DOI: 10.23858/SA/73.2021.1.2615

Dagmara H. Werra¹, Richard E. Hughes², Marek Nowak³, Marián Vizdal⁴ and Lýdia Gačková⁵

OBSIDIAN SOURCE USE WITHIN THE ALFÖLD LINEAR POTTERY CULTURE IN SLOVAKIA

ABSTRACT

Werra D. H., Hughes R. E., Nowak M., Vizdal M. and Gačková L. 2021. Obsidian Source Use within the Alföld Linear Pottery culture in Slovakia. *Sprawozdania Archeologiczne* 73/1, 331-369.

This paper reports the results of non-destructive energy dispersive x-ray fluorescence (EDXRF) analysis of 186 obsidian artifacts from eight archaeological sites attributable to the Alföld Linear Pottery culture (c. 5600-4900 cal BC). This is the largest instrument-based study yet conducted and reported for Alföld Linear Pottery culture (ALPC) artifacts from Slovakia, where ALPC chipped lithic assemblages are almost entirely composed of obsidian items. Results show that all obsidian artifacts analyzed were manufactured exclusively from a volcanic glass of the Carpathian 1 chemical type, the source of which has been localised in Slovakia. This chemical variety of obsidian appears to have been the most important volcanic glass used by prehistoric communities in East-Central Europe during the Neolithic.

Keywords: obsidian, Alföld Linear Pottery culture, obsidian source analysis, non-destructive energy dispersive x-ray fluorescence (EDXRF), Slovakia

Received: 10.02.2021; Revised: 15.03.2021; Accepted: 28.05.2021

- ¹ Institute of Archaeology and Ethnology Polish Academy of Sciences, 105, Solidarności Avenue, 00-140 Warsaw, Poland; e-mail: werra@iaepan.edu.pl; ORCID: 0000-0003-2233-1663
- ² Geochemical Research Laboratory, 20 Portola Green Circle, Portola Valley, CA 94028 USA; e-mail: rehughes@silcon.com
- 3 Institute of Archaeology, Jagiellonian University, 11 Golębia St., 31-007 Kraków, Poland; e-mail: marekiauj. nowak@ujedu.pl; ORCID: 0000-0001-7220-6495
- 4 Institute of History, Prešov University, 1 17. Novembra St., 08-001 Prešov, Slovakia; e-mail: marian.vizdal@unipo.sk
- ⁵ The Zemplín Museum, Kostolné námestie 1, 071 01 Michalovce, Slovakia; e-mail: lydia.gackova@gmail.com

INTRODUCTION

Due to its particular physical and aesthetic properties, obsidian – a natural volcanic glass – was widely used by past human communities. Its extraordinary features like gloss, colour, transparency, and razor-sharp edges, find their counterpart in its geochemical composition, where discrete combinations of trace elements created during the magma eruption and cooling allow each "source" (or, eruptive entity) to be identified. The characteristic trace and rare earth element composition, the so-called geochemical "fingerprint", of each source can be instrumentally-identified, and these can then be used for comparison with "fingerprints" determined for archaeological artefacts. The congruence between "source" and artefact fingerprints forms the scientific basis for studies of the temporal and spatial variation in the conveyance, use, and discard patterns evident in the archaeological record.

In this paper, we use energy dispersive x-ray fluorescence (EDXRF) analysis as the instrumental basis for identifying the obsidian sources used by Alföld Linear Pottery culture (ALPC) communities and discuss the results in the context of how the material may have been employed during that period.

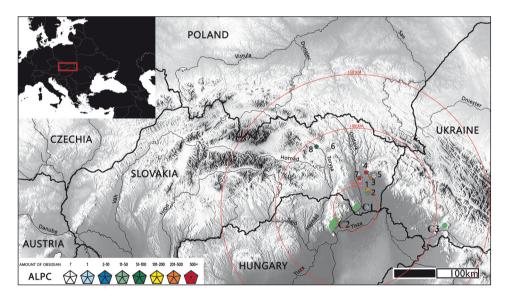


Fig. 1. Locations of ALPC archaeological sites in Slovakia containing obsidian artifacts analysed in this study.
1 – Malé Raškovce, Michalovce distr.;
2 – Slavkovce, Michalovce distr.;
3 – Zalužice, Michalovce distr.;
4 – Lúčky, Michalovce distr.;
5 – Moravany 'Stredné pole', Michalovce distr.;
6 – Zbudza, Michalovce distr.;
7 – Fintice; Prešov distr.;
8 – Ražňany-Farské, Sabinov distr.;
C1 – Carpathian 1 geological obsidian outcrops;
C2 – Carpathian 2 geological obsidian outcrops.
Red lines mark distances from Carpathian 1 source locations. Graphic design: Ł. Figura

CARPATHIAN OBSIDIAN

Several geological obsidian sources are located in, and proximate to, the Zemplén Mountains in Slovakia and Hungary (Fig. 1). Those outcrops of this material were the most important for prehistoric communities in Central Europe. By convention, obsidian raw materials are classified into three groups: Carpathian group 1 (C1) is used as a shorthand descriptor for obsidian from Slovakia, Carpathian group 2 (C2) identifies obsidian from Hungary, and Carpathian group 3 (C3) specifies material from Transcarpathian Ukraine (Thorpe *et al.* 1984; Rosania *et al.* 2008).

The occurrence of obsidian in what is today Slovakia and Hungary was first noted by Johann Ehrenreich von Fichtel (1732-1795) in 1791 (*Mineralogische Bemerkungen von den Karpathen*, Wien 1791-1794; Janšák 1935; Přichystal 2013, 160). Within Slovakia natural sources of obsidian are concentrated in Veľká Tŕňa, Malá Tŕňa, Viničky, Malá Bara, Veľká Bara and Streda nad Bodrogom, and secondary sources are known in the area of Brehov-Cejkov (Kaminská and Ďuďa 1985, 123; Kaminská 1991; 2013; 2018; Bigazzi *et al.* 2000, 225; Přichystal 2013, 160, 161; Přichystal and Škrdla 2014; Bačo *et al.* 2017, 208).

The best-known outcrop, and the one frequently cited as being most important to prehistoric communities, is in Viničky. This deposit has been described by O. Williams and J. Nandris (1977, 216), and its major and minor element composition appears in Macdonald *et al.* (1992, appendix 3, 189, 196). The obsidian there is either black or grey and poorly transluscent, with a matte surface. This raw material is found in primary deposits yielding nodules *c.* 7 cm in diameter, rarely 10-12 cm weighting up to 0.8 kg (Williams and Nandris 1977, 211; Přichystal 2013, 160). However, based on recent comparisons between obsidian artefacts and obsidian from the sources Přichystal and Škrdla (2014) suggest that the Brehov-Cejkov may have been the most important locus for prehistoric obsidian extraction (Bačo *et al.* 2017; Burgert *et al.* 2017, 8-10).

Three geological sources of obsidian occur in northeastern Hungary – Tolcsva, Erdobenye-Aranyospatak and Erdobenye-Ligetmajor (Biró 1981, 201; Přichystal 2013, 161), with obsidian present as nodules weighing over 5 kg. This obsidian is generally black in appearance, but it can also be found in a variety of different hues, such as dark brown, greenish, light red, reddish-brown, yellow, and yellowish-green. The most well-known variety is the obsidian from Tolcsva which is opaque, matt, and black (Williams and Nandris 1977, 213; Přichystal and Škrdla 2014, 161). The major and minor element chemistry of Tolcsva also was reported by Macdonald *et al.* (1992, appendix 3, 189, 196).

Some time ago O. W. Thorpe, S. E. Warren, and J. G. Nandris (1984, 184), pointed out that there are visible differences in colour and transparency that differentiate Hungarian obsidian from that found in Slovakia; the Hungarian variant is almost always black and opaque, while its Slovakian counterpart can be grey or brownish-grey, with some degrees of transparency (Přichystal 2013, 161). The discovery of a new visual variant of obsidian by Přichystal and Škrdla, however, throws into question the confidence one can have that

these visual intrasource differences unambiguously separate Hungarian from Slovakian occurrences.

In the Transcarpathian Ukraine, not far from the villages of Rokosovo and Maliy Rakovets, V. F. Petrougne (1986) reported a local variety of obsidian that eventually became known as Carpathian 3 (Rosania *et al.* 2008; Hughes and Ryzhov 2018). To the north of Rokosovo and the south of Maliy Rakovets in the Upper Tertiary Sin'ka Formation, obsidian blocks and bombs occur in an agglomerate tuff. This obsidian has two visual subtypes: a freshly broken piece of the first variety has a glassy lustre and, occasionally, displays unique grey stripes. The second type is grey, with a dull sheen, is striped with darker bands and contains visible spherulite inclusions. These latter characteristics are very rarely noticeable within the first black variation (Rácz 2018).

MATERIALS

This paper focuses on EDXRF provenance analysis of 186 obsidian artefacts from eight Neolithic sites located within what is today Slovakia (Fig. 1; Table 1). We chose artifacts from sites associated with the activity of ALPC communities from each of its chronological phases, including the last stage connected with the Bükk culture. All materials analysed were selected from properly dated settlements with large quantities of pottery and with ¹⁴C dates. With the exceptions of Lúčky and Fintice (Vizdal 2000a; 2000b), the results of archaeological investigations of the sites that we examined have all been published (see Table 1).

GENERAL REMARKS ON TECHNOLOGY-MORPHOLOGY AND LITHIC SOURCES CHARACTERIZATION OF THE ALPC IN SLOVAKIA

In the middle of the 6th millennium in the area of the middle and upper Tisza Basin the ALPC came into being as a result of northward expansion of the Körös culture and its regional, cultural transformations. Afterwards, the scientific consensus seems to be that those communities diffused northward from the Great Hungarian Plain to the Košice Basin, the Eastern Slovak Plain, and the Transcarpathian Ukraine, but the expansion never crossed the Carpathian Mountains (Kalicz and Makkay 1966; 1977; Šiška 1989; Pavúk 2004, 74; Kozłowski and Nowak 2007; 2010; Domboróczki and Raczky 2010).

The earliest ALPC expression (Szatmár group, equivalent to the so-called proto-Linear phase in eastern Slovakia) is dated to the period *c*. 5600-5400 cal BC (Domboróczki 2010, 156-161; Domboróczki and Raczky 2010, 213-215). In sites of this phase, the lithic resources used are nearly always of local origin, mostly obtained in the Slovak-Hungarian borderland (limnoquartzites, and Carpathian obsidian 2) and Transcarpathian Ukraine

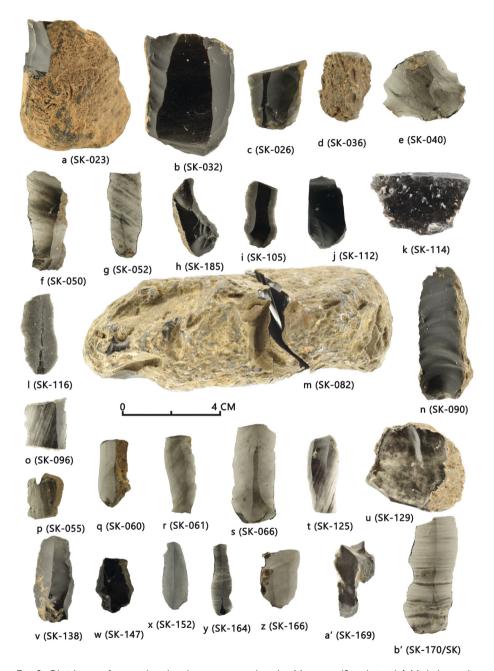
(predominantly the stone used in the ground stone industry). Some imports of radiolarite from Šariš are recorded (Slavkovce site) in the Eastern Slovak Lowland during the early ALPC phase but, overall, there is very little evidence for contacts with territories to the north and the east of the Carpathians (Kozłowski 1997; Kozłowski and Nowak 2010; Raczky *et al.* 2010; Kozłowski *et al.* 2014, 42-45).

