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An alternative approach to the representation 

of orthotropic tensor functions in the two-dimensional case 

S. JEMIOLO and J . J. TELEGA (WARSZAWA) 

THE AlM of this paper is to derive in a simple fashion the non-polynomial representations of a class 
of orthotropic functions in the two-dimensional case. Scalar-valued, vector-valued, symmetric and 
skew-symmetric tensor-valued functions of the second o rder have been considered. 

1. Introduction 

STRUCTURES made of anisotropic materials are often used in engineering practice. 
Constitutive modelling of the behaviour of such materials has been significantly 
influenced by the theory of invariants and tensor functions, cf. [6, 18, 24]; vice 
versa, development of the invariant theory has been stimulated by the consti tutive 
modelling. The reader interested in the fundamental s of the theory of invariants 
and tensor functions and their applications should refer to [6, 13, 21 , 22, 23]. 

The problem of the determination of the general form of a tensor function of 
specified o rder and symmetry depending on tensor arguments consists in finding 
irreducible sets of scalar invariants and tensor generators; to put it simply, in the 
determination of the so-called canonical form of the tensor function. Though the 
theory of tensor function representation has been developed for more than three 
decades [18, 22, 23], yet no comprehensive, systematic and up-to-date study is 
available in the relevant literature. The book by SMITH [21] is restricted to the 
presentation o f theoretical results elaborated by this author and his coworkers, 
by employing classical methods of the group representation theory. SMITH [21] 
has delibera tely focussed on polynomial representations only. Many o ther com
plementary contributions exist, however, concerning the general representation 
of practically important isotropic [3, 14-16, 19, 20, 22-28] and anisotropic [1 , 2, 
4-6, 10, 12, 21, 29, 30] tensor functions. 

Irreducibility of a set of invariants may be understood in two ways: 
1. If one determines an integrity basis, then none of its elements can be a 

polynomial in the remaining elements, cf. [22]. 
2. In the case of a functional o r non-polynomial basis, none of its elements 

can be a fun ction of the remaining elements. 
Similar characterization pertains to the irreducibility of generators appearing 

in the canonical form of a tensor function, cf. [3, 6, 16]. To find the polynomial 
representation of a tensor function it suffices to determine the relevant integrity 
basis, because the generators are obtained by a simple process of differentiation 



http://rcin.org.pl

220 S. J EM I OLO AN D J.J. TELEGA 

[6, 22] . The proble m of the non-polynomial representatio n of a tensor function 
is more complicated, cf. [3, 19, 20, 25-30]. In the paper by th e second author 
[24], a similar approach was suggested for the determination of generators of 
non-polynomial tensor functions. This method was next developed by KoRSGAARD 

[14, 15] and used in [11 , 12]. 
In genera l, the determination of functional bases and generators leads to 

solving complicated algebraic relations. Hence o nly some classes of tensor func
tions are known explicitly. Even when the representations of scalar-, vector- a nd 
tensor-valued functions are available, alternative methods of their determination 
are still proposed, cf. [28, 29] . 

As is well known, two-dimensional problems are often studied in the con
tinuum mechanics. Thus the problem of the representation of isotropic and 
anisotropic functions in the two-dimensional case is of interest in itself. How
ever, such two-dimensional representations do no t necessarily coincide with those 
derived directly from the corresponding three-dimensio nal cases. 

The aim of this contribution, precisely formulated in the next section, is to pro
pose an alternative derivation of functio nal bases and generators for orthotro pic 
functions in the two-dimensional case. 

2. Fonnulation of the problem 

The objective of our considerations is the determination of the general form 
of the following functions: 

(2.1) 

S = J(A;, Wp, Vm), 

t = f(A;, Wp, V111 ) , 

S = F(A;, Wp, V m), 

T = G(A;, Wp, V111 ) , 

i = 1, . .. , I , p = 1 , . .. , P, m = 1, ... , M , 

in the two-dimensional case. Here s E JR, t , vm E IE2, S, A; E T ' (dim ys = 3), 

T, WP E ya (dim y a = 1), T = IE2 Q9 IE2 = rs EB ya (dim T = 4), IE2 stands for 
the two-dimensio nal Euclidean space a nd ys = {A E T I A = A 1}, y a = {W E 
TI W= - W }. 

In our 2D case, the o rthotropy group S satisfies the conditio n 

(2.2) V Q E S, QMQ1 = M , 

where M = e Q9 e and the unit vector e characterises o rtho tropy, see ([6] , p. 51). 
Obviously we have tr M = tr M2 = 1. 

