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Chapter 6

Optimality conditions in H2
approximation

A reasonable criterion to obtain a reduced–order model of a high–order
original system consists in the minimization of the H2 norm of the out-
put error, which is the difference between the transfer functions of the
original and approximate model. One reason of the continual interest
in this approch to model reduction (see, e.g., [1] ÷ [14]) is the appeal-
ing interpretation of the aforementioned norm as an energy. However,
finding the H2–optimal reduced–order model of a complex system is a
computationally hard task. Indeed, many of the available techniques are
rather difficult to implement (see, e.g., [6], [7], [9]). Also, even when the
convergence of the algorithm is ensured, the attainment of the global
optimum, which is in general unique [15], is not guaranteed because
more local minima may exist, so that the result depends on the initial
guess. To avoid these difficulties, resort has been made to procedures
that partly constrain the structure of the approximant [16] ÷ [18] or
refer to suitably modified performance indices [10] which, however, alter
substantially the original problem.

The rational H2 approximation problem is a classic topic in approx-
imation theory [20]. In particular, it has been shown that the best
approximating function must satisfy some necessary conditions that can
be expressed in terms of interpolation constraints. In the context of cir-
cuit and system theory, these conditions have been derived in [21] and
[1] for SISO systems, even if they were already known in classical analy-
sis since the 1920s [22]. These conditions have been extended to MIMO
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systems in [16] where, however, attention is limited to the case in which
the poles of the approximating function are fixed.

This chapter is organized as follows. Section 6.1 states the H2 ap-
proximation problem. Necessary conditions of optimality for the general
MIMO case are derived along the lines of [23] in Section 6.2. In Section
6.3, these conditions are expressed in a compact form that is suggestive
of an efficient search algorithm [23]. Section 6.3 shows that this proce-
dure can conveniently be translated into a fixed–point algorithm [10] ÷
[12] whose convergence is discussed in Section 6.5. The treatment is lim-
ited to frequency–domain input/output representations. Its extension to
state–space models can be found in [13] and [14].

6.1 Problem statement

Consider a continuous–time linear system with mo outputs and mi in-
puts and denote by

F (s) = [fhi(s)], h = 1, . . . ,mo; i = 1, . . . ,mi (6.1)

its real rational transfer matrix which is assumed to belong to the real
Hardy space H2 (fhi(s) stable and strictly proper). Indicating with
dF (s) the least common denominator of all fhi(s), with deg[dF (s)] = n,
matrix (6.1) can be written as

F (s) =
NF (s)
dF (s)

, (6.2)

where NF (s) = [nFhi(s)] is an mo×mi polynomial matrix whose elements
nFhi(s) have degree, at most, n− 1.

Similarly, denote the mo ×mi transfer matrix G(s) of the reduced–
order system by

G(s) = [ghi(s)] =
NG(s)
dG(s)

, (6.3)

where deg[dG(s)] = r < n and NG(s) = [nGhi(s)] is an mo×mi polynomial
matrix whose elements have degree, at most, r − 1. By assuming for
technical simplicity that the r roots pk of dG(s) are simple (but not
necessarily real), G(s) can be expanded into partial fractions as

G(s) =
r∑

k=1

Rk
s− pk

, (6.4)
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where Rk = [rkhi] ∈ Cmo×mi and

ghi(s) =
r∑

k=1

rkhi
s− pk

. (6.5)

Consider the mo ×mi approximation error matrix:

E(s) = [ehi(s)] := F (s)−G(s) = [fhi(s)− ghi(s)] (6.6)

and define the scalar product of two mo×mi rational matrices A(s) and
B(s) as:

< A(s), B(s) >:=
1

2π

∫ +∞

−∞
tr[A(s)B∗(−s∗)]ds =

1
2π

∫ +∞

−∞
tr[A(ω)B∗(ω)]dω =

1
2π

∫ +∞

−∞
tr[A∗(ω)B(ω)]dω, (6.7)

where the asterisk denotes complex conjugate transpose. This product
induces in H2 the norm:

‖A(s)‖ =
√
< A(s), A(s) >. (6.8)

The H2 approximation problem can now be stated as follows.

Approximation problem: Find a reduced–order transfer matrix
G(s) that minimizes the index

J := ‖E(s)‖2 (6.9)

with respect to the parameters rkhi and pk or, alternatively, to the coef-
ficients of the polynomials nGhi(s) and dG(s).

