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Abstract 
This thesis aims to synthesize novel thin layers of materials assisted by ultrasound techniques 

with optocatalytic properties on the internal wall of fluoropolymer microtube reactor for 

selective oxidation of lignin-based model compounds. The materials was further modified 

with metals like Fe, Cu, and Co for advance studies. It was expected that such materials will 

exhibit high surface areas and interesting properties. The critical step was to deposit sol-gel 

synthesized semiconductor metal oxides (TiO2, ZnO) layer on the internal wall of polymeric 

(copolymers of tetrafluoroethylene and perfluoroethers - perfluoroalkoxy alkane) PFA 

microtube by a method assisted by ultrasounds. Oxidation reactions conducted in micro 

spaces can allow precise control of parameters like reaction time, temperature, mixing, 

reproducibility and safety. Continuous flow reactions may also prevent or reduce side 

reactions and decomposition caused by over irradiation. Irradiation can be easily controlled 

by controlling of the flow rate of the pumping system. These above kind of controls are 

expected to increase selectivity, conversion, and yield. 

The research plan includes the synthesis of nanoparticles modified with metals via the sol-gel 

method. Various characterization like N2 physisorption, X-ray diffraction analysis, UV-Vis 

diffuse reflectance spectroscopy, etc., is part of the initial step. Doping of titania with metals 

for the application in heterogeneous photocatalysis improve the visible light response of the 

TiO2. The synthesized catalysts were deposited onto the wall of microreactor and the 

characterization of microtubes was done through scanning electron microscope, optical 

microscope, to visualize immobilized catalyst layer. Microflow photocatalytic oxidation tests 

proved that the Fe-TiO2 material has the highest photocatalytic conversion (28 %) of benzyl 

alcohol compared with the other TiO2 samples under visible light irradiation. The next goal 

was to investigate the photocatalytic performance of all the synthesized nanoparticles for the 

selective oxidation of different lignin-based model compounds such as benzyl alcohol, 

coniferyl alcohol, cinnamyl alcohol, and vanillyl alcohol in liquid phase under different light 

sources (UV and Visible). The alcohols containing hydroxy and methoxy groups (coniferyl 

and vanillin alcohol) showed high conversion (93 % and 52 %, respectively) with 8 % and 17 

% selectivity towards their respective aldehydes, with the formation of other side products. 

The findings offer an insight into the ligand-to-metal charge transfer (LMCT) complex 
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formation, which was identified to be the main reason for the activity of synthesized catalysts 

under visible light. 
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Abstrakt  

bazie ligniny

zsyntezowanych metod - 2, ZnO) na 

- 

utleniania prowadzone w mikro prz

 

-

metody charakteryzacji, takie jak fizysorpcja N2, analiza dyfrakcji rentgenowskiej, 

spektroskopia rozproszonego odbicia UV-

2 na 

elektronowego oraz mikroskopu optycznego, w celu uwidocznienia unieruchomionej 

warstwy katalizatora. Badania 

-TiO2 

benzylowego w porównaniu z innymi próbkami TiO2 

opartych na ligninie, takich jak alkohol benzylowy, alkohol koniferylowy, alkohol 

cynamylowy i alkohol wanilinowy w fazie 
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ydów, z tworzeniem innych produktów 

 

  

http://rcin.org.pl



xii 

 

Table of Contents 
 

 iii 

 vi 

Active participation at scienti  vii 

 viii 

 x 

Acronyms and Abbreviations ... xiii 

6 

1. 6 

1.1 6 

1.1.1 Need for a paradig . 16 
1.1.2 Role of sonica  
1.1.3 Semiconduct  

1.2 . .. 20 

1.3 ... 2 

1.4 . . 6 

1.5 Challenges  

. 31 

Chapter 2 : Designing Microflow reactors for Photocatalysis Using Sonochemistry: A 
...... 2 

Chapter 3 : Design and Development of TiO2 coated microflow reactor for  
photocatalytic partial oxidation of benzyl alcohol .. ..... 5 

Chapter 4 : Flow photomicroreactor coated with monometal containing TiO2 using 
.. 4 

Chapter 5 : Bimetallic TiO2 Nanoparticles for Lignin-Based Model Compounds  
Valorization by Integrating Optocatalytic Flow- ... . 84 

4 

.  123 

http://rcin.org.pl



xiii 

 

Acronyms and Abbreviations 

A  

AcN Acetonitrile 

AQY Apparent quantum yield 

B  

BET Brunauer-Emmet-Teller 

BJH Barrett, Joyner, Halenda 

BnAld Benzaldehyde 

BnOH Benzyl alcohol 

C  

CinOH Cinnamyl alcohol 

CinAld Cinnamyl aldehyde 

ConOH Coniferyl alcohol 

ConAld Coniferyl aldehyde 

CoT 0.25 at% of Co-TiO2 

CuT 0.5 at% Cu-TiO2 

D  

DMSO Dimethylsulfoxide 

E  

EDXRF Energy dispersive X-ray Fluorescence 

EtOH Ethanol 

F  

FeT 0.5 at% of Fe-TiO2 

FTIR Fourier-Transform Infrared Spectroscopy 

  

http://rcin.org.pl



xiv 

 

G 

GC-MS Gas Chromatography-Mass Spectrometry 

H  

HAADF High Angle Annual Dark Field 

HPLC High-Performance Liquid Chromatography 

HR-SEM 

L 

High Resolution Scanning Electron Microscopy 

LED Light-Emitting Diode 

LMCT Ligand-to-Metal Charge Transfer 

LSPR 

P 

Localized Surface Plasmon Resonance 

PDMS Polydimethylsiloxane 

PFA Perfluoroalkoxy Alkane 

P-PFA Pretreated PFA 

PT-PFA 

S 

Pre-treated and deposited with P25 (commercially available 
TiO2) microreactor 

S-PFA 

T 

Sol-gel synthesized TiO2 deposited microtube 

TEM Transmission Electron Microscopy 

TiO2-SG Sol-gel synthesized TiO2 

T-PFA P25 coated tubes 

TTIP 

U 

Titanium (IV) Isopropoxide 

US Ultrasound 

UV Ultraviolet 

UV-vis DRS UV-visible Diffuse Reflectance Spectra 

http://rcin.org.pl



xv 

 

V 

VanOH Vanillyl alcohol 

VanAld 

X 

Vanillyl aldehyde 

XPS X-ray photoelectron spectroscopy 

XRD 

Z 

X-ray diffraction 

ZnO-SG  Sol-gel synthesized ZnO 

 

http://rcin.org.pl



 

16 

  
 

 Introduction 

 Valorization of lignin 

The rise in consumption and production (manufacturing) to support the rapidly growing 

global population has adversely impacted the environment.1 The sustainable disposal or reuse 

of industrial by-products is an active area of research in green chemistry. Lignin is a waste 

generated by paper and pulp mills that has been linked to severe aquatic and environmental 

problems. These industries produce tons of extracted lignin per year as a byproduct.2 These 

have been classified as toxic substances, and in recent years, a promising treatment based on 

the total oxidation of hazardous organic compounds has been reported.3,4  

Recently, researchers widely studied UV active heterogeneous photocatalysis because of their 

environmental friendly characteristics to photosensitize the complete mineralization of a wide 

range of organic substrates like phenols and pesticides, without the production of any harmful 

by-products.3 These systems have limitations such as photo corrosion of catalyst, and it 

requires a unique experimental setup. This thesis will delve into these processes in greater 

detail in the following chapters. 

 Need for a paradigm shift from existing methods 

The concurrence of chemical engineering and organic chemistry gave rise to “Flow 

Chemistry”—the term used by the scientific community to describe the chemistry occurring 

during a continuous flow process in contrast to conventional batch chemistry.5,6 The 

conventional batch suspension-based system gives rise to a large gradient in temperature, 

reaction time, and concentration over spatial position because of vigorous stirring.7 Moreover, 

the nanoparticles should be filtered after the photocatalytic reaction, which requires time and 

energy. On the other hand, we can overcome these problems by shifting to photocatalytic 

materials immobilized on the internal wall of the microreactor, as the solution is subject to 

flow inside the microreactor.  
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In a typical microfluidic-based photocatalyst system, a solution stream containing the target 

organic compounds flows through the microchannel, with the catalyst immobilized on the 

inner wall of the reactor. Photocatalysts react to decompose the organic pollutants, and a 

strong oxidant (such as a hydroxyl radical) is generated when illuminated by UV light.8 

11 

Nanoparticles 

Reaction 
mixture 

11 
Figure 1. Conventional batch suspension-based system (a) and wall-coated microjlow system (b) . 

Compared to the batch system, the microflow system has several advantages, such as (1) The 

short diffusion distance can help to increase the contact of photocatalytic materials with the 

compounds more efficiently. (2) By altering the microreactor geometry, the surface area of the 

photocatalytic materials can be increased. (3) The reuse of photocatalytic materials in a 

microfluidic-based system (Figure 1) is possible without any additional recovery process.9 (4) 

Scaling up is reliable in a microflow system. (5) Selectivity and reproducibility can be 

improved for a reaction ( 6) The fast mixing and heat exchange can be achieved in the flow 

system.10 

A microflow reactor can provide a small diffusion length and uniform light irradiation, thus 

enabling highly efficient photocatalysis and green chemistry processing.11 In this work, we 

focus on a commercially available fluoropolymer-based microtube (PF A 

perfluoroalkoxyalkane, a type of polymeric fluorocarbons) that demonstrates up to 96% for 

visible light and up to 91% for UV light transparency as well as admirable chemical stability .12 

Also, to maximize the photon utilization, PFA tubing can be easily bent into different shapes 

(highly flexible). Though the uses of these tubing have been demonstrated for continuous-

17 
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flow homogeneously catalyzed photochemical reactions13, they have been rarely employed 

with heterogeneous catalysts. The reason behind this is the solid suspension may cause a 

clogging problem that requires laborious separation. These problems can be minimized by 

immobilizing the photocatalysts onto the walls of the microreactor. However, the chemical 

inertness of fluoropolymer makes immobilization challenging. Researchers have made efforts 

by using methods like thermal processing (near a melting point of PFA of 285 °C)14 and wet 

chemical processing15 to facilitate the adhesion of photocatalysts to the fluoropolymer. 

However, because of the hydrophobic and chemically inert nature, the agent for a 

fluoropolymer is quite limited.16 

The successful use of catalyst-coated microreactors for various use would largely depend on 

incorporation of catalyst on the wall of the microreactor. To obtain the wall-coated micro 

rector with a high number of exposed active sites, the control over stability and size of the 

preferred metal phase of photocatalysts are crucial. With this, the accessibility towards 

reacting molecules increases leading to better performances from both the reactor system and 

chemistry point of view. Recently, ultrasonic and microfluidics are introduced to revisit 

existing knowledge toolboxes to produce a technology push hoping to commercialize modern 

inventions. 

 Role of sonication in surface modification 

Sonochemistry (acoustic cavitation) begins the growth and collapse of micrometer-sized 

bubbles in a liquid. When a bubble collapses in the presence of a significantly larger surface, 

it undergoes a noticeably uneven collapse, which gives rise to the crash of a high-speed jet of 

liquid into the surface. This can cause ultrasonic cleaning, localized erosion, and enhancement 

of surface chemistry. Integrating ultrasound with microflow reactors has proven to be one of 

the promising methods to address above discussed clogging and mixing issues that exist in 

conventional batch reactors (Figure 1).17,18  

These small-scale microreactors offer a solution to non-uniformly generated acoustic field 

issues since the size range of ultrasonic effects is within the size range of that of the channels.19 

The work on the functionalization of microreactors is sparse in the literature. One of the main 

aims of this work is to provide a sonication-based method to modify the surface of a PFA 
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polymer tube using relatively mild reagents in a micro-space aqueous-based system. Recently, 

Sadowski et al.,20, a group from Jagiellonian University, Krakow, has demonstrated that after 

surface modification of a polymer, increasing the number of available OH, it is possible to 

functionalize it with TiO2.  

 Semiconductor to achieve targeted goal 

The low-cost, highly efficient photocatalysis process provides an alternative solution to 

remove the contaminants from the wastewater by producing less byproduct. In some typical 

photocatalytic wastewater treatments, the organic dyes are eliminated by employing 

semiconductor materials (TiO2 and ZnO) under UV irradiation.21 The semiconductor thin 

layer attained by conventional sol-gel processing is typically amorphous and exhibits a higher 

specific surface area. Conversion from the amorphous to the crystalline phase generally needs 

an annealing step (temperatures higher than 300 °C), which in most cases lead to a collapse of 

the pore system, and an increase of the particle size of the metal supported on the 

semiconductor with reduced specific surface area. Additionally, the use of microtubes in this 

work (made of perfluoroalkoxyalkane PFA, melting point 315 °C, max. operating temperature 

approx. 260 °C) restricts operations to lower temperatures. In recent years, low-temperature 

synthetic protocols towards nanoscale, crystalline, porous, and high surface area 

semiconductors have been developed and the research on semiconductor-based thin layers 

preparation is still a point of contention.22 Taking into account the case of TiO2, the crystallinity 

is often poor from the synthesis process, and it is challenging to control the formation of the 

polymorphs. Regardless of all the research efforts, many of the synthesis procedures are still 

very difficult to predict the final properties of the product based on the present knowledge. 

In the last decade, the advancement of metallic catalysts has been one of the most dynamic 

research topics in nanoscience.23 Because of the synergetic effect between the two metals, the 

properties of bimetallic catalysts significantly differ from their monometallic analogs. As far 

as photocatalysis is concerned, the addition of second metal improved the physicochemical 

and photocatalytic properties of the materials.  
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Figure 2. Lignin-based model compound valorization in wall-coated microreactor system. 

 Research hypothesis and objectives 

This work proposes a novel methodology for the preparation of thin-layer nanocatalysts, 

which has strong potential to reduce Europe's reliance on imported rare earth/precious (toxic) 

metals by reducing their use (even replacing them) with those abundant transition metals 

(e.g., Fe, Cu, Co). We explored the use of noble metals (such as Au) as effective co-catalysts 

for the above metals by reducing the overpotential for surface photochemical reactions. The 

intensity of light upon the catalyst varies on the location of the batch reactor whereas in the 

microflow system, the intensity on the whole system is homogenous.  

In this doctoral research, I aim to valorize lignin-based model compounds by exploiting 

catalyst-coated microflow system. In the scope of this work, it is believed that ultrasound will 

help in deposition of catalysts inside PFA tubes without the use of any binder. I further 

explored the effectiveness of the microflow system in achieving the necessary environment 

for our targeted application (compared to the conventional batch system). 

The research hypotheses formulated for this Ph.D. thesis are outlined as follows: 

Hypothesis 1: The activity of the catalyst can be improved for lignin-based model compounds 

(benzyl alcohol, BnOH) oxidation in microflow over the batch system with better yield of 

product. 
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Objective:  

1. Evaluate the photocatalytic activity of in batch as well as in microflow system, with an 

aim to study the partial oxidation of benzyl alcohol.  

2. Investigate the difference in the structure of the catalyst before and after deposition 

onto the wall of the microreactor by X-ray diffraction (XRD), N2 physisorption, 

scanning electron microscopy (SEM), optical microscope, and UV-vis diffuse 

reflectance spectroscopy (DRS). 

Hypothesis 2: The use of ultrasound for surface modification can further help in better 

deposition of catalyst onto the wall of PFA tube. 

Objective:  

1. Understand the effect of ultrasound on PFA tube surface by analyzing it by SEM and 

optical microscope. 

2. Correlate the photocatalytic activity of the wall-coated microtube prepared with and 

without the presence of ultrasound under UV light.  

Hypothesis 3: Introduction of transition metal (metal-containing; e.g., Cu, Fe, Co) and co-

catalytic amount of noble metal (bimetal containing; e.g., Cu, Fe with Au) can improve the 

photocatalytic activity of the synthesized catalysts.  

Objective:  

1. Develop a low-temperature (80 °C) sol-gel synthesis method for the synthesis of TiO2 

and metal-doped TiO2. 

2. Understand the effect of metal-doped TiO2 by characterizing them through a wide 

range of techniques, e.g. XRD, N2 physisorption, SEM, and UV-vis DRS. 

Hypothesis 4: Alcohol can be chemosorbed over TiO2 and form a visible light-active ligand-to-

metal charge transfer (LMCT)-complex involving the methoxy (OCH3) and hydroxy (OH) 

group of alcohols with TiO2.  
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Objective:  

1. Understand the LMCT-complex formation between the OH, OCH3 group of alcohol 

and TiO2, through various characterization techniques (FT-IR spectroscopy, UV-

Visible DRS spectroscopy). 

2. Evaluate the role of surface hydroxy (OH) groups of TiO2 in LMCT-mediated visible 

light activation of TiO2 through heat treatment (to remove the surface OH groups). 

 Organization of thesis 

This Ph.D. is done as a part of the SonataBis 5 (Project No. 2015/18/E/ST5/00306). The thesis 

takes the form of a cumulative doctoral thesis, with the core chapters presented as 

publications published in reputable international scientific peer-reviewed journals. Chapter 1 

introduces the background to this research topic, with a specific focus on the research 

objectives and hypothesis that will be addressed during this doctoral work. Publication P 1 

builds a comprehensive literature review of microflow reactors and ultrasound approaches. 

The current state of art methods adopted for TiO2 immobilization onto the surface of the 

microreactor is discussed elaborately in Chapter 2 (P 1). 

 

Figure 3. Experimental setup for batch (left) and microflow (right) experiment. 
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In the next section, I described the evolution of my research starting from the inception of the 

concept of combining ultrasound (for catalyst deposition) and microreactors for 

photocatalytic selective oxidation. Utilizing a continuous microreactor has already been 

proven to enhance irradiation throughout the reaction mixture, resulting in significantly 

reduced reaction times compared to batch reactors. The initial focus was to develop the 

appropriate experimental setup for both batch and microflow reactions. The experimental 

setup used for the photocatalytic experiment is shown in Figure 3. With the continuous flow 

of air (fan), the temperature inside the cylinder was maintained at room temperature. The 

intensity of the LEDs (Figure 3) was measured to be 18 x ~ 9 W/ m2, determined via light meter 

(Delta OHM HD 2302.0) with LP 471 RAD probe having 400-1050 nm spectral range. The 

photocatalytic oxidation reactions of alcohols were also carried out under UV and visible light 

using a UV LED lamp (λ= 375 and 515 nm, respectively) measured by a Delta OHM HD 2302.0 

light meter (with a LP 471 UVA probe with a spectral range of 315-400 nm and with LP 471 

RAD probe having 400-1050 nm spectral range, respectively). The distance between the 

photoreactor wall and the irradiation source was maintained to be ~2 cm. At given 

illumination time intervals, 0.15 mL aliquots were collected, and subsequently filtered via 

nylon filter (CHROMAFIL, 0.2 μm pore size, 15 mm diameter) to remove the photocatalyst. 

The same experiments were performed with all photocatalysts.  

Commercial P25 TiO2 was used in a 25 mL batch reactor, and for photocatalytic reaction, 10 

mg of catalyst and 20 mL (optimized concentration 0.5 g/ L) of 1mM BnOH solution were 

used. Experiments were carried out and samples were collected at different interval time. 

Dark adsorption studies were carried out for 10 mg of catalyst in 20 mL of solution at room 

temperature. I optimized the parameters like catalyst concentration, solvent, and mixing 

speed for the batch photocatalytic system. Detailed discussion is provided in P 2. 

To evaluate the efficacy of ultrasonic waves on a PFA (perfluoroalkoxy) tube immersed in a 

bath at various heights from the bottom, two sets of foil tests24 were conducted. The first set 

involved placing aluminum foil horizontally with respect to the bottom of the ultrasound 

source, positioned at different depths. The results demonstrated that altering the height from 

the bottom had a diminishing effect on the interaction between the ultrasound (US) and the 
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foil (Figure 4 (a)). For both 70% and 100% power settings, a height of 2 cm from the bottom 

yielded the most favorable outcomes in terms of the ultrasound's impact.  

The second set of tests aimed to investigate the influence of ultrasound on a spirally bound 

PFA tube enveloping a glass rod. Similarly, aluminum foil was wrapped around the glass rod, 

and the experiment was carried out. The findings from this study also support the conclusion 

that a height of 2 cm from the bottom of the ultrasound bath is effective for the coiled system 

(Figure 4 (b, c, d)). 

 

Figure 4. Two different methods were used to observe the effect of ultrasound: aluminum foil 

inside the Ultrasonic bath (a), and aluminum foil wrapped around glass rod (b, c and d). 

Based on the aforementioned investigations, it can be deduced that, for our study, the optimal 

height from the bottom of the ultrasound bath ranges from 1 to 2 cm. Within this height range, 

the effect of ultrasound has been determined to be particularly advantageous for surface 

modification of the PFA tube. The observed outcomes highlight the significance of ultrasound 

treatment in this specific region, indicating its potential utility in altering the surface 

characteristics of the PFA tube. More pictures of this setup are available in publication P 2 

(Chapter 3). This chapter proposes a new “green chemistry” oriented approach to prepare a 

thin layer microreactor system towards additive-free selective photocatalytic partial oxidation 
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of a lignin-based model compound, benzyl alcohol. The results show that the microreactor 

system displays better photo-reactivity with regard to both benzyl alcohol conversion and 

benzyl aldehyde selectivity. The utilization of ultrasonication (US) during the coating process 

leads to an enhanced mass deposition, and as a result, better photoreactivity compared to 

deposition without US. 

The subsequent phase of my research involved the integration of metal with TiO2. To achieve 

this, I employed a pre-existing sol-gel method for synthesizing monometallic TiO2 and 

optimized the atomic percentage of the metal on TiO2. I conducted thorough catalyst 

characterization and performed photocatalytic tests to elucidate the catalyst's activity 

(reported in P 3).  To enhance the activity of TiO2 nanoparticles, I decided to augment the 

monometal TiO2 with a noble material, specifically gold (Au), as detailed in publication P 4. I 

successfully synthesized and characterized TiO2 nanoparticles modified with bimetallic 

compositions. Our studies reveal that the LMCT complex formation of TiO2 with the methoxy 

and hydroxy groups (directly connected with the aromatic ring) exists in the structure of 

coniferyl alcohol (ConOH) and vanillyl alcohol (VanOH), which was crucial to activate the 

TiO2 catalyst under visible light. A detailed explanation is given in P 4. 