For each Q E S, the scalar-valued function f , vector-valued function f, sym
metric tensor-valued functio n F a nd skew-symmetric tensor-valued function G 



http://rcin.org.pl

AN ALTERNAT I VE APPROA CH TO TI-l E REPRESENTAT ION ... 

satisfy the conditions: 

(2.3) 

J(Ai , WP, V m) = J(QA;Q1
, QWPQ 1

, Qvm) , 

Qf(Ai , Wp,Vm) = f(QA;Q1, QWPQ 1, Qvm) , 

QF(Ai, Wp, Vm)Q1 = F(QA;Q1
, QWPQ 1

, Qvm), 

QG(Ai, wp, Vm)Q1 = G(QA;Q1
, QWPQ 1

' Qvm)· 

221 

By applying I-SHlH Liu theorem [10) (see also [17]) and taking into account (2.2), 
the invariance requirement (2.3) may be written in the following way: 

(2.4) 

f(Ai , WP, V m, M ) = f(QA;Q1
, QWPQ 1

, Qv m, QMQ1
) , 

Qf(Ai,Wp, Vm, M) = f(QA;Q1, QWPQ 1, Qvm, QMQ1
) , 

QF(Ai, WP, Vm, M)Q1 = F(QA;Q1
, QWPQ 1,Qvm, QMQ1

) , 

QG(Ai, Wp, Vm, M)Q 1 = G(QA;Q1
, QWPQ 1

, Qvm, QMQ1
) , 

for each Q E 0, where 0 denotes the fu ll orthogonal group. Now M plays the 
role of a parametric tensor, and the functions j, f, F and T depend explicitly o n 
it. We observe that the approach leading to (2.4) has primarily been proposed by 
BOEHLER ( 4, 5]. 

In the sequel we shall derive the functional basis for the scalar function (2.4) 1 

and generators for the functions (2.4)2_4. Our method of determination of the 
functional basis follows that used by SMITH [19, 20] and KORSGAARD [14, 15] for 
isotropic functio ns. Generators will be obtained similarly as in [11 , 12, 14, 15], 
following the idea proposed in the paper by the second author [24). 

3. Detennination of the orthotropic functional basis 

Since the tensor M appearing in (2.4) is a parametric tensor, the determination 
of the functional basis is less complicated than in the case of isotropy examined 
by KoRSGAARD [14) . Obviously, in the last case S = 0 , because the invariance 
with respect to the full orthogonal group has been studied. 

To find the functional basis for the orthotropic scalar function (2.4)1, it suffices 
to consider the fo llowing three cases. 

CASE1 
In the set of vectors {vm} (m = 1, . . . , M) there are vectors non-collinear with 

the direction of e. 

CASE 1.1 
At least one vector from the set { V m}, say v1, is not collinear with e and V m f. 0, 

m = 1, . . . , M . Then we choose the coordinate system {X a } (a = 1, 2) in such 

a way that Ox 1 coincides with e and v ~ 1 ) > 0, v~ l ) > 0; here vm = (v~::\ To 
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determine uniquely the representation of the functio n (2.4)1, it suffices to know 
the following invariants, since then the components of all arguments are available: 

V1•MV1 = v(1)v ( l ) => v( l) 
I I 1 ( v \

1
) > 0), 

YJ'YJ = v(l)v ( I) + v (l)v ( l) => v ( l ) 
I 1 2 2 2 (vi l ) > 0), 

V1•Mvm = 
(1) (m ) (m ) 

v i v l => v l ' 

= 
(I) (m )+ (! ) (m ) (m ) 

(3.1 ) 
VJ• Vm v 1 v 1 v2 v2 => v 2 , 

t( i) (1) (I) + 2A(i) ( I) ( I ) + A (i ) (1) (1) 
v 1· A ; v 1 = 1 Il v l v l 12 v 1 V2 22 V2 V2 ' 

V1• A ; v m = 
\ (i) (1) (m) + A (i )( (1 ) (m) + (m) (1)) + A (i) (1 ) (m ) 

f 11 VI VI 12 VI V2 V ! V2 22 V2 V2 ' => A ; 

Vm •A ;Vm = 
\ (i) (m) (m ) + 2 l(i) (m ) (m) + l (i) (m) (m) 

f 11 VI VI f 12 VI V2 f 22 V2 V2 ' 

