
New Trends in Fuzzy Sets,
lntuitionistic Fuzzy Sets,

Generalized Nets and Related Topics
Volume li: Applications

Editors

Krassimir T. Atanassov
Władysław Homenda
Olgierd Hryniewicz
Janusz Kacprzyk
Maciej Krawczak

Zbigniew Nahorski
Eulalia Szmidt

Sławomir Zadrożny

SRI PAS <> IBS PAN

���������	�
����

�����	���

����
�
��
	�
����

�����	���

�������

������	����������������
�	�

���������������
���
��	�

�

�

�

�

�

�

�

�

�

�

�

�

!�
���	�

�

"��		
�
�������		�#�

$%���	%���&�������

'�(
����&���
��
�
�

)���	
�"����
�*�

+��
�,�"����
�*�

-.
(�
��������	*
�

!����
���
�
���

�%����
��-����/���

�

�

�

�

�0������
�

��������

�

�� ������	
�����
��������������
�����������

� �����
������������
��������

� ��������� !�

�

�

�

�

�

�

�

���� �����	� �
	
��
�
���� ����� ��� ���	� ���������������� �
� �
������
��� 	���
�� ���

�
���
����	�	�
���������	����
��������������������������
��	��
�
����������
����

����������������������
��������������
���	
�����������
���		��������������������

�����	�
�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��	�
�	��
	
�������	�����
�

����	������
���������
��
	��

�
�
�	 ��!��"#�$$%�&��	�����������

���
��	���
���
���

�

�
"#�$!%$&'%()'(%��

Proposed multi-criterion optimisation method of

school timetabling problem

Jacek M. Czerniak, Wojciech T. Dobrosielski

Casimir the Great University, Institute of Technology,

ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland

jczerniak@ukw.edu.pl, wdobrosielski@ukw.edu.pl

and

Rafal A. Angryk

Montana State University Department of Computer Science

Bozeman, MT 59717-3880,USA

angryk@cs.montana.edu

Abstract

Authors of the article propose multi-criterion optimisation method PRTS

dedicated for optimizing software-generated university timetables. In their

research they used real data made available by Casimir the Great University

in Bydgoszcz. PRTS method is based on tabu search mechanisms. It means

that this is a metaheuristic that searches for the problem solution by super-

vising other heuristic procedures of local searching, in order to explore the

space of solutions beyond the local optimum. The solution space searching

process is coordinated by means of strategies based on memory mechanisms

which are characteristic features of TS algorithm.

Keywords: tabu search, timetabling, scheduling, course timetabling, meta-

heuristics.

1 Introduction

The professional literature [1, 2, 4] dedicated to multi-criterion optimisation in-

cludes diverse and interesting approaches to problems called timetabling and sche-

duling. On the other hand, authors many times faced nuisance of non-optimum

New Trends in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics.

Volume II: Applications (K.T. Atanassow, W. Homenda, O. Hryniewicz, J. Kacprzyk,

M. Krawczak, Z. Nahorski, E. Szmidt, S. Zadrożny, Eds.), IBS PAN - SRI PAS, Warsaw, 2013.

planning consequences. This paper is only one of the diverse approaches to the

problem of creating optimum university timetables using metaheuristics. In this

very case the PRTS method was developed based on tabu search mechanisms.

Timetabling consists in establishing lecturer-group combinations for specified pe-

riods of time and groups of students. As the optimising quality criterion, authors

assumed reduction of conflicts occurring when several lecturers [3, 7] must give

lectures or classes for the same group of students in the same time periods or when

different lecturers or classes require the same room. The main trouble is associ-

ated with the scale of the problem [19, 20]. On one hand, lecturers’ needs (who

expect specific timetable arrangement) should be taken into account and on the

other hand students studying hygiene should be taken into consideration. Those

factors should be considered in the context of education law as well as internal

regulations of university authorities that require, for example, minimized number

of free periods. Very often those aims are mutually exclusive and the only solution

is to find the best compromise [8].