 Final comments on this work  

Waste generated from large-scale manufacturing processes is an ever-growing source of 

environmental hazard, and reducing the production of these harmful chemicals has been a 

dominant area of research in green and sustainable chemistry. The goal of my thesis was to 

use recent advancements in the field of photocatalyst, microfluidics, and ultrasound to 

develop a system for lignin-based model compound valorization by adopting a greener 

approach. This compilation of three works and one review—contains a full picture of my 

research.  

 In P 1, I have presented a comprehensive review of state of art methods for preparing 

wall-coated microflow reactors which are used for  photocatalytic oxidation reactions. 

I further identified the scope of  developments in polymer-based microtubes by using 

low energy-based ultrasound for deposition of catalyst in the wall of microreactor. 

This chapter was published as a review article in Molecules journal. 
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 Following the research gaps identified above, in P 2, I synthesized TiO2 by following 

a simple sol-gel method and deposited it inside perfluoroalkoxy alkane (PFA) tube 

using an ultrasonic bath. I optimized the key parameters like power of ultrasound, 

time of deposition and length of tube for catalyst deposition. I performed a comparison 

study of commercial P25 with my synthesized TiO2 both in batch and microflow 

systems for selective oxidation of benzyl alcohol (BnOH, model compound for lignin). 

The findings showed a greener approach to coat the inner walls of a microtube with a 

thin layer of photoactive TiO2 to utilize the obtained microreactors towards the 

selective photocatalytic partial oxidation of benzyl alcohol, without the use of any 

addition reagent (like oxidant). This work has already been cited 24 times by 

researchers working in this domain. 

 I further modified the photocatalyst (TiO2) by doping metals Fe, Cu and Co to it. In P 

3, I optimized the atomic percentage of metal in TiO2 and did a comparative 

photocatalytic activity study of the three metals. I also performed the required 

characterizations to explain the experimental results.  I showed that, among all the 

metal TiO2 samples, the 0.5 at % Fe-TiO2 (cheap and abundant metal) photocatalyst 

exhibited comparatively better BnOH conversion under visible light (515 nm) in a 

microflow system. 

 In P 4, to make our catalyst active under visible light, which is the dominant part of 

solar radiation, I tried to modify monometallic TiO2 with Au. Though there was no 

remarkable activity under visible light (515 nm), the addition of this second metal in a 

co-catalytic amount to TiO2 helped to increase the selectivity of the catalyst towards 

benzaldehyde (~ 100%) under UV light (375 nm). Furthermore, I extended my study 

to other lignin-based model compounds like coniferyl, cinnamyl, and vanillin alcohols. 

The methyl and hydroxy group of vanillin and coniferyl alcohol form a complex with 

TiO2, which makes the system active under visible light.  

The powerful new approaches discussed above could address the key hypothesis formulated 

at the beginning of the thesis.  
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Hypothesis 1: Photocatalytic activity of the catalyst can be improved for lignin-based model 

compounds (benzyl alcohol, BnOH) oxidation in microflow over the batch system with better 

product yield. 

Utilization of microreactors as an eco-friendly, in terms of simplicity, safety, time, energy, 

material cost, and environmental impact approach for the selective upgrade of biomass-

derived compounds were performed by our research group to enhance the capability of the 

photoreactors and to determine which factors and features of the catalyst play the most crucial 

role. In P 2, I showcased that the photocatalytic conversion of benzyl alcohol in the microflow 

system increased compared to the batch reactor. Upon deposition on the microreactor’s walls, 

the synthesized material revealed a better photo-reactivity regarding benzyl alcohol 

conversion and benzyl aldehyde selectivity, a trend in absolute contrast with the batch 

experiments case. For monometallic catalysts, in Chapter 4, among all the metal TiO2 samples, 

the 0.5 at% Fe-TiO2 (cheap and abundant metal) photocatalyst exhibited the highest BnOH 

conversion (28%, detailed discussion is given in P 3) under visible light (515 nm) in microflow 

system.  

Hypothesis 2: Using ultrasound for surface modification can further help in better deposition 

of catalyst onto the wall of the PFA tube.  

In this thesis, I considered the optimization of parameters like length of tube, ultrasonic 

power, and time of deposition for coating of catalyst and studied the photocatalytic activity 

with all the microtubes prepared with combinations from Design Expert. In P 2, I observed 

that ultrasonication during the coating process plays a vital role, leading to an enhanced mass 

deposition and as a result, better photoreactivity compared to deposition without ultrasound. 

The higher availability of the active sites in this wall-coated microreactor helped in better 

conversion.  

Hypothesis 3: Introduction of transition metal (metal-containing; e.g., Cu, Fe, Co) and co-

catalytic amount of noble metal (bimetal containing; e.g., Cu, Fe with Au) to improve the 

photocatalytic activity of the synthesized catalysts.  
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P 3 of this thesis shows the benefits of using metal TiO2 (e.g., Cu, Fe, Co). The metal-containing 

TiO2 showed higher photocatalytic activity under UV irradiation than the synthesized TiO2 in 

the batch system. Among the three metals, although Cu and Fe showed almost similar activity 

in the batch system under UV light, in the microflow system (after deposition of catalyst in 

the wall of PFA), Fe-TiO2 showed better activity under UV and Vis light. Though adding a 

second metal (Au) to this monometal TiO2  enhanced the benzaldehyde selectivity to 100%, it 

did not improve the activity of the catalyst under visible light as we hypothesized.  

Hypothesis 4: Alcohol can be chemosorbed over TiO2 and form a visible light-active ligand-to-

metal charge transfer (LMCT)-complex involving the methoxy (OCH3) and hydroxy (OH) 

group of alcohols with TiO2.  

In P 4, I showcased that the LMCT complex formation of TiO2 with the methoxy (OCH3) and 

OH groups (directly connected with the aromatic ring) exists in the structure of coniferyl 

alcohol (ConOH) and vanillyl alcohol (VanOH), is crucial to activate the catalyst under visible 

light. This has further been corroborated by UV-Vis and FTIR studies. Removing the OH 

group from TiO2 with high temperature, I observed the deactivation of the catalyst under 

visible light confirming that the OH groups are crucial for LMCT complex formation and 

visible light activity of the catalyst. 

In summary, I presented herein a “green chemistry” oriented approach to coat the inner walls 

of a microtube with a thin layer of photoactive TiO2 to use the obtained microreactors towards 

the selective photocatalytic partial oxidation of lignin-based model compounds. Additionally, 

the whole process was developed to be environment-friendly as the catalyst synthesis process 

did not include any high-temperature calcination step, unlike commercial P25 TiO2, and the 

photocatalytic selective oxidation route was additive-free (no additional oxidants). TiO2-

based heterogeneous photocatalysis carried out under mild experimental conditions such as 

ambient pressure and temperature, utilizing oxygen (present in the reaction medium) as an 

oxidizing agent, and UV and visible light as irradiation sources is a green and economical 

approach for the valorization of biomass-based platform chemicals. In a broader context, we 

believe that the presented work demonstrates the potential of an ultrasonic-assisted bimetallic 

TiO2 wall-coated microreactor for selective oxidation of lignin-based model compounds using 
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solar energy and will serve as a conceptual blueprint for further developments. On the other 

hand, even though modifications were done to sol-gel synthesized ZnO with metals 

(considering the optimized parameters from experiments with TiO2), commercially available 

ZnO showed better activity compared to our synthesized ZnO and metal-modified ZnO.  

 Challenges and future perspectives  

In this part of my dissertation, challenges and possible directions for future studies are given.  

During this doctoral research, I explored many innovative strategies to push the boundaries 

toward the valorization of lignin compounds. However, there still exist many challenges that 

could be hurdles to widespread adoption; while simultaneously opening up possible research 

directions for future works. They are: 

o According to our initial plan, we aimed to use ultrasound for the synthesis of our 

catalyst. We also used it for the synthesis of TiO2. Whereas, the addition of metal to 

the process made the gel thicker by making the mixing process difficult. Hence, we 

shifted to mechanical mixing (magnetic stirrer). Maybe the use of high-power 

ultrasound for this sol-gel synthesis can improve the crystallinity of the catalyst, which 

might will improve the activity of the catalyst.  

o As the catalyst depositions occur at micro-scale, it was difficult to characterize or study 

the catalysts inside the microflow system deeply. This still is an active challenge to 

overcome. 

o The current work uses irradiation light for photocatalysis using LED light sources. 

Going forward, this source should be replaced with naturally available solar 

irradiation. To start with, we can use solar light simulators. 

o We can improve the catalysts by changing the synthetic route - 80 °C which might 

activate the rutile phase (or overall crystallinity) and activate the catalyst under visible 

light. Also, we can shift towards greener solvents, like water, for photocatalytic 

experiments. 

o In the future, we can work on numbering up the system in order to work on an 

industrial scale. 
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Abstract: Use of sonication for designing and fabricating reactors, especially the deposition of catalysts
inside a microreactor, is a modern approach. There are many reports that prove that a microreactor is
a better setup compared with batch reactors for carrying out catalytic reactions. Microreactors have
better energy efficiency, reaction rate, safety, a much finer degree of process control, better molecular
diffusion, and heat-transfer properties compared with the conventional batch reactor. The use of
microreactors for photocatalytic reactions is also being considered to be the appropriate reactor
configuration because of its improved irradiation profile, better light penetration through the entire
reactor depth, and higher spatial illumination homogeneity. Ultrasound has been used efficiently for
the synthesis of materials, degradation of organic compounds, and fuel production, among other
applications. The recent increase in energy demands, as well as the stringent environmental stress due
to pollution, have resulted in the need to develop green chemistry-based processes to generate and
remove contaminants in a more environmentally friendly and cost-effective manner. It is possible to
carry out the synthesis and deposition of catalysts inside the reactor using the ultrasound-promoted
method in the microfluidic system. In addition, the synergistic effect generated by photocatalysis and
sonochemistry in a microreactor can be used for the production of different chemicals, which have
high value in the pharmaceutical and chemical industries. The current review highlights the use of
both photocatalysis and sonochemistry for developing microreactors and their applications.

Keywords: ultrasound; flow microreactor; photocatalysis; water/air detoxification; organic
synthesis; semiconductor

1. Introduction

With the continuous and prosperous development of modern civilizations, environmental
contamination has spread far and wide. Faced with this issue, humankind reached a consensus on
the need for environmental treatment and remediation. Green chemistry is the implementation of
twelve principles [1] (Figure 1) that lowers the use or generation of hazardous substances in the design,
manufacture, and application of chemical products [2]. Our society is increasingly demanding the
innovation of newer approaches to be sustainable in order to preserve the environment. It is crucial for
these approaches to be less dependent on self-depleting sources or sources that effuse green-house
gases in use.

Molecules 2019, 24, 3315; doi:10.3390/molecules24183315 www.mdpi.com/journal/molecules
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Figure 1.  The twelve principles of green chemistry. 

Photocatalysis occupies an essential place in the ecological equilibrium and is a good example 

of green chemistry [3]. Photocatalysis activates reactions depending on the light (clean and 

superabundantly available from the Sun) as an energy source. Therefore, research on the utilization 

of solar energy has continued to be an important topic [2,4]. Photocatalysis in microreactors is 

attracting the attention of many researchers because of its greener aspect. Because of reduced reagent 

requirements, shorter reaction time, lessening of by-products, and minimized energy consumption, 

microreactors are regarded as a green synthetic approach [5]. Nowadays, many groups are working 

on synthesizing catalysts inside a microreactor. Among the catalysts, titania-based catalysts are well-

known photocatalysts under UV (Ultraviolet) light and have been identified as a form of technology 

playing an important role in solving many of the problems in water purification [6].  

In this review article, after a brief introduction, theoretical backgrounds of the flow microreactor, 

ultrasound, and their combined studies are discussed. Ultrasound irradiation is accepted as an 

environmentally benign technique to carry out chemical reactions [7]. The application of ultrasound 

waves has been considered as an agreeable technique in chemistry. Early works on catalyst synthesis 

in a microreactor using ultrasound and their comparison with conventional batch experiments and 

future challenges are reviewed in this article.  

As illustrated in Figure 2, the scientific community is trying to make our planet green by 

combining chemical engineering (e.g., manufacturing microchannels by ultrasound) with material 

chemistry (e.g., photocatalysts). The major purpose of this review article is to highlight the challenges 

ahead of the design and development of (photo)catalytic microfluidic reactors using ultrasound. To 

the best of our knowledge, this is the first technical review in the field of microflow reactors for 

photocatalysis using sonochemistry, which is promising for the upcoming studies in this branch of 

science. 

Figure 1. The twelve principles of green chemistry.

Photocatalysis occupies an essential place in the ecological equilibrium and is a good example
of green chemistry [3]. Photocatalysis activates reactions depending on the light (clean and
superabundantly available from the Sun) as an energy source. Therefore, research on the utilization
of solar energy has continued to be an important topic [2,4]. Photocatalysis in microreactors is
attracting the attention of many researchers because of its greener aspect. Because of reduced reagent
requirements, shorter reaction time, lessening of by-products, and minimized energy consumption,
microreactors are regarded as a green synthetic approach [5]. Nowadays, many groups are working on
synthesizing catalysts inside a microreactor. Among the catalysts, titania-based catalysts are well-known
photocatalysts under UV (Ultraviolet) light and have been identified as a form of technology playing
an important role in solving many of the problems in water purification [6].

In this review article, after a brief introduction, theoretical backgrounds of the flow microreactor,
ultrasound, and their combined studies are discussed. Ultrasound irradiation is accepted as an
environmentally benign technique to carry out chemical reactions [7]. The application of ultrasound
waves has been considered as an agreeable technique in chemistry. Early works on catalyst synthesis
in a microreactor using ultrasound and their comparison with conventional batch experiments and
future challenges are reviewed in this article.

As illustrated in Figure 2, the scientific community is trying to make our planet green by combining
chemical engineering (e.g., manufacturing microchannels by ultrasound) with material chemistry (e.g.,
photocatalysts). The major purpose of this review article is to highlight the challenges ahead of the
design and development of (photo)catalytic microfluidic reactors using ultrasound. To the best of our
knowledge, this is the first technical review in the field of microflow reactors for photocatalysis using
sonochemistry, which is promising for the upcoming studies in this branch of science.
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Figure 2. Two branches, trying to produce greener chemistry. 

2. Theoretical Background 

There are two main types of flow-reactor system that people use for synthetic photochemistry—

micro and macro flow [8]. For various applications, people use the micro-synthesis technique in 

disciplines of both engineering and sciences. Definition of a microfluidic segment in a microreactor 

is described as a minimum unit having properties that can be used to improve various operations 

and reactions [5]. Microreactors offer new possibilities of reactions. Microreactors have been proven 

to be highly effective for catalytic reactions because of their indispensable advantages, such as 

uniform illumination without light attenuation, large surface-to-volume ratio and, consequently, 

attaining of a high heat and mass transfer rate, and the resultant satisfactory catalytic effect [9,10]. 

Also, one can easily control the contact time, shape, and size of the interface between fluids in these 

systems [11,12]. The aforementioned attributes make microreactors ideal for highly exothermic and 

fast reactions. 

Recently, much attention has been paid to the development of microreactor technology for 

various applications, such as the synthesis of chemical compounds, environmental protection, 

biomedical and pharmaceutical studies, and healthcare, among others [9,13]. In a review article, 

Moraveji et al. discussed on two disadvantages of flow reactors—pressure drop and type of 

photocatalytic microreactor to be considered [14]. Yue et al. tried to overcome these issues by 

incorporation of a photocatalyst thin layer [10]. The potential development of more complicated flow 

reactions on progressively complex targets became viable because of the small volume of 

microreactors. Hence, the quantities of materials needed to optimize reaction conditions are greatly 

minimized, leading to reduce waste [15].  

In the past decade, continuous flow microreactors have received considerable attention for 

performing organic transformations in safer and efficient ways. Even if microfluidic systems have a 

wide range of users in several fields, their commercialization is still limited [13]. It is now possible to 

reach the maximum selectivity of exothermic or endothermic, complex, extremely fast, and 

multiphase chemical reactions using a photocatalytic microreactor [16]. Very efficient degradation 

and different organic molecule synthesis, along with selective cleavage of peptides and proteins, have 

been done using micro-photoreactors immobilized with TiO2 catalyst, which can be very favorable 

for the synthesis of chemicals, pharmaceuticals, and proteomics [17]. Figure 3 shows a typical 

example of a photocatalytic microreactor used for wastewater treatment. 

Figure 2. Two branches, trying to produce greener chemistry.

2. Theoretical Background

There are two main types of flow-reactor system that people use for synthetic
photochemistry—micro and macro flow [8]. For various applications, people use the micro-synthesis
technique in disciplines of both engineering and sciences. Definition of a microfluidic segment in a
microreactor is described as a minimum unit having properties that can be used to improve various
operations and reactions [5]. Microreactors offer new possibilities of reactions. Microreactors have been
proven to be highly effective for catalytic reactions because of their indispensable advantages, such
as uniform illumination without light attenuation, large surface-to-volume ratio and, consequently,
attaining of a high heat and mass transfer rate, and the resultant satisfactory catalytic effect [9,10].
Also, one can easily control the contact time, shape, and size of the interface between fluids in these
systems [11,12]. The aforementioned attributes make microreactors ideal for highly exothermic and
fast reactions.

Recently, much attention has been paid to the development of microreactor technology for various
applications, such as the synthesis of chemical compounds, environmental protection, biomedical
and pharmaceutical studies, and healthcare, among others [9,13]. In a review article, Moraveji et al.
discussed on two disadvantages of flow reactors—pressure drop and type of photocatalytic microreactor
to be considered [14]. Yue et al. tried to overcome these issues by incorporation of a photocatalyst thin
layer [10]. The potential development of more complicated flow reactions on progressively complex
targets became viable because of the small volume of microreactors. Hence, the quantities of materials
needed to optimize reaction conditions are greatly minimized, leading to reduce waste [15].

In the past decade, continuous flow microreactors have received considerable attention for
performing organic transformations in safer and efficient ways. Even if microfluidic systems have a
wide range of users in several fields, their commercialization is still limited [13]. It is now possible to
reach the maximum selectivity of exothermic or endothermic, complex, extremely fast, and multiphase
chemical reactions using a photocatalytic microreactor [16]. Very efficient degradation and different
organic molecule synthesis, along with selective cleavage of peptides and proteins, have been done
using micro-photoreactors immobilized with TiO2 catalyst, which can be very favorable for the
synthesis of chemicals, pharmaceuticals, and proteomics [17]. Figure 3 shows a typical example of a
photocatalytic microreactor used for wastewater treatment.
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Figure 3. UV-LEDs-assisted preparation of silver-deposited TiO2 catalyst bed inside microchannels as 

a high-efficiency micro-photoreactor for cleaning polluted water. Reprinted from [18] with 

permission of Elsevier. 
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processing, acoustic microscopy, and more recently, wireless communications [19]. Use of ultrasound 

in a liquid facilitates the breaking of chemical bonds through sonolysis process, resulting in the 

formation of free radicals. Acoustic cavitation, bubble formation in a liquid exposed to pressure 

fields, causes several chemical and physical effects [20]. These processes are useful for the synthesis 

of nanomaterials, incrementation of catalytic chemical reactions, destruction of pharmaceutical 

waste, wastewater treatment, degradation of organic pollutants, and are representative of a method 

of production of fuels [21]. In conventional systems, ultrasound is also used to intensify liquid-liquid 
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chemical reactions by intensifying mass transfer.  

Currently, ultrasonics and microfluidics are introduced to revisit existing knowledge toolboxes 

to produce a technology-push hoping to commercialize modern inventions. Upon irradiation of an 

ultrasound wave, acoustic cavitation forms, such as cavitation microstreaming, shock wave, and 

jetting [23]. In this year (2019) until the time of submission, only five articles had been indexed by 

Scopus, which are retrievable by the combined keywords “microreactor” and “ultrasound.” The 

number of research articles published in the last decade is represented in Figure 4. 

Figure 3. UV-LEDs-assisted preparation of silver-deposited TiO2 catalyst bed inside microchannels as
a high-efficiency micro-photoreactor for cleaning polluted water. Reprinted from [18] with permission
of Elsevier.

Ultrasound has been applied in several research fields. These include, but are not limited to,
structural modification of materials, and their transmissions, imaging, medical treatment, materials
processing, acoustic microscopy, and more recently, wireless communications [19]. Use of ultrasound in
a liquid facilitates the breaking of chemical bonds through sonolysis process, resulting in the formation
of free radicals. Acoustic cavitation, bubble formation in a liquid exposed to pressure fields, causes
several chemical and physical effects [20]. These processes are useful for the synthesis of nanomaterials,
incrementation of catalytic chemical reactions, destruction of pharmaceutical waste, wastewater
treatment, degradation of organic pollutants, and are representative of a method of production of
fuels [21]. In conventional systems, ultrasound is also used to intensify liquid-liquid processes because
of its efficient agitation effects and non-invasive nature [19,22]. It accelerates chemical reactions by
intensifying mass transfer.