V1•Wpv m = W (p) ( V (1)v(m) - V(m ) V(I )) ::} W(p) 
12 1 2 I 2 12 ' 

CASE 1.2 
O nly one vecto r, say v = ( v1, v2) E {V m} is no t collinear with e, whereas the 

remaining vectors are zero vectors. We choose the coordina te system similarly 
as before; then v 1 > 0 and v2 > 0. The invariants listed below suffice for the 
determi nation of the representa tio n o f the function (2.4)1: 

(3.2) 

where 

V• MV = V ] v 1 => v 1 ( v i > 0) , 

v·v = v? + vi => v2 ( v2 > 0) , 
( i) 2 2 (i) A (i) 2 

v·A; v = A 11 v 1 + !1 12 v 1v2+ 22 v2 , 

trA; = A~? + ~~ ~~ ' 
trMA = AW, 

MW - w<P> ~v<P> 
V • pV - VJ 'V2 12 ::} V 12 ' 

A-= ( / t(i)) 
' 01(3 (a,f] = 1, 2). 

Summarizing, we compile Table 1. 

Table l. Functional basis in Case 1. 

m = 1, . . . , NI , 

i = 1, . .. ' ! , 

=> A ; 

m < n, 

p= l , . . . , P. 
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CASE2 
We assume that Vm = 0, m = 1, . . . , M . Since M = e ® e :j: 0, hence the 

eigenvalues are .A 1 = 1, .A2 = 0. 

CASE 2.1 
Among the tensors A; (i = 1, .. . , I) there is none with non-zero off-diagonal 

components in the coordinate system {x(.\' }, such that Ox1 and Ox2 coincide with 
the directions of the eigenvectors of M . Let W E {Wp}· Then the sense of Ox 1 is 
chosen in such a way that W12 > 0. Now one has to know the following invariants: 

tr A; = A(i ) + A(i) } 
11 22 , =:} A(i) and A(i) 

A
(i) 11 22 • 

trMAi = 11 , 

trw2 = - 2Wr2 =:} w12 c w12 > o), 
(3.3) 

= 2w w<P> w<P> trWWp - 12 12 =:} 12 · 

CASE 2.2 
Let B E {Ai} denote a tensor with non-zero ofT-diagonal components. The 

positive direction of Ox 1 is chosen in such a way that B12 > 0. The set of invari
ants is: 

(3.4) 

trA; =A(i)+A(i) } () 
11 22, =:} AW and A2'2 , 

t MA = A(i ) r i 11 , 

tr B = B 11 + fln , } 
=:} B11 and Bn , 

trMB = lJ11 , 

trB2 = 13?1 + 2n?2 + ni2 , =} B12 , 

(i ) (i) (i) (i ) 
tr BA = fl,, A 11 + fl22A 22 + 21]12A 12 , =:} A 12 , 

trMBWp = - n,2w1<~>, =:} W1<~>. 
By applying formulas (3.3) and (3.4) we construct Table 2. 

CASE3 

Table 2. Functional basis in Case 2. 

tr A, , tr A~ , tr MA, , tr A, A1 , 

tr W~ , tr W P W q , tr MA, W p , 

i , j= 1, . .. , ! , i < j , 

p, q = 1 . .. . , P, 1! < q. 

All vectors V111 (m = 1, . . . , M) have the form V111 = cm e. Let v E { V111 }, v = ce, 
and choose the coordinate system in such way that c > 0. Then we have 

(3 .5) v·v = c2
, =:} c (c > 0), 

The remaining invariants are derived similarly as in Case 2. 
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Summarizing all three cases: 1, 2 and 3, we obtain the orthotropic functional 
basis for the two-dimensional problem. 

The last table coincides with ZHENG's results [29] , who has however used a 
different method. 

BOEHLER [4, 5, 6] determined functional bases provided that functions ap
pearing in (1) depend only on symmetric tensors A;. In the two-dimensional 
case, Boehler's results correspond to the first row of our Thble 3. This author 
approached the two-dimensional case through the three-dimensional one by us
ing Cayley- Hamilton theorem, cf. also [21 ]. The method of determination of a 
functional basis employed in [4, 5, 6] and based on Cayley - Hamilton theorem, 
proves that the functional basis is also the integrity basis, see also the first row 
of Thble 3. 