6.2 Necessary conditions

The index to be minimized can be written as

J =
1

2π

∫ +∞

−∞
tr[E∗(ω)E(ω)]dω =

1
2π

∫ +∞

−∞

∑

h

∑

i

e∗hi(ω)ehi(ω) =
∑

h

∑

i

Jhi, (6.10)
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where

Jhi =
1

2π

∫ +∞

−∞
|ehi(ω|2dω. (6.11)

By Parseval’s theorem

Jhi =
∫ ∞

0
|LT−1[ehi(s)]|2dt, (6.12)

where LT−1[·] denotes the inverse Laplace transform.
The partial derivative of J with respect to rkhi is

∂J

∂rkhi
=
∂Jhi

∂rkhi
=

1
2π

∫ +∞

−∞

[
− 1
s− pk

e∗hi(−s∗) + ehi(s)
1

s+ p∗k

]
ds

=
1
π

∫ +∞

−∞
ehi(s)

1
s+ p∗k

ds. (6.13)

Equating (6.13) to zero and using Cauchy’s integral formula leads to

ehi(−p∗k) = fhi(−p∗k)− ghi(−p∗k) = 0 (6.14)

which holds for all k, h and i, so that

F (−p∗k)−G(−p∗k) = O, k = 1, . . . , r, (6.15)

where O is the zero matrix. Relation (6.15) clearly amounts to r inter-
polation constraints at the opposites of the poles of the approximant.

The partial derivative of J with respect to pk is

∂J

∂pk
=

1
2π

∑

h

∑

i

∫ +∞

−∞

[
rkhi

(s− pk)2
e∗hi(−s∗) + ehi(s)

rk∗hi
(−s− p∗k)2

]
ds

=
1
π

∑

h

∑

i

∫ +∞

−∞

rkhi
(s− pk)2

e∗hi(−s∗) ds. (6.16)

Equating (6.16) to zero and using the residue theorem leads to

2
∑

h

∑

i

[
f ′∗hi(−p∗k)− g′∗hi(−p∗k)

]
rkhi = 0, (6.17)

where the expression between square brackets corresponds to the deriva-
tive of e∗(−s∗) at s = pk. Relation (6.17) holds for all k, so that

tr
[
F ′∗(−p∗k)−G′∗(−p∗k)

]
Rk = 0, k = 1, . . . , r (6.18)
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where, again, the prime denotes derivative.
The following proposition summarizes the previous results that ex-

tend to MIMO systems the conditions derived in [1].

Proposition 6.2.1 If the roots of dG(s) are simple, necessary condi-
tions for the transfer matrix G(s) to be the optimal rational H2 approx-
imant of F (s) are (6.15) and (6.18).

The unknowns in (6.15) and (6.18) are the momi r residues rkhi and
the r poles pk. To determine these r(1 + momi) unknowns (or the
parameters of an equivalent parametrization), an equal number of scalar
equations need be formed. In fact, the matrix equation (6.15) gives rise
to momi r scalar equations and (6.18) provides the remaining r scalar
equations.

If the poles of G(s) are not simple, conditions (6.15) and (6.18)
should be modified, respectively, to

F (i)(−p∗k)−G(i)(−p∗k) = O, i = 1, . . . , µk − 1, k = 1, . . . , r̂, (6.19)

where the superscript (i) denotes ith derivative, µk is the multiplicity of
pk, and r̂ is the number of distinct poles, and

tr
[
F (µk)∗(−p∗k)−G(µk)∗(−p∗k)

]
Rk,µk

= O, k = 1, . . . , r̂, (6.20)

where Rk,µk
is the coefficient of 1/(s − pk)µk in the partial fraction ex-

pansion of G(s) replacing (6.4).

6.3 Compact form

The necessary conditions of optimality in Proposition 6.2.1 can be con-
verted into another set of equivalent conditions that refer to a different
parametrization of G(s), that is, to the coefficients of its numerator
polynomials nGhi(s) and to those of its monic denominator polynomial
dG(s).