The typical assemblage composition of ALPC sites throughout most of the Eastern Slovak Lowland consists of obsidian (dominant), with lower proportions of limnoquartzites, radiolarite, and others (*e.g.* hornstornes at Moravany). Except for "others", all of those sources can be found within several dozen kilometres from the site (< 50 km distant up to 120 km; Kozłowski and Nowak 2010, 76, 86; Kaczanowska *et al.* 2013, 113, 114; Kaczanowska *et al.* 2015, 172). Evidence of long-distance contacts in lithic sources occurs only rarely. For example, two artefacts recovered at Moravany were of chocolate flint (Upper Jurassic, the highest Oxfordian limestone and Lower Kimmeridgian, located within Central Poland) and the other of Volhynian flint (Cretaceous flint Turonian age; primary deposits located within the Volhynian Upland; Kozłowski 1989, 378, 391; Kaczanowska and Kozłowski 1997, 221; Kozłowski and Nowak 2010, 76, 86; Kaczanowska *et al.* 2013, 112-114; 2015, 172).

Unmodified obsidian nodules are often found on these sites; e.g. Slavkovce contained a cache of 34 obsidian nodules (see Kaczanowska and Kozłowski 1997, 184). Direct percussion and pressure techniques were mostly used to obtain blade blanks. There is some evidence that in younger ALPC assemblages a punch was used. Cores preparation was limited to platform preparation, and did not extend to the lateral side, back and distal end. It seems that core reduction proceeded from a prepared platform and during the manufacturing process, the flaked surface was extended to the sides of the core, until a conical, semi-conical or subdiscoidal form was achieved. Single platform blade cores predominate, except during the last phase when the method of reduction was changed and the object became a flake core. Flaking surface rarely extends over the lateral edges. Flakes were derived from cortical platforms or prepared with a single blow. Percussion points and bulbs are conspicuous, and percussion scars on the bulb indicate that hard hammerstones were used for core reduction. Blades also have platforms prepared with a single blow, and the distinctive bulb and bulbar scar also are consistent with the use of the direct percussion technique. Based on lithic analysis, the most desired end products were obsidian blades of dimensions: 30-40 mm long, 15-15 mm wide and 3-4 mm tick. Tool-kits were mainly composed with different proportions of retouched blades, retouched flakes, end-scrapers and geometric microlithic, which reflect the different domestic economic activities undertaken by the inhabitants of various settlements (Kozłowski 1989, 391; Kaczanowska and Kozłowski 1997, 178-180, 188, 189, 191, 194, 195, 220; Kaczanowska et al. 2013, 112; 2015, 173, 175). The Bükk culture assemblages contain large numbers of cores and blades. Cores are single-platform and their exploitation was preceded by careful preparation, as evidenced by technical forms, like crested blades. The pressure technique was used to obtain blade blanks, mainly up to 5 cm long. Most tools produced however, were end-scrapers

and truncations with lateral retouch and notched forms. Tool-kit composition appears to be related to site function rather than to time period. It is commonly stated that the Bükk culture lithic economy was built only on obsidian (Kulczycka and Kozłowski 1960, 44; Kalicz and Makkay 1977), but the evidence from *e.g.* Šarišské Michalany and Ražňany-Farské indicate this was not always the case (Kaczanowska *et al.* 1993, 95, 107-109; Karabinoš *et al.* 2018). Obsidian played a major role at settlements at a distance around 55 km from the outcrops. The amount of obsidian utilized appears to have depended not only on the site location but the different domestic economic activities that took place there.

PREVIOUS PROVENANCE INVESTIGATIONS


Over the last few decades since the first description of Carpathian obsidians, numerous modern analytical methods have been applied to determine the provenance of obsidian artifacts (see e.g. Biró 2006; Rózsa *et al.* 2006; Kasztovszky *et al.* 2014; Prokeš *et al.* 2015; Kasztovszky and Přichystal 2018).

However very little instrumental analysis has been undertaken on obsidian from ALPC sites. Kozłowski published results of the trace elements analysis of some obsidian samples from Zemplínske Kopčany and Prešov-Šarišské Lúky (Kozłowski 1989, Tab. 2), wherein all the analysed items were attributed to Carpathian obsidian type 1, from the Malá Třňa-Viničky region (Kozłowski 1989, 377). The results show a high degree of homogeneity suggesting that the raw material must have been obtained from a single eruptive source.

The obsidian raw material at Moravany – which was imported most probably as unworked nodules with surface sculpture typical of secondary (redeposited) natural sources – was determined to be Carpathian variety 2 obsidian by Małgorzata Kaczanowska on the basis of macroscopic appearance (Kaczanowska *et al.* 2015, 172; see Bačo *et al.* 2017, 209).

METHODOLOGY

As stated above, a study of the provenance of 186 artifacts of obsidian from 8 archaeological sites was conducted (see Table 2). The first step of selection was macroscopic. In this stage, samples were separated on the basis of differences in lustre, transparency and colour, as well as texture and pattern in obsidian structure (Fig. 2). We also paid attention to the size of all items and surface sculpture, keeping in mind the features of Carpathian obsidian identified by Přichystal and Škrdla (2014) and by Bačo *et al.* (2017; 2018). Table 2 breaks down the artifacts analysed in this study on the basis of a classification intended to document the presence of obsidians items in each stage of the lithic reduction (see Dzieduszycka-Machnikowa and Lech 1976; Lech 2012). The first group (natural nodules

Fig. 2. Obsidian artifacts analysed in the present study: a-h – Moravany 'Stredné pole', Michalovce distr.; i-l – Zbudza, Michalovce distr.; m-o – Slavkovce, Michalovce distr.; p, q – Ražňany-Farské, Sabinov distr.; r, s – Fintice; Prešov distr.; t-v – Malé Raškovce, Michalovce distr.; w, x – Zalužice, Michalovce distr.; y-b' – Lúčky, Michalovce distr.; Photo: D.H. Werra

and cores) contains 24 items; seven unworked (natural) obsidian nodules, roughouts in different stages of preparation, and 17 cores in different stages of reduction. The second group consists of ten whole blades and 44 blade fragments. The other three specimens are technical blades. The third group of 77 artifacts is made up of flakes and waste, along with platform rejuvenation and preparation flakes. The fourth and final group (retouched tools) consisted of 28 artifacts, mostly end-scrapers together with retouched blades and flakes. We used these groups to guide our selection of obsidian artifacts for EDXRF analysis to investigate whether or not some elements of the obsidian lithic reduction system (of which there were distinctive types in each morphological group) might have employed obsidian from different sources (chemical types).

GEOCHEMICAL ANALYSIS AND RESULTS

The 186 samples selected for this study were analysed in the Geochemical Research Laboratory in California using EDXRF spectrometry and assigned to a geochemical type/variety and therefore a source (*sensu* Hughes 1998). Laboratory analysis conditions, instrumentation, geochemical type attribution procedures, element-specific measurement

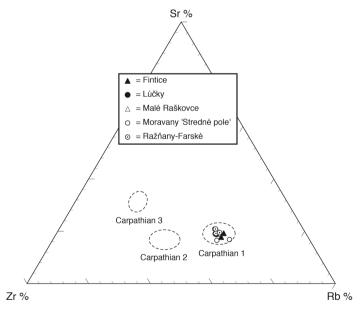


Fig. 3. Normalized Rb/Sr/Zr composition of small obsidian artifacts from Fintice, Lúčky, Malé Raškovce, Moravany 'Stredné pole' and Ražňany-Farské. Dashed lines depict the range of composition variation measured in archaeologically significant geological reference samples. (adapted from Hughes and Werra, 2014: figure 5). Symbols plot the artifacts listed in Table 4

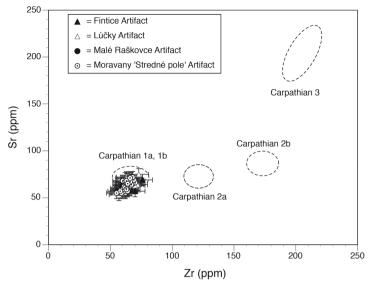


Fig. 4. Sr vs. Zr composition of large obsidian artifacts from Fintice, Lúčky, Malé Raškovce, Moravany 'Stredné pole'. Dashed lines depict the range of composition variation measured in archaeologically significant geological reference samples (adapted from Hughes and Werra, 2014: figure 4). Symbols plot the artifacts listed in Table 3

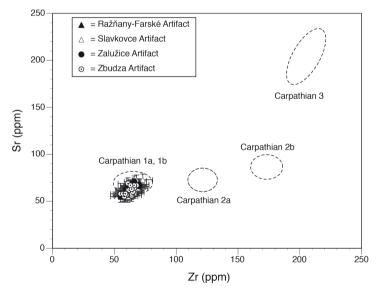


Fig. 5. Sr vs. Zr composition of large obsidian artifacts from Ražňany-Farské, Slavkovce, Zalužice and Zbudza. Dashed lines depict the range of composition variation measured in archaeologically significant geological reference samples (adapted from Hughes and Werra, 2014: figure 5). Symbols plot the artifacts listed in Table 3

resolution, and literature references applicable to these samples follow those that we reported for artifacts from Ryndo XIII/1959 (Hughes and Werra 2014) and from other Mesolithic and Paleolithic sites in Poland (Hughes et al. 2018). Table 3 and Fig. 4-5 present trace element concentration values for the 174 obsidian artifacts that were large enough to generate reliable quantitative composition estimates. The Sr/Zr data for all specimens plotted within the range established for Carpathian 1a/1b obsidians (Rosania et al. 2008, Milić 2014, Table 6), that occur in the Zemplén Mountains in northeast Hungary and southeast Slovakia (Fig. 3 and 4). Twelve other obsidian specimens in our sample were too small and thin to generate x-ray counting statistics adequate for proper conversion from background-corrected intensities to quantitative concentration estimates (i.e., ppm), so they were analysed to generate integrated net count (intensity) data for the elements Rb, Sr, Y, Zr, Nb, Fe and Mn. After background subtraction, the intensities (counts per second) were converted to percentages. The counting data and derived ratios appear in Table 4, and the plotted values appear in Fig. 3. Source assignments were made by comparing the plots for various element intensity ratios determined on artifacts against the parameters of known source types identified in Central Europe. Integrated net peak intensity data (Table 4, Fig. 3) indicate that all 12 small flakes also were manufactured from Carpathian 1a/1b obsidian. The EDXRF analysis did not reveal any source-specific differences within or among different ALPC morphological or typological groups.

