43)

from (6.42) we have

A

Jo(d) = ade(d) + (1 — )l = a[Je(d) — I] + 1. (6.44)

Since, according to Proposition 6.5.1, the spectrum o[Jg(d)] of Jg(d) is
contained in the interval [\, 1), where A, is the smallest (real) eigen-

value of Jg(d), it follows that

o[Ja(d) — 1] C [Am — 1,0), (6.45)

so that X
c{alJo(d) — I} C [a(Am —1),0), a >0, (6.46)
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and from (6.44)

olJa(d)] = o{alJo(d) — I+ I} C [a(Ay — 1) + 1,1). (6.47)
Therefore, if
2
m = 5 A4
0<a<a T (6.48)
all of the eigenvalues of J,(d) have magnitude less than 1. O

An immediate consequence of Proposition 6.5.2 is that the algorithm:
d" D = @, (M), (6.49)

converges to every d from a suitable neighbourhood of d if o is suit-
ably small. It can be shown [14] that (6.49) is a special case of both
Mann’s and Ishikawa’s iterations [27], [28]. Computational details of
this algorithm as well as its application to some benchmark examples
are provided in [14], where the procedure is extended to state-space
models, too.

6.6 Concluding remarks

Necessary conditions for a reduced—order model to be the Hs—optimal
approximant of a MIMO system have been derived in terms of inter-
polation constraints, thus extending the results valid in the SISO case
[1]. These conditions have then been expressed in a compact form that
only entails polynomial identities. This compact form is suggestive of a
numerical algorithm for finding the optimal reduced—order model.

This algorithm can be translated into a fixed—point algorithm which
is not always convergent. To avoid this problem, a modified algorithm,
easily obtainable from the original one, has been proposed.
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