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Chapter 9

Feedback control in ancient
clocks

Even if the word “feedback” was coined in the early 90s (very likely, it
was first used in the journal Wireless devoted to electronics and telecom-
munications in 1923), the feedback principle has been exploited, often
in an unconscious way, since the dawn of technology [1]. It is not sur-
prising that the earliest feedback device on record is a timepiece, the
ingenious water clock of Ktesibios which dates back to the first half of
the third century B.C. [2]. On the other hand, in his celebrated book
The Origins of Feedback Control [3], Otto Mayr does not mention any
mechanical clockwork as an example of closed–loop control in the his-
tory of technology. However, many medieval clocks do exert feedback
control to produce precisely regulated motion by means of a mecha-
nism called “escapement” [4]. In particular, the feedback nature of the
weight–driven verge–and–foliot escapement has been pointed out in [5].
This escapement was the only mechanical escapement known from the
time of its inception (the first mention of these clocks in a literary con-
text can be found in Dante’s Divine Comedy [6]) until the middle of the
17th century [7]: in 1657 Huygens modified the verge–and–foliot escape-
ment by replacing the foliot (a bar swinging in a horizontal plane) with
a pendulum oscillating in a vertical plane and the crown gear mounted
horizontally [8].
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This chapter analyzes the operation of the verge–and–foliot escape-
ment along the lines of [5] which have been further developed in [7]. Pre-
cisely, Section 9.1 describes the escapement mechanism which consists
of a pair of rotating rigid bodies interacting through collisions. Section
9.2 derives the motion equations of the escapement under the assump-
tions of inelastic collisions. The block diagram describing the system
operation is shown in Section 9.3 where the crown–gear angular veloc-
ity is determined. The case of elastic collisions in considered in Section
9.4. Some concluding remarks are drawn in Section 9.5. The interested
reader is referred to [7] for a detailed analysis of the system operation
corresponding to arbitrary values of the coefficient of restitution.
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Figure 9.1: Outline of the verge–and–foliot escapement.

9.1 Verge–and–foliot escapement

In the medieval mechanical clocks, the motive power was supplied by
falling weights, as in the recent grandfather clocks. The crucial problem
was to control this movement so as to ensure a regular velocity of the
indicating element (the hand). This result was obtained by means of
the so–called verge–and–foliot escapement which consists of two rigid
bodies rotating on bearings. Such a device is sketched in Fig. 9.1.

A crown gear A with an odd number of saw–like teeth, being driven
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round by the pull of a weight, alternately hits the two blades B1 and B2

(the so–called pallets) fastened to a shaft C (the so–called verge). This
shaft is connected with a bar D (the so–called foliot) with adjustable
weights on its ends (E1 and E2). The revolving motion of the crown
gear causes an alternating circular movement of the foliot: a push on
the upper blade B1 gives rise to a rotary movement in one direction
(e.g., clockwise) whereas a push on the lower blade B2 gives rise to
a rotary movement in the opposite direction (e.g., counterclockwise).
This is presumably the reason why the foliot has been given such a
name: the French word “folier” means “to play the fool” and the Italian
word “folletto” means a“goblin”. The two movable weights E1 and E2

attached to the foliot allow one to modify the moment of inertia, and
thus the oscillation period of the foliot and the rotatory speed of the
wheel.

A vintage drawing of the arrangement is represented in Fig. 9.2.
An escapement of this kind is present in the Dover Castle clock built in
1348. It can be seen at the National Museum of Science and Industry,
London. In his riveting book [9] C.M. Cipolla agrees with H.A. Lloyd’s
opinion [10] that “no one knows, and no one probably ever will” who
invented such a mechanism but “whatever his name, he was a perfect
genius”, which explains the enduring interest in these devices [11].

Figure 9.2: Vintage drawing of the verge–and–foliot escapement.

The escapement operation is illustrated in Figs. 9.3 and 9.4. In
particular, Fig. 9.3 shows the situation in which the upper blade comes

J. 
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into contact with one of the teeth of the crown gear and, at the same
time, another tooth escapes past the lower blade. From this time instant,
the blades and the foliot begin to move clockwise with reference to the
drawing. Fig. 9.4 shows the situation in which the lower blade is hit
and the foliot begins to move counterclockwise. By denoying with n the
odd number of teeth, the angle between two of them (pitch) is α = 2π/n
so that the situations depicted in Figs. 9.3 and 9.4 are α/2 apart.

1
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Figure 9.3: Escapement operation: time instant in which the upper
blade is hit by a tooth and the lower blade is released.