Currently, ultrasonics and microfluidics are introduced to revisit existing knowledge toolboxes
to produce a technology-push hoping to commercialize modern inventions. Upon irradiation of an
ultrasound wave, acoustic cavitation forms, such as cavitation microstreaming, shock wave, and
jetting [23]. In this year (2019) until the time of submission, only five articles had been indexed by
Scopus, which are retrievable by the combined keywords “microreactor” and “ultrasound.” The number
of research articles published in the last decade is represented in Figure 4.
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3. Side-by-Side Comparative Evaluation of Flow System to Batch

Microfluidics has many advantages compared with bulk chemistry, the first being slow diffusion.
Therefore, to make the reaction faster, the distance required for interaction has to be smaller. The smaller
channel dimensions also help to minimize the amount of sample required for analysis with reducing
the by-products [13]. Recent advancement in this field has signified that miniaturization of reactors
can be profitable in terms of kinetics, safety, and cost [24]. Because of its advantages, the synthesis
of nanoparticles in microfluidics has become prominent in the past years [5]. The use of continuous
microreactor led to the improvement of irradiation over the reaction mixture and offers a considerably
reduced reaction time and better yields of products compared to batch reactors [25]. Batch reactors
have a major disadvantage in the linear decrease in the intensity of the electromagnetic radiation with
the square of the distance of the light source used [26,27]. The photocatalytic microreactors avoid
this disadvantage by having a homogeneous illumination over the whole surface of the microchannel
exposed to the light source [28]. Otherwise, the molecules undergoing photodegradation, under the
control of the injection flow, constantly leave the reaction environment, avoiding the presence of
by-products in the reaction mixture. The application of these devices to synthetic photochemistry
started to spread from the 21st century [8].

There are several techniques for the prototyping of microfluidic systems [29], and different
methods for the preparation of TiO2 films in photocatalytic microreactors [30]. These techniques should
be fast and cost-effective from the design stage to the final system test. To fulfill the requirements,
the production must be based on a simple technique and utilize low-cost instrumental resources [28].
Nanoparticle synthesis using continuous flow methods can produce a narrow size distribution of
nanoparticles, which cannot be possible in a batch reactor. It has been proven that total reaction
rate and photocatalyst mass transfer can be tuned with specific control, especially on size and shape,
but also control over porosity, crystallinity, and thickness [14].

Noël et al. stated two important reasons for photochemistry achieving a remarkable increase
in attention from researchers in academia and industry. The first reason is the exposure of visible
light photo redox catalysis for organic synthetic chemistry. The second is the use of continuous-flow
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reactors [31]. In one of their publications, they compared their results in flow to those obtained in
batch experiments [32]. They reported a negligible loss in activity when the reaction was performed in
flow. In fact, in the flow reaction, they observed higher activity at very short residence times. This
result concluded with the major advantages of flow chemistry. It stated that increased mass- and
heat-transfer allows the flow reactor to have very fast and efficient heating. These properties make it
ideal for fast reactions.

The same authors have also suggested a list of nine good reasons to utilize photo flow [31]. The
reasons are as follows:

1. Improved irradiation of the reaction mixture;
2. Reliable scale-up;
3. Improved reaction selectivity and increased reproducibility;
4. Fast mixing;
5. Fast heat exchange;
6. Multiphase chemistry;
7. Multistep reaction sequences;
8. Immobilized catalysts;
9. Increased safety of operation.

Noël et al. developed a completely automated microfluidic system that can handle solids efficiently
at high concentrations through acoustic irradiation [32]. They experimented with the amination reaction
of aryl triflates, aryl bromides, and aryl chlorides. Working with the flow system assisted in carrying
out the reactions at a very short time and in figuring out the conversions and yields accurately. They
concluded that their system is ideal for multistep syntheses, which requires a heterogeneous reaction.
Furthermore, microflow photocatalytic reactors have shown to be a competent setup compared to
batch [33], as can be seen in the selective organic synthesis in heterogeneous photocatalysis in a
microflow, which is still in an underdeveloped stage as compared to traditional batch systems.

4. Ultrasound: The Useful Tool for Chemists

Ultrasonic irradiation increases turbulence in the liquid phase, decreasing mass transfer limitations,
and increasing the catalytically active surface area via the de-agglomeration and fragmentation of the
particles [34]. Different effects of ultrasonic waves are shown in Figure 5. Nucleation, cavitation, bubble
dynamics/interactions, thermodynamics, and chemical processes are the mechanisms of sonolysis.

1 
 

 

Figure 5. Effect of sonication. Reprinted from [20] with permission of the Royal Society of Chemistry.
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Bridging and constriction are important mechanisms that lead to clogging in microfluidic devices,
which can be eliminated via acoustic irradiation and fluid velocity, respectively [35]. Rivas et al., in their
article, discussed the ultrasound approaches to control the particle formation inside the microchannel [33].

4.1. Synthesis of Materials

There has been a large amount of research in synthetic fields under ultrasonic environments, such
as the synthesis of nano inorganic materials. There are comparatively fewer studies on the effect of
solids on sonochemical activity [20]. Countless articles exist up until today on the use of ultrasound
for material synthesis. This process deals with the formation, gradual growth, and bursting bubbles
(Figure 5). Application of ultrasound to the solution, for nanomaterial synthesis, produces shock
waves, leading to an increase in temperature and pressure necessary for chemical reactions [13] (a
diagram has been given to demonstrate the synthesis of nanoparticles using microtube and ultrasonic
bath, Figure 6). A simple, ultrasound-assisted wet impregnation method was applied to synthesize
materials by Colmenares et al. [36].
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4.2. For Immobilization of Catalyst

Deposition of metal particles on a substrate by ultrasound is a process in which both the reduction
of the oxidized metal precursor and the deposition of the resulting metallic particles are driven by
ultrasonic irradiation. This technique has been employed to coat metallic particles on various substrates.
Earlier investigations indicated that the technique could yield well-dispersed metal nanoparticles
tightly adhered to the surface of a substrate [37,38]. It can be stated that ultrasound plays a vital role
in developing thin-film of well-dispersed nanoparticles. Many researchers have taken advantage of
ultrasound to immobilize nanoparticles. Recently, Liu et al. worked on the deposition of metallic
platinum nanoparticles on CdS for photocatalytic hydrogen evolution using ultrasound [39]. However,
the development of a more adaptable system that is more synthetically feasible is needed [32].

4.3. For Photocatalytic Experiments

In a review article, Qui et al. discussed heterogeneous sonocatalysts for treatment of organic
pollutants in aqueous phase [40]. They discussed briefly the development of sonocatalysts from
the past to the present in accordance with the different types of catalytic mechanisms. Teh et al.,
in another review article, discussed the development and modification of titania-based photocatalysts for
pollutant-degradation using ultrasound technology [41]. They also stated the key operating parameters
of ultrasound, followed by its application in the synthesis of the photocatalyst. Colmenares et al.
synthesized magnetically separable materials by following the improved wet impregnation method
assisted by ultrasonic irradiation. They developed a simple method for the preparation of magnetically
separable TiO2/maghemite-silica photo-active nanocomposites. The resulting nanomaterials were
further tested for their photocatalytic activities in the liquid phase of selective oxidation of benzyl
alcohol in both aqueous and organic phase [36]. The unusual reaction conditions (extremely high
temperatures and pressures forming quickly in liquids because of acoustic cavitation phenomena)
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of the ultrasonic irradiation technique were key factors in achieving homogeneously impregnated
materials with nano-sized particles, and in the formation of heterojunctions. The catalysts were found
to be highly photocatalytically active. Yu et al. also worked on photocatalyst synthesis [42]. They
synthesized three-dimensional and thermally stable mesoporous TiO2 with high photocatalytic activity
by high-intensity ultrasound-induced agglomeration.

5. Early Works on Microreactors

Microfluidic technology can be used profitably for the synthesis of nanomaterials and their catalytic
studies. Efficient heat and mass transport in the miniaturized reaction chambers of microfluidic chips
impart greater control at the molecular level. The microfluidic pathway offers an edge over the
normal batch processes in terms of laminar flow, short molecular diffusion distance, and effective
mixing [13,14,31]. Previously, many groups concentrated their work on exploring microfluidic
photocatalytic microreactors for environmental application. Das et al. wrote a review article focusing
on the fabrication techniques and operating parameters for this type of microreactor [43].

Based on the method used to incorporate catalysts on the inner wall of the microreactor, it can
be divided into three classes: (i) packed-bed, (ii) monolithic, and (iii) inner wall-functionalized [9]
(Figure 7). The packed-bed reactor can be explained as the immobilization of a catalyst on insoluble
support and is haphazardly assembled in the reactor, whereas in a monolithic reactor, the catalyst
is made in the shape of structured material. In an inner wall-functionalized reactor, the catalyst
is covalently attached to the interior wall of the reactor. To ensure a smooth flow of reagents,
minimization in the mass transfer resistance was provided. Because of the complexity of the synthesis,
their application is still limited [31]. Tao et al. proposed a synthesis procedure based on microfluidics
for the production of Ag@Cu2O core-shell nanoparticles [44]. Sachdev et al. presented a microfluidic
method for the synthesis of hollow Au shells and Fe3O4@Au core-shell nanoparticles within an
emulsion droplet [45] (‘@’ stands for core-shell by the respective authors).
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Flow chemistry has started to make an extensive impact on the way many chemists carry out
synthesis over the last 15 years [8]. Microfluidics has significant applications in various fields [46,47].
In the year 2015, Yao et al. published a review article related to various applications of microreactors [5].
This review article was mainly based on structures and applications of microreactors in the synthesis
of nanoparticles, and also on bio-substances, organics, and polymers. The whole article focused on
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multiphase microreactors. Knowles et al. used dual-channel microreactors for transformations, which
are synthetically useful [8]. The same reactor was also applied for the synthesis of the antimalarial
artemisinin, and the conversion of α-terpinene to ascaridole successfully. An additional application of
microflow photochemistry includes the synthesis of vitamin D3 [7].

Nanoparticle synthesis in microreactor types for on-chip photocatalyst synthesis has been reviewed,
along with challenges in handling the nanoparticles in microsystems [14]. The most important design
parameter of photocatalytic reactors is the illuminated specific surface area of the photocatalyst.
Matsushita et al. have developed a photocatalytic microreactor system, which has a considerably
large surface area per unit volume [26]. Research over the past decade focused on enabling multi-step
processes by developing complex microchemical systems. The prime example of such multistep
microchemical synthesis is multi-step Heck synthesis carried out in continuous flow [19]. Microfluidic
systems provide a platform for a broad range of syntheses. These allow automated optimization [48]
and rapid experimentation (e.g., reaction conditions, catalysts) [49]. Moreover, microfluidic systems
allow safe synthesis and increase the feasible reaction space (performing synthesis in supercritical
solvents). Additionally, the residence time of species and the reactor temperature can be precisely
controlled. All these studies focused on the use of microreactors for chemical synthesis in flows [19].

In a review article, the importance of continuous-flow photo-microreactors in water treatment,
organic synthetic chemistry, and materials science was described [31]. Some recent examples pointed to
complex applications, such as the synthesis of complex biologically active molecules [50]. Automated
and self-optimizing flow processes have been developed to reduce manual labor [31]. In a recent
article, Cambié et al. stated that a multidisciplinary approach would be the best strategy to overcome
the remaining hurdles in chemistry. Intense collaborations between academia and industry are the
most important part. To address the challenges of the future, industrial income has become more vital
because of the drop in funding opportunities [31]. Considerable research in this field has been done in
the last decade, and making further progress will be challenging.

In another article, Shchukin et al. [51] stated the advantages of microflow photocatalytic process
as (i) possibility of providing definite characteristics to the microreactor by removing additional
functionalities; (ii) high active area for reaction with increased yield of photoreactions; (iii) less
volume (micron and submicron), allowing one to perform photochemical synthesis in the highly
organized solvent; (iv) reduced concentration and heating effects on adding reagents in the reaction;
(v) possibility of modelling and mimicking photo-induced processes in nature on the micron and
submicron level. So far, many articles have reported on several microns and submicron-confined
environments for performing photocatalytic processes. However, there are only a few examples of
spatially confined individual reactors for the semiconductor-catalyzed photodegradation reactions
to date [49]. The study of reaction kinetics and mechanisms, influence of different parameters (e.g.,
size of the microreactor), adsorption of the reactants and intermediates, and solvent structure in the
interior, among others, on the photosynthetic technique, along with a comparison of reaction products
with those obtained by catalytic photolysis in non-confined media (e.g., in the slurry of dispersed
photocatalyst) is scarce in the literature. These details can help in understanding the chemical and
physicochemical processes occurring in the environment, as well as the development of spatially
confined photosynthetic approaches. The results of conventional heterogeneous photocatalysis can
be improved by exploiting the physical processes that occur in confined geometries with controlled
diffusion of the reagents [51].

Various photocatalytic reactors have been reviewed for different applications [52,53]. Most of
them can be classified into microreactors and slurry reactors. Some can be handled with suspended
photocatalysts immobilized in the latter by considering the specific surface area of the catalyst and
uniform light penetration in the reactor volume by various approaches [54]. The slurry reactors
provide several active sites per unit volume. These microreactors were often used for air treatment [55].
Because of the limited designs available, photocatalytic reactors are still not commonly implemented
in industrial processes. In the case of a three-phase microreactor with dispersing catalyst nano-powder,
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the higher adsorption rate was found in wastewater treatment. It has been seen that the photocatalytic
activity decreases with particle size [56]. The mean particle size also can be easily adjusted by the pH
of the solution and choice of solvent [57]. The accumulated particles inside a micro path make the
recycling process difficult after the photocatalytic step [43].

The typical flow systems found in the catalytic layer immobilized channel are slug flow or annular
flow (Figure 8), depending on the operating conditions [58]. The important leverage of a microreactor with
the immobilized thin-film catalyst is that it does not require a discrete step to separate the photocatalyst
after the reaction. The high surface area of the catalyst also helps in increment of mass transfer in bulk and
inter-phase. For example, oxygen that accepts electrons and, resultantly, does not allow recombination
of electron-hole pair in the photocatalysis, leads to high reaction efficiency [59]. The lower interfacial
catalyst surface area per mass is the main disadvantage of the inner surface-immobilized photocatalytic
thin film of microreactors [60]. The combined effects of mass transfer with photocatalytic reaction have
been studied in Charles et al.’s and Corbel et al.’s works [61,62].
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Different microreactors have been developed to upsurge the reaction efficiency [63], such as
micro-capillary reactors [64], single-microchannel reactors [18,65], and planar reactors, although
it’s photocatalytic, as well as energy efficiency, still needs to be improved [66]. In a review article,
Heggo et al. discussed the work of different researchers to attain high throughput. Some researchers
tried to achieve this by increasing the length or number of microchannels, whereas others tried to
enlarge the dimension by keeping one dimension in the microscale.

In a review article, Woolley et al. discussed the materials (silicon, glass, and ceramics) and
polymers (elastomers, thermoplastics, and paper) that scientists are using in microreactors for different
purposes (microreactor’s fabrication). Hybrid devices have shown promising ability to gain the benefits
of each material’s strengths [13]. Professor George Whitesides used polydimethylsiloxane (PDMS)
to create inexpensive microfluidic devices, and Yoshida’s microreactor initiatives in Japan built up
considerable interest in the microreactor area [5]. Das and Srivastava inspected various techniques
to construct microstructures, such as mechanical micro-cutting, lithography, and etching technology.
On the basis of the material of the devices, they divided the micro-photoreactors into four groups:
ceramic microreactors, polymeric microreactors, metallic microreactors, and glass microreactors [43].

Signs of progress done in the modification and design of the structure of microreactors over the
last ten year has been reported, and it has also introduced the improvement in organic reactions and
synthesis of inorganic materials. Exemplary reviews have been published on the reaction process,
the impact on downstream processing, and the product properties [67,68]. Multiphase microfluidic
devices have also been discussed to synthesize inorganic and metal nanoparticles [5].
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Some polymers, on the other hand, are presented as a good alternative for use in photochemistry
and have been applied for the intensification of photochemical processes [69]. This paper focused on
multichannel microreactors, which can be used for a wide range of liquid-phase organic synthesis
reactions. The reactor system showed better potential because of the presence of several microchannels
and the simplicity of parallelly arranging a number of these devices [69]. In a study, Ramos et al.
investigated the possibility of employing UV-transparent polymer microtubes as supports for TiO2

(titanium dioxide) photocatalysts, and their applicability in the oxidation of organic pollutants [64].
Because of the advancement in syntheses such as increased mass and heat transfer, operational

safety, the potential for purifying continuously, control over residence time, and scalability by parallel
operation of several devices, the usage of microfluidic devices has attracted consideration from the
pharmaceutical industry [70]. Despite these advantages, one of the biggest hurdles in the development
of flow chemistry methods is the handling of solids, such as precipitates during the reaction, leading to
clogging of the microchannels. Among all the approaches, the use of ultrasound is an effective way to
avoid clogging. In order to prevent the particles from interacting with the reactor walls, segmented
liquid-liquid flow can be used [71]. Though this is an efficient way to handle solids, the efficiency of
the reaction can be reduced by using an additional solvent. Recently, Buchwald et al. presented a
biphasic system of an organic solvent and water, which could solubilize both the organic and inorganic
components of a reaction [72,73].

Microfluidic reactors have been developed to implement miniaturized laboratories for (i) synthesis
of organic and inorganic compounds, and (ii) analytical tests and biomedical applications [28]. In these
situations, the process parameters (P, T, V, and concentration) must be highly controlled in well-defined
time units, in order to reduce raw material costs, analysis time, and risks in reagent handling, or
potentially dangerous flammable, explosive, corrosive, and carcinogenic products, and bacteriological
agents. From the advantages of the method, it can be stated that high temperature and long-time are
not required. It is noteworthy that the diameter of the core-shell can be controlled by the concentration
of the inner particle in the organic phase, and the diameter of hollow shells can be adjusted by varying
the flow rate [14]. Y. Matsushita et al. examined the feasibility of the micro-reaction system on
organic photoreactions, finding that the photocatalysis of TiO2 can be categorized into two types:
homogeneous photocatalytic reaction and heterogeneous photocatalytic reaction systems. Among the
different types of catalyst-based photochemical reactions, homogeneous-based photocatalysis has been
broadly studied in microfluidic-based flow systems for selective organic synthesis [33].

6. Immobilization of Nanoparticles Inside the Microtube

Most research on photocatalytic reactions has been carried out using dispersed powders in
conventional batch reactors. However, systems with the immobilized catalyst can avoid the separation
of dispersed powders (preventing light penetration) after the reaction, as they have low interfacial
surface areas. Thus, Matsushita et al. have developed photocatalytic microreactors with an immobilized
TiO2 layer [74]. The thermal oxidation [75], physical vapor deposition (PVD) [76], chemical vapor
deposition (CVD) [77,78], dip-coating [79], spin-coating [80], electrospun [81], sputtering [82], sol-gel [83],
and electrodeposit [84] methods are techniques for the film formation step needed in the design
of immobilized photoreactors. Figure 9 represents a sol-gel-based deposition of TiO2 inside a
glass microtube.
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Recently, Sohrabi et al. [14], in their review article, discussed the challenges as well as opportunities
of microfluidic reactors. They stated that the main challenges in microfluidic nanoparticle synthesis
and application are the crystallization of the photocatalyst, the poly-dispersity of particles and
channel clogging, and the carryover of suspended photocatalysts. It would be worthwhile to devote
much effort in the wall-coated microreactor by selecting suitable surfactants and manipulating
polymerization conditions [85]. Lopez-Orozco et al. claimed that the high surface reactivity would
enable the attachment of functional groups to synthesized microreactors inside nanocomposites or
the microchannel. The evolution of the research on composite-based microreactors has been quite
encouraging [86]. In the simplest case, the intrinsic activity of the wall of the reactor is sufficient to
catalyze the reaction.

In most cases, a sufficient number of active sites cannot be provided by the surface of the
microreactor or improve the existing surface area—some surface modification is required. Moreover,
a surface pre-treatment can help to improve the adhesion of coatings to attain maximum potential
for immobilization of the catalyst. Plasma oxidative treatment, thermal or chemical oxidation, UV
radiation, anodic oxidation, and chemical modification are some methods that have been used for
pre-treatment [87].

A microreactor with the photocatalytic thin film deposited on its inner spaces is a substitute for
the slurry photocatalytic reactors [88]. H. Nakamura et al., in their article, discussed the modification of
the inner wall of a microreactor and coating it for photocatalytic and enzymatic reaction studies. They
used self-arrangement of colloidal particles to modify the microreactor inner wall. They observed an
increase in conversion rate as well as yield [89]. Yue demonstrated the process of synthesis in microflow
by improving heat and mass transfer rates. He explained some applications of catalytic processes in
microfluidic reactors, for instance, selective hydrogenation, aerobic oxidation of alcohols, and direct
hydrogen peroxide synthesis. He also discussed the multiphase flow in wall-coated microreactors
and gas-liquid flow patterns in packed-bed microreactors [10]. The study on the amine N-alkylation
processes in a microreactor with immobilized TiO2 has also been discussed earlier [26]. More examples
of immobilized titania inside various types of microreactors are presented in the following Table 1.

On another note, many interesting novel contributions come from three-dimensional (3D) printed
microchannels, which can be fabricated from plastic, metals, or glass. These types of microchannels can
be made efficiently and quickly and are capable of manufacturing structures from microns to several
centimeters. Different types of 3D printers are shown in the following Figure 10.
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Table 1. Immobilization of a catalyst inside different types of microreactors.