DISCUSSION AND CONCLUSIONS

Obsidian artefacts are present on archaeological sites in Slovakia dated from the Middle Palaeolithic, through the Upper Palaeolithic, Mesolithic, Neolithic, up to the Early Bronze Age. However as Early Neolithic communities began to appear in Slovakia, the incidence of obsidian use increased (Kaczanowska 1985; Kaminská 2018). The ALPC inventories, for example, are almost entirely composed of obsidian items.

Almost 100% utilization of obsidian was registered at some sites (*e.g.* Zbudza, Zalužice, Slavkovce and Malé Raškovce). At Moravany, obsidian makes up almost 90% of the industry (Kozłowski 1989; Šiška 1989; Kaczanowska and Kozłowski 1997, 220, 221; Kaczanowska *et al.* 2015), while in the following Tiszadob group utilization of obsidian represented almost a half of all finds (Kaminská *et al.* 2016). In the following Bükk culture, obsidian dominates the entire chipped stone lithic industry. However in the material that we present here from the inventory from Ražňany-Farské obsidian does not conform to this pattern (Karabinoš *et al.* 2018, 348), nor does it at the Šarišské Michalany site (Kaczanowska *et al.* 1993).

Obsidian was subject to conveyance and long-distance distribution since Palaeolithic times (see Moutsiou 2014; Hughes *et al.* 2018) and, during the Neolithic, these activities intensified. Volcanic glass artifacts are present in inventories connected with Linear Pottery

culture sites (especially in the Želiezovce group), in western Slovakia, in southern Poland, and in ALPC assemblages in eastern Slovakia and Hungary (Kulczycka and Kozłowski 1960; Godłowska 1982; Milisauskas 1986; Šiška 1998; Grygiel 2004; Kaczanowska and Godłowska 2009; Szeliga 2009; Tunia 2016; Biró 2018; Kaminská 2018; Riebe 2019; Szeliga *et al.* 2019a; 2019b). Even higher demand for obsidian seems to have existed during the Late Neolithic (following the decline of the Bükk culture, during the beginning of the Lengyel culture), when raw material exchange and conveyance moved semi-products and finished products of obsidian as far as the central Danube region (Šiška 1989, 77), Czechia (Burgert 2015; Burgert *et al.* 2016; 2017), Poland, and the Polish Lowlands (Więckowska 1971; Kabaciński 2010; Wilczyński 2016). At the end of the Neolithic and during the Eneolithic period obsidian lost its dominant status, although it has been found occasionally in Early Bronze Age deposits (Biró 2014, 60-64; 2018, 219-222; Kaminská 2018, 209).

Based on our current study it is clear that the obsidian artefacts from the ALPC archaeological in eastern Slovakia sites that we analysed originated exclusively from the Carpathian obsidian source (chemical type) C1 (see Fig. 3-5; Table 3 and 4). These results parallel those from neighbouring countries. Investigations in Czechia and Hungary show that the Slovakian variant predominates at Neolithic sites, with a minor representation of the C2 variant (Biró 2014; 2018; Burgert *et al.* 2016; 2017; Riebe 2019). A similar situation seems to have existed in Romania (Constantinescu *et al.* 2014, 148), although at some sites the Hungarian variant of obsidian predominates (*i.e.* Măgura-Teleorman; Kasztovszky *et al.* 2019, 86). The limited geochemical analysis previously conducted on Neolithic obsidian from Poland also indicates the exclusive dominance of the C1 obsidian variant (Kabaciński *et al.* 2015; Szeliga *et al.* 2019a; Szeliga *et al.* 2021). Obsidian of the Carpathian 1 chemical type seems to have been the most important volcanic glass for prehistoric communities in East-Central Europe (Biró 2014, 64, Fig. 13), and this is underscored by the results of our study.

The tracing of the origins of the obsidian used for tools is a success story in Central European lithic provenance studies (Biró 2014, 47). Thanks to its unique geochemical features ('fingerprints') different chemical varieties can be distinguished by using instrumental methods. Such identifications allow us to analyse sources and uses, and to track synchronic and diachronic changes in distribution paths and conveyance mechanisms. Determining the sources is just one step in piecing together the puzzle (Biró 1998; Tykot 2017, 274) with the ultimate goal of understanding the complex interrelationships that existed between and among prehistoric communities. Carpathian obsidian is found in Neolithic site inventories at a considerable distance from the outcrops (even over 500 km; for example Kowalewko site 14, Oborniki dist., Kabaciński *et al.* 2015), and its presence can be useful in identifying such human connectivities, as well as possible differences in status, social rankings, and symbolic links to homeland/ancestors (see Mateiciucová 2010; Burgert 2016). We hope the data and conclusions presented here will contribute to a broader understanding of all these issues during the Neolithic period.

Table 1. List of ALPC sites from Slovakia from which samples were analysed

References	Kozłowski 1997	Kozłowski 1997	Kozłowski 1997	Vizdal 2000a	Kaczanowska et al. 2015; Kozłowski et al. 2015	Kozłowski 1997	Vizdal 2000b	Karabinoš <i>et al.</i> 2018	
Number of obsidian analyzed by ED-XRF	20	20	20	20	58	20	20	~	186
Number of items from other lithic sources	4	8	112	è	486	91	i	1467	2248
Total number of obsidian at the site	25	167	261	3	3904	887	?	09	5316
Chronology	early phase of the ALPC (proto-Kopčany group?)	proto-linear phase, similarity to Szatmár II group of the ALPC	early phase of the ALPC (proto-Kopčany group?)	ALPC middle and late phase (Tiszadob group)	ALPC, the whole period ca. 5600-5100 BC	early phase of the ALPC (proto-Kopčany or Kopčany group)	ALPC middle and late phase (Tiszadob group)	Bükk culture (continue from ALPC, its final stage)	
Site	Malé Raškovce; Michalovce distr.	Slavkovce; Michalovce distr.	Zalužice; Michalovce distr.	Lúčky; Michalovce distr.	Moravany 'Stredné pole'; Michalovce distr.	Zbudza; Michalovce distr.	Fintice; Prešov distr.	Ražňany-Farské; Sabinov distr.	TOTAI
Fig. 1 location	1	2	3	4	5	9	L	8	

Table 2. List of obsidian artifacts from Neolithic archaeological sites in Slovakia analysed by EDXRF spectrometry

Illustrated		Fig. 2:m								Fig. 2:n						Fig. 2:0		
		E								H								
EDXRF analysis number	SK-081	SK-082	SK-083	SK-084	SK-085	SK-086	SK-087	SK-088	SK-089	SK-090	SK-091	SK-092	SK-093	SK-094	SK-095	SK-096	SK-097	SK-098
description	nodule	nodule	nodule fragm.	flake	flake	waste	flake	retouched blade	flake	core	core frgm.	platform rejuvenation flake	flake	flake	retouched blade	backed piece	retouched blade	waste
weight (g)	279,3	213,9	18,8	3,3	2,4	L '0	9,8	9'9	2,4	23,8	15,9	2,8	9'9	7,1	11,6	1,7	2,4	4,5
thickness (mm)	42,9	37	20,5	5,5	3	2,5	5	8,5	3,8	21,5	20,9	4	4	8,2	12,4	3,4	4,8	7,5
width (mm)	46,9	48,4	22,8	35,1	20,1	21,5	24,5	38,2	32	17	21,4	38	27	41,9	28,5	21,7	16,8	27,8
length (mm)	80,8	115,7	31,7	20,7	34,5	13,3	43	27,9	26,4	46	36,2	25	33	23,8	43,3	17,4	27,6	21,5
Feature										Feature E/1988								
Site									Slavkovce,	Michalovce distr., Slovakia								
No.	-	2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18

Table 2.

ited							;;				n:						
Illustrated							Fig. 2:t				Fig. 2:u						
EDXRF analysis number	SK-099	SK-100	SK-121	SK-122	SK-123	SK-124	SK-125	SK-126	SK-127	SK-128	SK-129	SK-130	SK-131	SK-132	SK-133	SK-134	SK-135
description	flake	end-scraper	platform rejuvenation flake	blade fragm.	blade fragm.	blade fragm.	retouched blade	platform rejuvenation flake	blade	retouched blade	flake	retouched blade	blade fragm.	flake	blade fragm.	core	retouched blade
weight (g)	30,5	4,7	58,7	2,8	6,0	1,1	1,5	7,2	1,8	3,3	13,6	3,6	1,3	7,4	3,5	6,9	5
thickness (mm)	13,2	6,2	18,5	4,9	1,9	2,1	2,9	6'6	4	9	7,7	6,3	3,7	6	7,7	19,8	8,9
width (mm)	42,4	28,1	6'25	18,6	6,3	13,4	2,51	27,6	13,7	15,9	40,5	15,2	12,5	30	12	52	21,5
length (mm)	54,6	27,8	63,5	23	7,62	26,8	32,6	31,8	34,1	31,7	35,8	36	28	30,2	39,5	20	30,3
Feature	Feature E/1088								Feature 1/1988								
Site	Slavkovce,	Slovakia						Malá Paškovce	Michalovce distr.,	Slovakia							
No.	19 S	20 S	21	22	23	24	25	26	27 N	28	29	30	31	32	33	34	35

			1				ı	I	I				ı		1			
		Fig. 2:v									Fig. 2:w					Fig. 2:x		
SK-136	SK-137	SK-138	SK-139	SK-140	SK-141	SK-142	SK-143	SK-144	SK-145	SK-146	SK-147	SK-148	SK-149	SK-150	SK-151	SK-152	SK-153	SK-154
core	retouched blade	retouched blade	platform rejuvenation flake	blade	flake	waste	flake	retouched blade	waste	flake	blade fragm.	platform rejuvenation flake	waste	preparation flake	flake	blade	end-scraper	blade fragm.
17,6	4,3	4	4,1	2,2	2,3	12,1	10,6	2,1	16,6	1,7	1,6	6,2	1,3	5,5	1,1	1,1	3	2,9
28	7,1	6,4	7	4,5	4	12,5	8,5	3,5	8,7	4,6	4,3	16,1	6,3	9,3	3,2	3,3	6,7	5,8
28,8	15	17,2	24,6	14	24,4	33,1	33,2	14	40	18,6	16	27	13	19,4	15,7	11,2	20,7	19,2
17,3	48,6	36,7	23	33	24	30,7	51,7	39,7	44,4	26,3	23,2	41,3	15,8	30,7	26,6	28,7	20,3	29,9
		Feature 1/1988								Feature 1/1991						Fasture 2/1004	reature 4/1774	
		Malé Raškovce, Michalovce distr	Slovakia						7-1-2	Zaluzice, Michalovce distr.,	Slovakia					Zalužice, Michalogo dietr	Slovakia	
36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52 2	53 8	54

Table 2.