Taking into account (6.2) and (6.3), conditions (6.15) imply

NF (−p∗k)dG(−p∗k)−NG(−p∗k)dF (−p∗k) = O, k = 1, . . . , r. (6.21)

In other words, every entry of the polynomial matrix at the numerator
of the error function (6.6), that is,

NE(s) := NF (s)dG(s)−NG(s)dF (s), (6.22)
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is a polynomial of degree at most n+r−1 admitting d∗G(−s∗) as a factor,
so that

NE(s) = Q1(s)d∗G(−s∗), (6.23)

where Q1(s) is an mo × mi matrix of polynomials whose degree is at
most n− 1. Similarly, conditions (6.18) imply

tr[N ′∗E (−p∗k)d∗E(−p∗k)−N∗E(−p∗k)d′∗E(−p∗k)]RK = 0, ∀k, (6.24)

where dE(s) := dF (s)dG(s).
Equation (6.23) implies N∗E(−p∗k) = O, so that (6.24) reduces to

trN ′∗E (−p∗k)Rk = 0, ∀k. (6.25)

Since the derivative of (6.23) is

N ′E(s) = Q′1(s)d∗G(−s∗) +Q1(s)d′∗G(−s∗) (6.26)

and dG(pk) = 0 with d′G(pk) 6= 0 (pk is a simple pole of G(s)), eqn.s
(6.25) lead to

trQ∗1(−p∗k)Rk = 0, ∀k. (6.27)

Therefore
trQ∗1(−p∗k)NG(pk) = 0, ∀k, (6.28)

because
Rk =

1
dkG(pk)

NG(pk) (6.29)

with

dkG(s) =
r∏

`=1,`6=k
(s− p`). (6.30)

It follows that the polynomial trQ∗1(s)NG(−s∗) must have dG(−s∗) as a
factor, that is,

trQ∗1(s)NG(−s∗) = q2(s∗)dG(−s∗), (6.31)

where q2(s∗) is a polynomial of degree at most n− 2.
Equations (6.23) and (6.31) are valid in the general case of polyno-

mials with complex coefficients. In the case of polynomials with real
coefficients, they can be rewritten in the simpler form:

NE(s) = Q1(s)dG(−s), (6.32)
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trQT1 (s)NG(−s) = q2(s)dG(−s), (6.33)

to which reference is made in the sequel.
On the basis of the previous considerations, the following proposition

can be stated.

Proposition 6.3.1 If the roots of dG(s) are simple, necessary condi-
tions for the transfer matrix G(s) to be the optimal real rational H2

approximant of F (s) are (6.32) and (6.33).

Note that in the scalar case the two conditions (6.32) and (6.33) can
be merged into the single polynomial equation:

nF (s)dG(s)− nG(s)dF (s) = q(s)d2
G(−s), (6.34)

where q(s) is a polynomial of degree at most n− r − 1.

6.4 Fixed–point algorithm

The alternative optimality conditions derived in Section 6.3 are ex-
pressed by the simple polynomial identities (6.32) and (6.32) or (6.34).
This is achieved, however, by increasing the number of unknowns.

By equating the coefficients of the equal powers of s at both sides of
these identities, a set of (n + r)(momi + 1) − 1 equations in the same
number of unknowns is obtained. Precisely, in the multivariable case,
the unknowns are: (i) the r coefficients of the monic polynomial dG(s),
(ii) the rmomi coefficients of the polynomial matrix NG(s), (iii) the
nmomi coefficients of the polynomial matrix Q1(s), and (iv) the n− 1
coefficients of polynomial q2(s).

Since the unknowns appear nonlinearly in the considered equations,
an efficient procedure for their solution is required. To this purpose,
resort can be made to the following iterative scheme.

Denoting by superscript (h + 1) the quantities to be computed in
the current (h + 1)th iteration and by superscript (h) the quantities
computed in the preceding hth iteration (or guessed at the beginning
of the procedure), the basic equation of the aforementioned iterative
scheme is:

NF (s)d(h+1)
G (s)−N (h+1)

G (s)dF (s) = Q
(h+1)
1 (s)d(h)

G (−s), (6.35)
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trQT (h+1)
1 (s)N (h)

G (−s) = q
(h+1)
2 (s)d(h)

G (−s), (6.36)

which give rise to linear equations at each iteration. Essentially, at
every iteration eqn.s (6.35) and (6.36) allow us to determine the “new”
denominator d(h+1)

G (s) from the “old” denominator d(h)
G (s) only.

Algorithm (6.35)–(6.36) can be formulated [7], [10] in a more sug-
gestive form as:

d(h+1) = Φ
(
d(h)

)
, (6.37)

where d(i), i = h, h + 1, is a vector formed from the coefficients of the
monic polynomial d(i)

G (s), and Φ : Rr → Rr is a continuously differen-
tiable function. In this way, the solution of the approximation problem
corresponds to a fixed point d̂ of Φ, that is,

d̂ = Φ(d̂). (6.38)

By indicating with p(i) the properly–ordered vector consisting of the
roots of d(i)

G (s), there exists a one–to–one mapping Γ : Rr → Cr such
that p(i) = Γ

(
c(i)
)
. Therefore, (6.37) is equivalent to

p(h+1) = Ψ
(
p(h)

)
, (6.39)

where Ψ = Γ◦Φ◦Γ−1 : Cr → Cr is a continuously differentiable function
whose fixed points p̂ are given by p̂ = Γ(d̂).