Reference Type of Microreactor Method of TiO2 Immobilization Outcomes from TiO2 Characterization

[17] metal-titanium foil Anodization and hydrothermal
treatment

Good mechanical properties of titania nanotube
film, nanotubes of TiO2 (TEM, SEM)

[57] glass capillaries Sol-gel Homogenous dispersion, narrow particle size
distribution (SEM, TEM)

[18] stainless steel microreactor Sol-gel

Uniform distribution of catalyst on surface,
crystalline size is 32 nm, the reflectance

spectrum of pure TiO2 is 393 nm (HRTEM,
XRD, DRS)

[74]
self-adhesive fluorine resin (EFEP)

channel and switched between
two glass plates

Sputtering Growth of anatase peaks (XRD)

[90] Silica capillary Wash coating and calcination
The thickness of the deposited layer 88 nm

(Field Emission Gun-Scanning Electron
Microscopy(FEG-SEM))

[91] Dual-film optofluidic microreactor

Hydrothermally prepared
nanorod growth on

fluorine-doped tin oxide
(FTO) glass

2.4 µm thick film of TiO2 nanorods inside glass
tube (SEM)

[92] coil-type photoelectrocatalytic
microreactor Anodization 25 nm thickness and 12 to 15 µm length of

titania nanotubes (FESEM)

[93,94] fluorinated ethylene propylene
(FEP) microtube Ultrasound-based deposition

Structural transformation of polymer tube with
ultrasound, thickness of catalyst layer was 3–

6µm (confocal microscopy, SEM)
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of the three-dimensional (3D)-printed reactionware devices showing the internal channels (‘a’ and
‘b’ are reprinted from [95] with permission of American Chemical Society). (c) Picture of the Fluidic
Factory 3D microdevice printer made by Dolomite Microfluidics.
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In a microfluidic device that was produced by rapid prototyping and was economically feasible
and simple, a coating of TiO2 nanoparticles was applied, forming a photocatalytic microfluidic reactor
destined to the degradation of organic dyes. It is important to point out that rapid prototyping of
microfluidic devices is also relevant for the testing of small quantities of photocatalytic nanomaterials
that are being developed in the research laboratories and that still lack the characterization of their
photocatalytic efficiency. This new methodology will allow us to quickly test synthesized materials in
reduced quantities, in addition to generating less waste. This more sustainable approach respects green
chemistry requirements [96]. The possibility of varying the geometry of the microreactor, creating
larger contact areas and a stronger bond between the photocatalytic coating and the surfaces of the
microreactor, can further improve the photo-degradation efficiency of the microfluidic device, allowing
for the increase of the flow velocity and, from this, the increasing of the volume of the treated solution.
Different designs of the geometry of the device, implementation of a dye solution reflux system,
photocatalyst chemical functionalization, and a light-emitting diode-based UV light system are being
tested to improve the performance of the photocatalytic microreactor for potential applications in
selective oxidation of functional groups of organic compounds [28].

Ultrasonic waves were used to break up agglomerations of particles [32,97]. The use of light
transparent fluorinated ethylene propylene (FEP) microtubes (excellent visible light transmission,
UV transmission: ~80%, temperature: −270 to 205 ◦C) with TiO2 leads to maximum usage of light
for activating the photocatalyst for higher phenol degradation [93]. The design of a highly effective
photoreactor is decisive to get the highest reaction rates with the immobilized form of a catalyst. Use
of sonication for designing reactors, especially the deposition of a catalyst inside a microreactor, is a
novel approach.

7. Photocatalytic Experiment

The amount of light absorption of a photocatalyst at a given wavelength can be determined by the
light intensity [98]. The photocatalyst activation step, the formation rate of electron-hole, is strongly
dependent on the light intensity, and light distribution within the reactor undoubtedly determines the
overall efficiency of the photocatalytic process. A light source of minimal space and lower photon
cost is suitable for the microreactor system to take advantage of the miniaturized reaction vessel.
Thus, Matsushita et al. employed UV-LEDs for the excitation light source of a photocatalyst [26].
Furthermore, it limited the depth of light penetration because of the absorption and scattering [99], as
expressed by the Bouguer–Lambert–Beer law [100]. It should be noted that safety issues should be paid
attention to, even in photochemical reactors for bio-applications [101], and with toxic or hazardous
compounds [102]. Saien and Soleymani [54] explained the slurry photocatalytic microreactor as a
favorable technique in dispersing TiO2 particles. Some experiments for the degradation of phenol
used a high energy 125 W UV mercury lamp [52]. The manufacture of a microfluidic device with
the nanostructured TiO2 coating has been described as being integrated on the inner surface of the
microchannels in the work of Pandoli et al. Subsequently, efficiency was evaluated for the degradation
of aqueous solutions of organic dyes in continuous flow under the action of UV light [28].

Currently, photochemistry using microspace is a major attraction of the scientific community for
green chemistry application (Figure 11).
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8. Microreactor with Ultrasound for Photocatalysis: A New Way Forward

Sonochemical processes are highly efficient in terms of selectivity, reaction time, and operational
simplicity [93,103–106] while being used for the synthesis of various semiconductor-based nanoparticles
in batch reactions. Combination of the ultrasound transducer and the microfluidic reactor [107]
has gained the attention of many researchers. Such designed systems can then be applied to
microfluidic liquid-liquid extraction [108], degradation of contaminants [103,109,110], and particle
synthesis [111,112]. These types of reactors are broadly used in laboratories and industrial applications,
but the analysis and comparison of results obtained with them are extremely difficult, which has
limited the scaling-up of sonochemical reactors in the industry [113].

Many studies have been performed, and thus it is well verified that the advantages of
ultrasound technique includes short reaction times, improved conversion, enhanced yields, and
mild conditions [114]. A capillary microreactor, together with ultrasound, was designed and presented
by Aljbour et al. to carry out some chemical reactions. They investigated the hydrolysis of benzyl
chloride in a two-phase slug flow system. The increase in the rate of the hydrolysis reaction has been
noticed with an increase in temperature, along with the effect of ultrasound. They noticed that the
impact of ultrasound slowed down with an increase in the temperature. They also noted that the
flow rate inside capillaries escalated the mass transfer between phases. The ultrasound helped in
increment of the intensity of the internal circulations by splitting the large slugs into smaller sized
slugs [7]. Sonication has been initially applied to homogeneous reactions; however, this approach
has now been employed to heterogeneous reactions [115]. Ultrasound has some disadvantages, such
as inefficient energy transfer via impedance and secondary effects such as streaming, sound field
attenuation, heating, bulk mixing, emitter erosion, and sound emission. The parameters that influence
sonochemical reactions and consider how they may be implemented to achieve systematic optimization
has been discussed earlier [21]. Recently, Colmenares and co-workers were able to demonstrate for the
first time an ultrasound-aided deposition of commercial TiO2 nanoparticles in an FEP-based microtube
(Figure 12) using a probe-type ultrasonic system [93,94]. From AT-IR spectra, CH stretching peak in
the modified tube, which was absent in the unmodified FEP microtube, confirmed that ultrasound
brings some chemical changes in the inner walls of the FEP microtube.
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Current progress in photocatalysis on microreactor systems using ultrasound has been reviewed
by Matsushita et al. They stated that the relative effect of ultrasound is more pronounced at a lower
temperature compared to silent conditions. According to them, the reason is that the ultrasonic
waves enhanced contact between reactants by damaging the phase boundary. In the silent condition,
the contact between phases showed more mass transfer limitation. Increment of the vapor pressure of
the liquid medium, as a result of elevated temperature, lead to easier effective cavitation [116]. This
trend is more detectable at higher flow rates because of the lower exposure time to the ultrasonic
irradiation. Rivas et al. focused on the control of cavitation as a means to improve the energy efficiency
of sonochemical reactors, as well as in the solid handling with ultrasound. They discussed some
examples of microfluidic clogging prevention, numbering-up, and scaling-up strategies. In their
work, they tried to reduce the clogging of the microreactor and lengthen the operational time of the
reactor [19]. Ultrasound-assisted capillary microreactors have also been proposed and tested as a
potential reactor for the multiphase aqueous-organic system. The effect of ultrasound irradiation under
different temperatures, capillary lengths, and flow velocity was also examined [7].

Sonochemistry could play a key role in overcoming limitations caused by solid formations by
introducing ultrasound in conventional flow systems and microreactors [117,118]. Mass transfer
limitation in microreactors can now be partially overcome by the help of ultrasound. The well-defined
configuration of microreactors makes this easy and provides an ideal platform to investigate and
control the acoustic cavitation process [118]. Colmenares et al. established a novel low energy (<80 ◦C)
ultrasound-based deposition method using a probe-type ultrasonic system for coating of commercial
TiO2 nanoparticles in the inner walls of FEP microtubes, knowing its importance in catalysis and
photocatalysis fields [93,94]. The method is simple to implement and is environmentally friendly with
low heat generation and has been filed for a patent [94]. The FEP microtube was pretreated with
water using the ultrasound process, which resulted in physical changes of the inner surface of the FEP
microtube, creating rough spots and an etched surface—facilitating the stable immobilization, under
sonication, of TiO2 nanoparticles on FEP internal walls. It has been demonstrated that the change in
the surface characteristics (functionalization by pretreatment and TiO2 nanoparticle deposition) of
the inner walls of the fluoropolymer is due to the physical effect of ultrasound (a promising device
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for phenol degradation in water). Another work of Colmenares et al. reported, for the first time,
the selective oxidation of benzyl alcohol to benzaldehyde in a photocatalytic microreactor under
UV-LED as the light source [33]. In this work, they used an ultrasonic bath (with a temperature close
to ambient) for immobilization of ZnO inside a microtube.

9. Future Challenges and Conclusions

Since its introduction three decades ago, the field of microfluidics has witnessed significant growth
in scientific research done across multiple disciplines, especially towards biological and medical
applications. The advantages provided by the unique physical and chemical interactions of particles
that take place inside the microscale channels, along with the coupling of multiple functionalities, has
continued to drive the scientific advances of microfluidics. Outstanding research has been done in
terms of materials and functions, their integration, and applications of microfluidics. In microfluidics,
glass and silicon have been traditionally used most frequently, but recently polymeric materials
have gained considerable attention, especially in the area of low-cost, and disposable devices. Still,
there is a need to develop better material with improved properties, as the current generation of the
material comes with its inherent advantages and disadvantages. The further improvement of the
current method (e.g., different microreactor lengths, the application of different nanoparticles, physical
and chemical effect optimization of ultrasound) will provide new ways, not only for environmental
applications but also for new green organic synthesis protocols [93]. Even with this state of research,
microfluidics has not been accepted outside of academia. However, acceptance of new technologies
outside of academic research has always been slow, and more work should be done to promote wider
and practical applicability of microfluidics. Heterogeneous photocatalysis in a microflow system for
generation of value-added chemicals is a novel green chemistry approach requiring the understanding
of photocatalysis, microfluidics, and reactor design. Research on the development of low energy and
environmentally friendly-based photo-microreactor systems for photocatalysis is yet to be explored.
In the areas of environmental and spatial analysis, effort should focus on creating robust and portable
devices that can operate unattended for long periods. There are also some challenges related to
3D microreactors to be overcome, including chemical compatibility and operation at high pressures
and temperatures [119].

The interesting use of ultrasound irradiation in catalyst synthesis is gaining more and more value
from both the fundamental and application point of view. Sonication is giving us a great opportunity
as a real green and cost-effective methodology and is foreseen to hold great potential in the near
future [103]. Using low energy-based ultrasound for photocatalyst synthesis inside polymer-based
microtubes (that does not deteriorate with age) will pave a new path towards the greener approach.
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A B S T R A C T

The synthesis of valuable organic compounds from naturally available and renewable biomass is an open field of
research towards adaptation in real-life applications. Photocatalytic valorization is assumed as a potential
candidate, although the lower efficiency of the traditional batch photocatalytic reactor sets some drawbacks.
Recently, photocatalytic microreactors revealed as a prosperous candidate for various photocatalytic reactions,
especially for selective oxidation. This area of research is challenging due to the development of the proper
photocatalytic microreactor for the targeted application. Deposition of the catalyst on the internal surface of the
microreactor, the sufficient utilization of the irradiation, optimization of the reaction parameters are among the
most vital parameters that should be considered upon the design. Although, to obtain the most active material
and tune its crucial features to maximize its catalytic performance inside the microreactors is the uppermost
important part. This work introduces ultrasound-assisted TiO2 deposition on the inner walls of a perfluoroalk-
oxyalkane microtube under mild conditions. The deposition experiments were carried out with commercial and
sol-gel synthesized TiO2. The materials were characterized by XRD, UV–vis DRS, Scanning Electron Microscopy
(SEM), and nitrogen sorption. The photocatalytic activities of the TiO2 nano-engineered fluoropolymer based
microreactors were evaluated for the oxidation of benzyl alcohol in flow.

1. Introduction

Lignin is a significant organic waste coming out from paper and
pulp industries. With continuous modernization, environmental con-
tamination has spread extensively. Faced with this issue, humankind
reached a consensus on the need for environmental treatment and re-
mediation, which requires planning and implementation using the
concepts of both photocatalysis and chemical engineering. Recently,
more attention has been paid to the development of microreactor
technology for various applications, such as synthesis of chemical
compounds, environmental protection, biomedical and pharmaceutical
studies, healthcare, etc. [1,2]. Among the various photo-active candi-
dates, titania-based materials, and especially the nano-scaled ones, are
well-known and performing photocatalyst under UV light [3]. Due to its
versatility, efficient photo activity, high stability, low cost, and safety to
the environment and humans, titanium dioxide (TiO2) has been sys-
tematically used in many environmental and energy applications [4].

Microreactor based catalytic approaches are regarded as green
synthetic methods due to decreased requirements in reagent, minimized

energy consumption, lessening of by-products, and shorter reaction
time [5]. The photocatalytic reaction in a microreactor generally can be
categorized into two types: homogeneous photocatalytic reaction and
heterogeneous photocatalytic reaction systems [6]. There are various
photocatalytic reactions have been carried out for selective oxidation of
benzyl alcohol [7–14]. Among these catalyst based photochemical re-
actions, homogeneous photocatalysis has been extensively studied in
microfluidic-based flow systems for selective organic synthesis [15],
but the major drawback in the homogenous catalyst system is the se-
paration of catalyst and, in general, the purification needed in order to
obtain the desired compounds. Catalyst separation difficulties can be
avoided upon the twist to heterogeneous catalytic approaches, for in-
stance by immobilization of the photocatalyst on a fixed support. Also,
it is a great challenge to design and develop continuous flow micro-
reactors capable of utilizing the power of light successfully. Generally,
the microreactor performance can be enhanced by decreasing its size.
This principle can also be valid for heterogeneous photocatalytic mi-
croreactors since a higher transfer rate of reactants and uniform illu-
mination without attenuation are easily possible.
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According to the method of incorporation of the catalyst, micro-
reactors can be divided into three classes: (i) packed-bed; (ii) mono-
lithic; and (iii) wall coated [1]. The packed and monolithic type of
photo-microreactors have lower optical access due to complicated in-
ternal arrangement of the photocatalyst in the microreactor; more
complex catalyst forms are better for potential applications such as
catalyst filaments, wires, and membranes. On the other hand, wall-
coated microreactors were introduced as a better approach for photo-
catalysis experiment as the penetration of light through the wall is
simple compared to the other continuous-flow microreactors [16].

It is also well verified that the advantages of ultrasound-assisted
technique are the increased conversion, improved yields, short reaction
times under mild conditions [17,18]. However, this approach has now
been also employed for heterogeneous reactions [19], or sophisticated
materials synthesis [20,21]. Ultrasound is frequently used in conven-
tional systems to intensify liquid-liquid processes due to its efficient
agitation effects and non-invasive nature [22,23]. The ultrasonic irra-
diation increases turbulence in the liquid phase, decreasing mass
transfer limitations, and increasing the catalytically active surface area
via the de-agglomeration and fragmentation of the particles [24]. This
technique has additionally been employed to coat metallic particles on
various substrates [25,26]. Many researchers took advantage of ultra-
sound to immobilize the nanoparticles on metallic surface. To have
immobilized thin film on the inner wall to avoid downstream catalyst
recovery we could use microreactors [27].

Previously, we proposed a novel and prosperous approach to pre-
pare wall coated microtube [28]. Herein, we reported a ultrasound-
based approach for photocatalysis inside a wall coated (with synthe-
sized as well as commercial TiO2) fluoropolymer based microcapillary
for the oxidation of benzyl alcohol (BnOH) towards benzaldehyde
(BnAld). The step-wise approach is shown in Fig. 1. Also, a thorough
comparison of a commercial TiO2 (P25) with a sol-gel nanostructured
synthesized catalyst has been explored.

2. Experimental section

2.1. Materials

Titanium (IV) Isopropoxide (TTIP, 98 %, Acros Organics), TiO2

nanoparticles (P25, Evonik), Benzyl alcohol (BnOH, 99.5 %,
ChemPure), ethanol (EtOH, 99.8 %), methanol (HPLC grade), acetoni-
trile (AcN, HPLC grade), 0.1 % of H3PO4, Propan-2-ol (99,7%, POCH), a
SunFireTM Chromatography column (C18 3.5 μm, Waters) with
4.6×150mm of bed support, and Perfluoroalkoxy alkane (PFA,
0.8 mm ID) were used.

2.2. Synthesis and characterization of catalysts

The synthesis of TiO2 nanoparticles was carried out using Titanium
(IV) isopropoxide (TTIP) based on the sol-gel based method. In a 25ml
vial, 4 ml of TTIP was dissolved in 15ml of 2-propanol, followed by
sonication for 60min using an ultrasonic bath (100 % power, 37 kHz on
continuous sweep mode; temperature ∼26 °C). Afterward, milli-Q
water (5mL) was added to the solution at a rate of 0.167ml min−1

using a syringe infusion pump (Programmable Double Syringe Pump
(WPI), NE-4000) under the influence of ultrasound at room tempera-
ture. After 60min, the suspension was transferred to centrifugation
vials, rinsing the reaction vial with 10ml of Propan-2-ol. The solid
product was separated and cleaned (with water and ethanol) during
centrifugation. For the second and last cycle of centrifugation, 25ml of
Propan-2-ol and 20ml of Milli-Q water were added to the tube. After
this separations process, the remaining clean and white product was
collected and kept in an oven for drying at 80 °C for 12 h. The obtained
white material was ground in an agate mortar and transferred to a
sealed vial.

Both commercial TiO2 P25 (Evonik) and synthesized catalysts
(TiO2-SG) were characterized by UV–vis diffuse reflectance spectra
(UV–vis DRS) and Powder X-ray diffraction (XRD). Additionally, sur-
face morphology study was performed by high resolution scanning
electron microscopy (HR-SEM), and the textural properties were de-
termined by Nitrogen sorption. More details on characterization can be
found in the supporting information.

2.3. Ultrasound-assisted deposition of catalyst inside the microtube

The optimization of catalyst deposition inside the PFA microtube
was performed based on results obtained from a design experiment
software (Design Expert 11) [29], considering the following para-
meters: length of the tube, power of ultrasound irradiation, and dura-
tion of deposition. The deposition carried out inside the ultrasonic bath
(Sonorex-digital RC, 37 kHz, 120W) at room temperature. Details can
be found in supporting information.

2.4. Photocatalytic selective partial oxidation of benzyl alcohol

Photocatalysis studies in the batch system were carried out to op-
timize the key parameters like different solvents, mixing speed and
loading of the catalyst. In the photocatalytic experiment, 1 mM BnOH
solution was prepared with BnOH by adding solvents (acetonitrile
(AcN), Milli-Q water, 10:90 v/v AcN/water and 90/10 v/v AcN/water).
Different catalyst loadings (0.5, 1, 2 g /L of commercial TiO2) were

Fig. 1. Procedure for catalyst immobilization and photocatalysis experiment inside microreactor.
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prepared by mixing catalysts with 1mM of BnOH in AcN to optimize
the catalyst concentration. The reaction mixture was stirred at different
mixing speeds (200, 400, 600 rpm) at room temperature (Fig. S1, S2,
S3). Prior to light experiments under UV irradiation (375 nm,
power= 2.86W /m2), dark adsorption studies were carried out in
order to determine the adsorption/reactivity in the dark and the
duration to reach adsorption equilibrium (30min). To maintain the
temperature inside the system constant (∼ 25 ̊ C), a home-made cooling
system was designed and immersed inside the water bath.

After the ultrasound-assisted deposition, the P25 coated tubes (T-
PFA) were kept inside an oven for drying at 80 ̊ C for 12 h. The com-
mercial catalyst was used as a benchmark and to optimize all the
parameters for the photocatalytic experiments/deposition. The same
procedure (after optimization) was followed for the deposition of sol-
gel synthesized TiO2 into the microtube, and the obtained micro-
reactors are referred to as S-PFA. The microtubes after drying were used
for the photocatalytic experiments under UV irradiation by LED
(375 nm, intensity= 2.86W /m2, by Radiometer).

From the batch experiments, the parameters like concentration of
catalyst, solvent, time of light irradiation were taken into consideration
for determining the experimental parameters for the continuous flow
photocatalysis tests. The tube of 30 cm length (Deposition condition:
120W ultrasonic power, 75min of deposition) showed better selectivity
and conversion (Table 1).

3. Results and discussion

3.1. Deposition of catalyst inside PFA microtube

The first goal was to determine the optimum parameters to deposit
the semiconductor catalyst phase inside the microtubes, considering
two factors; the amount of the deposited catalyst and, more im-
portantly, the best photocatalytic oxidation of benzyl alcohol (BnOH) to
benzaldehyde (BnAld). At this step, we used the commercial TiO2 P25
(Evonik) as catalyst and a low cost and low power (120W (100 %) US
power, 37 kHz in continuous sweep mode) ultrasonic bath.

Ultrasonication assistance was taken into consideration for having a
positive effect either during the deposition of the active phase or for the
pre-treatment of the inner walls of the tube before the deposition.
Initially, we determined if the ultrasound irradiation (US) plays a cru-
cial role during the deposition. Following similar process, tubes were
prepared with or without US during the deposition. The results showed
that the ultrasound-assisted deposition led to an ∼50 % higher mass
deposition as well as to a higher conversion of benzyl alcohol compared
to the deposition in the absence of US. For that reason, we adapted the
ultrasound-assisted deposition approach for all the following evalua-
tions.

3.2. Effect of pre-treatment before deposition of catalyst

Several chemical and physical effects are resulted from ultrasound
are caused due to acoustic cavitation, corrosion, high temperature, the
formation and collapse of bubbles in a liquid exposed to oscillating
pressure fields [30]. So, the next target was to verify if the pre-treat-
ment of the PFA tubes by ultrasound irradiation (US-pre-treatment) can
influence the deposition and, as a result, the photocatalytic activity of
the decorated with P25 microtubes. The microtubes were firstly pre-
treated with US inside the ultrasonic bath, by passing 5ml Milli-Q water
(1 mL/min) through a clean tube under the influence of ultrasound,
with the obtained tube referred to as P-PFA.

No weight loss was observed after the US-treatment, although, as
can be seen from the SEM images (Fig. 2a, 2b), the surface of the inner
walls became smoother. Two deposited tubes were obtained by ultra-
sound-assisted deposition of P25 phase to the clean PFA and US pre-
pretreated one, referred to as T-PFA and PT-PFA, respectively. The
deposition of titania nanoparticles takes place on the modified surface
of the inner walls of the PFA microtube by physical interaction of na-
noparticle suspension and the inner wall of the microtube. We believe,
ultrasound potentially induces the increase of the surface free energy of
PFA microtube, which is helping in the immobilization of catalyst na-
noparticles inside the tube.