Illustrated											Fig. 2:i						
Illu											F						
EDXRF analysis number	SK-155	SK-156	SK-157	SK-158	SK-159	SK-160	SK-101	SK-102	SK-103	SK-104	SK-105	SK-106	SK-107	SK-108	SK-109	SK-110	SK-111
description	flake	blade	flake	flake	blade fragm.	waste	platform rejuvenation blade	preparation flake	platform rejuvenation flake	flake	retouched blade	retouched blade	blade fragm.	flake	blade fragm.	flake	crested blade
weight (g)	20,3	4,6	1,2	4,9	2,1	2,2	6,0	2,6	6,0	2	1,4	6'0	1,8	3,5	3	1,8	4,7
thickness (mm)	16,5	4,3	5,9	4,3	3	9,2	2,6	6	3,1	5,5	2,9	9'8	9,4	5,6	5'9	4,5	7,3
width (mm)	45,2	14,2	21,6	23,2	17,7	11,8 11,8 16,6 16,6 29 29 13,4 13,4 13,4 13,4 13,4 29,9											22,2
length (mm)	45,7	51,4	23	37,1	30	24,6	24,3	28,7	18,8	15,3	16,7	20,6	17,7	17,4	22,9	20,2	26,3
Feature			Ecoture 2/1004	r catulo 2/ 1774							Feature 1/1992						
Site			Zalužice, Michologo dietr	Slovakia							Zbudza, Michalovce distr., Slovakia						
No.	55	99	57	28	59	09	61	62	63	64	65	99	29	89	69	70	71

Fig. 2:j		Fig. 2:k		Fig. 2:1								Fig. 2:y		Fig. 2:z			Fig. 2:a'	Fig. 2:b'		
SK-112	SK-113	SK-114	SK-115	SK-116	SK-117	SK-118	SK-119	SK-120	SK-161	SK-162	SK-163	SK-164	SK-165	SK-166	SK-167	SK-168	SK-169	SK-170	SK-171	SK-172
flake	waste	flake	waste	blade fragm.	blade fragm.	retouched blade	retouched blade	blade fragm.	waste	retouched blade	blade fragm.	retouched blade	blade	blade fragm.	retouched flake	flake	flake	retouched blade	core	blade fragm.
5,6	3,2	11,4	13,2	2,4	2,3	2,8	1,6	1,5	2	3,2	9,0	7,0	1,7	1,3	1,5	1,8	1,7	5,2	10,5	1,2
14,6	9,3	8,6	14,3	4,5	6,7	3,8	5,2	4,9	5,2	5,5	1,7	2,5	3,6	3,3	3	3,3	4	5,2	13	2,6
14,4	16	37,9	35,6	14,6	17,7	15,8	16,5	6,01	29	16,1	9,4	6,8	12,8	15,6	19,3	20	17,1	6,61	28,1	13
27,9	28,9	24,4	31,2	32,8	15,8	42,6	15,9	24,6	16,9	36,3	30,6	29,6	33,8	24,1	26,1	28	29,5	47,4	25,3	29,8
				Feature 1/1992							Feature 1/1999,	depth 0-30 cm			Feature 1/1999,	20-30 cm		Feature 1/1999,	10-15 cm	
				Zbudza, Michalovce distr., Slovakia							Lúčky, Michalovce	distr., Slovakia			Lúčky, Michalovce	distr., Slovakia		Lúčky, Michalovce	distr., Slovakia	
72	73	74	75	76	77	78	79	80	81	82	83	84	85	98	87	88	68	90	91	92

Table 2.

No.	Site	Feature	length (mm)	width (mm)	thickness (mm)	weight (g)	description	EDXRF analysis number	Illustrated
93			21,7	16,8	3,4	1,2	blade fragm.	SK-173	
94	Lúčky, Michalovce	Feature 1/1999, Trench A: denth	31,5	10,8	3,1	6'0	blade fragm.	SK-174	
95	distr., Slovakia	10-15 cm	31,2	26,7	7,5	<i>L</i> '9	platform rejuvenation flake	SK-175	
96	Lúčky, Michalovce	feature 1/1999,	12,3	9,2	3,5	6,3	waste	SK-176	
26	distr., Slovakia	solida C, depui o- 10 cm	29,3	10,6	3,7	1,3	blade fragm.	SK-177	
86		Feature 1/1999.	42,7	38,5	8,1	8'8	flake	SK-178	
66	Lúčky, Michalovce distr., Slovakia	Trench C; depth 0-	35,2	21,9	3,7	8,5	blade fragm.	SK-179	
100		10.01	23,1	13,7	3,1	1,1	blade fragm.	SK-180	
101			32	10,8	2,5	7,1	blade fragm.	SK-061	Fig. 2:r
102			31,5	17	5,3	6'8	retouched blade	SK-062	
103			42	16	5	4	blade fragm.	SK-063	
104	Fintice, Prešov	Footure 1/1000	21,5	20	4,6	6,1	platform rejuvenation flake	SK-064	
105	distr., Slovakia	1 caracter 1777	18	8,4	4,5	9,0	waste	SK-065	
106			40,1	17,8	4,7	4,4	blade fragm.	SK-066	Fig. 2:s
107			38,3	34,9	30,6	34,9	core	SK-067	
108			21,4	14,7	4,7	1,2	flake	SK-068	
109			20,9	27,9	1,5	6,0	waste	SK-069	

SK-070	SK-071	SK-072	SK-073	SK-074	SK-075	SK-076	SK-077	SK-078	SK-079	SK-080	SK-001	SK-002	SK-003	SK-004	SK-005	SK-006	SK-007	SK-008	SK-009
nodule fragm.	end-scraper	blade fragm.	blade	waste	waste	waste	retouched blade	blade fragm.	end-scraper	blade fragm.	pre-core	blade	platform rejuvenation flake	blade fragm.	flake	nodule fragm.	nodule fragm.	blade fragm.	core
8	2,6	2,2	0,2	7,0	0,2	1,3	1,7	2,7	1,5	2,2	23,5	0,4	3,5	5,0	7,0	11,9	10,2	6,3	18,5
10,9	6,7	3	1,5	5,5	1,3	3	5,7	4,4	6,2	3,5	19	2	5,1	2,2	3,3	12,7	14	3	13,5
19,5 25,5 18 18 11,4 8,7 12,8 12,7 13,9 17,8 13,2 7 7 7 19,7 10,9 10,9 12,6 26,8 26,8											34,7								
31,5	20,9	22	17,8	19	10,3	28,7	27,3	36,7	12,5	41,2	36	24,5	30,6	16,6	18,8	37,5	45	12,5	36,3
					Feature 1/1999								Trench M; Cutting	11/2016, Feature 1/06(A)/W; E -	306 cm; S - 177 cm; denth 85-95 (-	220 cm)			
					Fintice, Prešov distr., Slovakia									Moravany 'Stredné	pore, intenatovee distr., Slovakia				
110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129

Table 2.

No.	Site	Feature	length (mm)	width (mm)	thickness (mm)	weight (g)	description	EDXRF analysis number	Illustrated
130	Moravany 'Stredné pole', Michalovce distr., Slovakia	layer 0-40 cm (depth); next to Feature 4/2002 (07.2002)	41,2	25,7	12	13,3	core	SK-010	
131			22,5	14	3	1	blade fragm.	SK-011	
132	Moravany 'Stredné	Trench F; Cutting	12,4	8,8	3	0,4	blade fragm.	SK-012	
133		3/2001 part S; Feature 3/01, depth	22,5	5'6	3	1,1	blade	SK-013	
134	distr., Siovakia	70 cm; 22.07.2002	19,1	12,9	2,9	9,0	flake	SK-014	
135			38,6	35,7	9,9	5	flake	SK-015	
136	Moravany 'Stredné	Trench F; Cutting	31,5	23,3	15,2	8,1	flake	SK-016	
137	pole', Michalovce distr., Slovakia	2D/2001, Toature 10/01, depth 20-40 cm; 10.07.2002	23	18,2	8,2	3,6	blade fragm.	SK-017	
138			16,8	11,5	5,5	1	waste	SK-018	
139	Moravany 'Stredné	Trench 11: Cutting	26,2	16,2	4,2	1,9	flake	SK-019	
140		12/2006; depth 20-	7,8	7,2	2,2	0,1	waste	SK-020	
141	distr., Stovakia	23 cm; 10.07.2000	18,7	13	5,5	1,1	flake	SK-021	
142			39,3	32,8	16,7	22,9	nodule fragm.	SK-022	
143	Moravany 'Stredné	Trench H: Cutting	90	26,3	43,2	53,3	core	SK-023	Fig. 2:a
144	144 pole', Michalovce	4/2002; Feature	10,4	7,4	2,5	0,1	waste	SK-024	
145	uisir., Siovākia	4/02; 22:01.2002	24,7	19,7	4,8	2,1	flake	SK-025	

Fig. 2:c						Fig. 2:b				Fig. 2:d				Fig. 2:e					
SK-026	SK-027	SK-028	SK-029	SK-030	SK-31	SK-032	SK-033	SK-034	SK-035	SK-036	SK-037	SK-038	SK-039	SK-040	SK-041	SK-042	SK-043	SK-044	SK-045
blade fragm.	blade fragm.	blade fragm.	blade fragm.	waste	waste	core	backed piece	flake	waste	flake	flake	flake	waste	platform rejuvenation flake	blade fragm.	flake	waste	core frgm.	overpassed blade from single platform core
3,6	1,8	1,3	6,3	1,7	1,1	37,9	1,1	2,1	4,1	4	2,3	5,0	6,1	3,7	2,5	1,4	1,6	8,2	9
8,9	5	4	3,2	7,8	4,4	18,2	3	4,5	7,5	7,5	9	2,1	5,9	4,9	7,8	5,7	7,9	10,1	6,6
23,3	17,7	14,5	11,2	20,5	18,7	31,7	14,4	26,5 26,5 25,3 21,2 12,7 27 29,9 15,2 16,5									12,1	28,4	18,8
24,3	6,91	29,5	8,2	14	16	47,7	17,5	14	22,7	26,7	21,2	16,4	25,7	30,2	24,8	18,1	25,7	26,8	36,7
Trench H; Feature	4/02; 24.07.2002		; ;	1 rench F; Cutting 2B/2001; Feature	10/01, depth 40-50 cm: 17.07.2002							Feature 1/1998:	sector C;	September 1998					Feature 1/1998; sector A; September 1998
Moravany 'Stredné	distr., Slovakia			Moravany 'Stredné	distr., Slovakia							Moravany 'Stredné	pole', Michalovce	uisu., Siovakia					Moravany 'Stredne pole', Michalovce distr., Slovakia
146 l	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165

Table 2.