2 Tabu search algorithm

TS is a metaheuristic that searches for the problem solution by supervising other

heuristic procedures of local searching, in order to explore the space of solutions

beyond the local optimum [5, 6]. The process of searching the space of solutions

is coordinated by means of strategies based on memory mechanisms which are

characteristic features of TS algorithm [19].

TS algorithm performs full search of the neighbourhood of the current solu-

tion [9, 10, 11]. Current solution is replaced by the best solution in the neighbour-

hood, even if it deteriorates the quality. The searching process uses the system of

limitations imposed on the collection belonging to the neighbourhood. The objec-

tive is to prevent the possibility of the algorithm looping and returning to the same

narrow solution spaces. Solutions that were previously accepted as current solu-

tions are removed from the defined neighbourhood thus creating so called tabu

collection [18]. Limitations used in TS can have a form of absolute ban or only

some restrictions.

40

Algorithm 1 The pseudo code presenting the operation of Tabu Search algorithm

Algorithm start

Initialisation of the memory structures

Selection of the initial solution x and determining its quality f(x)

while f(x) =
∑

wrfr(x) ≥ Θ do

• Determining the best solution found so far x∗ := x

• Generating neighbourhood N(x) of the current solution

• Selection of the best neighbourhood N ∗ (x) taking into account tabu

rules generated on the basis of data stored in the memory structures

• Selection of the best solution x′

• The best solution becomes the current solution x := x′

if x′ > x∗ then

x∗ := x′

end if

end while

Algorithm stop

The main and most characteristic mechanism of tabu search is the memory.

Information on the searched space is collected there during searching process [12,

13]. Local selections depend on information collected during the entire searching

process. Information collected in the memory is basis for creation of limitations

which protect the algorithm against returning to already searched areas of the

solution space [14, 16]. Those limitations depend on the following factors:

• Recording frequencies for specified data,

• validity of data stored in the memory,

• influence of specific data on quality of achieved results.

In consecutive iterations, the algorithm searches the neighbourhood of the cur-

rently found solution in order to determine new location of the current solution.

Therefore it is necessary to define a neighbourhood relation for all items of the set

search space.

The memory structure first and foremost stores information on executed

moves. It can also include information e.g. on frequency of moves or the time

41

that has elapsed from the execution of each move. There are two types of mem-

ory in TS algorithms: long-term and short-term one. Each memory type is used

by its characteristic strategies. The result of their operation can be observed as

modification of neighbourhood N(x) of the current solution x. Modified neigh-

bourhood N ∗ (x) is the result of stored information concerning searching process

completed so far.

Short-term memory is used during every iteration to store most recently vis-

ited solutions and penalties imposed on them. Its main task is to avoid selection

of the move operator which could lead to algorithm looping in some narrow area

of the solution space.

Long-term memory stores information on the course of the search process. It

allows to store the best solutions from already visited areas of the solutions space,

instead of the best solution from the current neighbourhood only [15, 17]. To

determine the neighbourhood relation, it is necessary to specify the operator for

the change of the current solution which defines the neighbourhood of the point:

any point that can be obtained from the current point using the change operator is

a neighbour of that current point unlike other points which are not its neighbours.

A collection of moves to new locations belonging to the neighbourhood of

the current solution must be specified for each step of the algorithm. One of

them shall be selected as the new current solution. It is necessary to specify and

check all attributes of any generated move. If the value of such attribute is defined

by at least one tabu limitation, then such attribute is considered as tabu-active.