The cross-section SEM images revealed that in the case of T-PFA, the
thickness of the coating layer could be more pronounced, reaching up
to 7.3 μm in height (Fig. 2c). In the case of the latter, the maximum
height of the P25 deposited layer was found 3.6 μm (Fig. 2d). We assign
the higher in deposition thickness in the case of the US-pre-treated tube
to the smoother surface compared to no US-pre-treatment microtubes.
We have to point out that the catalyst deposition was not perfect in
homogeneity (based on SEM analysis), and we gave more research ef-
fort towards this direction.

The maximum mass of catalyst loading was found to be equal
(average of 0.01mg /cm) in both cases, suggesting the same effect of US
either during the deposition or US-pre-treatment prior the deposition.

3.3. Effect of ultrasound during deposition of catalyst

The experiments were conducted for the optimized concentration of
commercial TiO2, i.e., 0.5 g /L. Two microreactors were prepared to test
the photocatalytic oxidation of BnOH in acetonitrile. For the first mi-
croreactor, the ultrasonic bath was used during the deposition of cat-
alyst and the other was done in the absence. The photocatalytic activity
was analyzed, and the results are shown in Fig. S5. There was an in-
crement in selectivity and conversion after 10min of irradiation time
with US assisted deposition method. This increment in the activity
might be because of the better immobilization or dispersion of catalysts
in the presence of ultrasound.

Table 1
Information of tubes selected for the catalyst deposition and photocatalytic studies (from design expert), and conversion and selectivity in microflow system after
30min of illumination.

T-PFA Tube No. Ultrasonic Power (W) Length of tube(cm) Time of deposition(min) Weight of catalyst deposited (mg) Conversion (%) Selectivity (%)

A1 84 40 75 0.1 5 62
A2 48 30 0.2 6 83
A3 120 100 0.4 6 88
A4 48 120 0.2 7 54
A5 120 120 0.3 4 85
B1 48 30 75 0.2 5 84
B2 120 75 0.3 8 87
B3 84 30 0.2 9 74
B4 84 120 0.4 3 80
C1 48 50 75 0.3 6 86
C2 120 75 0.2 8 75
C3 84 30 0.2 10 63
C4 84 120 0.3 5 76
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3.4. Photocatalytic studies

The PT-PFA (pre-treated and deposited with P25) microreactor
showed BnOH conversion and BnAld selectivity 6 and 65 %, respec-
tively. In the case of T-PFA microreactor, the BnOH conversion was
almost equal (5%), although the selectivity to BnAld was 17 % higher
than that of PT-PFA. This can be linked to the different deposition ex-
tent, as observed from the SEM. In both cases, no leaching of TiO2

occurred (Fig. S6). Based on the above-discussed results, we discarded
the option of US-pre-treatment, and we focused on the utilization of US
during the nano-engineering/deposition step of the preparation of the
catalyst deposited microreactors, as both processes had an almost si-
milar effect. By this approach, we could avoid the step of ultrasound
pre-treatment and use the commercial microtubes after cleaning.

The following and predominant research goal in this study was to
determine if the deposition of the synthesized TiO2 phase can lead to
improve the oxidative performances compared to benchmark P25. For
this purpose, TiO2 nanoparticles were synthesized based on a sol-gel
synthetic route (TiO2-SG).

The optical features of the synthesized (TiO2-SG) and commercial
TiO2 (P25) in their powder form were evaluated based on the UV–vis
diffuse reflectance spectra (Fig. S7) and the derived Tauc plots (Fig. 3a)
after applying the Kubelka-Munk function [31,32]. The light absorption
for P25 occurred for wavelength lower than 412 nm, while for TiO2-SG,
lower than 388 nm. The extrapolation from the Tauc plots revealed that
the estimated band gaps are ∼ 3.2 and ∼ 3.3 eV for P25 and TiO2-SG,
respectively, values consistent with those reported in the literature for
anatase phase [33].

The XRD patterns of the powders are collected in Fig. 3b. Both
samples revealed the reflections at 25.3°, 37.9°, 47.8°, 54.5°, and 62.7°,
characteristic for the (101), (004), (200), (105), and (204) diffraction
peaks of the anatase crystal structure (JCPDS 02- 0406) [34–36]. Al-
though, in the case of the synthesized material, all the peaks were found
broader and of lower intensity, suggesting the smaller in size crystal-
linity compared to P25. The dimensions of the crystal phases were es-
timated by the Scherer equation (Table 2) [37–40]. The size of the
anatase crystallinity was 3.7 nm for the synthesized material, while for
the P25 was found 17.7 nm.

Although, both samples revealed to possess a dual-phase

crystallinity, anatase and rutile for P25, and anatase and brookite for
TiO2-SG. The latter phase can be identified from the characteristic
diffraction peak (121) at 30.3° and of rutile (110) at 27.4° [34,35].

The analysis of the phases composition by full profile analysis by
using Rietveld method [41] showed that TiO2-SG consists of ∼69 %
anatase phase and ∼31 % of brookite phase, while P25 ∼87 % anatase
and ∼13 % rutile. The crystallinity of the titanium dioxide is a key
feature in photochemical utilization. Palmisano et al., synthesized dif-
ferent phases of TiO2 and did a comparative study for the photocatalytic
selective oxidation with commercial P25 [42]. They concluded that
commercial TiO2 is less photocatalytically active compared to synthe-
sized. Also, Kandiel et al., in a similar type of study, showed that pure
brookite phase titania nanoparticles show higher photocatalytic effi-
ciency for the oxidation of methanol, compared to pure anatase phase
nanoparticles or P25 [43]. To have a thorough comparison, we syn-
thesized amorphous phase TiO2 by following the same procedure. As an
additional step, we kept the suspension on a magnetic stirrer for 12 h
before centrifugation. This amorphous catalyst was found to be pho-
tocatalytically inactive (Fig. S8).

Another crucial factor for the utilization of material as a photo-
catalyst is the textural features. The nitrogen adsorption/desorption
isotherm of TiO2-SG (Fig. 3c) showed with a shape of Type I and Type
IV combination; the former at the low range of relative pressure less
than 0.1 and the latter for p/po> 0.1. This is indicative of materials
with a broad distribution in the size of pores from big microporous to
narrow mesoporous (Fig. 3d). The hysteresis loop of H2 type suggests a
complex pore structure, with the pore necks to have a wide distribution
in size [44]. The pore size distribution revealed that the main volume of
the pores for TiO2-SG is in the range from 2.2 to 5 nm, while for P25
from 7.5 to 8 nm.

This synthesized catalyst revealed a significant high surface area for
metal oxides 284 m² /g, more than five times higher compared to P25.
The total pore volume of TiO2-SG was found 0.29 cm3/g, a value around
32 % greater than the one of P25. The smaller in size pores and the
higher surface area as well as total pore volume for the synthesized
material can be important assets since upon the entrance of the organic
compound inside the pore, can be stay more, while the higher porosity
can arise an elevated availability of the catalytic sites and better light
utilization [45].

Fig. 2. SEM images of the inner walls of unmodified PFA microtube (a), ultrasonication pretreated PFA (P-PFA) microtube (b), and cross-section images of P25-TiO2

deposited microtube (T-PFA) (c), sol-gel synthesized TiO2 deposited microtube (S-PFA) (d).
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From the SEM analysis of the commercial P25 and synthesized TiO2

(Fig. 3e, 3f), it is clear that the synthesized catalyst forms agglomerates
with sizes from 250 to 550 nm consisting of nanoparticles with size less
than 35 nm. P25 showed a network of nanoparticles of size less than
35 nm, although no extended aggregation can be observed.

The ability of the material to absorb and scatter the incoming light
irradiation also affects their photocatalytic activity, with the size of the
particles to play a key role [46–48]. This can be further confirmed from
the following photocatalytic evaluation of the materials. Prior to the
photocatalysis experiments under UV irradiation, adsorption studies in
the dark were carried out, and the adsorption equilibrium reached after
30min, with no conversion. The oxidative photocatalytic activity of
P25 and TiO2-SG in their powder form was evaluated under the irra-
diation of UV light (2.86W/m2) in batch experiments.

After the optimization of various parameters (more details at the
supplementary information), the optimal parameters were determined
to be 0.5 g /L of catalyst, 1 mM of BnOH in acetonitrile, and stirring at
400 rpm at room temperature. Based on the evolutions of the BnOH

conversion and selectivity to BnAld up to 60min (Fig. 4), it can be
concluded that P25 outperformed the synthesized TiO2 from the con-
version point of view. Regarding the selectivity, it was, reaching an
almost stable value of 28 % for P25, while for TiO2-SG, the selectivity
was always above 80 %. Another important outcome is that the con-
version of BnOH was continuously increasing for P25, while for TiO2-
SG was stable. Taking into consideration that BnAld was not decom-
posed between 30 and 60min, it can be concluded that the surface of
TiO2-SG particles or the active catalytic sites were either blocked or
they do not possess the ability for further oxidation or/and decom-
position of BnAld. There were no other aromatic byproduct formed (like
benzoic acid) or aliphtatic ones during this photocatalysis test.

3.5. Characterization and photocatalytic reaction in S-PFA microtube

The morphology of the TiO2 - SG coated PFA microtube was ana-
lyzed by SEM. From the cross-section analysis of S-PFA (Fig. 5a) can be
seen that the thickness of the deposited layer of the TiO2-SG can reach

Fig. 3. Characterization plots of P25 and TiO2-SG catalysts bandgap calculation (a), XRD patterns (b), N2 adsorption/desorption isotherm(c), pore size distribution
(d) and SEM images of P25 (e) and TiO2-SG (f) nanoparticles (Colored in order to have clear separation).

Table 2
Details of the crystallographic and textural features of the studied materials.

Sample Anatase:Rutile:Brookite phases (%) Anatase (nm) Rutile (nm) Brookite (nm) Specific surface area (m² / g) Pore volume (BJH) (cm³ /g) Pore size (nm)

P25 87:13:0 17.7 24.8 – 53 0.22 16.3
TiO2-SG 69:0:31 3.7 – 5.4 284 0.29 3.2
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up to 5 μm, which is similar to the thickness observed in the case of P25
decoration. The HR-SEM micrographs of S-PFA, from the top, (Fig. 5b,c)
demonstrate that the deposition occurred without significant altera-
tions of the morphological features of the TiO2-SG particles. The pre-
sence of larger in size aggregates maybe can lead to a positive impact on
the reactivity by disturbing the flow of the solution inside the micro-
tube and preventing the formation of a stable layer of the solvent above
/around the upper surface of the deposited phase. The heterogeneous
flow can lead to increase in mixing and elevated contact time of the
liquid with the catalyst particles.

In order to compare the results from commercial P25 with the
synthesized catalyst, the same experiment was carried out, and the
result is shown in Fig. 6. The decrease in conversion from batch to flow
system can be because of the size of the tube and the amount of catalyst
inside the tube. The specific conversion rate was calculated using the
given formula,

= =

−

Specific Conversion Rate μmol m min
C C

A time
( / )

*
BnOH BnOH

C

2 o t

Where AC is the active surface area (specific surface area multiplied
with the concentration of catalyst) of the catalyst taking part in the
photocatalytic BnOH conversion.

The synthesized catalyst deposited microtube shows the specific
conversion rate of 6 μmol /m2 min and 87 % of BnAld selectivity after
30min of irradiation time. From the results, it is clear that the sol-gel
synthesized catalyst shows comparatively better selectivity and con-
version in one hour of irradiation time compared to commercial P25
TiO2.

The use of continuous flow microreactors led to improve irradiation
over the reaction mixture and offer considerably shorter reaction time
and better yields of products compared to batch reactors [49]. Before
photocatalytic experiments, the photolysis test in microtube was per-
formed for the same flow rate (0.134ml /min) and it showed null
conversion. The commercial P25 TiO2 catalyst, after 30 min of irra-
diation time, showed 79 % BnAld selectivity in a micro photoreactor,
which was 32 % in a batch reactor. This catalyst had a specific con-
version rate of 13 μmol /m2 min in the batch reactor whereas in the
flow reactor, the specific conversion rate decreased to 5 μmol /m2 min.

4. Conclusions

In summary, we presented herein a “green chemistry” oriented
approach to coat the inner walls of a microtube with a thin layer of
photoactive TiO2 in order to utilize the obtained microreactors towards
the selective photocatalytic partial oxidation of a lignin-based model
compound, benzyl alcohol, without the use of any addition reagent (like
oxidant). The utilization of ultrasonication (US) during the coating
process plays a vital role, leading to an enhanced mass deposition, and
as a result, better photoreactivity compared to deposition without US.
Going a step further, we synthesized nanostructured titanium dioxide
(TiO2-SG) nanoparticles following a sol-gel synthetic pathway and

Fig. 4. Comparison between the conversion and selectivity of commercial P25
with synthesized TiO2-SG in batch photocatalysis system (0.5 g /L, 400 RPM,
1mM BnOH in AcN, room temperature).

Fig. 5. SEM and HR-SEM micrographs of the inner walls deposed with the
synthesized TiO2 microreactor (S-PFA) at different magnifications.

Fig. 6. Conversion of BnOH and BnAld selectivity of commercial P25 deposited
(T-PFA) and synthesized TiO2 deposited (S-PFA) microtube.
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compared with the commercially available P25. The main difference
between the commercial and the synthesized samples is that the latter
apart from the anatase crystallinity also revealed brookite phase crys-
tals, while P25 is a mixture of anatase and rutile. TiO2-SG also showed a
very high specific surface area (284m2 /g) for a metal oxide-based
material, almost five times higher than that of P25. After a detailed
optimization of the photocatalytic parameters, it was found that in
batch, the synthesized catalyst has a significantly lower oxidative
conversion performance compared to P25. The most essential and ex-
citing outcome was that upon deposition on the microreactor’s walls,
the synthesized material revealed a better photoreactivity on regards to
both benzyl alcohol conversion and benzyl aldehyde selectivity, a trend
in absolute contrast with the batch experiments case. We link this to the
higher availability of the active sites upon the deposition on the tube’s
walls and the high surface area of the synthesized nanoparticles. The
catalyst synthesis makes the whole approach environment-friendly as it
does not include any calcination step unlike TiO2 P25. Further ex-
ploration on the utilization of nano-engineered microreactors as an
additive-free eco-friendly, in terms of simplicity, safety, time, energy,
material cost, and environmental impact approach for the selective
upgrade of biomass-derived compounds was performed by our research
group to enhance the capability of the photoreactors and to determine
which factors and features of the catalyst play the most crucial role.
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Selective oxidation of Benzyl alcohol 

Conversion and selectivity were calculated from the benzyl alcohol (BnOH) and 

benzaldehyde (BnAld) concentrations determined by HPLC:   

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝐵𝑛𝑂𝐻 𝑚𝑜𝑙𝑒𝑠

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑛𝑂𝐻 𝑚𝑜𝑙𝑒𝑠
 × 100% 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝐵𝑛𝐴𝑙𝑑 𝑚𝑜𝑙𝑒𝑠

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝐵𝑛𝑂𝐻 𝑚𝑜𝑙𝑒𝑠
 × 100% 

 

Characterization of catalysts and microtubes 

The optical properties of the synthesized powder samples were determined based on the 

diffuse reflectance UV-visible spectra (DRS UV-vis) on U-3900 made by Hitachi (Hitachi 

Limited Company, Tokyo, Japan). Powder X-ray diffraction (XRD) measurements were 
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performed in a Bruker D8 DISCOVER A25 diffractometer (Bruker Corporation, Billerica, 

MA, USA) equipped with a vertical goniometer under theta-theta geometry using Ni filtered 

CuK (λ = 1.5418 Å) radiation and operated at 40 KeV and 40 mA. Wide angle scanning patterns 

were collected from 10 ̊ to 80 ̊ with a step size of 0.01 ̊ and counting time of 500 s per step. The 

average crystallite size (D in nm) was determined according to the Scherrer equation: 

𝐷 = k λ /βCosθ 

where D is the average crystallite size of the catalyst (nm), λ is the wavelength of the Cu kα 

X-ray radiation (λ = 0.154056 nm), k is a coefficient usually taken as 0.9, β is the full width at 

half maximum (FWHM) intensity of the peak observed at 2θ (radian), and θ is the diffraction 

angle. The elemental maps of the samples were also obtained by scanning electron microscopy 

(SEM). The textural properties of TiO2 were determined by N2 physisorption experiments using 

a Micromeritics automated system (Micromeritics Instrument Corporation, ASAP 2020) based 

on the Brunauer-Emmet-Teller (BET) and the Barret-Joyner-Halenda (BJH) methods. Prior to 

adsorption measurements, samples were degassed under vacuum (0.1 Pa) for 6 h at 80 ̊ C. The 

powder form of the catalysts were used as received after drying, while selected pieces of the 

deposited microtubes were cut off and prepared for determination of coating thickness and 

surface morphology by high resolution scanning electron microscope (HR-SEM) by a FEI 

Nova NanoSEM 450.  

Samples collected from the outlet the catalyst deposited PFA microtube during 

photocatalysis test, were examined using the energy dispersive X-ray fluorescence (EDXRF) 

spectrometer (Mini- Pal 4, PANalytical &Co.) with Rh tube and silicon drift detector to check 

the titania residual. The spectra were collected in air atmosphere, without using a filter, at a 

tube voltage of 30 kV.   

To identify and quantify the BnOH, BnAld and acid present, as well other possible aromatic 

or aliphatic products, the collected samples analyzed using high-pressure liquid 
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chromatography (HPLC), equipped with a dual absorbance detector (Waters 2487) and the 

SunFire™ column provided by Waters, using a mobile phase containing a mixture of organic 

solvents and a 0.05% H3PO4 (5M) aqueous solution (CH3CN : CH3OH : H2O = 20 : 2.5 : 77.5 

v/v).  

Experimental Section 

BATCH EXPERIMENTS 

Optimization of catalysis concentration 

In order to determine the optimum catalyst concentration, three different loadings were tested 

(0.5, 1, and 2 g /L). The batch experiments were performed with 1mM of BnOH in AcN as 

solvent at room temperture at 400 RPM under UV-LED (375nm) irradiation. The results after 

monitoring the BnOH conversion and BnAld selectitivity are collected in Figure S1. Before 

illumination, we carried out in the dark adsorption experiment with batch system as well as in 

flow system and the values are given in Table S1. 0.5 g /L of commercial P25 catalyst showed 

the highest selectivity, while the conversion per mass of catalyst was also the highest even after 

120 min compared to other two concentrations.  

 

Table  S1 

Results for dark adsorption studies in batch and systems. 

Time [min] 

Batch Flow 

Conversion (%) 

0 1.02 0.98 

15 1.01 0.79 

30 1.00 0.99 

60 1.01 0.99 

90 1.01 1.00 
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120 1.0 1.00 

 

 

 

  

 Figure S1. Conversion, and selectivity in batch photocatalysis system for different TiO2 P25 

concentrations (conditions: 400 rpm, room temperature, 1 mM initial BnOH concentration in AcN, UV-

LED). 

 

Optimization of RPM 

Other parameters like the effect of RPM and solvents were studied using 0.5 g /L of catalyst. 

The optimized result found from these above factors is, 0.5 g /L of catalyst in acetonitrile at 

reaction speed of 400 RPM gives better conversion and selectivity compared to other results in 

batch system. To study the effect of RPM on the photocatalytic activity, experiments were 

performed under different mixing rate (200, 400, and 600 RPM). From the result (Figure S2), 

it can be seen that the best selectivity (26%) was achieved at 400 RPM and also reached to a 

comparable conversion after 3hrs of light illumination with other two RPM conditions. 
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Figure S2. Conversion and selectivity in batch photocatalysis system for different RPM using TiO2 P25 

catalyst in AcN (room temperature, 1 mM initial BnOH concentration in AcN, UV-LED). 

Effect of the Solvent 

In order to look upon the effect of solvent on the photocatalytic batch studies, these experiments 

were performed in the same condition (0.5 g /L at 400RPM) with different solvents (AcN, 

Water. 10/90 AcN/Water, 90/10 AcN/Water). From this result, it can be concluded that the 

mixture of solvents gave very good selectivity during the initial phase of the reaction, but later, 

there was a decrease (Figure S3). For water as a solvent, the selectivity was observed to be low.  

  

Figure S3. Conversion and, Selectivity in batch photocatalysis system for different solvents a) water, 

b) 10/90 AcN/Water, c)90/10 AcN/Water with P25 TiO2 at 400RPM.  

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Time of irradiation (min)

 

C
on

ve
rs

io
n 

(%
)

 200
 400
 600

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Se
le

ct
iv

it
y 

(%
)

 200
 400
 600

Time of irradiation (min)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

 

 

 

Time of irradiation (min)

C
on

ve
rs

io
n

 (
%

)

 Water
 10/90 ACN/Water
 90/10 ACN/Water
 ACN

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

 Water
 10/90 ACN/Water
 90/10 ACN/Water
 ACN

 

Se
le

ct
iv

it
y 

(%
)

Time of irradiation (min)

http://rcin.org.pl



 

68 

 

Hence it was concluded that AcN is the appropriate solvent for selective oxidation of BnOH 

using TiO2 because of high conversion and comparable selectivity after 3hrs of illumination to 

other solvent conditions.   

The photocatalytic experiments in the batch reactor with commercial P25 catalyst were 

repeated two times and the relative error was less than 8% (Figure S4). This shows that the 

results were reproducible.  

        

Figure S4. Comparison between repeated values of Conversion and, Selectivity for 0.5g/L of TiO2 in 

1mM AcN solution at 400 RPM in batch. 

MICROFLOW EXPERIMENTS 

Ultrasound assisted deposition 

Initially, PFA tubes of a suitable length were washed with MilliQ water and ethanol (EtOH) 

with the help of the syringe pump and later were kept for drying inside an oven at 80  ̊ C 

overnight. The deposition of commercial TiO2 (P25, Evonik) in the dried PFA tubes were 

carried out by passing aqueous TiO2 suspension, prepared in milliQ water. During the 
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deposition, the microtubes were kept inside an ultrasonic bath (Sonorex-digital RC, 37 kHz). 