Feature length (mm) width (mm)	length (mm)		width (mm)		thickness (mm)	weight (g)	description	EDXRF analysis	Illustrated
			- 1		(111)			numper	
Moravany 'Stredné Feature 1/1998:		33,9		25,1	17,5	16,3	core frgm.	SK-046	
es		32		36	16,9	18,8	core frgm.	SK-047	
distr., Stovakia September 1998 37		37		32,8	32,1	37,6	core	SK-048	
53	53	53		13	5	3,4	blade fragm.	SK-049	
Moravany 'Stredné Feature 1/1998; 39,8		39,8		17,5	5	3,7	blade	SK-050	Fig. 2:f
Sep		52,5		13,7	4,8	3,6	blade	SK-051	
34,7	34,7	34,7		12,5	3,2	6,1	retouched blade	SK-052	Fig. 2:g
Moravany 'Stredné pole', Michalovce 4/02; 24.07.2002 polet., Slovakia		16,1		13,3	2,4	0,7	blade fragm.	SK-181	
Moravany 'Stredné pole', Michalovce 11/2006; Feature 1/06 part W, depth 85-95 cm		22,8		31,8	5,4	3,4	flake	SK-182	
Moravany 'Stredné pole', Michalovce 3/01 depth 60-70 cm		26		27	13,8	8,4	core frgm.	SK-183	
Moravany 'Stredné 5/2002; Feature 5/2002; Michalovce 3/01 part S; depth distr., Slovakia 20-50 cm		30,1		16,5	11	5,9	flake	SK-184	
Moravany 'Stredné pole', Michalovce 11/2006; Feature 11/2004; Aleyth 75-85 cm		31,7		15,3	4,5	2,7	retouched blade	SK-185	Fig. 2:h

			Fig. 2:p					Fig. 2:q
SK-186	SK-053	SK-054	SK-055	SK-056	SK-057	SK-058	SK-059	SK-060
core	blade fragm.	blade fragm.	blade fragm.	blade fragm.	flake	platform rejuvenation flake	waste	blade fragm.
12,1	1	2,3	1	6,0	6'0	3,3	6,0	1,4
15,3	3	3	3,4	2,7	3,2	8,4	2,5	4,2
29,6	L	15	14,8	10,2	5,61	20	15,7	13,4
23,6	23	25	17,7	14,7	16,6	21,5	12,3	27
Trench M, Cutting 11/2006; Feature 1/06 part W; depth 55-65 cm	Trench IV/2012	sector C depth 35-	4.3 cm	0100/2x1 1 E	Feature 1/2012	sector C depth 60-	Trench IV/12 Feature 5; sector C; depth 45 cm	Feature 1/2012 sector D depth 55- 60 cm
Moravany 'Stredné 178 pole', Michalovce distr., Slovakia	Ražňanv-Farské:	180 Sabinov distr.,	Siovakia		183 Ražňany-Farské;	Slovakia	Ražňany-Farské; 185 Sabinov distr., Slovakia	Ražňany-Farské; 186 Sabinov distr., Slovakia
178	179	180	181	182	183	184	185	186

Table 3. EDXRF composition estimates for large obsidian artifacts from Neolithic archaeological sites in Slovakia

	Illustrated		Fig. 2:m								Fig. 2:n						Fig. 2:0				
Chemical	Type	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1
Ratio	Fe/Mn	24,8	25,9	26,3	24,4	24,3	27,1	24,6	26,2	24,9	26,8	24,3	24	24,4	24,3	23,9	24,8	24,5	24,5	26,2	23,8
	+	0,02		0,02	0,02		0,02			0,02			0,02	0,02			0,02	0,02	0,02		0,02
	Fe ₂ O ₃ ^T	1,02	nm	1,03	1,02	nm	1,04	nm	nm	1,16	uu	nm	1,03	1,18	nm	nm	1,1	1,11	1,01	mm	1,13
	+	22	21	23	21	20	21	20	22	21	22	22	20	22	22	21	20	25	21	22	22
Trace and Rare Earth Element Composition	Ba	413	433	458	464	421	421	400	530	405	454	490	430	493	489	437	415	436	460	452	447
odwo	#	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ent C	qN	7	∞	∞	7	∞	7	8	6	∞	6	8	8	8	8	7	6	10	8	8	∞
Elem	#	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
arth	Zr	59	57	64	99	09	99	61	73	69	89	63	09	64	61	58	09	99	62	69	9
are E	#	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	ε	3
and R	Y	38	39	31	30	31	34	28	31	34	30	29	31	34	27	30	32	31	32	29	31
race a	+	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
T	Sr	58	56	59	61	58	59	55	73	64	72	65	59	65	57	56	62	62	61	09	65
	#	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	Rb	191	179	184	195	190	210	198	207	208	211	161	191	210	180	179	209	200	193	180	203
	Cat. No.	SK-081	SK-082	SK-083	SK-084	SK-085	SK-086	SK-087	SK-088	SK-089	SK-090	SK-091	SK-092	SK-093	SK-094	SK-095	SK-096	SK-097	SK-098	SK-099	SK-100
75	Site		,			•					Slavkovce,	Michalovce distr.									

			2:t				2:u									v::v		
			Fig. 2				Fig. 2									Fig. 2:v		
Cl	C1	Cl	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1						
26,8	27,6	25,5	24,5	26,5	25	25	26,1	26,4	25	25	26,4	25,2	24,9	24,4	24,3	23	27,6	25
		0,02	0,02	0,02	0,02	0,02		0,02		0,02		0,02	0,02		0,02	0,02		0,02
uu	nm	1,08	1,02	1,03	1,09	1,15	nm	1,07	nm	1,1	nm	1,16	1,03	nm	1,17	1,17	uu	1,16
21	21	21	20	21	23	20	22	22	25	21	25	23	20	22	23	22	21	26
393	463	425	421	413	444	417	487	441	389	427	481	480	425	478	418	385	449	417
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
10	6	∞	8	8	8	8	8	8	8	8	8	10	8	7	8	89	6	8
4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
09	58	89	62	09	63	63	09	64	63	62	56	65	99	62	63	64	09	61
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
28	27	31	31	28	31	32	29	30	32	31	28	32	31	38	30	31	28	28
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
09	57	99	62	58	99	64	63	61	63	58	57	58	58	63	19	09	09	99
4	4	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	4	5
184	173	196	197	184	188	199	184	200	205	202	203	196	188	169	200	204	175	195
SK-121	SK-122	SK-124	SK-125	SK-126	SK-127	SK-128	SK-129	SK-130	SK-131	SK-132	SK-133	SK-134	SK-135	SK-136	SK-137	SK-138	SK-139	SK-140
								5	Male Kaskovce, Michalovce distr.									

Table 3.

	Illustrated							Fig. 2:w					Fig. 2:x								
Chemical	Type	C1	Cl	C1	C1	C1	Cl	C1	C1	C1	C1	C1	C1	C1	C1	Cl	C1	C1	C1	Cl	CI
Ratio	Fe/Mn	24,9	25,6	26,8	26,5	28,5	23,8	24,6	26	24,9	25,8	24,7	25	25,1	23,1	24,4	27,1	25,6	25,4	22,7	27,1
	#	0,02	0,02						0,02				0,02		0,02				0,02		0,02
	Fe ₂ O ₃ ^T	1,05	1,09	nm	nm	nm	nm	nm	1,07	nm	uu	uu	1,01	nm	1,06	nm	nm	nm	1,09	nm	1,03
	+	20	22	22	21	21	0	20	21	21	22	27	28	22	20	22	22	20	20	20	22
Trace and Rare Earth Element Composition	Ba	415	482	472	462	432	421	382	438	456	500	384	418	486	393	457	466	444	423	431	497
odwo	#	2	2	2	2	2	2	2	2	2	2	2	2	2	7	2	2	2	2	2	2
ent C	^Q N	6	8	7	7	8	8	∞		8	8	8	7	7	∞	8	8		7	8	8
Elem	#	1 3	3	3	4	3	3	3	3) 3	3) 3	3	3	3	3 3) 3	1 3	3	3	5 3
Earth	Zr	3 64	3 66	3 63	3 64	3 59	3 66	3 59	3 60	3 60	3 61	3 70	3 55	3 63	3 62	3 58	3 70	3 64	3 63	3 60	3 66
Rare	#																				
and	X.	3 31	3 31	3 28	3 27	3 26	3 32	3 32	3 30	3 30	3 28	3 33	3 30	3 30	3 34	3 28	3 30	3 30	3 29	3 31	3 29
Trace	#	09		99	64	62	. 89	99		59	64	89	55	. 09	57	58	99	58	62	28	. 29
	Sr	9	71	9	9	9	9	5	61	5	9	9	5.	9	5	5	9	5	9	5	9
	#	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	Rb	200	179	168	171	175	205	188	195	184	177	207	200	192	209	184	185	179	190	192	180
1	Cal. No.	SK-141	SK-142	SK-143	SK-144	SK-145	SK-146	SK-147	SK-148	SK-149	SK-150	SK-151	SK-152	SK-153	SK-154	SK-155	SK-156	SK-157	SK-158	SK-159	SK-160
2752	Sile										Zalužice,	Michalovce distr.									

				Fig. 2:i							Fig. 2:j		Fig. 2:k		Fig. 2:1				
C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	C1	Cl	C1	C1	C1	C1	C1	C1	C1	C1
25,7	22,9	25,9	24,2	25,1	23,5	23,7	24,4	24,9	23,4	22,5	25,1	24,4	26,7	23,2	30,3	22,3	22,7	25,2	26,9
0,02	0,02	0,02		0,02							0,02				0,02		0,02	0,02	0,02
1,15	1,12	1,19	uu	1,08	nm	nm	nm	nm	uu	nm	1,06	nm	nm	nm	1,1	uu	1,04	1,12	1,11
22	20	21	22	20	20	19	22	22	20	21	24	24	21	20	21	22	20	21	21
460	383	421	480	415	447	391	487	488	385	385	464	387	479	390	440	470	399	474	475
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
7	6	6	7	8	6	6	8	7	7	7	8	7	-	8	9	8	7		6
3	3	3	3	3	3	3	3		3	3	3	3	3	3	3	3	3	3	3
29	64	99	09	61	62	89	64	64	58	55	99	99	61	57	99	65	59	64	63
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
31	31	32	27	33	32	36	38	29	31	30	32	32	23	30	26	29	31	31	29
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
99	56	99	57	62	62	67	58	63	55	58	65	64	69	58	29	09	58	63	29
5	5	5	5	5	5	5	5	5	4	5	5	5	5	5	4	5	5	5	4
206	205	204	170	204	197	205	161	181	195	183	161	190	152	186	164	186	200	201	180
SK-101	SK-102	SK-103	SK-104	SK-105	SK-106	SK-107	SK-108	SK-109	SK-110	SK-111	SK-112	SK-113	SK-114	SK-115	SK-116	SK-117	SK-118	SK-119	SK-120
									Zbudza,	Michalovce distr.									

Table 3

Sito	150			T	race a	nd Rs	ıre E	Trace and Rare Earth Element Composition	emen	t Con	nposi	tion				Ratio	Chemical	Illustatod
alic	Cal. Ivo.	Rb	#	Sr	#	Y	+	Zr	#	Nb	++	Ba	#	Fe ₂ O ₃ ^T	#	Fe/Mn	Type	mustrateu
	SK-161	181	5	52	3	39	3	57	3	6	2	444	21	mu		24,9	C1	
	SK-162	206	5	99	3	31	3	65	3	∞	7	470	21	1,13	0,02	23,1	C1	
	SK-163	204	5	67	3	32	3	63	Э	∞	7	415	23	1,13	0,03	24,9	C1	
	SK-164	206	5	63	3	32	3	62	3	7	3	380	25	1,07	0,02	25,3	C1	Fig. 2:y
	SK-165	198	5	53	3	31	3	57	3	8	2	387	21	0,95	0,02	23	C1	
	SK-166	204	5	55	3	31	3	59	3	8	2	410	20	nm		25,9	C1	Fig. 2:z
	SK-167	205	5	64	3	33	3	72	3	10	2	398	21	1,15	0,02	24,6	C1	
	SK-168	203	5	63	3	33	3	70	3	6	7	398	21	nm		23,6	C1	
5	SK-169	189	5	72	3	29	3	63	3	7	2	422	25	1,15	0,02	28,2	C1	Fig. 2:a'
Lucky, Michalovce distr.	SK-170	201	5	63	3	32	3	99	3	8	2	412	20	1,11	0,02	23,9	C1	Fig. 2:b'
	SK-171	172	5	55	3	28	3	58	3	7	2	515	24	nm		23,2	C1	
	SK-172	203	5	99	3	32	3	64	3	∞	7	384	21	1,14	0,02	26,1	C1	
	SK-173	196	5	64	3	31	3	61	3	∞	7	433	20	1,03	0,02	25	C1	
	SK-174	203	5	64	3	32	3	65	З	6	7	409	22	1,15	0,02	25,4	C1	
	SK-175	185	5	58	3	31	3	09	3	~	2	463	21	96,0	0,02	25,9	C1	
	SK-177	161	5	59	3	30	3	62	3	6	-	440	21	0,97	0,02	24,2	C1	
	SK-178	179	5	59	3	78	3	59	3	∞	7	392	20	0,98	0,02	24,5	C1	
	SK-179	190	5	58	3	30	3	61	3	10	7	396	70	0,98	0,02	24,3	C1	
	SK-180	204	5	75	3	31	3	73	3	9	7	433	20	mu		26,9	C1	