Table 3. Functional basis for the orthotropic scalar-valued function (2.4)1• 

tr A; , tr A~ , tr MA, , tr A, A1 , 

trW~ , trWpWq, trMA,Wp , 

Vm •Vm, Vm• MV,n , Vm·Vn 1 Vm• MVn , 

V.,n·A ,vm , Vm·A,Vn , Vm•W p Vn , Vnl· MWp Vn1 • 

i , j =I , . .. , I , 

p, q = 1, . . . , P, 

m , n = 1, . .. , 111 , 

i < j , 

p < q, 

m < n , 

AoKTNS [1 , 2] determined integrity basis, in the two- and three-dimensional 
cases, for arbitrary second order tensors, under the condition of linearity of in
variants with respect to each argument. Consequently, two-dimensional reduction 
of the invariants in the case of transverse isotropy characterized by the parametric 
tensor M does not yield the invariants listed in the first and second row of Table 
3. It is worth noting that the tensor M describes only one of the five possible 
cases of 30 transverse isotropy, cf. [29]. 

Let D; E T ( i = 1, ... , I) be arbitrary two-dimensional second order ten
sors, not necessari ly symmetric. Assuming that one of the axis of the Cartesian 
coordinate system coincides with e, Adkins' integrity basis is given by 

D(i) D(i ) 
11 , Ot {J , 

(3.6) 
D (i) nU> D(i)D(j) (3 1 2 

01 {3 {301' 101 01 1 ' a, ,/ = , , 

D (i )D(k)D(j ) . . I. l 1 I 
l Ot 01{3 {3 1 ' Z, J , r.: , = , ... , ' 

D(i ) D(k) D(l) n U> i > 1. > k > l, 
l Ot Ot{J {3-y . -y l ' 

where 

and 
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4. Determination of generators of an orthotropic vector-valued fun ction 

In this section we shall derive the general form of the vector-valued function 
(2.4)2. To this end we consider the scalar function, cf. (11 , 14, 24] 

(4.1) 

linear in d. Thus we may wri te 

s 
(4.2) g(A;, W p, V m, d)= g(Jr, Js) = L 7/Js (Jr )Js' 

s=l 

where Ir are the invariants listed in 'Pdble 3, while l s are the following invariants, 
linear in d: 

(4.3) 

They are obtained by using the procedure outlined in the previous section. In fact, 
since in ( 4.1) a vector d appears, therefore we do not consider Case 2. In Case 
1 the invariants d·vm, d·Mvm, permit us to determine d uniquely. Considering 
Case 3, since 

d·Vm = d1 cm => d1, 

we must additionally examine the following two situations. 

CASE 3.1 
At least o ne of the tensors, say A E {A;}, is not singular, that is it has two 

different eigenvalues. Then the two invariants: d·vm, d·Avm determine the com
ponents d01 (o = 1, 2) of d uniquely. 

CASE 3.2 
At least one of the tensors, say W E {Wp}, is such that the corresponding axial 

vector [22] is not collinear with e. Then 

and d is determined uniquely. 
We observe that if in Case 3 the situations covered by Cases 3. 1 and 3. 2 

do not occur, then it suffices to know the invariant d·vm = d1cm, because the 
vecto r-valued function has the form f = c!Je, where c/J stands for an invariant. 

The canonical form of the vector-valued function (2.4 )2 is given by 

a-g s 8Js s 
f(A;, W p, Vm) = fJd = L 7/Js (J,.) fjd = L 7/Js (J,.)gs · 

s=l s=l 
(4.4) 

The generators gs are listed in Table 4 and coincide with the results due to 
ZHENG (29] . 
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Table 4. Generators of the orthotropic vector-valued function (2.4)2. 

Vm , Mvm , A.vm , W p Vm, m = 1, ... , M, i = 1, . .. , l , p = 1, . . . , P. 

5. Detennination of generators of the orthotropic symmetric tensor-valued 
function 

Proceeding similarly as in the previous section we take 

(5.1) h = trFC, 

where C is a symmetric second-order tensor. The scalar-valued function h has 
now the form 

s 
(5.2) h(Ai , W p, Vm, C)= h(Jr,Js) = L 4>s(Ir )Js' 

s =l 

where Ir are the invariants listed in Table 3, and .J., are linear in C: 

(5.3) trC, trMC, trCAi , trCMWp, Vm·Cvm , Vm•CVn . 

To justify (5.3) one has to consider the following three cases. 

CASE 1.1 
Let v1, v2 E {vm} be such that det[vi1>v12)] :f 0. Then by using the invariants 

v1·Cv1, v2·Cv2 and v1·Cv2 we determine C uniquely. In Case 1.2 one can also 
calculate these invariants, because v1 and e are not collinear. 