9.2 Inelastic collisions

To arrive at a simple, yet insightful, model of the system behaviour, in
this section it is assumed that the collisions between the blades on the
verge and the teeth on the crown gear are wholly inelastic, although
in real operation they are not so. Under this hypotesis, the blade and
the incident tooth move together after each collision. This tooth keeps
on carrying the blade until the latter is released. In order that at the
same time the other blade may be engaged by the tooth that reaches
the opposite extreme of the vertical diameter of the crown gear, the
following condition must be satisfied:

r2 sin(β) = r1 sin
(
α

2

)
, (9.1)
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Figure 9.4: Escapement operation: time instant in which the lower blade
is hit and the upper blade is released.

where r1 is the crown radius, r2 is the common length of the blades
(distance of their edges from the axis of the verge), α is the pitch of the
gear teeth, and β is the angle of the dihedron formed by the two blades.
Otherwise, either the mechanism jams (β too small) or the foliot is not
always linked to the crown gear (β too large). Furthermore, all collisions
take place at the extremes of the vertical diameter of the crown gear.

If α and β are small, then α ' sin(α) ' tan(α), β ' sin(β) ' tan(β),
and the distance from the verge axis of the point of the blade currently in
contact with a tooth does not appreciably differ from r2. In particular,
relation (9.1) may be approximated by

r2β = r1
α

2
. (9.2)

By denoting the angular velocities of the crown gear and the foliot
by ω1 and ω2, respectively, and indicating with the subscripts − and +
their velocities immediately before and after each inelastic collision, the
angular velocities ω1− and ω1+ have the same sign (say positive), and
ω2− and ω2+ have opposite signs. If ω2− > 0, then

r1ω1− = r2ω2−, r1ω1+ = −r2ω2+ (9.3)

so that
ω1− =

r1

r2
ω2−, ω1+ = −r1

r2
ω2+ (9.4)
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According to the law of action and reaction, the force exerted by the
colliding tooth on the blade is equal and opposite to the force exerted
by the blade on the tooth. By indicating with ι the absolute value of the
corresponding force impulses acting on each colliding part, and recalling
that under the adopted hypotheses on the signs of ω1 and ω2 the resulting
torque impulses (relative to their respective centres of rotation) are both
negative, their values are −ιr1 and −ιr2. Equating these torque impulses
with the changes of the angular momenta of the crown gear system and
of the verge–and–foliot system, respectively, leads to

J1(ω1+ − ω1−) = −ιr1, J2(ω2+ − ω2−) = −ιr2, (9.5)

where J1 is the crown–gear moment of inertia and J2 the verge–and–
foliot moment of inertia. Due to the very short time of the collision, the
other external forces have been neglected.

From (9.4) and (9.5) it follows in particular that

ω1+ =
J1 − Ĵ2

J1 + Ĵ2

ω1− (9.6)

and

ιr1 = 2
J1Ĵ2

J1 + Ĵ2

ω1−, (9.7)

where

Ĵ2 = J2

(
r1

r2

)2

(9.8)

is the moment of inertia of the verge–and–foliot system referred to the
crown–gear axis. The same results are obtained by assuming ω2− < 0.

The torque impulses are exerted when the angle ϑ1 made by the
radial edge of a reference tooth with the upward radius of the crown
gear is a multiple of α/2, that is,

ϑ1 = k
α

2
(9.9)

with k integer. In the interval between two consecutive impulses, under
the assumption of linearity, the crown–gear motion is described by

T =
(
J1 + Ĵ2

)dω1

dt
+
(
F1 + F̂2

)
ω1 (9.10)

in which T is the torque due to the prime mover (falling weight), F1 is
the friction coefficient of the crown–gear system, and F̂2 is the friction
coefficient of the verge–and–foliot system referred to the gear axis.
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Figure 9.5: Block diagram describing the crown–gear motion under the
assumption of inelastic collisions. The sampler is actuated by block
B whenever (9.9) is verified. Block A accounts for (9.10); its transfer
function is 1/[(J1 + Ĵ2)s+ F1 + F̂2].

9.3 Block diagram and simulation

By taking into account the analysis of Section 9.2, the escapement opera-
tion can be represented as in the block diagram of Fig. 9.5, where block
A accounts for (9.10). Essentially, the mechanism can be interpreted
as a sampled–feedback velocity control system in which the sampling
takes place in the feedback path. The amplitude of the torque im-
pulses is proportional to the current angular velocity via the coefficient
2J1Ĵ2/(J1 + Ĵ2) according to (9.7).