Fig. 2:r					Fig. 2:s												
CI	C1	C1	C1	C1	C1	C1	Cl	C1	C1	C1	C1	C1	C1	C1	C1	C1	Cl
25,7	25,1	24,8	26,2	25,8	24,9	26	24,5	24,8	26,6	24,7	25,7	23,5	26,8	26,2	27,2	24,7	23,4
		0,02	0,02		0,02	0,02		0,02	0,02	0,02	0,02			0,02		0,02	0,02
mu	nm	1,17	1,14	nm	1,16	1,05	nm	1,13	1,11	1,03	1,15	nm	nm	1,06	mu	1,15	1,1
27	21	21	21	22	20	23	20	22	20	21	21	26	26	21	23	21	23
425	459	422	458	403	426	465	425	396	423	453	459	435	416	456	435	415	390
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
6	8	7	8	8	6	6	10	6	7	∞	7	10	7	7	7	7	6
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
64	09	99	64	67	64	58	29	69	61	61	67	67	62	61	63	64	70
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
30	29	30	33	34	31	29	32	35	29	31	32	31	31	30	31	32	33
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
89	64	65	65	69	64	09	65	64	19	59	71	67	71	09	70	09	57
5	4	5	5	5	5	4	5	5	5	5	5	5	5	5	5	5	5
200	171	196	200	205	204	180	210	204	192	193	191	208	189	193	203	206	210
SK-061	SK-062	SK-063	SK-064	SK-065	SK-066	SK-067	SK-068	690-XS	SK-070	SK-071	SK-072	SK-074	SK-076	SK-077	SK-078	SK-079	SK-080
								Fintice, Prešov	distr.								

Table 3

7.0	700			T	race a	nd R	ıre E	Trace and Rare Earth Element Composition	lemen	ıt Coı	nposi	tion				Ratio	Chemical	Hundtwaterd
anc	Cal. No.	Rb	+	Sr	#	Y	+	Zr	+	- QN	+1	Ba	+1	Fe ₂ O ₃ T	+	Fe/Mn	Type	Illustrated
	SK-001	169	4	68		29	3	09	3	9	2	504	22	1,04	0,02	27,9	C1	
	SK-002	200	5	68	3	32	3	70	3	8	2	448	28	1,05	0,02	26,1	C1	
	SK-003	185	5	57	3	30	3	61	3	6	2	429	21	mu		26,3	C1	
	SK-005	201	5	58	3	33	3	64	3	7	2	384	21	1,07	0,02	23,6	C1	
	900-XS	194	5	63	3	29	3	65	3	8	2	479	22	1,12	0,02	27,4	C1	
	SK-007	199	5	56	3	32	3	62	3	8	2	448	21	1,09	0,02	25,7	C1	
	SK-009	176	5	55	3	28	3	62	3	7	2	438	21	nm		25,8	C1	
	SK-010	204	5	72	3	32	3	89	3	7	2	490	23	nm		26,2	C1	
Morogong	SK-011	197	5	66	3	32	3	99	3	8	2	429	21	1,08	0,02	24,4	C1	
'Stredné pole',	SK-012	205	5	99	3	33	3	70	3	10	2	408	23	1,16	0,02	24,7	C1	
Michalovce distr.	SK-013	192	5	60	3	31	3	61	3	∞	7	440	21	1,02	0,02	24,8	C1	
	SK-014	209	5	64	3	33	3	99	3	7	2	404	21	1,1	0,02	24,5	C1	
	SK-015	193	5	62	3	31	3	61	3	∞	7	427	20	1,04	0,02	25,6	C1	
	SK-016	188	5	56	3	31	3	09	3	6	7	451	22	mu		25	C1	
	SK-017	181	4	67	3	3	3	62	3	7	7	415	22	1,02	0,02	27,2	C1	
	SK-018	192	5	63	3	31	3	65	3	7	7	478	21	1,1	0,02	26,6	C1	
	SK-019	194	5	62	3	30	3	63	3	~	7	431	20	1,04	0,02	25,3	Cl	
	SK-020	207	5	67	3	32	3	99	3	6	2	459	25	mu		25,8	C1	
	SK-021	199	5	99	3	32	3	99	3	~	7	485	21	mu		27,1	C1	
	SK-022	171	4	65	3	26	3	64	3	-	2	494	23	1,01	0,02	27,3	C1	

5	65	3	31	3 (89	3 8	2	436	21	mu		24,6	CI	Fig. 2:a
	65	3	30	3	65 3	3 8	2	448	22	1,09	0,02	25,6	C1	
	61	3	29	3	30	3 10	2	418	21	nm		29,1	C1	Fig. 2:c
	59	3	28	3 (09	3 8	2	481	21	nm		26,4	C1	
	64	3	31	3 (63 3	3 6	2	453	20	nm		27,5	C1	
	09	3	26	3 (65	3 9	2	463	22	nm			C1	
	67	3	31	3 (63	3 7	2	446	20	nm			C1	
	58	3	33	3 ;	58	3 8	2	415	21	1,04	0,02	22,4	C1	Fig. 2:b
	70	3	31	3 (64	3 9	2	465	21	1,12	0,02	24,9	C1	
	55	3	29	3 ;	55	3 10	2	468	22	uu			C1	
4,	57	3	28	3 (62	3 8	2	465	22	nm			C1	
9	99	3	30	3 (63	3 7	2	445	22	nm			C1	Fig. 2:d
4,	55	3	30	3 ;	59	3 6	2	431	21	nm		23,7	C1	
5	59	3	30	3 (64	3 8	2	433	21	1,02	0,02	26,4	C1	
5	59	3	30	3 (60 3	3 9	2	430	21	nm		22,2	C1	Fig. 2:e
5	55	3	28	3	59	3 7	2	455	22	nm		24,1	C1	
5	59	3	29	3 (64	3 7	2	476	21	nm		23,2	C1	
4,	57	3	30	3 (64 2	4 8	2	470	24	nm		23,1	C1	
	64	3	29	3 (67	3 10	2	457	21	1,07	0,02	25,3	C1	
	72	3	30	3 (99	3 8	2	484	21	1,15	0	26,1	C1	
	89	3	32	3 (63	3 8	2	522	23	1,08	0,02	25,5	C1	
	71	3	32	3 (67	3 9	2	506	22	nm		26,4	CI	
-	61	3	28	3	62	3 7	2	488	23	mu		25,6	Cl	

Moravany 'Stredné pole', Michalovce distr.

Table 3.

77.0	, to C			T	race a	nd Ra	ıre E	Trace and Rare Earth Element Composition	emen	t Com	posit	ion				Ratio	Chemical	10.10.10.10.10.10.10.10.10.10.10.10.10.1
anc	Cal. Ivo.	Rb	#	Sr	#	Y	#	Zr	#	QN	#	Ba	#	Fe ₂ O ₃ ^T	#	Fe/Mn	Type	mustrateu
	SK-049	195	5	59	3	29	3	63	3	-	2 4	424	20	1,11	0,02	24,8	C1	
	SK-050	203	5	69	3	33	3	69	3	6	2 4	455	21	nm		26,1	C1	Fig. 2:f
	SK-051	200	5	72	3	32	3	89	т	∞	2	420	31	nm		24,8	C1	
	SK-052	201	5	67	3	31	3	99	3	∞	2	431	26	1,11	0,02	24,2	C1	Fig. 2:g
Moravany 'Stredné nole'	SK-181	200	5	64	3	31	3	64	ж	6	2	422	21	1,06	0,02	24,1	C1	
Michalovce distr.	SK-182	179	4	57	3	27	3	58	3	8	2 4	427	21	nm		25	C1	
	SK-183	199	5	65	3	31	3	64	3	8	2 5	523	23	1,16	0,02	24,6	C1	
	SK-184	186	4	71	3	30	3	99	3	8	2 4	471	21	1,15	0,02	27,6	C1	
	SK-185	176	4	55	3	30	3	55	3	8	2 4	416	20	nm		25,7	C1	Fig. 2:h
	SK-186	203	5	65	3	31	3	64	3	6	2 4	467	22	1,16	0,03	27,1	C1	
	SK-053	193	5	59	3	31	3	99	ж	6	2	395	23	1,17	0,02	25	C1	
	SK-054	178	5	65	3	78	3	29	3	∞	2	464	21	1,03	0,02	26,5	C1	
Kaznany-rarske, Sabinov distr.	SK-057	196	5	09	3	33	3	62	3	∞	2	447	20	1,02	0,02	25,3	C1	
	SK-058	178	5	62	3	31	3	99	3	7	2	483	23	1,08	0,02	28,2	C1	
	SK-060	185	5	58	3	31	3	61	3	6	2	447	21	nm		25,2	C1	Fig. 2:q
U.S. Geological Survey Reference Standard	ırvey Referen	ice Stand	ard															
RGM-1 (measured)	RGM-1	150	4	111	3	24	3	223	4	8	3 8	813	23	1.87	.02	65	$65 \begin{array}{c} Glass\ Mtn., \\ CA \end{array}$	
RGM-1 (recommended)	RGM-1	149		108		25		219		6		807		1.86		nr	Glass Mtn., CA	

Values in parts per million (ppm) except total iron (in weight %) and Fe/Mn intensity ratios; $\pm = 2$ -sigma estimate of x-ray counting uncertainty and regression fitting error at 120-360 seconds livetime; nm = not measured; nr= not reported.

Table 4. Integrated Net Peak Intensity Data for small obsidian artifacts from Neolithic archaeological sites in Slovakia

	Mustrated										Fig. 2:p		
	Chemical Type	C1	C1	C1	C1	C1	C1	C1	C1	CI	C1	C1	CI
	Sr/Y	1,7	1,5	1,7	1,5	1,6	1,4	1,3	1,7	1,8	1,8	1,7	1,6
	Zr/Nb	6,9	7,3	7,2	6,7	8,9	8,3	5,2	7,2	8,9	7,3	9,7	7,2
	Y/Nb	2,8	3,1	3,0	3,3	2,7	3,3	2,6	2,9	2,7	2,9	3,0	3,2
tios	Zr/Y	2,4	2,4	2,4	2,4	2,5	2,5	2,0	2,5	2,5	2,5	2,6	2,3
Intensity Ratios	Rb/Sr	2,6	2,8	2,8	3,0	2,7	3,2	3,4	2,8	2,4	2,4	2,7	2,7
Inter	Fe/Mn	25,7	26,8	23,7	24,9	27,1	27,1	25,3	25,2	26,0	27,1	25,4	25,5
	Zr%	0,280	0,292	0,266	0,281	0,295	0,301	0,259	0,282	0,287	0,284	0,291	0,278
	Sr%	0,201	0,189	0,193	0,178	0,190	0,166	0,168	0,189	0,209	0,209	0,192	0,195
	Rb%	0,519	0,519	0,542	0,541	0,515	0,533	0,572	0,529	0,505	0,507	0,517	0,527
N	Rb, Sr, Zr	831	774	998	921	810	928	092	762	777	848	735	831
ounts	Zr	233	226	230	259	239	264	197	215	223	241	214	231
Intensities/Counts	Sr	167	146	167	164	154	145	128	144	162	177	141	162
Inten	8	431	402	469	498	417	467	435	403	392	430	380	438
	Cat. no.	SK-123	SK-176	SK-073	SK-075	SK-004	SK-008	SK-024	SK-029	SK-038	SK-055	SK-056	SK-059
	Site	Malé Raškovce, Michalovce distr.	Lúčky, Michalovce distr.	Fintice,	Prešov distr.		Moravany	'Stredné pole',	Michalovce distr.			Ražňany-Farské, Sabinov distr.	