Otherwise the attribute is considered tabu-inactive. Once the status of all attributes

for each new transition is specified, the rules specifying if a given move is tabu-

active or tabu-inactive are generated. Tabu-active status characterising one move

attribute does not necessarily mean that status of the entire move is also tabu-

active. This depends on the rules which use attribute statuses. For example, if a

given rule specifies that status of the move to a new location is a Boolean sum of

two specific attributes, then tabu-inactiveness of both those attributes makes the

entire transition tabu-inactive. To set-up the status of a given attribute as tabu-

active it is always necessary to specify the number of iterations during which that

status shall be maintained. Once this number of iterations has been executed, the

attribute status is changed into tabu-inactive. However, if a tabu move is made

before, which activates this attribute again, then the activeness period for that

attribute is counted from the beginning. The length pf the tabu period does not

have to be uniform for all attributes, but is should rather be individually specified

for each of them. This length may either be constant or variable over time. In

that case, the length may be fixed (i.e. it would be the function of the number of

currently performed iteration) or may change in a random way. It may also be

42

the function of factors defining the progress made by the algorithm. Every move

may be defined by different attributes. This may for example include the value

of the penalty assigned to it, number or recent frequency of this move, the tabu

period, i.e. the number of remaining iterations for which the ban on that move

remain in force. All such information shall be stored in the memory structures

during algorithm execution. Those two event types differ, i.e.: high incidence of

certain value at certain position means that this value of attribute is particularly

desirable. Whereas high variability of the value on a specified position indicates to

high unpredictability of that attribute and it means that its role is probably higher

in the final tuning to optimum than in the initial optimization phase, i.e. in the

initial exploration aimed at finding the most promising area of the domain.

New value of the current solution is searched for as follows: the operator of the

move to the next position selects some subset of solutions from the neighbourhood

of the current position and searches for the best one among them. However, it de-

termines values and availability of solutions taking into account tabu rules. Once

the set of neighbours is generated, it is analysed and, after all the tabu rules are

taken into account, the best individual found in that set becomes the new current

solution of the algorithm. Information about that move is stored in the memory

structure.

The aim of tabu rules, used by the move operator, is to prevent the search

process getting stuck in local optimums. They are also used to withdraw from

already visited areas of the solution space, which enables the algorithm to search

wider space. There are diverse tabu rules. They may introduce total or partial

bans. Those rules may also take into account the time. For example, the ban

on move between points may be cancelled after predefined period of time (i.e.

number of iterations) since the last such move. Penalties may also be diminished

and finally cancelled after some time. However, they are resumed when such

move is made again.

Tabu limitations may prohibit attractive moves, even when there is no risk of

getting stuck in local optimums or they may lead to stagnation of the searching

process. So it is necessary to use tools which will make possible to cancel the

tabu. They are called aspiration criteria. Limitations may be softened by can-

celling a selected limitation and adding some penalty for the infringement of the

prohibition. There are several ways to determine penalty values. One of them is

the use of so called self-adjusting penalty. Its value changes dynamically based

on the search process history.

43

3 Implementation of ts-aided

timetabling

The timetabling process was implemented in the Matlab environment and it con-

sists in generating a timetable for each lecturer and each group of students. The

schedule of use for individual rooms is also created. The set of all partial timeta-

bles forms the resulting timetable. The aim of the programme is to reduce con-

flicts occurring when several lecturers must give lectures or classes for the same

group of students in the same time periods or when different lecturers or classes

require the same room. The main trouble is associated with the scale of the prob-

lem. Apart from a large number of groups, lecturers, classes and rooms, numerous

additional conditions must also be taken into account.

There are two types of limitations in timetabling. Heavy limitations (H) must

be absolutely met. Whereas conditions considered as useful but not necessary in a

good timetable are called soft limitations (S). In the process of searching for opti-

mum solution, the value of this parameter is directly proportional to the achieved

quality of the timetable. Therefore they influence the value of the evaluation func-

tion.

The timetable consists of the set of m lecturers t1, . . . , tm giving lectures and

classes to n groups of students c1, . . . , cn during the time periods p1, . . . , pj . As-

signment of lecturers to individual groups of students is pre-defined, whereas their

workload is defined in the matrix of requirements. The problem is solved by mini-

mization the value of evaluation function f(x) which takes into account the degree

to which limitations are met by generated solutions.