Three factors provided as input i.e; time of deposition under ultrasound exposure (30-120min), 

ultrasound power during deposition (40-100%) and length of the tube (30-50cm). Based on 

these parameters, the optimization of the experimental methodology was established using the 

Design expert software (Table 1). 

To determine the deposited mass of catalyst inside the tubes, all tubes were weighted before 

and after the deposition of catalyst using a high precision weighing balance from Mettler 

Toledo. Table 1 showcases the amount of TiO2 deposited in microtubes at different conditions. 

Using the optimized parameters achieved from the batch photocatalytic experiments (0.5 g /L 

catalyst in AcN), the photocatalysis experiments were carried out inside a PFA microchannel. 

Using a syringe infusion pump, BnOH solution (20ml) was injected through the tube at the rate 

of 0.133 ml min-1 (Optimized data from batch experimental study). Adsorption experiment of 

BnOH in dark condition was carried out for 30 min and at different time intervals (calculated 

from rate of flow) samples were collected from the outlet and analyzed.  

Table 1 collects the results after 30 min of photocatalytic test for each tube. From those results, 

it can be concluded that B2 test (Deposition condition: 30 cm tube length, 100 % amplitude = 

120W US power, and 75 min of irradiation time) revealed the best selectivity and conversion 

(having 0.3mg catalyst deposited inside the microtube).  

Pretreatment of PFA microtube before deposition of catalyst 

By passing 5 mL milliq water (1 mL/min) through a clean tube (cleaned with water and 

ethanol before using) under the influence of ultrasound (100 % amplitude, 120W US power, 

37 kHz), Pretreated PFA (P-PFA) was prepared.  After drying it in the oven at 80 ̊ C for 1h, the 

tube was used for deposition of commercial P25 TiO2 (PT-PFA) inside this microtube.   
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Figure S5. Photocatalytic activity of microtube deposited with P25 catalyst with and without the 

presence of ultrasound. 

 

Titanium dioxide leaching test 

The EDXRF characterization carried out to determine possible titanium leaching in the 

sample collected after photocatalytic test from the outlet of microtube after 60 min. The results 

(Figures S6, S7) showed the absence of any titanium cation in the spectrum, confirming that 

no leaching of Ti4+/TiO2 occurred during the reaction process as well as the strong and stable 

attachment of the nanocatalysts particles on the inner walls of the PFA tubes.  
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b) 

 

Figure S6.  EDXRF measurement of the sample from the outlet of a) P25 TiO2 and b) synthesized TiO2 

deposited PFA. 
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Figure S7. UV-Vis DRS of commercial P25 and synthesized TiO2 nanoparticles. 

 

To have an insight for the photocatalysis with amorphous phase of TiO2, similar experiments 

were carried using an amorphous in crystallinity TiO2 material catalyst deposited on the 

microreactor’s walls. The result (Figure S8) showed that the utilization of this sample did not 

led to a photoactive system.  
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Figure S8. Photocatalytic results from amorphous catalyst deposited microtube.  
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 : Flow photomicroreactor coated with 
monometal containing TiO2 using sonication: a versatile 

tool for visible light oxidation 
 

 

The present chapter discusses the research work described in a published manuscript (P 3), authored by 
Swaraj rashmi Pradhan, Dmytro Lisovytskiy and Juan Carlos Colmenares. (Catalysis Communications 
162 (2022) 106375; doi: 10.1016/j.catcom.2021.106375) 
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Short communication 

Flow photomicroreactor coated with monometal containing TiO2 using 
sonication: A versatile tool for visible light oxidation 

Swaraj R. Pradhan *, Dmytro Lisovytskiy, Juan C. Colmenares * 

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   

A R T I C L E  I N F O   

Keywords: 
Wall-coated microreactor 
Monometallic titanium dioxide 
Photocatalysis 
Fluoropolymer 
Selective photo-oxidation 
Ultrasonic irradiation 

A B S T R A C T   

Ultrasonication was used for deposition of synthesized Metal-TiO2 in the wall of a microtube. A detailed 
investigation of the photocatalytic activity was made by varying the atomic percentage of metals doped in TiO2. 
The sol-gel synthesized materials were analyzed by various techniques like X-ray diffraction (XRD), Scanning 
Electron Microscopy (SEM), etc. The photocatalytic activities of the monometallic TiO2 fluoropolymer-based 
microreactors were evaluated for the oxidation of benzyl alcohol in flow. Microflow photocatalytic oxidation 
tests proved that the Fe-TiO2 material has the highest photocatalytic conversion of benzyl alcohol compared with 
the other titania samples under UV and visible light irradiation.   

1. Introduction 

Lignin is the major by-product of the paper and pulp industries. The 
complex structure of lignin is a stumbling block that prevents its con-
version to a value-added product, which can be helped by the depoly-
merization of lignin to model lignin compounds. Since benzyl alcohol is 
a key structural unit of most lignin model compounds, the scientific 
community is focused on studying its reactivity and transformation 
strategies [1–4] . The oxidation of aromatic alcohols (benzyl alcohol) to 
their corresponding carbonyl compounds (especially aldehydes) is one 
of the important organic transformations as carbonyl compounds are 
widely used in food, beverages, and pharmaceutical industries and also 
as precursors in chemical industries [5–7]. 

In recent years, the photo-assisted transformation of benzyl alcohol 
to benzaldehyde has attracted a great deal of attention as a potential 
alternative to replace the industrial synthesis route effectively. Photo-
catalysis is considered a sustainable, environment-friendly advanced 
technology because of its clean, energy-saving, and low-cost operation. 
Among various semiconductor photocatalysts used in the past three 
decades, TiO2 received the most attention due to its biological and 
chemical inertness, cost-effectiveness, and the strong oxidizing power of 
the photo-generated holes [8]. However, one of the major drawbacks of 
using pure TiO2 is that only ultraviolet light (UV) photons can displace 
the valence band electrons of TiO2 due to its high bandgap energy (3.2 
eV), which utilizes only 5% of the available solar radiation. Prior studies 
have demonstrated that doping TiO2 with transition metal ions can 

enhance its photocatalytic activity and have been well explored for 
alcohol oxidation [9–13]. 

The use of microfluidic reactor has enabled the safe use of molecular 
oxygen as a green oxidant and enabled readily obtaining a range of 
benzaldehydes within short reaction times [14]. The chemistry of solid 
catalyst immobilization on the internal walls of microreactors used in 
photocatalysis is nowadays well-known [15,16]. Recently, Pradhan 
et al. [17] have proposed a novel ultrasound based approach for depo-
sition, which helped in better immobilization of catalyst on the wall of 
the microreactor. In this current work, we showcase the effect of metal 
(Fe, Cu, and Co) doped TiO2 catalyst inside a fluoropolymer-based 
microcapillary for the oxidation of benzyl alcohol (BnOH) under UV 
and visible light irradiation. 

2. Experimental section 

2.1. Materials 

TiO2 nanoparticles (P25, Evonik) were used as received and often 
used as a benchmark photocatalyst. Titanium (IV) Isopropoxide (TTIP, 
98%, Acros Organics), Benzyl alcohol (BnOH, 99.5%, ChemPure), 
ethanol (EtOH, 99.8%), methanol (HPLC grade), acetonitrile (AcN, 
HPLC grade), 0.1% of H3PO4 (aq.), propan-2-ol (99,7%, POCH) were 
used. Iron (III) nitrate (98%), cobalt (II) acetate tetrahydrate (98%), 
copper (II) acetate monohydrate (98%) were used as received for metal 
precursors. To prepare solutions, deionized water (Milli-Q) was used. A 
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SunFireTM Chromatography column (C18 3.5 μm, Waters) with 4.6 ×
150 mm of bed support and Perfluoroalkoxy alkane (PFA, 0.8 mm ID, 
BOLA) were used. 

2.2. Synthesis and deposition of catalysts 

The photocatalysts were prepared using sol-gel synthesis method. All 
the chemicals were used as received without further purification. To 
synthesize different atomic percentages of metal-containing nano-
composites, metal precursors were dissolved in 2-propanol and followed 
the previously established sol-gel route [17]. For low-temperature syn-
thesis, sol-gel is an ingenious approach; it is also easier to incorporate 
metal into TiO2 [5]. The metal precursors copper acetate, cobalt acetate, 
and iron nitrate were used to synthesize Cu-TiO2, Co-TiO2, and Fe-TiO2, 
respectively. After catalyst synthesis, ultrasonic-assisted depositions 
were performed using ultrasonic bath (Sonorex-digital RC, 37 kHz, 
100% amplitude) in sweep mode. The tube was placed in the ultrasonic 
bath (Fig. S. 1). The catalyst suspension was passed through a cleaned 
PFA microtube under the influence of ultrasound using a syringe pump 
for 75 min. For detailed information, please refer to supporting 
information. 

2.3. Characterization of catalysts and samples 

The synthesized samples were characterized using a UV/VIS/NIR 
spectrophotometer Jasco V-570 equipped with an integrating sphere, 
and the bandgap was calculated from the Tauc plot derived from UV–vis 
diffuse reflectance spectra after applying the Kubelka-Munk function 
[18,19]. Powder X-ray diffraction (XRD) measurements were performed 
employing the Bragg-Brentano configuration. This type of arrangement 
was provided using PANalytical Empyrean diffraction platform, pow-
ered at 40 kV × 40 mA and equipped with a vertical goniometer, with 
theta-theta geometry using Ni filtered Cu Kα radiation (λ = 1.5418 Å). 
XRD patterns were collected from 10 ̊ to 80 ̊ with a step size of 0.008 ̊ and 
counting time up to 60 s per step. The average crystallite size (D, in nm) 
was determined according to the Scherrer equation: 

D = k λ/βCosθ  

where D is the average crystallite size of the catalyst (nm), λ is the 
wavelength of the Cu kα X-ray radiation (λ = 0.154056 nm), k is a co-
efficient usually taken as 0.9, β is the integral breadth (ratio of peak area 
to peak maximum, in radians) of the peak observed at 2θ, and θ is the 
diffraction angle. The elemental maps of the samples were obtained by 
scanning electron microscopy (SEM) by using a FEI Nova NanoSEM 450. 
Textural properties of TiO2 were determined by N2 physisorption using a 
micromeritics automated system (Micromeritics Instrument Corpora-
tion, Norcross, GA, USA) with the Brunauer- Emmet-Teller (BET, for 
surface area measurement) and the Barret-Joyner-Halenda (BJH, for 
porosity measurement) methods. Before adsorption measurements, 
samples were degassed under vacuum (0.1 Pa) for 12 h at 80 ̊ C. 

After photocatalytic experiments, samples were collected and 
examined using the energy dispersive X-ray fluorescence (EDXRF) 
spectrometer (Mini- Pal 4, PANalytical.Co.) with Rh tube with silicon 
drift detector to check the metals and titania residual. To identify and 
quantify alcohol, aldehyde, and acid present, the collected samples were 
analyzed using high-pressure liquid chromatography (HPLC, Waters) 
using a mobile phase containing a mixture of organic solvents and a 
0.05% H3PO4 (5 M) aqueous solution (CH3CN: CH3OH: H2O = 20: 2.5: 
77.5 v/v). 

3. Results and discussion 

3.1. Optimisation of metal loading in TiO2-based composite 

Photocatalytic experiments in the batch reactor were carried out to 

optimize the atomic percentage of metal in TiO2 before moving to 
microflow reactor system. Firstly, studies with different atomic per-
centages (0.25, 0.5, 1, and 1.5) of copper in Cu-TiO2 were performed. A 
cylindrical UV - LED system (375 nm wavelength) was used as a light 
source whose intensity was 16.6 W/m2 (measured by Delta OHM HD 
2302.0 radiometer). Photocatalytic experiments in the batch reactor 
were performed with 0.5 g/L of catalyst concentration for 60 min under 
UV light, taken from our previous work [17]. Fig. 1 shows the photo-
catalytic selective oxidation of BnOH for each atomic percentage of Cu 
doped TiO2 catalyst and comparison with sol-gel synthesized TiO2 (SolT) 
after one hour of irradiation time. Parallelly, similar batch photo-
catalytic experiments were performed with Co-TiO2 and Fe-TiO2 as well. 

Compared to all atomic percentages of Cu within the composite 
material, BnAld selectivity for 0.5% Cu-TiO2 (CuT) is increased 
compared to 1% Cu-TiO2. Increasing the atomic percentage of Cu 
further, though, there is a slight increase in the selectivity, but there is a 
decline in BnOH conversion. Also, CuT showed better BnOH conversion 
(33%) with 94% benzaldehyde (BnAld) selectivity compared to the 
synthesized TiO2 (SolT). On the other hand, by decreasing the atomic 
percentage of Co from 0.5 at.% to 0.25 at.% in the case of Co-TiO2, there 
was a considerable increment in the activity (Fig. S. 2). After one hour of 
photocatalytic experiment, the lesser atomic percentage of metal 
showed 32% BnOH conversion with 84% towards BnAld selectivity. 0.5 
at.% of Fe in TiO2 showed different activity compared to the other two 
metal catalysts discussed above. The BnOH conversion for this catalyst 
was increased to 45%, but the selectivity lowered to 34% after one hour 
of irradiation time (Fig. S. 3). This might be because of the high porosity, 
and low surface area of the FeT catalyst. 

From the above batch photocatalytic selective oxidation experi-
ments, we selected the optimized atomic percentage of the metal in 
TiO2-based composite (0.5 at.% of Cu-TiO2 (CuT), 0.5 at.% of Fe-TiO2 
(FeT), and 0.25 at.% of Co-TiO2 (CoT)) for deposition on the internal 
wall of the microreactor, and further experimentation. 

3.2. Characterizations of the synthesized catalysts 

The XRD patterns of the sol-gel synthesized catalysts were collected 
in Fig. 2. Both SolT and FeT samples revealed the reflections at 25.3◦, 
37.9◦, 47.8◦, 54.5◦, and 62.7◦, characteristic for the (011), (004), (020), 
(015), and (024) diffraction peaks of the anatase crystal structure 
(similar to JCPDS 02–0406 card). In addition to peaks from anatase, 
both the catalysts show the presence of peaks originating from the 
brookite phase, (211) at 30.3◦. In the case of the FeT material, the peaks 
of anatase phase were found narrow and of higher intensity, suggesting a 
larger crystallite size (D) than SolT (Table 1). Also, from the XRD pat-
terns of all metal-containing TiO2, there are no visible peaks from metal- 
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Fig. 1. Comparison of photocatalytic activity between synthesized TiO2 and 
different atomic percentages of Cu-TiO2 (0.5 g/L) under UV light with 1 mM 
BnOH in batch photoreactor after 60 min of irradiation. 
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containing phases (or pure metal phases), but only from titanium oxides 
(most probably because of very low content of metals). 

The average crystallite size (D) of the anatase was 3.7 nm for the 
SolT, while for the FeT was found 5.9 nm. In contrast, CuT material had 
no visible peaks of nano/polycrystalline TiO2 phases and appeared 
amorphous. Cu heteroatoms were thought to intrude (mostly retarding 
the crystallization of the final metal oxide) on crystal nucleation and 
growth [20]. Also, CoT showed an amorphous structure. Fe ions can be 
substituted at Ti sites within TiO2 due to similar ionic radius to Ti4+

(0.64 Å) (Fe3+ = 0.65 Å), whereas ionic radii of Cu2+ (0.73 Å) and Co2+

(0.74 Å) are bigger than 0.64 Å, hence their different effects on crystal 
nucleation and TiO2 growth are possible. The synthesized catalysts were 
not treated at high temperatures (not calcination step) to keep our 
synthetic method green. Studies showed that the crystalline pure 
anatase phase of Co-TiO2 would be visible upon treatment of sample at 
450 ◦C, and after that the rutile phase starts to grow [21]. Also, another 
possible explanation is that doping of metal could inhibit the crystalline 
growth of TiO2 particles [22]. 

The CuT and CoT catalysts showed type II adsorption isotherm, 
which is for very small pores or microporous adsorbents (Fig. 3). In this 
case, adsorption occurs by filling the micropores. The adsorbate 
adsorption rate depends on the available pore volume instead of the 
total interior surface area. A combination of type II and type IV 
adsorption isotherms was detected for FeT and SolT, which shows the 
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Table 1 
Textural and structural properties of synthesized catalysts.  

Photocatalyst Anatase:Rutile:Brookite phases 
(%) 

Specific surface area (m2/ 
g) 

Pore volume (BJH) (cm3/ 
g) 

Average Pore size 
(nm) 

Bandgap 
(eV) 

Average crystallite 
size 

D (nm) 

SolT 69:0:31 284 0.29 3.2 3.3 3.7 
CuT – 577 0.12 3.2 3.4 – 
FeT 66:0:34 161 0.31 4.2 3.1 5.9 
CoT – 566 0.22 3.2 3.4 –  
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Fig. 3. Comparison of N2 sorption isotherm of monometallic TiO2 (0.5 at.% of Cu-TiO2 (CuT), 0.5 at.% of Fe-TiO2 (FeT) and 0.25 at.% of Co-TiO2 (CoT) with sol-gel 
synthesized TiO2 (SolT) catalyst. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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pore size distribution from big microporous to narrow mesoporous [23]. 
H2 type hysteresis loop of FeT and SolT suggests a complex pore 
structure made up of interconnected networks of different sizes and 
shapes [24]. The average pore size distribution was calculated using BJH 
(Barrett-Joyner-Halenda) method. The pore size, pore-volume, bandgap, 
crystallite size, and specific surface area of all synthesized materials are 
presented in Table 1. Among all the synthesized photocatalysts, FeT 
catalysts showed low surface area (161 m2/g) compared to others, and 
showed the better photocatalytic activity in a microflow reactor. The 
higher porosity of FeT can increase the availability of the catalytic sites 
and better light utilization [25]. 

For synthesized TiO2, the bandgap was around 3.3 eV, CuT and CoT 
have a bandgap of 3.4 eV (Fig. 4. a). The bandgap was found lowered by 
~0.2 eV for FeT catalyst. All the above catalysts (SolT, FeT, CuT, and 
CoT) were immobilized inside the PFA microtube using a sonication- 
promoted technique described earlier in the manuscript. Optimized 
parameters from batch systems and design expert calculation (Design 
Expert 11) were considered for the microflow reactor [17]. The flow rate 
was set to reproduce enough space-time according to the reactor’s di-
mensions. During the photolysis test for 30 min, benzyl alcohol (in flow 
microreactor) showed negligible conversion in the dark, hence, no 
reactivity was confirmed for all the catalysts. 

By moving from batch to microflow, the specific conversion rate 
increased for all the catalysts. This trend might be due to the higher 
availability of catalyst active sites upon the deposition on the micro-
reactor walls [26,27], and taking advantage of high surface to volume 
ratio very characteristic when working in microspace. Continuous flow 
microreactors offered considerably shorter reaction time and led to 
improved irradiation over the reaction mixture than batch reactors. 
Also, ultrasonic irradiation increases turbulence in the liquid phase, 
improving the catalyst active surface area via the de-agglomeration and 
fragmentation of the catalyst’s nanoparticles [28]. The photocatalytic 
experiment under UV light showed that FeT has a better specific con-
version rate, 3518 μmol /m2 hr, than other catalysts (Fig. 5) which value 
is almost three times higher than that of SolT (1048 μmol /m2 hr). The 
specific conversion rate was calculated using the given formula, 

Specific Conversion Rate =
(
μmol

/
m2 hr

)
=

CBnOHo − CBnOHt

AC*time 

Where AC is the active surface area of the catalyst taking part in the 
photocatalytic BnOH conversion. In microflow photocatalysis, though 
the BnOH conversion was better compared to batch, there was negligible 
selectivity towards benzaldehyde. This is in contrast with the 

observations in the batch reaction, where the BnAld selectivity was 
higher (35%, Fig. S. 3). One of the plausible reasons for such behavior 
might be that the spent time of the sample inside the microflow reactor is 
not sufficient for the desorption of the oxidized product from the 
monometallic catalytic reactor surface, and we are planning to focus on 
this issue in our further mechanistic studies. When similar experiments 
were carried out under visible light (515 nm) system, microtubes 
deposited with CuT and CoT did not show any activity. However, the 
FeT deposited PFA tube system showed 28% (specific conversion rate: 
9222 μmol/m2hr) BnOH conversion under visible light (Fig. 4.b). The 
enhanced photocatalytic activity was mainly attributed to the increment 
in crystallite size of anatase phase, high porosity, and low surface area of 
the FeT catalyst. 

Catalyst deposited tubes were characterized by SEM and optical 
microscope for surface morphology studies. From the cross-section 
analysis of PFA tubes (Fig. 6) can be seen that the thickness of the 
deposited layer of the catalyst can vary between 2 and 4 μm, which is 
similar to the thickness observed in the case of SolT deposition [17]. 

The SEM micrographs of CuT and CoT catalyst deposited PFA tube, 
from the top (Fig. 6) demonstrate that after the deposition, there are 
agglomerations of particles with the size of nearly 1 μm inside the wall. 
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Fig. 4. (a) Bandgap calculation of sol-gel synthesized TiO2 (SolT) and monometallic TiO2 (0.5 at.% of Cu-TiO2 (CuT), 0.5 at.% of Fe-TiO2 (FeT) and 0.25% of Co-TiO2 
(CoT) catalysts (b) Photocatalytic activity of synthesized 0.5 at.% Fe-TiO2 (FeT) under visible light with 1 mM BnOH in microflow system. 
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TiO2 (FeT)). 
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The presence of big aggregates leads to reduced activity by disturbing 
the flow of the solution inside the microtube. Because of the flake-like 
structure of FeT, the hindrance in continuous microflow is minimized 
compared to that of the highly agglomerated Co and Cu - TiO2. The 
morphology of this FeT flake catalyst provides more surface access to 
BnOH for photocatalytic conversion. The small agglomerations (200 - 
300 nm) and much better dispersion in the case of FeT (Fig. 6) can lead 
to improved transfer of light and better interaction of the reagent with 
the surface of the catalyst. Moreover, no leaching from the catalyst 
deposited microtube after an hour of the experiment was confirmed with 
the ED-XRF analysis (Fig. S. 4). 