The time interval between two consecutive impulses is constant at
steady state only. Fig. 9.6 shows how the speed of the crown gear
varies in time starting from ϑ1(0) = kα/2 and ω1(0) = 0, under the
assumption that F1 = F2 = 0 (frictionless bearings): in this case the
left–hand block of the forward path in Fig. 9.5 is a pure integrator.
Even if this hypotesis is not realistic, it lends itself well to showing that
the average speed would indefinitely increase without the escapement
mechanism. This result is obviously related to the fact that the change
in the potential energy of the weight (the prime mover) is equal to the
energy loss in the inelastic collisions.

In the time interval of duration ∆ti = ti − ti−1 betwee the (i− 1)th
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Figure 9.6: Crown–gear angular velocity ω1 vs. time starting from
ω1(0) = 0 and ϑ1(0) = kα/2.

collision and the ith collision, the crown gear velocity changes according
to

ω1,i− = ω1,i−1+ + γ∆ti = λω1,i−1− + γ∆ti (9.11)

and
α

2
=
ω1,i−1+ + ω1,i−

2
∆ti =

λω1,i−1− + ω1,i−
2

∆ti, (9.12)

where, again, subscripts − and + refer to the situations immediately
preceding and following the collision,

γ =
T

J1 + Ĵ2

(9.13)

is the angular acceleration (constant under the considered assumption),
and

λ =
J1 − Ĵ2

J1 + Ĵ2

. (9.14)

From these relations, the following nonlinear recursion is obtained:

ω2
1,i− = λ2ω2

1,i−1− + γα (9.15)

and

∆ti =
1
γ

[√
γα+ λ2ω2

1,i−1− − λω1,i−1−

]
. (9.16)

The steady–state angular velocity ωs at the end of the interval between
two consecutive collisions and the corresponding (constant) duration ∆ts
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of this interval are

ωs =

√
γα

J2
1 + Ĵ2

2

2J1Ĵ2

(9.17)

and

∆ts =

√
αĴ2

γJ1
. (9.18)

Fig. 9.6 refers to the following indicative values of the parameters: α =
2π/61 = 0.103 rad, γ = 0.106 rad/sec2, λ = 0.6, which correspond to a
rather large speed change at each collision instant. Note that, if F1 and
F̂2 differ from zero, the slanted segments with the same slope in Fig.
9.6 become arcs of exponentials with the same time constant but the
behaviour does not change substantially.

9.4 Elastic collisions

If the collisions between the blades and the crown–gear teeth are wholly
elastic, that is, without energy losses, the colliding parts are in contact
only at the collision instants, whereas in the time interval between con-
secutive collisions they move separately. In particular, the subsystem
formed by the foliot and the verge with its blades moves freely and its
velocity is reduced by friction starting from the value acquired when the
blade is struck, and the subsystem connected to the crown gear moves
under the action of the falling weights. The situation is illustrated in
Fig. 9.7 which refers to a time instant following the collision of the tooth
a with the lower blade and preceding the collision of the tooth b with
the upper blade.

To construct the model of the overall system, it is necessary: (i) to
determine the displacement of the tooth edges and the blades, which in
turn allows us to determine the collision instants, and (ii) to write down
the equations for the angular momenta and the kinetic energies before
and after each elastic collision. Unlike the case of inelastic collisions, the
model must account for the motion of both subsystems that interact at
the collision instants only.
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Figure 9.7: Elastic collisions. Top elevation of the escapement mecha-
nism.

Motion equations

The motion of the crown gear (with the other parts joined to it) is
described by the equation:

T = J1
dω1

dt
+ F1ω1 (9.19)

and the motion of the verge–and–foliot arrangement by

0 = J2
dω2

dt
+ F2ω2, (9.20)

where the moments of inertia and the friction coefficients are referred to
the respective axes of rotation. Obviously, the angle ϑ1 made by a ref-
erence tooth with the vertical axis is the integral of ω1, and the angular
displacement ϑ2 of the line bisecting the angle between the blades with
respect to the vertical line in Fig. 9.7 is the integral of ω2.