The evaluation function is denominated by the formula:

f(x) =
∑

wrfr(x) (1)

where r is the consecutive limitation number.

Weight values wr are defined by the developer and they specify the impor-

tance of a given limitation in the entire process. Functions fr(x) are summed up

values of all solutions xita for parameters defined by a given limitation. Subtotals

associated with heavy limitations define the feasibility level, whereas subtotals

connected to soft limitations are the measure of satisfaction.

There are following heavy limitations assumed at the stage of the programme

creation:

(H1) Each lecture or class must be assigned to a specific time slot or its multiple,

depending on the duration of an individual class.

(H2) None of the lecturers can give two different classes at the same time.

44

(H3) None of the groups can take part in two different classes at the same time.

(H4) Two concurrent classes cannot be given in the same room.

(H5) A class or a lecture must take place in a room of appropriate type.

(H6) Availability/unavailability periods for individual teachers must be adhered

to

(H7) Classes or lectures of individual student groups of the same year class can-

not collide with common classes or lectures for that year class.

Soft limitations take the following form:

(S1) Number of free periods in timetables of individual student groups should be

reduced to minimum in order to eliminate idle time.

(S2) Number of free periods in timetables of individual teachers should be re-

duced to minimum in order to eliminate idle time.

(S3) The number of classes of the same type (subject/teacher/class type) students

have on the same day should not exceed the specified value.

The maximum number of classes (limitation S3) is defined by the user. It is

also possible to change the maximum number of iterations, the number of meet-

ings for specified schedule and the type of studies. In case of extramural studies

classes are held from Friday to Sunday and the user can select the time when

the first class starts on the first day of the meeting. Classes and lectures of the

full-time course are held on weekdays.

Fixed parameters of the algorithm include:

• tabu time,

• weights wr of the evaluation function,

• number of iterations followed by intensification/diversification.

The timetabling (generating the timetable) must be preceded by input of basic

information. They include data referring to:

• lecturers,

• class years,

• groups,

45

• subjects,

• rooms,

• types of classes (lecture, lab etc.).

This data is used to create a schedule, i.e. the list of all classes to be held in a

given semester/year. The timetable is generated based on information included in

the schedule.

The abovementioned data are stored in form of tables linked to each other

by specific relations, presented in fig.(1). The assumed time unit amounts to 15

Figure 1: Data structure and mutual relations between them

minutes.

Discussed implementation used three three-dimensional matrixes: T, C and

S, to store individual partial timetables. First of them includes information on

46

n

I

l

Years
',/ ID year

Name
Oescription
Quantity
Type of study

Short name -
Groups

',/ ID group
-

ID year
Name
Quantity

Lecturer
'11 IO lecturer

Surname
Name
Oegree

Nick

courses
'v to course

l

n„
'.

\
I,
I

Hours
',/ ID range

Range

..!., \,J
",.ool

Grids
',/ ID grid

ID year

-;;i -/ oo

I.Cl r

l

ID group
JO lecturer
JO course
JO type of classes
Number of hours

Name of course
Nick -~

Rooms
l

',/ ID room r-
Name
Nick -

Schedules
',/ ID schedule

JO study unit
Day of study
JO range
Time unit
ID grid

lecturers’ timetables t, the second one about timetables of student groups c, and

the third one -about rooms s. Those tables constitute separate structures, but they

Figure 2: Matrixes storing partial timetables for: a) lecturers, b) groups, c) rooms

are linked to the schedule table. If randomly selected item of the schedule table (id

schedule) is placed in one of the matrixes T, C or S, then that item is also placed

in analogous positions of the other two matrixes. Due to the fact that each item of

id schedule explicitly defines the lecturer, the group and the room it refers to, only

one value is stored in each cell of the matrixes T, C and S. Otherwise it would be

necessary to place more information in matrix cells. Fig. (3) and (4) illustrate the

manner in which information is stored in matrixes T, C and S and the Schedule

table.