4. Conclusions 

We synthesized TiO2 photocatalyst doped with different metals (Cu, 
Co, and Fe) following the sol-gel method and successfully characterized 
the obtained composites by applying different techniques. The metal- 
containing TiO2 showed higher photocatalytic activity under UV irra-
diation than the synthesized TiO2 in the batch system. Compared to the 
batch reactor, the photocatalytic conversion of benzyl alcohol in the 
microflow reactor has been substantially improved. The use of sonicat-
ion during catalyst deposition in a Teflon-based flow microreactor can 
lead to enhanced mass deposition and dispersion, which helps in better 
benzyl alcohol conversion. Among all the metal-containing TiO2 sam-
ples, the 0.5 at.% Fe-TiO2 (both, iron and titanium, as cheap, safe and 
abundant metals) photocatalyst exhibited the highest BnOH conversion 
under visible light (515 nm) in the microflow system. This could be 

explained by the higher crystallite size observed in XRD analysis, high 
porosity, and flake-like morphology of the photocatalyst. We were able 
to set up an additive free (without adding an oxidative agent) visible 
light active system for oxidation of lignin-based model compound, 
benzyl alcohol, and inspire ourselves, and certainly the scientific com-
munity, to continue merging heterogeneous photocatalysis with flow 
microreactors as an excellent example of process intensification. 
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[16] D. Cambié, C. Bottecchia, N.J.W. Straathof, V. Hessel, T. Noël, Applications of 
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Appendix A. Supplementary data 

Ultrasound-assisted deposition of catalysts in PFA 

 A 30 cm PFA microtube (microcapillary 0.8 mm ID), pure from the market, undergoes a 

cleaning process by passing through 5 ml of MilliQ water (analytical grade) and 5 ml of 

ethanol. Both solvents are introduced into the microtube at a constant flow rate of 1 mL/min 

using a syringe infusion pump (New Era Pump Systems, Inc.). The tube is placed in the oven 

for 1h at approx. 80 °C and used for further deposition. For the catalyst deposition, an ultrasonic 

bath (Sonorex-digital RC, 37 kHz, 100% amplitude) was used in sweep mode. The tube was 

placed in the ultrasonic bath (Figure S. 1). The catalyst suspension was passed through a 

cleaned PFA microtube under the influence of ultrasound (120W) using a syringe pump for 75 

minutes (0.34 ml/min). 
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Figure S. 1. Catalyst deposition to the inner wall of the PFA microtube; (1) semiconductor 

oxide suspension, (2) ultrasonic bath, (3) Syringe infusion pump, (4) water cooling system, and 

(5) PFA microtube 

 

 

Figure S. 2. Optimization of at% of Co-TiO2 (0.5g/L) under UV light with 1mM BnOH in 

batch system 

  

Figure S. 3. Photocatalytic activity of synthesized TiO2 (SolT) and 0.5 at% Fe-TiO2 (FeT) 

under UV light with 1mM BnOH  in batch system 
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Figure S. 4. EDXRF measurement of the sample from the outlet of synthesized Fe-TiO2 

deposited PFA tube. (Rh-peak from Rh lamp, Fe and Cu peaks- are finger prints of the 

spectrometer) 

EDXRF analysis confirmed (no traces of Ti presence) no leaching from the catalyst coated 

microtube after one hour of the experiment. 
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Bimetallic TiO2 Nanoparticles for Lignin-Based Model
Compounds Valorization by Integrating an Optocatalytic
Flow-Microreactor
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Abstract: The challenge of improving the activity of TiO2 by modifying it with metals and using
it for targeted applications in microreactor environments is an active area of research. Recently,
microreactors have emerged as successful candidates for many photocatalytic reactions, especially for
the selective oxidation process. The current work introduces ultrasound-assisted catalyst deposition
on the inner walls of a perfluoro-alkoxy alkane (PFA) microtube under mild conditions. We report
Cu-Au/TiO2 and Fe-Au/TiO2 nanoparticles synthesized using the sol–gel method. The obtained
photocatalysts were thoroughly characterized by UV–Vis diffuse-reflectance spectroscopy (DRS), high-
resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy
(HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray
photoelectron spectroscopy (XPS), and N2 physisorption. The photocatalytic activity under UV
(375 nm) and visible light (515 nm) was estimated by the oxidation of lignin-based model aromatic
alcohols in batch and fluoropolymer-based flow systems. The bimetallic catalyst exhibited improved
photocatalytic selective oxidation. Herein, four aromatic alcohols were individually investigated and
compared. In our experiments, the alcohols containing hydroxy and methoxy groups (coniferyl and
vanillin alcohol) showed high conversion (93% and 52%, respectively) with 8% and 17% selectivity
towards their respective aldehydes, with the formation of other side products. The results offer an
insight into ligand-to-metal charge transfer (LMCT) complex formation, which was found to be the
main reason for the activity of synthesized catalysts under visible light.

Keywords: bimetallic titanium dioxide; photocatalytic selective oxidation; fluoropolymer; wall-coated
microreactor; aromatic alcohol; ultrasonic irradiation

1. Introduction

TiO2 is used as a photocatalyst for the degradation of impurities, a component of self-
cleaning coatings, cosmetics, and for the production of hydrogen in water decomposition
reactions [1,2]. Despite the numerous application possibilities, however, its industrial use is
very limited. TiO2 due to wide band gap is capable of absorbing only UV radiation, which
constitutes only 3 to 5% of solar radiation. The consequence of this is the fact that TiO2 still
does not have satisfactory photocatalytic efficiency under visible light irradiation [3,4]. The
use of UV lamps as a radiation source, due to the high energy consumption, significantly
increases the cost of the process, which is an important factor limiting the broader use of this
method in removing pollutants on an industrial scale. Consequently, many studies focused
on the visible response of TiO2 photocatalysts by: (i) doping with metal or non-metal ions,
(ii) hetero-junctions creation with other semiconductors [5,6], (iii) sensitization [7], (iv) the
formation of a surface complex with energy transfer [8,9] or (v) surface modification with noble
metals nanoparticles [10]. By doping TiO2 with transition-metal ions (Fe, Cu, Co, Mn, and Ni)
was reported to be effective for the enhancement of the photocatalytic activity by changing the
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banding structure of TiO2 due to the interstitial doping Ti3+ states as well as the formation of
surface oxygen vacancies, which, together, cause the red-shift absorption edge of TiO2 [11–14].
Among the noble metals, gold pays more attention in selective photo-oxidation reactions under
visible light irradiation [15]. In the past few decades, the rapid expansion of gold (Au) catalysis
has developed many new approaches to the aerobic oxidation of alcohols [16,17]. However,
bimetallic catalysts have been observed to outperform their monometallic counterparts in
conventional heterogeneous catalysis [18,19]. The noble bimetallic nanoparticles have been
extensively studied for application in photocatalysis [20].

Because of their high-value products for the fine chemical, agrochemical, and pharma-
ceutical sectors, alpha beta-unsaturated aldehydes are essential to a sustainable chemical
economy [21]. For example, cinnamyl aldehyde (CinAld) serves as an insect repellent and
also provides the flavor and aroma of cinnamon; CinAld is both a food and perfume additive.
These aldehydes are usually derived by selective oxidation of their corresponding alcohols.

Catalyst testing in flow microreactors has many advantages over traditional batch
reactors. These are, but not limited to, the followings: (i) operating parameters such as
temperature, pressure, and feed concentrations can be easily varied in flow microreactors
to obtain an insight into the reaction mechanism and kinetics [22]; (ii) the consumption of
chemicals and waste production are significantly reduced; and (iii) easy testing of catalyst
stability under different reaction conditions. Liquid phase catalytic oxidation chemistry
in continuous-flow microreactors has recently been summarized from technological and
chemical perspectives [23].

Considering the potential of metals containing TiO2 catalytic materials and flow mi-
croreactors as a powerful tool for catalyst testing, studying the bimetallic catalysts in a flow
microreactor for photocatalytic selective oxidation of a lignin-based model compound into a
value-added product is an exciting field of research. In this work, the photocatalytic activity
of synthesized bimetallic TiO2 nanoparticles was evaluated under UV light and visible light
irradiations both in batch and microflow systems, using benzyl alcohol (BnOH), vanillin
alcohol (VanOH), cinnamyl alcohol (CinOH), and coniferyl alcohol (ConOH) as model
compounds of organic-based waste, lignin. The structural properties of the synthesized
catalysts were analyzed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR)
spectroscopy. The optical properties were investigated using UV–vis diffuse reflectance
(DRS), a surface morphology study was performed by high-resolution scanning electron
microscopy (HR-SEM) and high-resolution transmission electron microscopy (HR-TEM),
and the textural properties were determined by nitrogen sorption. We demonstrated that
the addition of a second metal-to-metal TiO2 nanoparticle increased the selective oxidation
of BnOH to 100% towards benzaldehyde (BnAld). In addition, the complex formation
between TiO2 and other aromatic alcohols (containing methoxy and hydroxyl groups)
activated the sol–gel-synthesized catalyst under visible light. Under batch experiment
conditions, ConOH and VanOH showed conversion of 93% and 52%, respectively, under
visible light (515 nm).

2. Results and Discussion

Oxidation of benzyl alcohol (BnOH) was often used as a model reaction for the
oxidation of aromatic alcohols. In order to verify the reactivity of the prepared Cu-Au/TiO2
and Fe-Au/TiO2 catalysts in the batch system and the performance in the microreactor
system, oxidation of BnOH was initially carried out under UV light (375 nm). From the
photocatalytic experiment, it was found that modification of TiO2 with bimetals increased
the selective oxidation of BnOH to aldehydes under UV light. In a batch system, the
synthesized Cu-Au/TiO2 with copper acetate precursor (CuA-Au/TiO2) catalyst has a
significantly higher conversion of BnOH (60%) compared to other bimetallic catalysts with
100% selectivity towards benzaldehyde (BnAld) (Figure 1a).
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Figure 1. Photocatalytic activity of sol–gel-synthesized bimetallic TiO2 in the batch system (a) and
microflow system (b) after 60 min of the photocatalytic experiment with 1 mM BnOH under UV light.

Upon the deposition of catalysts on the walls of the microreactor, the synthesized
bimetallic materials revealed better photo reactivity in regard to both BnOH specific con-
version rates, an absolute contrast trend with the batch experiments (Figure 1a). After 3 h
of light experiment, the specific conversion rate of Cu-Au/TiO2 prepared using copper
nitrate precursor (CuN-Au/TiO2) in the batch system was 14 µmol/m2·h, whereas, in the
microflow system, it reached 268 µmol/m2 h.

The specific surface areas determined from N2 physisorption for the Cu-Au/TiO2 and
Fe-Au/TiO2 varied from 251 to 547 g/m2, which was predominantly controlled by the type
of precursor used for synthesis (Table 1). The use of nitrate precursor during the synthesis
procedure caused a significant increase (about two-fold) in the specific surface area with
reduced crystallinity (Figure 2a) compared to pure TiO2. Au phase is not a dominant phase
for these catalysts; therefore a small peak of Au is observed. Amorphous phases dominate
in CuN-Au/TiO2 and FeN-Au/TiO2 samples, such phases do not give peaks in the XRD
pattern, and on the background of such phases, even a small peak from nanocrystalline
gold is easily detectable. The crystallite size of Au for each catalyst are shown in Table 1.

Table 1. Crystallographic, structural, and textural features of the synthesized bimetallic catalysts.

Sample
Anatase: Brookite:
Gold Crystalline

Phases (%)

Specific
Surface Area (m2/g) Average Pore Size (nm) Pore Volume (BJH)

(cm3/g)

Average
Crystallite Size

(Dcr) [nm] (Au Phase) by XRD

TiO2 69:31:0 284 3.2 0.3 n/a

CuA-Au/TiO2 68:31:0.44 251 6.8 0.3 11

CuN-Au/TiO2 541 3.1 0.4 18

FeN-Au/TiO2 547 2.8 0.2 18
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Figure 2. XRD patterns of different bimetallic synthesized catalysts (a) and N2 sorption isotherm of
bimetallic TiO2 (b) compared to sol–gel-synthesized TiO2 catalyst.
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A combination of type II and IV adsorption isotherms was noticed for sol–gel-synthesized
TiO2 and the bimetallic catalysts with nitrate precursors (Figure 2b) [24]. The H2-type hys-
teresis loop of these catalysts suggested a complex pore structure [25]. On the other hand,
the bimetallic catalyst with acetate precursor (CuA-Au/TiO2) showed a type-IV adsorption
isotherm [24], suggesting the presence of mesopores. The shape of the hysteresis loops was of
type H3, which indicates the presence of aggregates of slit-shaped conical pores composed of
primary particles, which can give rise to piled-up pores [26–28].

The Tauc plots (Figure S2) revealed that the bandgaps for all the synthesized catalysts
were ~3.4 eV. In addition, the BJH (Barrett–Joyner–Halenda) method was used to calculate
the average pore size distribution, and the values are provided in Table 1.

The average pore size was lower for samples synthesized using nitrate precursors than
for samples that were prepared with acetate precursors. This observation can be explained
by a partial modification of the TiO2 surface by nitrate decomposition and evolving gaseous
NOx during the synthesis procedure. The photocatalytic activity in the microflow system
(Figure 1b) of CuN-Au/TiO2 and FeN-Au/TiO2 accompanied by their larger specific area, as
a consequence, may provide more active sites and shorten the bulk diffusion length of charge
carriers, thus suppressing bulk recombination [29]. However, the pore volume was much
higher for the sample CuN-Au/TiO2 (0.4 cm3/g) than for FeN-Au/TiO2 (0.2 cm3/g), even
though nitrogen salts were used in both cases during the preparation. This dependency can be
caused by steric hindrance during the growth of the TiO2 crystallites via Ostwald ripening [30].
The molecular structure of iron (III) nitrate nonahydrate is bigger than copper (II) nitrate
trihydrate (computed by PubChem), which consequently causes more steric hindrance.

The synthesized bimetallic catalysts were investigated using transmission electron
microscopy (TEM). The composition of the particles was studied using STEM (high-angle
annual dark field, HAADF) and EDXS mapping. In the CuA-Au/TiO2 sample, the TEM
analysis revealed that primary nanoparticles were clustered to form more oversized agglom-
erates during the formation stage itself (Figure 3). The results of the TEM analysis showed
that Ti, O, and Cu are evenly distributed throughout the sample surface (Figure 3d,e).

The application of the HAADF method confirmed the presence of the expected ele-
ments, such as Ti, Cu, and Au (Figure 3c–e), and also, from XPS analysis of CuA-Au/TiO2,
we were able to confirm the presence of 0.1 at% Cu and 0.03 at% Au in the catalyst surface
(Figure S4). Gold and copper nanoparticles were evenly distributed in the tested sample
(Figure 3b–d) which is very important in terms of the influence on the photocatalytic activ-
ity. Based on TEM analysis (Figure 3), UV–Vis DRS spectra (Figure S3), and XPS analysis
(Figure S4), it can be deduced that surface incorporation of Cu and Au atoms on the TiO2
has occurred. On the UV–Vis spectra, the red shift of absorption for CuA-Au/TiO2 in
comparison to bare TiO2 and no obvious peak from copper nanoparticles (NPs) can be seen.
The absence of the peak coming from Cu NPs could be due to the low amount of Cu NPs
on the TiO2 surface. The same results regarding the slight red shift of absorption to 403 nm
for copper nanospheres coupled with TiO2 were obtained by Monga et al. and also other re-
search groups [31–33]. The distinct peak derived from Au nanoparticles occurred at 560 nm
due to the charge transfer from the metal ion to TiO2 [32]. The abovementioned absorption
in the range of visible irradiation may be due to the localized surface plasmon resonance
(LSPR). It has been shown that in the mechanism using LSPR, metal can act as an electron
trap and thus inhibit the recombination process of electron-hole pairs [34,35]. The charac-
teristic LSPR band maximum at 555 nm [36] indicates the presence of Au nanoparticles in
the CuN-Au/TiO2 sample, shown on the UV–Vis DRS spectra (Figure S3).

It can be clearly seen in the TEM pictures (Figure 3b) that the obtained gold nanoparticles
have a spherical shape, and the particle size distribution of Au was in the range of 10–40 nm,
with the highest contribution of the fraction from 15 to 25 nm and mean size equal to 22.1 nm
(Figure 3a). The nanometric size and shape of the obtained Au particles are good enough to
provoke LSPR [31,37]. This proves that the particles in nanoscale with a favorable spherical
shape were successfully obtained during the synthesis procedure. Gołąbiewska et al. [38]
have shown that the spherical shape of gold nanoparticles was very beneficial for increasing
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the photocatalytic activity in the range of visible irradiation. They compared the photoactivity
of different shapes of Au particles deposited on TiO2 microspheres and proved that visible
light activity decreased in the following order: spheres > rods > stars [38]. It can also be added
that in the case of the CuA-Au/TiO2 sample, the inter-planar spacing for gold was 0.24 nm,
which corresponds to the separation between the (111) lattice planes of Au (Figure 3b), which
was consistent with the results obtained by XRD analysis (Table 1).
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Figure 3. TEM images of the obtained CuA-Au/TiO2 sample: SE mode with a particle size distribution
(a), SE mode (b), EDS HAADF analysis of Cu (c) and Au, EDS HAADF analysis of Ti and Au (d), and
EDS HAADF analysis of Ti and Cu (e).

Very similar to the CuA-Au/TiO2 TEM analysis results were the results obtained for
the CuN-Au/TiO2 sample, where the gold particles have a nanometric size and spherical
shape; in addition, they were evenly distributed over the entire sample (Figure 4a–e). The
difference in the photocatalytic activity of these samples was probably due to the precursors
used (nitrate and acetate). The average size of the Au particles ranges between 10–50 nm,
also less than 5% in the range 60–70 nm, with a significant predominance of particles with
sizes from 10 to 30 nm, where the mean size was 24.7 nm (Figure 4a) Moreover, the Au
particle has planes (111) and (200), which correspond to 0.24 and 0.20 nm, respectively.
(Figure 4b).

The TEM micrographs of FeN-Au/TiO2 shown in Figure 5 gave a bright observation
of the sample in which the particles are much bigger than those obtained in the case of the
samples containing copper (the mean sizes of the particles were 22.1 nm for CuN-Au/TiO2
and 24.7 nm for CuA-Au/TiO2). The particle size was found in the range of up to 60 nm
and also in the range from 80 to140 nm, with the mean size equal to 60.6 nm. (Figure 5a). It
should be emphasized that in the UV–Vis DRS spectrum (Figure S3), no characteristic peak
from the LSPR of gold particles was detected. Similar results were obtained by Duan et al.,
where despite the presence of gold particles in the sample, confirmed by other analytical
methods, the characteristic peak of approx. 550 nm was not observed [39]. Similar results
were obtained for the FeN-Au/TiO2 sample; there were big agglomerates which caused an
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uneven distribution of Au particles on the TiO2 (Figure 5d,e), which could be the reason for
the absence of the peak from Au NPs in the UV–Vis DRS spectra. However, a significant
shift of absorption towards the visible spectrum (>400nm) for FeN-Au/TiO2 in comparison
with unmodified TiO2 was observed on UV–Vis DRS (Figure S3), and the presence of
Fe 2p 3/2 on the surface of the catalyst (confirmed by XPS analysis) also indicates the
probable surface incorporation of Fe and Au atoms on TiO2. The aim of introducing the Fe
atoms to the sample was to increase the absorption toward the visible light wavelength
and thus increase the photocatalytic activity in the visible range [40]. The distribution of
Fe atoms observed on TEM connected with UV–Vis DRS and XPS results can testify to the
surface incorporation of Fe atoms [41,42].
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Figure 4. TEM images of the obtained CuN-Au/TiO2 sample: SE mode with particle size distribu-
tion (a), SE mode (b), EDS HAADF analysis of Au (c), EDS HAADF analysis of Cu and Au (d), and
EDS HAADF analysis of Ti and Au (e).

In the SEM images of the bimetallic TiO2 particles, presented in Figure 6, it was
observed that the sample prepared using acetate precursor has a more sponge-like surface,
with more cavities in the structure, compared to that obtained with nitrate precursor. CuN-
Au/TiO2 and FeN-Au/TiO2 particles were poorly formed with highly irregular shapes.

The use of sonication improves catalyst deposition in a microreactor aided by enhanced
mass deposition, which subsequently improves the overall photocatalytic conversion [43].
We link this activity to the higher availability of the active sites upon the deposition on the
wall of the microreactor. On the deposition of these catalysts in the microflow system under
the influence of ultrasound, the breakage of the agglomerations into smaller sizes was
observed. The big aggregates (300–500 nm) in the case of CuA-Au/TiO2 disturb the flow
of the solution inside the microtube, reducing the activity of the catalyst (Figure 1). The
small agglomerations (80–250 nm) and good dispersion in the case of CuN-Au/TiO2 and
FeN-Au/TiO2 (Figure 6) can lead to the improved transfer of light and better interaction of
the reagent with the surface of the catalyst. The thickness of the deposited catalyst inside
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the wall of the microreactor was 5–7 µm, measured with an optical microscope image,
hence the better photocatalytic activity in the microflow system for this catalyst.
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Figure 5. TEM images of the obtained FeN-Au/TiO2 sample: SE mode with particle size distribution (a),
SE mode (b), EDS HAADF analysis of Au (c), EDS HAADF analysis of Ti and Au (d), and EDS HAADF
analysis of Ti and Fe (e).
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Figure 6. SEM and optical microscope image of sol–gel-synthesized bimetallic TiO2 and after deposi-
tion in the PFA microreactor.
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The synthesized CuA-Au/TiO2 catalyst was considered for the oxidation of aromatic
alcohols (vanillyl alcohol (VanOH), coniferyl alcohol (ConOH), and cinnamyl alcohol
(CinOH) under UV (375 nm) light, as this catalyst showed better activity under UV light for
BnOH oxidation (Figure 1a) in the batch system. Before light experiments, dark adsorption
studies were performed to determine the adsorption/reactivity, and the duration to reach
adsorption equilibrium was 30 min. Strong adsorption of VanOH (37%) and ConOH (30%)
was observed on the surface of bimetallic CuA-Au/TiO2 in the dark, which might be
because of the complex formation between these alcohols with TiO2.