Collisions’ angular displacements

The collisions between teeth and blades may reasonably occur within
an angle 2α centred at the vertical diameter. Two teeth are included

' ' ' 
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in this interval both in the upper and in the lower part of the gear and
their angular displacements are

ϑ1u,a =
[
ϑ1

α
−
⌊
ϑ1

α

⌋]
α and ϑ1u,b = ϑ1u,a − α (9.21)

for the upper teeth, and

ϑ1`,a =
[
ϑ1 − α/2

α
−
⌊
ϑ1 − α/2

α

⌋]
α and ϑ1`,b = ϑ1`,a − α (9.22)

for the lower teeth.
Similarly, the angular displacements of the upper and lower blade turn
out to be, respectively,

ϑ2u =

{
ϑ̂2u :=

[
ϑ2 + β/2

2π
−
⌊
ϑ2 + β/2

2π

⌋]
2π if ϑ̂2u ∈ [0, π)

ϑ̂2u − 2π otherwise
(9.23)

and

ϑ2` =

{
ϑ̂2` :=

[
ϑ2 − β/2

2π
−
⌊
ϑ2 − β/2

2π

⌋]
2π if ϑ̂2` ∈ [0, π)

ϑ̂2` − 2π otherwise.
(9.24)

Using the symbols in Fig. 9.7, the collisions with the upper blade take
place when

r̂2 tanϑ2u = r1 sinϑ1u,a for ϑ2u ≥ 0, or r2 sinϑ2u = r1 sinϑ1u,b for ϑ2u < 0
(9.25)

and those with the lower blade when

r̂2 tanϑ2` = −r1 sinϑ1`,a for ϑ2` < 0, or r2 sinϑ2` = −r1 sinϑ1`,b for ϑ2` ≥ 0.
(9.26)

By approximating the trigonometric functions by their arguments and
r̂2 by r2, conditions (9.25) and (9.26) become, respectively

r2ϑ2u = r1ϑ1u,a or r2ϑ2u = r1ϑ1u,b (9.27)

and
r2ϑ2` = −r1ϑ1`,a or r2ϑ2` = −r1ϑ1`,b. (9.28)



118 Chapter 9. Feedback control in ancient clocks

Velocity jumps

Using the symbols of Section 9.4, the equation expressing the energy
conservation is

J1ω
2
1− + J2ω

2
2− = J1ω

2
1+ + J2ω

2
2+ . (9.29)

According to Newton’s third law of motion applied to the tooth–blade
interaction:

J1ω1+ − J1ω1−
r1

= −J2ω2+ − J2ω2−
r2

(9.30)

so that (retaining only the solution of interest)

ω1+ =
J1 − Ĵ2

J1 + Ĵ2

ω1− +
2Ĵ2

J1 + Ĵ2

r2

r1
ω2− , (9.31)

ω2+ =
2J1

J1 + Ĵ2

r1

r2
ω1− +

J1 − Ĵ2

J1 + Ĵ2

ω2− . (9.32)

Therefore, the magnitude ι of the force impulses as a function of the
velocities before the collision is

ι =
2J1J2

J1r2
2 + J2r2

1

[|r2ω2−|+ |r1ω1−|] (9.33)

both for the collision with the upper blade and for that with the lower
one.
With the adopted sign convention, the feedback torque impulse acting
on the crown gear is

∆T1 = − r1 ι (9.34)

and that acting on the blade is

∆T2 = ± r2 ι, (9.35)

where the sign + applies to the collision with the upper blade and the
sign − to the one with the lower blade.

------
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Block diagram

All of the previous relations are represented by the block diagram in Fig.
9.8. The left part of the block diagram refers to the crown–gear system
and the right part to the verge–and–foliot system. The upper part refers
to the collisions with the upper blade and the lower part to those with
the lower blade. Blocks 1 and 2 account, respectively, for (9.19) and
(9.20). Blocks 3 and 4 are pure integrators. Blocks 5 and 6 correspond
to (9.21) and (9.22): they allow us to compute the angular displacement
of the tooth of interest from the displacement ϑ1 of an arbitrary reference
tooth. Similarly, blocks 7 and 8 supply the displacements of each blade
from ϑ2 according to (9.23) and (9.24). Blocks 9 and 10 actuate the
samplers when conditions (9.27) or, respectively, (9.28) are satisfied.
The outputs of the samplers are force impulses whose amplitudes are
given by blocks 11 and 12 according to (9.33). By multiplying such
force impulses by their respective radii, the feedback torque impulses
(9.34) and (9.35) are obtained.

9.5 Concluding remarks

The verge–and–foliot escapement of medieval mechanical clocks repre-
sents an important contribution of automatic control technology. The
operation of this accurate velocity regulator is based on feedback even
if, quite likely, the unknown inventor of this ingenious contrivance was
not aware of the feedback nature of the control system he had conceived
and, in fact, Otto Mayr [3] does not consider the verge–and–foliot clock
as an example of closed–loop control.

The motion of the escapement has been analyzed in the cases of both
inelastic and elastic collisions between its component parts. The block
diagrams describing the verge–and–foliot operation have been derived.
Simulations show that the average steady–state gear velocity, directly
related to the movement of the clock hand, remains constant.
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