CASE 2.1 
Knowing the invariants: tr C, tr MC, tr CMW one determines C uniquely. 
If in Case 2.1 all skew-symmetric tensors disappear or their axial vectors are 

collinear with e, then it suffices to know the invariants: tr C, tr MC, because F has 
diagonal form. 

CASE 2.2 
Since the ofT-diagonal components of the tensor B are non-zero, it suffices to 

know the invariants: tr C, tr MC and tr CB. 
All in a ll , to satisfy the cases considered, the set of invariants linear in C has 

to be specified by (5.3). 
The canon ical form of the tensor-valued function (2.4)3 is given by 

l(Dh Dh) Dh ~ DJs ~-
(5.4) F(Ai, WP, vm) = 2 DC+ aCT = DC = ~ </Ys (l,. ) DC = ~ 4>s(f,. )Fs. 

s= l s =l 

The results are summarized in Table 5. The generators Fs are the same as those 
obtained by ZHENG [29]. The case considered by B OEHLER [4, 6] is covered by 
the first row of Table 5. 
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Table 5. Generators of the orthotropic, symmetric tensor -valued function (2.4 )3. 

I, M, A,, i = 1, .. . , I , 

p = 1, ... , P, 

rn ,n= l , ... , M , m<n. 

6. Determination of generators of the orthotropic skew-symmetric tensor-valued 
function 

We begin by constructing the scalar function [1 4, 24] 

(6.1) k = trTX, 

where X is a skew-symmetric tensor. Hence we may write 

s 
(6.2) k(A;, wp, Vm, X) = k(fr, A".)= L <P. (J,. )A"s' 

s= l 

where K s are the invariants, linear in X: 

(6.3) 

To justify (6.3) we have to examine the fo llowing cases. 

CASE 1.1 
X X ( 

(m ) (n ) (n) (m )) v 
Vrn • Vn = 12 V I V2 -VI V2 '=:} ./\ 12 . 

CASE 1.2 

CASE 2.1 
XW v(P) 

tr P =:} ./\ 12 . 

CASE 2.2 
tr MBX = -B12X12 , B12 > 0, =:} X 12 . 

Case 3 is treated similarly as Cases 2.1 and 2.2. 
The canonical form of the function T is given by 

The generators ofT. are listed in Table 6. They coincide with those obtained by 
ZHENG (29). 
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Table 6. Generators of the orthotropic, skew-symmetric tensor-valued function (2.4) • . 

MA, - A, M , Wp, i = 1, .. . , I , p = 1, . . . , P, 

m , n = 1 , .. . , AI , m < n . 

7. Equiva lent functional bases and sets of generators 

ZHENG [30] determined an alternative form of the functional basis and gen
erators in comparison with the results o f his first paper [29]. In [30] the repre
sentations o f functions (2.1 ) correspo nding to all an isotropy groups have been 
investigated. Then ortho tropy group is the group C2v (cf. also [21]) and the para
metric tensor K has the form 

(7.1) 

Here ea (a = 1, 2) are unit vecto rs specifying the d irect io ns o f orthotropy. By 
setting e1 = e, we readily obtain 

(7.2) K = 2M - I. 

This re lation enables the passage from our results to those due to ZHENG [30] in 
the two-dimensional case o f o rtho tropy. 

The results obtained by ZHENG [29, 30] and in this contribution can be appl ied 
to the determination of representations o f the fo llowing functions: 

(7.3) 

s =f(Ai, Wp, vm, H) , i = 1, . . . , 1, p=l , . .. , P, m =l , . .. . !Yf , 

t = f(Ai, Wp, Vm , H), 

S = F(Ai , Wp, Vm, H), 

T = G(Ai, w 7» Vm , H), t = - 1'1 

' 
where H is a symmetric, positive definite tensor. Its eigenvalues are deno ted by 
H 1 and lh, 1!1 > !!2. Now we have 

(7.4) 
H = H1e1 @ e1 + lf2e2 ® e2, 

H = lf1M + H2(I - M). 

Consequently one can easily determine the representations of the functions ap
pearing in (7.3). 

The last case is important fo r applicatio ns if H plays the ro le of a fabric tensor, 
cf. [7, 8, 9]. This tensor is some times used to model the mechanical behaviour o f 
materials as different as soils [6] and bones [7-9]. 