The purpose of the programme is to generate the timetable with the least pos-

sible value of the evaluation function. While determining this value, the degree

to which the function is satisfied by the generated result of limitations specified

in point 3.2 is also analysed. Implemented algorithm prevents creation of the

47

P1
P2
P,

f :
:I
O·
J: .

P1

/,1/ /,'/
1/

/
/ "

d, e'
/ "" . ~~
d , O

t t t , . tmd, -~~
Lecturers Q

P1 >-+--+---+-+--+-+-+­
P1 >-+--+---+-+--+-+-+-~·
P, ._._--+---+-~-+-+-

P1
P2
P,

f
:I
o

d, I", J: „e
. ~~fi;

c;
P1 d2 ł

C1 Cz · Cn d, .t
Groups Q~

Figure 3: Way of data storage in matrixes T, C and S. Item li represents i-th value

of id schedule

timetable breaching any of heavy limitations (H1)-(H7). Thus, only soft limita-

tions (S1)-(S3) are taken into account to determine the value of the evaluation

function. A penalty point is imposed for each breaching of the limitations. The

value of the evaluation function of the generated timetable is equal to the sum of

all penalty points of all partial timetables.

The timetable generation process starts from randomly generated initial solu-

tion. The space of solutions X is searched during each iteration. This space is the

set of solutions satisfying the limitations (H1)-(H7).

It would demand lots of calculations to examine the entire neighbourhood of

the solution x. For that reason the programme uses the strategy of the list of poten-

tial items. Each individual class-lecturer-group-room combination (id schedule)

is selected randomly, but the randomness is limited. The solution x′ must meet

heavy limitations, so it is not necessary to search the entire neighbourhood N(x).
The tabu list and attributes of accepted moves are stored in the programme

48

P,
1-ł--,c+--+-+-t-+-+--+-<'

P , ,____,---=+--+-+->-+-+--+-~

P , 1-'--'-'....,_-'--'-'---'--'-!'

f
:i
o

::c:

f
:i
o

::c:

P,
1-+--a+--+--+---i>--+-+--+----<'

P z1-+---=+--+--+---i>--+-+--+-

Groups

Figure 4: The manner in which individual items of the generated timetable are

stored based on data from matrixes T, C and S in fig.(3)

memory. Number of repetitions for which the move shall be prohibited is also

stored there. This number is decreased during each consecutive iteration and

once it reached zero value the move is removed from the list. Whereas the move

selected to be executed generates solution x′ with the best value of the evalua-

tion function, which is better than the evaluation function value of the previously

achieved best solution.

Once the move is made, the solution characterized by the best value of the

evaluation function in the new region is stored in the memory. If better solution

than the stored one is not reached after defined number of repetitions then the

stored solution shall be examined once more (intensification). Thus the searching

process focuses on neighbours of good solutions. If no solution which is better

than the best local solution is found within defined number of iterations, then the

49

en en Q) ... en ::i en o
:!: >, ro .c Q) C "O o

::i
...

::i ::i Q) Q) o
"O - - a. o >, en Q) ·c ... en ...
Q) "O O) ... ::i ::i ... Q) Q) ::i "O "O ro - ::i .c ::i o C o o a. .o o - ro Q)

·;::: ·;::: Q) ...
Q) o z, E en en >, ...

E
O) O) >, O) o

:Q :Q
ro

:Q :Q :Q :Q :Q :Q :Q :Q
::i

"O :;:::; C

1 1 1 P1 2 I C2 t2

1 1 1 p3 1 12 relation C1 t3

1 1 dz P1 1 Cn tm - --

schedule grid of hours

algorithm returns to the best local solution.