6.5 Algorithm convergence

Concerning the convergence of the fixed–point algorithm (6.39), the fol-
lowing proposition is proved in [7].

Proposition 6.5.1 Let

JΨ(p) := ∂Ψ/∂p (6.40)

be the Jacobian of the function in (6.39). Then:
(i) at every fixed point p̂ of Ψ the eigenvalues of (6.41) are real,
(ii) at a fixed point of Ψ that does not correspond to a minimum of the
index (6.9), at least one eigenvalue is greater than 1, so that such a point
is repelling for (6.39), and
(iii) at a fixed point of Ψ corresponding to a minimum of (6.9), every
eigenvalue is less than 1 (but not necessarily greater than −1).
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The convergence properties of (6.37) are the same as those of (6.39)
because JΨ(p̂) is similar to:

JΦ(d̂) := ∂Φ/∂d|d=d̂ (6.41)

and has the same eigenvalues.
Point (iii) of Proposition 6.5.1 implies that there may be fixed points

corresponding to minima of (6.9) where (6.37) does not converge. To
avoid this problem, Φ can be replaced by another continuously differen-
tiable function Φm with the following properties: a) it has the same fixed
points d̂ as Φ, b) all of the eigenvalues of the Jacobian of Φm at every
d̂ have magnitude less than 1, and c) Φm can easily be obtained from Φ
without a priori information about d̂. Functions with these properties
can be formed in a systematic way according to [11] and [12]. A simpler
but heuristic procedure to find a function of this kind is based on the
following proposition that draws on [10].

Proposition 6.5.2 The function Φα : Rr → Rr related to Φ in (6.37)
by means of

Φα(d) = αΦ(d) + (1− α)d (6.42)

has the same fixed points d̂ as Φ and, for suitably small positive values of
α, all of the eigenvalues of the Jacobian of Φα at every d̂ have magnitude
less than 1.

Proof Proving that the fixed points d̂ of Φ and Φα are the same is
trivial. Concerning the eigenvalues of

Jα(d̂) := ∂Φα/∂d|d=d̂ , (6.43)

from (6.42) we have

Jα(d̂) = αJΦ(d̂) + (1− α)I = α[JΦ(d̂)− I] + I. (6.44)

Since, according to Proposition 6.5.1, the spectrum σ[JΦ(d̂)] of JΦ(d̂) is
contained in the interval [λm, 1), where λm is the smallest (real) eigen-
value of JΦ(d̂), it follows that

σ[JΦ(d̂)− I] ⊂ [λm − 1, 0), (6.45)

so that
σ
{
α[JΦ(d̂)− I]

}
⊂ [α(λm − 1), 0), α > 0, (6.46)



70 Chapter 6. Optimality conditions in H2 approximation

and from (6.44)

σ[Jα(d̂)] = σ
{
α[JΦ(d̂)− I] + I

}
⊂ [α(λm − 1) + 1, 1). (6.47)

Therefore, if

0 < α < αm :=
2

1− λm
, (6.48)

all of the eigenvalues of Jα(d̂) have magnitude less than 1. �

An immediate consequence of Proposition 6.5.2 is that the algorithm:

d(h+1) = Φα

(
d(h)

)
, (6.49)

converges to every d̂ from a suitable neighbourhood of d̂ if α is suit-
ably small. It can be shown [14] that (6.49) is a special case of both
Mann’s and Ishikawa’s iterations [27], [28]. Computational details of
this algorithm as well as its application to some benchmark examples
are provided in [14], where the procedure is extended to state–space
models, too.

6.6 Concluding remarks

Necessary conditions for a reduced–order model to be the H2–optimal
approximant of a MIMO system have been derived in terms of inter-
polation constraints, thus extending the results valid in the SISO case
[1]. These conditions have then been expressed in a compact form that
only entails polynomial identities. This compact form is suggestive of a
numerical algorithm for finding the optimal reduced–order model.

This algorithm can be translated into a fixed–point algorithm which
is not always convergent. To avoid this problem, a modified algorithm,
easily obtainable from the original one, has been proposed.
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