Elemental intensities generated at 40 seconds livetime.

Acknowledgements

The archaeological research described in this paper was prepared within the research project No 2018/29/B/HS3/01540 entitled "Investigation of the Sources and Uses of Obsidian during the Neolithic in Poland", led by Dagmara H. Werra, funded by the National Science Centre, Poland. The authors would like to thank Paul M. Barford for language correction.

References

- Bačo P., Kaminská L., Lexa J., Pécskay Z., Bačová Z. and Konečný Y. 2017. Occurrences of Neogene volcanic glass in the Eastern Slovakia – raw material source for the stone industry. *Anthro*pologie 55, 207-230.
- Bačo P., Lexa J., Bačová Z., Konečný P. and Pécskay Z. 2018. Geological background of the occurrences of Carpathian volcanic glass, mainly obsidian, in Eastern Slovakia. *Archeometriai Műhely* 15, 157-165.
- Bigazzi G., Biró K. T. and Oddone M. 2000. The Carpathian sources of raw materials for obsidian tool-making (Neutron activation and fission track analyses on the Bodrogkeresztúr-Henye Upper Palaeolithic artefacts). In V. T. Dobosi (ed.), Bodrogkeresztúr-Henye (NE-Hungary) Upper Palaeolithic Site. Budapest: Hungarian National Museum, 221-240.
- Biró K.T. 1981. A Kárpát-Medencei obszidiánok vizsgálata. Archaeologiai Értesítő 108, 194-205.
- Biró K. T. 1998. Stones, Numbers History? The Utilization of Lithic Raw Materials in the Middle and Late Neolithic of Hungary. *Journal of Anthropological Archaeology* 17, 1-18. DOI: 10.1006/jaar.1997.0313.
- Biró K. T. 2006. Carpathian obsidians: Myth and reality. In *Proceedings of the 34th International Symposium on Archaeometry*, *3-7 May 2004*. Zaragoza, 267-278.
- Biró K. T. 2014. Carpathian Obsidians: State of Art. In M. Yamada and A. Ono (eds), *Lithic Raw Material Exploitation and Circulation in Prehistory*. *A Comparative Perspective in Diverse Palaeoenvironments*. Liège: ERAUL 138, 47-69.
- Biró K. T. 2018. More on the state of art of Hungarian obsidians. Archeometriai Műhely 15, 213-223.
- Burgert P. 2015. Štípaná industrie z obsidiánu v Čechách. Archeologické rozhledy 68, 329-266.
- Burgert P. 2016. The Status and the Role of 'Chocolate' Silicite in the Bohemian Neolithic. *Archaeologia Polona* 56, 49-64.
- Burgert P., Přichystal A., Prokes L., Petřík J. and Hušková S. 2016. Původ obsidiánové suroviny v pravěku Čech. *Archeologicke rozhledy* 68, 224-234.
- Burgert P., Přichystal A., Prokes L., Petřík J. and Hušková S. 2017. The origin and distribution of obsidian in prehistoric Bohemia. *Bulgarian e-Journal of Archaeology* 7, 1-15.
- Constantinescu B., Cristea-Stan D., Kovács I. and Szőkefalvi-Nagy Z. 2014. Provenance studies of Central European Neolithic obsidians using external beam milli-PIXE spectroscopy. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 318, 145-148. DOI: 10.1016/j.nimb.2013.06.054.

- Domboróczki L. 2010. Raport on the excavation at Tiszaszőlős-Domaháza-puszta and a new model for the spread of the Körös culture. In J. K. Kozłowski and P. Raczki (eds), *Neolithization of the Carpathian Basin: Northernmost Distribution of the Starčevo/Körös culture.* Kraków, Budapest: Polish Academy of Arts and Sciences, Institute of Archaeological Sciences of the Eötvös Loránd University, 137-176.
- Domboróczki L. and Raczky P. 2010. Excavations at Ibrány-Nagyerdö and the northernmost distribution of the Körös culture in Hungary. In J. K. Kozłowski and P. Raczki (eds), *Neolithization of the Carpathian Basin: Northernmost Distribution of the Starčevo/Körös culture*. Kraków, Budapest: Polish Academy of Arts and Sciences, Institute of Archaeological Sciences of the Eötvös Loránd University, 191-218.
- Dzieduszycka-Machnikowa A. and Lech J. 1976. *Neolityczne zespoły pracowniane z kopalni krzemienia w Sąspowie*. Wrocław, Warszawa, Kraków, Gdańsk: Zakład Narodowy im. Ossolińskich, Wydawnictwo Polskiej Akademii Nauk.
- Godłowska M. 1982. Nowohucki zespół osadniczy na tle wpływów południowych we wczesnym i środkowym neolicie Małopolski. *Wiadomości Archeologiczne* 47/1, 143-160.
- Grygiel R. 2004. *Neolit i początki epoki brązu w rejonie Brześcia Kujawskiego i Osłonek* 1. *Wczesny neolit. Kultura ceramiki wstęgowej rytej.* Łódź: Fundacja Badań Archeologicznych Imienia Profesora Konrada Jażdżewskiego.
- Hughes R. E. 1998. On reliability, validity, and scale in obsidian sourcing research. In A. F. Ramenofsky and A. Steffen (eds), *Unit Issues in Archaeology: Measuring Time, Space, and Materia*. Salt Lake City: University of Utah Press, 103-114.
- Hughes R.E. and Ryzhov S. 2018. Trace element characterization of obsidian from the Transcarpathian Ukraine. *Journal of Archaeological Science: Reports* 19, 618-624.
- Hughes R.E. and Werra D. H. 2014. The source of Late Mesolithic obsidian recovered from Rydno XIII/1959, Central Poland. *Archeologia Polski* 59/1-2, 31-46.
- Hughes R.E., Werra D. H. and Sulgostowska Z. 2018. On the Sources and Uses of Obsidian During the Paleolithic and Mesolithic in Poland. *Quaternary International* 468, 84-100. DOI: 10.1016/j.quaint.2017.11.013.
- Janšák Š. 1935. *Praveké sídliská s obsidiánovou industriou na východnom Slovensku*. Bratislava: Tlačou Jána Pociska a spol.
- Kabaciński J. 2010. Przemiany wytwórczości krzemieniarskiej społeczności kultur wstęgowych strefy wielkodolinnej Niżu Polskiego. Poznań: Instytut Archeologii i Etnologii PAN.
- Kabaciński J., Sobkowiak-Tabaka I., Kasztovszky Z., Pietrzak S., Langer J. J., Biró K. T. and Maróti B. 2015. Transcarpathian influences in the Early Neolithic of Poland. A case study of Kowalewko and Rudna Wielka sites. *Acta Archaeologica Carpathica* 50, 5-32.
- Kaczanowska M. 1985. Rohstoffe, Technik und Industrien im Nordteil des Flussgebietes der Mitteldonau. Warsaw: Państwowe Wydawnictwo Naukowe.
- Kaczanowska M. and Godłowska M. 2009. Contacts between the Eastern and Western Linear Cultures in South-Eastern Poland. In J. K. Kozłowski (ed.), Interactions between Different Models of Neolithization North of the Central European Agro-Ecological Barrier. Kraków: Polska Akademia Umiejętności, 137-149.

- Kaczanowska M. and Kozłowski J. K. 1997. Lithic industries. In J.K. Kozłowski (ed.), *The Early Linear Pottery culture in Eastern Slovakia*. Kraków: Polska Akademia Umiejętności, 178-253.
- Kaczanowska M., Kozłowski J. K. and Šiška S. 1993. *Neolithic and Eneolithic Chipped Stone Industries from Šarišské Michal'any, Eastern Slovakia*. Kraków: Institute of Archaeology Jagiellonian University.
- Kaczanowska M., Kozłowski J. K. and Nowak M. 2013. Raw materials of chipped industries at the Eastern Linear Pottery culture site at Moravany, eastern Slovakia. In Z. Mester (ed.), *The Lithic Raw Material Sources and Interregional Human Contacts in the Northern Carpathian Regions*. Kraków, Budapest: Polish Academy of Arts and Sciences, Institute of Archaeological Sciences of the Eötvös Loránd University, 111-130.
- Kaczanowska M., Kozłowski J. K. and Wasilewski M. 2015. Chipped, graund and polished stone industries at the Early Neolithic Settlement of Moravany. In J. K. Kozłowski, M. Nowak and M. Vizdal (eds), Early Farmers of the Eastern Slovak Lowland: The Settlement of the Eastern Linear Pottery culture at Moravany. Kraków: Polska Akademia Umiejętności, 163-196.
- Kalicz N. and Makkay J. 1966. Die wichtigste Fragen der Linearkeramik in Ungarn. *Acta Antiqua et Archaeologica* 10, 35-47.
- Kalicz N. and Makkay J. 1977. Die Lienienbandkeramik in der grossen ungarischen Tiefebene. Budapest: Akadémiai Kiadó.
- Kaminská Ľ. 1991. Význam surovinovej základne pre mladopaleolitickú spoločnosť vo východokarpatskej oblasti. *Slovenská archeológia* 39/1-2, 7-58.
- Kaminská Ľ. 2013. Sources of raw materials and their use in the Palaeolithic of Slovakia. In Z. Mester (ed.),

 The Lithic Raw Material Sources and Interregional Human Contacts in the Northern Carpathian Regions. Kraków, Budapest: Polish Academy of Arts and Sciences, Institute of Archaeological Sciences of the Eötvös Loránd University, 99-110.
- Kaminská Ľ. 2018. Use of obsidian from the Paleolithic to the Bronze Age in Slovakia. *Archeometriai Műhely* 15, 197-212.
- Kaminská Ľ. and Ďuďa R. 1985. K otázke významu obsidiánovej suroviny v paleolite Slovenska. *Archeologicke rozhledy* 37, 121-129.
- Kaminská Ľ., Kaczanowska M. and Kozłowski J. K. 2016. Stone industry from Košice-Galgovec and its place in the evolution and differentiation of the Eastern Linear Pottery culture. *Študijné zvesti* 60, 5-29.
- Karabinoš A., Nowak M., Vizdal M. and Voľanská A. 2018. The contribution of finds from feature no. 1/12 at Ražňany (distr. Sabinov, Slovakia) for the problem of foreign influences in the area of the Bükk culture. In P. Valde-Nowak, K. Sobczyk, M. Nowak and J. Źrałka (eds), *Multas per Gentes et Multa per Saecula: Amici Magistro et Collegae Suo Ioanni Christopho Kozłowski Dedicant*. Kraków: Institute of Archaeology Jagiellonian University, 337-349.
- Kasztovszky Z., Biró K. and Kis Z. 2014. Prompt Gamma Activation Analysis of the Nyírlugos obsidian core depot find. *Journal of Lithic Studies* 1/1, 151-163.
- Kasztovszky Z., Biró K. T., Nagy-Korodi I., Sztáncsuj S. J., Hágó A., Szilágyi V., Maróti B., Constantinescu B., Berecki S. and Mirea P. 2019. Provenance study on prehistoric obsidian objects