All algorithm steps described above are executed until one of the termination

criteria is met: i.e. the solution characterised by the evaluation function value

equal 0 is found or number of iterations reaches the set point.

4 Results

The experiment was divided in two parts. First of them included measurement

of the time needed for random generation of the timetable without optimizing

algorithms [20].

The efficiency of the method and the quality of achieved timetable were exam-

ined. Efficiency was measured by execution of the application 100 times and then

by determining the number of correctly generated timetables. The timetabling

time and the quality of generated timetables was determined based on 50 cor-

rectly selected timetables in a random way. Whereas in the second part of the

experiment analogous measurements were performed for timetables generated us-

ing TS algorithm. The tabu period equal 5 was assumed without the possibility

of conditional execution of prohibited move. Currently searched neighbourhood

was abandoned in favour of new areas after 10 iterations. Weight values wr of the

evaluation function was fixed at 0.01, both for partial values of evaluation function

associated with timetables of individual lecturers and individual student groups.

Thanks to introduction of equal weight values, each factor is equally important in

the evaluation of the timetable quality. Maximum number of iterations amounted

to 500. The timetable was generated for full-time course.

Results of the experiment discussed in point 3.6 are illustrated in fig.(5-6)

Time necessary for random generation of a timetable is shorter for a random

process (fig.(5)). The first generated solution becomes the final one regardless of

the value of the evaluation function, which is confirmed in the fig. (6 a, b). On

average, the quality of the resulting timetable obtained using TS algorithm is twice

as good as in case of random timetabling. The value of the evaluation function

is decisive for the final form of the resulting timetable. The differences shown as

graphs in the fig. (7 a, b) are clearly visible in the graphic version of timetables.

5 Conclusions

The results presented above prove that use of PRTS algorithm significantly in-

creases the quality of the final solution compared to results of random generation.

The quality of local searching is also improved. The limitation system makes it

50

Figure 5: Time necessary to generate a timetable: a) randomly, b) using TS

possible to examine all available versions of the timetable being developed and to

determine the version that best meets the predefined assumptions. It is somewhat

difficult to compare the results with results achieved by other authors, as virtually

all of them used their own data which were often stored in unique formats. Thus

it is very difficult to use them. But this is usually not the major obstacle. In most

cases this data is sensitive in respect of personal data protection or the interest

of the organisation it belongs to. Authors of this study would like to thank the

management of The Institute of Technology at Casimir the Great University in

Bydgoszcz for providing access to data used for experiments presented herein.

51

a)

10,68
•

10,66
• • • •

10,64

10,62
• •

Time [s] •• • - ••• • ••• • • • •• • • •

10,60
• • • • • • ••••

10,58
T T T T ? T T

10,56

o 10 20 30 40 50

b) Test No.

24,00

22,00 T

•••• •
20,00 •••••• • • •

• • • •• •····· .. - • •••••• • • • • • •• • •••
18,00

Time [s]
16,00

14,00

12,00

o 10 20 30 40 50

Test No.

Figure 6: Quality of a generated timetable: a) randomly, b) using TS

References

[1] Aladag, .H., Hocaoglu, G., 2007, A Tabu Search Algorithm to Solve a

Course Timetabling Problem, Hacettepe Journal of Mathematics and Statis-

tics, vol. 36(1), s.53-64

[2] Aladag, C.H., Hocaoglu, G., 2009, Basaran, M.A.,The effect of neighbor-

hood structures on tabu search algorithm in solving course timetabling prob-

lem Expert Systems With Applications Volume: 36, Issue: 10, December,

pp. 349-356

[3] Alvarez-Valdes, R., Crespo, E., Tamarit, J.M., 2002. Design and implemen-

52

a)
C 25,00
o ..
u •
C 20,00

.. __
::, ... • •• C • • • • • ••• o • ••• • • .. • • .. 15,00 T • • • • · .. •••• ::,

•••
• • • ;; • • •• • > • .. 10,00 ..