After 2 h of the light experiment, BnOH and VanOH conversion were 54% and 95%,
respectively (Figure 7b). Comparing the structure of the molecules of BnOH and VanOH
(Figure 7a), it can be seen that the main difference between these two alcohols was that
VanOH has in its structure an OH group directly connected with the aromatic ring and also a
methoxy (OCH3) group connected with the next carbon atom of the aromatic ring. In contrast,
benzyl alcohol has only an OH group at the end of the alkyl chain, which was not directly
connected with the aromatic ring, and no methoxy group. As mentioned above, the OH and
OCH3 groups in the vanillyl alcohol are electron-donating groups which were providing the
electrons to the aromatic ring. An excess of electrons causes lower production of aldehyde,
which results in low selectivity towards aldehyde in the case of VanOH (25%) in comparison
to BnOH (100%) under UV irradiation (Figure 7b) after 2 h of the light experiment. As the
selectivity of producing vanillyl aldehyde (VanAld) was strongly reduced, other products of
vanillyl alcohol oxidation were achieved (Figures S5–S7). Furthermore, the lower selectivity
can also be ascribed to the strong adsorption (37%) of alcohol on the surface of the catalyst,
which can lead to partial oxidation, dimerization, or C-O, C-C coupling products.
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grey—carbon, and red—oxygen) (a) and photocatalytic oxidation with CuA-Au/TiO2 under UV light
with 1 mM of aromatic alcohols in the batch system (b).

Considering ConOH and CinOH alcohols, it can be seen that very high conversions were
achieved (95% and 81%, respectively). In the case of ConOH, the selectivity of producing
coniferyl aldehyde (ConAld) was very low (5%), with 7% selectivity towards VanAld (Figure 7),
with additional products verified by GC-MS analysis (Figures S5–S7). Along with the OCH3
and OH groups, ConOH has a double bond in its structure, which can potentially also provide
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the electrons to the aromatic ring, which causes further reduction, lowering the selectivity.
The side products formed are benzaldehyde from CinOH and vanillyl aldehyde from ConOH
(partial oxidation) [44], as well as 3-phenoxy benzaldehyde from ConOH (C-O coupling
product), which probably was the result of many complex chemical reactions leading to the
dimerization of ConOH under the influence of the oxidizing environment (UV radiation) [45].
The conversion of aromatic alcohols and the selectivity to its aldehyde were the main criteria to
estimate catalyst performance as the other products were in traces. For CinOH oxidation, the
selectivity towards cinnamyl aldehyde (CinAld) was 45%. Furthermore, the catalyst showed
highly selective toward BnOH oxidation to BnAld.

After conducting the selective photocatalytic oxidation experiments in UV radiation,
the CuA-Au/TiO2 photocatalyst was selected for experiments also under visible light in the
batch system (Figure 8). Under visible irradiation (515 nm), the satisfactory conversion of the
alcohols was obtained only for ConOH and VanOH (93% and 52%, respectively), with 8% and
17% selectivity towards their respective aldehydes, with the formation of other side products.
Increased photocatalytic conversion in the range of visible radiation for ConOH and VanOH,
with a complete lack of activity for BnOH and CinOH, was probably related to the structures
of these alcohols. In the case of BnOH and CinOH, there are no groups that could be a direct
source of additional electrons for the aromatic ring and no group which can form complexes
with TiO2. In order to explain this, UV—Vis DRS and FTIR analyses were performed for the
aromatic alcohol-adsorbed TiO2 complexes (Figures 9 and 10) [46,47].
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Figure 8. Visible light (515 nm) activity of other aromatic alcohols with bimetallic CuA-Au/TiO2 in
the batch system.

As a result of the adsorption of ConOH and VanOH on the TiO2 catalyst, a significant
change in the color of the catalyst from white to yellow can clearly be seen, which resulted
in a shift of absorption toward visible radiation (Figure 9). A plausible reason can be
complex formation by the ligand-to-metal charge transfer (LMCT) [48,49]. During this
process, electrons are transferred from the highest occupied molecular orbital (HOMO)
of substrates/adsorbates to the conduction band of TiO2 upon visible light irradiation.
(Scheme 1) [46]. Consequently, the samples forming the colorful complexes exhibited an
excellent conversion of aromatic alcohols under visible light (Figure 10).
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The formation of complexes between TiO2 and ConOH and TiO2 and VanOH was also
supported by the FTIR analysis results (Figure 10). Characteristic IR bands for alcohols
have also been observed for alcohol-adsorbed titania samples, especially in TiO2-VanOH
and TiO2-ConOH (Figure S8). This provided an indication of complex formation via the
adsorption of alcohol.

It was mentioned above that the adsorption of alcohols (VanOH and ConOH) on
the surface of TiO2 occurred by a dissociative mechanism, which means that OH and
O-CH3 groups interacted between titania and aromatic alcohols. In that case, alcohol and
TiO2 would be linked via the C-O bond. The presence of C-O stretching vibrations was
observed at 1000–1200 cm−1 (Figure S8), which can be seen in the case of TiO2-VanOH and
TiO2-ConOH; two bands were observed in this region (1118 and 1158 cm−1). The bands
in the range of 1000–1050 cm−1 were assigned to the presence of =C-H bonds derived
from the aromatic ring (Figure 10 and Figure S8). The bands around 1460 cm−1 originated
from CH2 vibrations and around 1640 cm−1 from C=C [46]. Similar spectra were observed
for bimetallic CuA-Au/TiO2 as well, confirming the formation of the complex with the
above aromatic alcohol (Figure S8), which confirms that the metals did not take part in
this complex formation. It is worth adding that the oxidation of VanOH and ConOH was
successful under visible irradiation due to the formation of the abovementioned complex
with TiO2. To further confirm the role of the OH group in LMCT complex formation,
the synthesized TiO2 was calcined at a high temperature (600 ◦C) to remove surface OH
through condensation (Figure S9). Interestingly, this catalyst was found inactive, suggesting
the OH groups are crucial for LMCT complex formation and the visible light activity of
the catalyst.

The experiment with the CuN-Au/TiO2-coated microreactor for other aromatic al-
cohols oxidation was performed under visible light irradiation as (1) CuN-Au/TiO2 in
the microflow system showed better activity (Figure 1) and (2) the other aromatic alco-
hols showed better conversion under visible light (Figure 8). Like the batch experiment,
BnOH and CinOH did not show any activity in the microflow system under visible light,
whereas ConOH and VanOH did. The specific conversion rate of ConOH was higher
(198 µmol/m2 h) compared to VanOH (46 µmol/m2 h), with 11 % and 10 % selectivity
towards their respective aldehydes (Figure 11). Other side products, such as batch experi-
ments, were also observed.

Molecules 2022, 27, x FOR PEER REVIEW 14 of 17 
 

 

TiO2-ConOH; two bands were observed in this region (1118 and 1158 cm−1). The bands in 

the range of 1000–1050 cm−1 were assigned to the presence of =C-H bonds derived from 

the aromatic ring (Figures 11 and S8). The bands around 1460 cm−1 originated from CH2 

vibrations and around 1640 cm−1 from C=C [48]. Similar spectra were observed for bime-

tallic CuA-Au/TiO2 as well, confirming the formation of the complex with the above aro-

matic alcohol (Figure S8), which confirms that the metals did not take part in this complex 

formation. It is worth adding that the oxidation of VanOH and ConOH was successful 

under visible irradiation due to the formation of the abovementioned complex with TiO2. 

To further confirm the role of the OH group in LMCT complex formation, the synthesized 

TiO2 was calcined at a high temperature (600 °C) to remove surface OH through conden-

sation (Figure S9). Interestingly, this catalyst was found inactive, suggesting the OH 

groups are crucial for LMCT complex formation and the visible light activity of the cata-

lyst. 

The experiment with the CuN-Au/TiO2-coated microreactor for other aromatic alcohols 

oxidation was performed under visible light irradiation as (1) CuN-Au/TiO2 in the micro-

flow system showed better activity (Figure 2) and (2) the other aromatic alcohols showed 

better conversion under visible light (Figure 9). Like the batch experiment, BnOH and 

CinOH did not show any activity in the microflow system under visible light, whereas 

ConOH and VanOH did. The specific conversion rate of ConOH was higher (198 μmol/m2 

h) compared to VanOH (46 μmol/m2 h), with 11 % and 10 % selectivity towards their respec-

tive aldehydes (Figure 12). Other side products, such as batch experiments, were also ob-

served. 

 

Figure 12. Photocatalytic activity of CuN-Au/TiO2 under visible light with ConOH and VanOH in 

the microflow system. 

After deposition, the catalyst’s surface was more selective towards ConAld for 

ConOH oxidation than in the batch system (8%). The elevated selectivity in the batch sys-

tem compared to the microflow system might be because of the higher availability of the 

catalyst’s active sites upon deposition. Additional side products (as discussed above) were 

confirmed from GC/MS; however, because of the trace amount of some products, it was 

not easy to calculate the selectivity towards them (Figure S7). The sol–gel-synthesized 

CuN-Au/TiO2 catalyst showed promising activity in the batch system as well as in the 

microflow system for ConOH oxidation. Furthermore, from the catalyst-deposited micro-

tubes, no leaching was confirmed with the ED-XRF analysis after 60 min of the experiment 

(Figure S10). The recycling test with the best performing catalyst (CuA-Au/TiO2) and the 

one which showed lower activity (TiO2) in the batch system were performed by washing 

0 50 100 150 200

Specific Conversion (µmol /m^2
hr)

Selectivity (%)

198

11

46

10

CuN-Au/TiO2_VanOH CuN-Au/TiO2_ConOH

Figure 11. Photocatalytic activity of CuN-Au/TiO2 under visible light with ConOH and VanOH in
the microflow system.
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After deposition, the catalyst’s surface was more selective towards ConAld for ConOH
oxidation than in the batch system (8%). The elevated selectivity in the batch system compared
to the microflow system might be because of the higher availability of the catalyst’s active
sites upon deposition. Additional side products (as discussed above) were confirmed from
GC/MS; however, because of the trace amount of some products, it was not easy to calculate
the selectivity towards them (Figure S7). The sol–gel-synthesized CuN-Au/TiO2 catalyst
showed promising activity in the batch system as well as in the microflow system for ConOH
oxidation. Furthermore, from the catalyst-deposited microtubes, no leaching was confirmed
with the ED-XRF analysis after 60 min of the experiment (Figure S10). The recycling test with
the best performing catalyst (CuA-Au/TiO2) and the one which showed lower activity (TiO2)
in the batch system were performed by washing the catalyst with acetonitrile and water, and
the activity of the catalyst was retained (Figure S11).

3. Materials and Methods
3.1. Materials

Titanium (IV) tetraisopropoxide (TTIP, 98%, ACROS ORGANICS, Geel, Belgium),
benzyl alcohol (BnOH, 99.5%, CHEMPUR, Piekary Śląskie, Poland), coniferyl alcohol
(ConOH, 98%, ABCR, Karlsruhe, Germany), cinnamyl alcohol (CinOH, 98%, ACROS OR-
GANICS, NJ, USA), vanillyl alcohol (VanOH, 98%, ABCR, Karlsruhe, Germany), ethanol
(EtOH, 99.8%, POCH, Gliwice, Poland), acetonitrile (ACN, HPLC grade, POCH, Gliwice,
Poland), and propan-2-ol (99.7%, CHEMPUR, Piekary Śląskie, Poland) were used as
received. Copper (II) acetate monohydrate (Cu(CH3COO)2·H2O, 98%, ABCR, Karlsruhe,
Germany), iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O, 98%, ABCR, Karlsruhe, Ger-
many), copper (II) nitrate trihydrate (Cu(NO3)2·3H2O, pure, CHEMPUR, Piekary Śląskie,
Poland), and tetrachloroauric (III) acid trihydrate (HAuCl4·3H2O, >99.5%, ROTH, Karl-
sruhe, Germany) were used as received as metal precursors.

3.2. Catalyst Synthesis

The bimetallic Cu-Au/TiO2 and Fe-Au/TiO2 nanoparticles were prepared based on
the previously established sol–gel method [50]. The required amount of metal precursors
(ratio of atomic percent of Au to Cu or Fe was adjusted to 1:4) were added to 15 mL of
isopropanol and stirred (magnetic stirrer) at 600 rpm. Under the rotational conditions, 4 mL
of TTIP was added dropwise to the mixture. Subsequently, milli-Q water (5 mL) was added
to the solution at a rate of 0.167 mL/min using a syringe infusion pump (Programmable
Double Syringe Pump (WPI), NE-4000). After 6 h of aging with mixing at 1000 rpm, the
resulting solid samples were obtained by centrifugation, washing with deionized water
(2 times) and ethanol (1 time), and drying at 80 ◦C in an oven for 24 h.

3.3. Microreactor Preparation

A visible light transparent perfluoroalkoxy alkane (PFA, 0.8 mm ID, BOLA: S 1811-02)
tube was used as a microreactor [50,51]. A 0.5 g/L concentration (previously optimized [50])
of nanoparticles was dispersed in Milli-Q water by ultrasonication for 15 min using an
ultrasonic bath (Elma Elmasonic P, 37 kHz, 70% power). Twenty mL of the homogeneous
nanoparticle suspension was passed through the cleaned PFA microtube under the influ-
ence of ultrasound using a syringe pump. The spiralized fragment (Figure 12b) was the
effective length subjected to the ultrasound treatment (Elma Elmasonic P, 37 kHz, 100%
power) for 75 min (the flow rate of the suspension was 0.26 mL/min). The tube was placed
in the oven for 24 h at 80 ◦C, and later cleaned by passing Milli-Q water and ethanol,
dried with airflow, and then placed in the oven for 1 h at 80 ◦C. After this procedure, the
catalyst-coated PFA tube was used for photocatalytic experiments (Figure 12b).
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3.4. Catalytic Performance Test

The photocatalytic oxidation of the aromatic alcohols over the synthesized catalysts
was carried out in batch (Figure 12a) and microflow reactors (Figure 12b, Figure S1). UV-
LED and Vis-LED systems were used as light sources (375 nm and 515 nm wavelength,
respectively). The flow rate was set at 0.167 mL/min (after optimization) to reproduce
enough space–time according to the reactor’s dimensions, and the whole experiment was
carried out for 60 min [50]. Experiments in the batch photocatalytic reactor were performed
using 20 mL of the reaction solution and 0.5 g/L of catalyst concentration for 60 min under
UV light. Alcohol conversion, the specific conversion rate, and selectivity to each product
were calculated according to the following equations:

Conversion (%) = ((Converted moles of aromatic alcohols)/(Initial moles of aromatic alcohols)) × 100%

Selectivity (%) = ((Produced moles of aromatic aldehydes)/(Converted moles of aromatic alcohols)) × 100%

Specific Conversion Rate (µmol/m2·h) = (COho − COHt )/(SC × time)

where COHo = initial concentration of aromatic alcohols, COHt = concentration of aromatic
alcohols after time, t, and SC is the specific surface area (surface area multiplied by the
catalyst concentration) of the catalyst taking part in the photocatalytic conversion.

3.5. Characterization

The synthesized samples were characterized using diffuse reflectance spectroscopy
(DRS, Shimadzu UV-2600i), and the bandgap was calculated from the Tauc plot. Powder
X-ray diffraction (XRD) measurements were performed employing the Bragg–Brentano
configuration. This type of arrangement was provided using a PANalytical Empyrean
diffraction platform, powered at 40 kV × 40 mA and equipped with a vertical goniometer,
with theta–theta geometry using Ni-filtered CuKα (λ = 1.5418 Å) radiation. The elemental
maps of the samples were also obtained by FEI Nova Nanolab 200 scanning electron
microscopy (SEM). The textural properties of TiO2 were determined by N2 physisorption
using a micromeritics automated system (Micromeritics Instrument Corporation, Norcross,
GA, USA) with the Brunauer–Emmet–Teller (BET) and the Barret–Joyner–Halenda (BJH)
methods. Before adsorption, the samples were degassed under vacuum (0.1 Pa) for 12 h at
80 ◦C. The presence of functional groups on the surface of the catalyst and substrate was
determined using a Bruker Tensor II Fourier transform (FT) IR spectrometer.

The samples collected from the outlet of the catalyst-deposited PFA capillary were
examined using the energy dispersive X-ray fluorescence (EDXRF) spectrometer (Mini- Pal 4,
PANalytical Co., Malvern, UK) with a Rh tube and silicon drift detector to check the titania
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residual and other metals. The spectra were collected in an air atmosphere, without a filter, at
a tube voltage of 30 kV. To identify and quantify the alcohols, aldehydes, and acids present, the
collected samples were analyzed using high-pressure liquid chromatography (HPLC, Waters)
with mass spectrometry using a mobile phase containing a mixture of organic solvents and a
0.05% H3PO4 (5M) aqueous solution (CH3CN:CH3OH: H2O = 20:2.5:77.5 v/v).

4. Conclusions

In this study, we have made an attempt to promote green chemistry by improving the
utilization of lignin—an important waste from the paper and pulp industry, which otherwise
would have been disposed of, thus contaminating the environment. To this end, we propose
to improve the conversion of the model alcohols by targeting and improving the catalytic
activity of TiO2 doped with bimetals such as Cu-Au, and Fe-Au. In the batch system, as high
as 100% benzaldehyde (BnAld) selectivity was obtained for benzyl alcohol (BnOH) conversion
of ~60% using CuA-Au/TiO2 photocatalyst. The high conversion could be explained by the
high average pore size (6.8 nm) and better crystallinity of the CuA-Au/TiO2 catalyst, which
were confirmed in subsequent XRD and N2 physisorption analysis.

Our studies further revealed that the LMCT complex formation of TiO2 with the
methoxy (OCH3) and OH groups (directly connected with the aromatic ring) exists in the
structure of coniferyl alcohol (ConOH) and vanillyl alcohol (VanOH), which was crucial
to activate the catalyst under visible light. This hypothesis has been further corroborated
by UV–Vis and FTIR studies. Additionally, the whole process was green/environment-
friendly as the catalyst synthesis process did not include any high-temperature calcination
steps, unlike commercial P25 TiO2, and the photocatalytic selective oxidation route was
additive-free (no additional molecular oxygen). We also developed a catalyst-decorated
microreactor using ultrasonic irradiation, which helped to increase the turbulence of the
liquid phase and to improve the active surface area of our catalyst via the de-agglomeration
and fragmentation of the nanoparticles.

In a broader context, we believe that the presented work demonstrates the potential
of an ultrasonic-assisted bimetallic TiO2 wall-coated microreactor for selective oxidation
of lignin-based model compounds using solar energy and this will serve as a conceptual
blueprint for further developments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248731/s1, Figure S1: Experimental set up for pho-
tocatalysis in microflow system.; Figure S2: Bandgap calculation of sol-gel synthesized TiO2 and
bimetallic TiO2 (CuA-Au/TiO2, CuN-Au/TiO2, FeN-Au/TiO2) catalysts; Figure S3: UV-vis diffuse
reflectance spectra of synthesized bimetallic TiO2; Figure S4: Surface analysis of CuA/Au- TiO2 by
X-ray photoelectron spectroscopy (XPS); Figure S5: Oxidation products from VanOH analyzed with
GC-MS and HPLC-MS; Figure S6: Oxidation products from ConOH analyzed with GC-MS; Figure S7:
Oxidation products from CinOH analyzed with GC-MS; Figure S8: FT-IR spectra of aromatic alcohols
(BnOH, CinOH, VanOH and ConOH) adsorbed TiO2 and VnOH adsorbed bimetallic CuA-Au-TiO2;
Figure S9: FT-IR spectra of sol-gel synthesized TiO2 and calcined (600 ◦C) TiO2 confirming removal
of OH group; Figure S10: XRF image of CuN-Au/TiO2; Figure S11: Photocatalytic experiment with
CuA-Au/TiO2 (left) and sol-gel synthesized TiO2 (right) (Run 1) and after washing the catalyst with
ACN and H2O (Run2) under UV irradiation (60 min) in batch system with ConOH.
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Figure S1. Experimental set up for photocatalysis in microflow system. 
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Figure S2. Bandgap calculation of sol-gel synthesized TiO2 and bimetallic TiO2 (CuA-Au/TiO2, CuN-Au/TiO2, FeN-

Au/TiO2) catalysts. 

 

Figure S3. UV-vis diffuse reflectance spectra of synthesized bimetallic TiO2. 
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Figure S4. Surface analysis of CuA/Au-TiO2 by X-ray photoelectron spectroscopy (XPS).  

 

Me-O

Me-O

C=O

C-C/C-H

COOH

http://rcin.org.pl



S6 

 

 

 

 

Figure S5. Oxidation products from VanOH analyzed with GC-MS and HPLC-MS. 

 

http://rcin.org.pl



S7 

 

 

Figure S6. Oxidation products from ConOH analyzed with GC-MS. 
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Figure S7. Oxidation products from CinOH analyzed with GC-MS. 
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Figure S8. FT-IR spectra of aromatic alcohols (BnOH, CinOH, VanOH and ConOH) adsorbed TiO2 and VanOH 

adsorbed bimetallic CuA-Au-TiO2 .  
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Figure S9. FT-IR spectra of sol-gel synthesized TiO2 and calcined (600 °C) TiO2 confirming removal of OH group. 
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Good reusability of the catalyst was demonstrated, while no metals were detected in the filtered 

reaction mixtures. There was no traces of Ti in liquid sample. The other observed peaks are the 

fingerprint from the instrument. 

 

Figure S10. XRF image of  CuN-/Au/ TiO2. 
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Figure S11. Photocatalytic experiment with CuA-Au/TiO2 (left) and sol-gel synthesized TiO2 (right) (Run 1) and 

after washing the catalyst with ACN and H2O (Run2) under UV irradiation (60min) in batch system with ConOH. 
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