- found in Romania (Eastern Carpathian Basin and its neighbouring regions) using Prompt Gamma Activation Analysis. *Quaternary International* 510, 76-87. DOI: 10.1016/j.quaint. 2018.12.020.
- Kasztovszky Z. and Přichystal A. 2018. An overview of the analytical techniques applied to study the Carpathian Obsidians. *Archeometriai Műhely* 15, 187-196.
- Kozłowski J. K. 1989. The Lithic Industry of the Eastern Linear Pottery culture in Slovakia. *Slovenská* archeológia 37, 377-410.
- Kozłowski J. K. (ed.) 1997. The Early Linear Pottery culture in Eastern Slovakia. Kraków: Polska Akademia Umiejętności.
- Kozłowski J. K. and Nowak M. 2007. Neolithiization of the Upper Tisza Basin. In J. K. Kozłowski and M. Nowak (eds), Mesolithic/Neolithic Interactions in the Balkans and in the Middle Danube Basin (= British Archaeological Reports. International Series 1726). Oxford: British Archaeological Reports, 77-102.
- Kozłowski J. K. and Nowak M. 2010. From Körös/Criş to the early Eastern Linear Complex: multidirectional transitions in the north-eastern fringe of the Carpathian Basin. In J. K. Kozłowski and P. Raczky (eds), *Neolithization of the Carpathian Basin: Northernmost Distribution of* the Starčevo/Körös culture. Kraków-Budapest: Polish Academy of Arts and Sciences Kraków Institute of Archaeological Sciences of the Eötvös Loránd University Budapest, 65-90.
- Kozłowski J. K., Kaczanowska M., Czekaj-Zastawny A., Rauba-Bukowska A. and Bukowski K. 2014. Early/Middle Neolithic Western (LBK) vs Eastern (ALPC) Linear Pottery Cultures: ceramics and lithic raw materials circulation. *Acta Archaeologica Carpathica* 49, 37-76.
- Kozłowski J. K., Nowak M. and Vizdal M. (eds) 2015. Early Farmers of the Eastern Slovak Lowland: the settlement of the Eastern Linear Pottery culture at Moravany. Kraków: Polska Akademia Umiejętności.
- Kulczycka A. and Kozłowski J. K. 1960. Pierwsze materiały kultury bukowogórskiej na północ od Karpat. *Acta Archaeologica Carpathica* 2, 41-54.
- Lech J. 2012. The late Neolithic flint and stone industries. In I. Longworth, G. Varndell and J. Lech, Excavations at Grimes Graves Norfolk 1972-1976. Fascicule 6. Excavation and Exploration beyond the Deep Mines. London: British Museum Press for the Trustees of the British Museum, 90-144.
- Macdonald R., Smith R. L. and Thomas J. E. 1992. *Chemistry of the Subalkalic Silicic Obsidians*. Washington: U.S. Geological Survey Professional Paper, 1523.
- Mateiciucova I. 2010. The beginnings of the Neolithic and raw material distribution networks in Eastern Central Europe: symbolic dimensions of the distribution of Szentgál radiolarite. In D. Gronenborn and J. Petrasch (eds), *Die Neolithisierung Mitteleuropas. Internationale Tagung, Mainz 24. bis 26. Juni 2005/The spread of the Neolithic to Central Europe. International Symposium, Mainz 24 June 26 June 2005.* Mainz: Römisch-Germanisches Zentralmuseum, 273-300.
- Milić M. 2014. PXRF characterisation of obsidian from central Anatolia, the Aegean, and central Europe. *Journal of Archaeological Science* 41, 285-296.

- Milisauskas S. 1986. *Early Neolithic Settlement and Society at Olszanica*. Ann Arbor: University of Michigan Press. DOI: 10.3998/mpub.11396105.
- Moutsiou T. 2014. The Obsidian Evidence for the Scale of Social Life during the Palaeolithic (= British Archaeological Reports. International Series 2613). Oxford: Archaeopress.
- Pavúk J. 2004. Mladšia a neskorá doba kamenná. In J. Béreš (ed.), *Archeologické Dedicstvo Zem- plìna: pravek až včasný stredovek*. Michalovce: Občianske združenie Zemplínska spoločnosť, 41-54.
- Petrougne V. F. 1986. About some species of lithic raw materials in archaeological complexes of the Carpathians and adjoining territories of the USSR. In K. T. Biró (ed.), *International Conference on Prehistoric Flint Mining and Lithic Raw Material Identification in the Carpathian Basin*. Budapest-Sümeg: Magyar Nemzeti Museum, 229-231.
- Přichystal A. 2013. *Lithic Raw Materials in Prehistoric Times of Eastern Central Europe*. Brno: Masaryk University Press.
- Přichystal A. and Škrdla P. 2014. Kde ležel hlavní zdroj obsidiánu v pravěku Střední Evropy? *Slovenská archeológia* 62, 215-226.
- Prokeš L., Vašinová Galiová M., Hušková S., Vaculovič T., Hrdlička A., Mason A., Neff H., Přichystal A. and Kanický V. 2015. Laser microsampling and multivariate methods in provenance studies of obsidian artefacts. *Chemical Papers* 69, 767-778. DOI: 10.1515/chempap-2015-0019.
- Rácz B. 2018. The Carpathian 3 obsidian. Archeometriai Műhely 15, 181-186.
- Raczky P., Sümegi P., Bartosiewicz L., Gál E., Kaczanowska M., Kozłowski J. K. and Anders A. 2010. Ecological barrier versus mental marginal zone? Problems of the northernmost Körös culture settlements in the Great Hungarian Plain. In D. Gronenborn (ed.), *Die Neolithisierung Mitteleuropas The Spread of the Neolithic to Central Europe*. Mainz: Verlag des Römisch-Germanischen Zentralmuseums Mainz, 147-174.
- Riebe D. J. 2019. Sourcing Obsidian from Late Neolithic Sites on the Great Hungarian Plain: Preliminary p-XRF Compositional Results and the Socio-Cultural Implications. *Interdisciplinaria Archaeologica* 10, 113-120. DOI: 10.24916/iansa.2019.2.1.
- Rosania C. N., Boulanger M. T., Biró K. T., Ryzhov S., Trnka G. and Glascock M. D. 2008. Revisiting Carpathian Obsidian. *Antiquity Project Gallery* 82, http://www.antiquity.ac.uk/projgall/rosania318/.
- Rózsa P., Szöőr G., Elekes Z., Gratuze B., Uzonyi I. and Kiss Á. Z. 2006. Comparative geochemical studies of obsidian samples from various localities. *Acta Geologica Hungarica* 49, 73-87. DOI: 10.1556/ageol.49.2006.1.5.
- Szeliga M. 2009. Znaczenie obsydianu karpackiego w gospodarce surowcowej najstarszych społeczności rolniczych na ziemiach polskich. In J. Gancarski (ed.), Surowce naturalne w Karpatach oraz ich wykorzystanie w pradziejach i wczesnym średniowieczu. Krosno: Muzeum Podkrapackie w Krośnie, 287-324.
- Szeliga M., Kasztovszky Z., Osipowicz G. and Szilágyi V. 2021. Obsidian in the Early Neolithic of the Upper Vistula basin: origin, processing, distribution and use a case study from Tominy (southern Poland). *Praehistorische Zeitschrift* 96/1, 19-43. DOI: 10.1515/pz-2021-0014.

- Szeliga M., Kasztovszky Z. and Szilágyi V. 2019a. New PGAA data on the origin of Early Neolithic (LPC) obsidian in the upper Vistula Basin. In A. Markó, K. Szilágyi, and K. T. Biró (eds), *International Obsidian Conference 2019 27-29 May 2019, Sárospatak (Hungary), Program, Abstracts, Field Guide*. Budapest: Hungarian National Museum, 63.
- Szeliga M., Przeździecki M. and Grabarek A. 2019b. Podlesie, Site 6 the First Obsidian Inventory of the Linear Pottery culture Communities from the Polaniec Basin. *Archaeologia Polona* 57, 197-211. DOI: 10.23858/APa57.2019.014.
- Šiška S. 1989. Kultúra s východnou lineárnou keramikou na Slovensku. Bratislava: Slovenská Akadémia Vied.
- Šiška S. 1998. Obsidián v prostredí spoločenstiev doby kamennej na strednom a západnom Slovensku (Súpis nálezísk). *Východoslovenský pravek* 5, 63-90.
- Thorpe O. W., Warren S. E. and Nandris J. G. 1984. The distribution and provenance of archaeological obsidian in central and eastern Europe. *Journal of Archaeological Science* 11, 183-212. DOI: 10.1016/0305-4403(84)90001-3.
- Tunia K. 2016. Early Neolithic Bükk culture vessel from Kazimierza Wielka, Southern Poland: preliminary report on the find and its context. In J. Kovárník (ed.), *Centenary of Jaroslav Palliardi's Neolithic and Aeneolithic Relative Chronology (1914-2014)*. Hradec Králové-Ústí nad Orlicí: University of Hradec Králové, Philosophical Faculty, 217-228.
- Tykot R.H. 2017. Obsidian Studies in the Prehistoric Central Mediterranean: After 50 years, what have we learned and what still needs to be done? *Open Archaeology* 3, 264-278.
- Vizdal M. 2000a. Výskum neolitického objektu w Lúčkach. *Archeologické výskumy a nálezy na Slovensku v roku 1999*, 153.
- Vizdal M. 2000b. Výsledky prieskumu vo Finticiach. *Archeologické výskumy a nálezy na Slovensku* v roku 1999, 153.
- Więckowska H. 1971. Materiały krzemienne i kamienne z osad kultury ceramiki wstęgowej i trzcinieckiej w Opatowie. In W. Chmielewski (ed.), *Z polskich badań nad epoką kamienia*. Wrocław, Warszawa, Kraków: Zakład Narodowy im. Ossolińskich, 103-183.
- Wilczyński J. 2016. Flint, Obsidian, and Radiolarite in Lithic Inventories of the LBK culture in Lesser Poland. In L. Amkreutz, F. Haack, D. Hofmann and I. van Wijk (eds), *Something out of the Ordinary?: Interpreting Diversity in the Early Neolithic Linearbandkeramik and Beyond*. Newcastle upon Tyne: Cambridge Scholars Publishing, 123-139.
- Williams O. and Nandris J. 1977. The Hungarian and Slovak sources of archaeological obsidian: an interim report on further fieldwork, with a note on tektites. *Journal of Archaeological Science* 4, 207-219. DOI: 10.1016/0305-4403(77)90089-9.