.c o 5,00 ..
::,
;;
> 0,00

o 10 20 30 40 50

Test No.

b)
C 10,00 o
tł 9,00
C 8,00 :I

7,00 C

• • • •• • • ·~ - ~

•••
• • ••• • • • • .. •

•
o 6,00 :,;:;
li

5,00 :I

.. •• •

iii 4,00 >
Gł

3,00
Gł

.,
•• ••• • •• • • • •

• • .c ... 2,00 o 1,00
Gł 0,00 :I
iii
> o 10 20 30 40 50

Test No.

Figure 7: Sample timetables generated: a) randomly, b) using TS

tation of a course scheduling system using tabu search. European Journal of

Operational Research 137 (3), 512-523

[4] Burke, E.K., Petrovic, S., 2002. Recent research directions in automated

timetabling. European Journal of Operational Research, vol. 140 (2), pp.266-

280

[5] Burke, E.K., Kingston, J., Jackson, K., Weare, R., 1997. Automated uni-

versity timetabling: The state of the art. The Computer Journal, vol. 40 (9),

565-571

[6] Caldeira, J.P., Agostinho, C.R., 1997. School timetabling using ge-

netic search. In: Proceedings of the Practice and Theory of Automated

Timetabling, University of Toronto, Toronto, pp.115-122

53

a)

b)

Hours

07:00 • 08 :00

08:00 · 09:00

09:00- 10:00

10:00 • 11 :00
- -

11 :00-1 2:00

12:00 - 13:00

13:00 - 11:00

11:00 - 15:00

15:00 • 16:00

16:00 -17 :00

--,-7:00 · 18:00

18:00-19:00

19:00 - 20:00

20:00 • 21 :00

Hours

07:00 • 08:00

08:00 • 09:00

09:00 • 10:00

10:00- 11:00

11 :00- 12:00

12:00 - 13:00

13:00- 14:00

i'ł :00- 15:00

15:00 - 16:00

16:00- 17:00

I 7:00 - 18:00

18:00- 19:00

19:00- 20:00

20:00 • 21:00

Monday

N:. •ytW . 111.T. W„ cl.7

.I.LIi . ,.

Tuesday I Wednesday I Thursday I Frlday I

N t i.,J C., Ól,15

sl l F .111 1zi

j P. k. it. m . l.K.T .. Ól.18

N I i .J C .•.15

ll'li . wyt• . lll ,T. W.,w,7 j Pr magT W s l
1~ 10

I

P. k. ie. m. l,K. T .• •,18
~1,ch...K.C..a. lO I

K.• . 1 .K.w .• a,11

Pr. k. 11.Ft . s .. 61.l11

• . d, I"'. n , • 1 1

[7] Costa, D., 1994. A tabu search algorithm for computing an operational

timetable. European Journal of Operational Research, vol. 76 (1), 98-110

[8] Daskalaki, S., Birbas, T., Housos, E., 2004. An integer programming formu-

lation for a case study in university timetabling. European Journal of Opera-

tional Research, vol. 153 (1), 117-135

[9] Erben, W., Keppler, J., 1996. A genetic algorithm solving a weekly course-

timetabling problem. In: Burke, E., Ross, P. (Eds.), Practice and Theory

of Automated Timetabling, Lecture Notes in Computer Science, vol. 1153.

Springer, Berlin, pp. 198-211

[10] Gaspero, L., Schaerf, A., 2006, Neighborhood Portfolio Approach for Lo-

cal Search Applied to Timetabling Problems Journal of Mathematical Mod-

elling and Algorithms Volume: 5, Issue: 1, April, pp. 65 -89

[11] Gaspero, L.D., Schaerf, A., 2001. A case-study for Easy-Local++: The

course timetabling problem. Research Report, Universita degli Studi di

Udine, Italy

[12] Glover, F., 1986, Future Paths for Integer Programming and Links to Ar-

tificial Intelligence, Computer and Operations Research, vol. 13, no. 5, ss.

533-549.

[13] Glover, F., 1989, ”Tabu Search -Part I,” INFORMS Journal on Computing,

vol. 1, no. 3, pp. 190-206

[14] Glover, F., 1990, ”Tabu Search -Part II,” INFORMS Journal on Computing,

vol. 2, no. 1, pp. 4-32

[15] Hansen, P., 1986, The steepest ascent mildest descent heuristic for combi-

natorial programming, Congress on Numerical Methods in Combinatorial

Optimization, Capri, Italy,

[16] L, Z., Hao, J.K., , 2010, Adaptive Tabu Search for course timetabling, Eu-

ropean Journal of Operational Research Volume: 200, Issue: 1, January pp.

235-244

[17] Pongcharoen, P., Promtet, W., Yenradee, P., Hicks, C., 2008, Stochastic Op-

timisation Timetabling Tool for university course scheduling International

Journal of Production Economics, Volume: 112, Issue: 2, April, pp. 903-

918

54

[18] Schuster, Ch.J., 2006,No-wait Job Shop Scheduling: Tabu Search and Com-

plexity of Subproblems Mathematical Methods of Operations Research, Vol-

ume: 63, Issue: 3, July , pp. 473 -491

[19] Socha, K., Sampels, M., Manfrin, M., 2003. Ant algorithms for the univer-

sity course timetabling problem with regard to the state-of-the-art. In: Pro-

ceedings of the Third European Workshop on Evolutionary Computation in

Combinatorial Optimisation. Springer, UK.

[20] Souza, M.J.F., Maculan, N., Ochi, L.S., 2001. A GRASP-tabu search algo-

rithm to solve a school timetabling problem. In: Proceedings of the Fourth

Metaheuristics International Conference, Porto, Portugal, pp. 53-58

55

The papers presented in this Volume 2 constitute a collection of contributions,
both of a foundational and applied type, by both well-known experts and young
researchers in various fields of broadly perceived intelligent systems.
lt may be viewed as a result of fruitful discussions held during the Eleventh
International Workshop on lntuitionistic Fuzzy Sets and Generalized Nets
(IWIFSGN-2012) organized in Warsaw on October 12, 2012 by the Systems
Research Institute, Polish Academy of Sciences, in Warsaw, Poland, Institute
of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences in
Sofia, Bułgaria, and WIT - Warsaw School of lnformation Technology in
Warsaw, Poland, and co-organized by: the Matej Bel University, Banska
Bystrica, Slovakia, Universidad Publica de Navarra, Pamplona, Spain,
Universidade de Tras-Os-Montes e Alto Douro, Vila Real, Portugal, Prof. Asen
Zlatarov University, Burgas, Bułgaria, and the University of Westminster,
Harrow,UK:

Http://www.ibspan.waw.pl/ifs2012

The Workshop has also been in part technically supported by COST Action
IC0806 "lntelligent Monitoring, Control and Security of Critical lnfrastructure
Systems" (INTELLICIS).

The consecutive International Workshops on lntuitionistic Fuzzy Sets and
Generalized Nets (IWIFSGNs) have been meant to provide a forum for the
presentation of new results and for scientific discussion on new
developments in foundations and applications of intuitionistic fuzzy sets and
generalized nets pioneered by Professor Krassimir T. Atanassov. Other topics
related to broadly perceived representation and processing of uncertain and
imprecise information and intelligent systems have also been included. The
Eleventh International Workshop on lntuitionistic Fuzzy Sets and Generalized
Nets (IWIFSGN-2012) is a continuation ofthis undertaking, and provides many
new ideas and results in the areas concerned.

We hope that a collection of main contributions presented at the Workshop,
completed with many papers by leading experts who have not been able to
participate, will provide a source of much needed information on recent trends
in the topics considered.

ISBN-13 97883894 754 73

9 788389 475473