In the case when H 1 = lf2, H is a spherical tensor and the representa tio ns of 
functions (7.3) coincide with those de rived by K oRSGAA RD [14]; then the tensor 
H does not appear in these functio ns. 
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Friction relations for the many-sphere Oseen hydrodynamic 
interactions 

I. PIENKOWSKA (WARSZAWA) 

THE PAPER concerns weak inertia effects arising in the many-sphere hydrodynamic interactions. 
Rigid spheres are held fixed in an incompressible fluid flowing with uniform velocity U at infinity. 
The friction relations, up to the contributions of the order O(Re), whe re Re is the Reynolds 
number, are conside red on the basis of the Oseen equations. 

1. Introduction 

THE MOTIVATION for this work is to analyse the effects of weak convective inertia 
on the hydrodynamic interactions of a finite number of spheres, immersed in an 
incompressible, unbounded fluid. The present paper is a continuation of earlier 
publications on the low Reynolds number hydrodynamic interactions [1 ]. The 
O(Re) convective inertia effects, where Re is the Reynolds number of the sphere 
(based on the radius a of the spheres, the kinematic viscosity v of the fluid and 
the uniform velocity U of the fluid at infinity), are considered on the basis of 
the Oseen equations [2] . In particular, we will consider the O(Re) contributions, 
appearing in the friction tensors, describing the dependence of the fo rces F1 and 
torques Tj , j = 1, . .. , N , exerted on the spheres by the fluid, on the uniform 
velocity of the fluid. The study of the friction relations enables an insight into the 
hydrodynamic interactions between the spheres. 

To quote the literature, concerning the study of the uniform flow past a single 
sphere at low Re, we recall the paper by D ENNIS and WALKER [3], and by DENNIS, 
INGHAM and SrNGH [4]. The authors have compared the calculated drag force 
exerted by the fluid on the sphere, with the results of previous investigations and 
with the experimental data. In author's opinion, the approach to Re __. 0 is via 
CHESTER and BREACH [5] drag, rather than via the Oseen drag, as suggested by 
the experimental results of MAXWORTHY [6] . To calculate the drag force up to 
terms of the order of O (Re3), Chester and Breach used the method of matched 
asymptotic expansions. Recently, an arbitrary time-dependent motion of a rigid 
particle in a time-dependent flow of a fluid has been examined by LoYALENTI and 
BRADY [7] . The authors have calculated the hydrodynamic force acting on the 
particle, including the contributions up to the terms of O (Re). 

Referring to the examination of the small inertia effects appearing in the 
many-sphere hydrodynamic interactions, we recall the early experimental results 
of JAYAWERRA, MASON and SLACK [16]. The authors have analysed the behaviour 
o f clusters of spheres, falling in a viscous fluid. Their observations have been 



http://rcin.org.pl

232 

discussed in the theoretical paper by HOCKING [17). He has pointed out that 
some hydrodynamic phenomena, observed by the authors of the paper [16), are 
not explicable by the Stokes slow motion hydrodynamics. Subsequently, the in
fluence of small nonlinear effects on the hydrodynamic interactions of spheres 
has been discussed by HAPPEL and BRENNER [1 8). For the particular case of two 
falling spheres, these effects have been observed experimentally for the cases 
of Re > 0.25. 

Recently, the effects of weak inertia on the motion of particles in a viscous 
fluid have been reported in a review paper by LEAL [19). He has argued that 
even small departures from the Stokes flows can have a strong influence on 
the positions or orientations of the particle. Problems of the motion of a few 
particles in the presence of the bounding walls at moderate Re have been treated 
by means of a numerica l package that simulates two -phase Navier - Stokes flows 
[8). The authors of that package have taken into account full nonlinearity and the 
fluid- solid coupling. The papers concerns, however, two-dimensional flows. K1M, 

ELGHOBASHI and SrRIGNANO [9) have perfo rmed a three-dimensional numerical 
simulation of a steady unifo rm flow past two fixed spheres, at R e reaching up 
to 150. 

In the present paper we regard small inertial effects appearing in the steady 
uniform flow past N fixed spheres, at Re < 1. The problem is co nsidered on the 
basis of the Oseen equations. To deduce the friction relations, the velocity fi eld 
of the fluid is expressed in terms of the integral equation, invo lving the Green 
tensor acting o n the fo rces f1 , distributed o n the surfaces o f the spheres [1 ]. The 
properties of the Green tensor have been recently discussed by GALDI [2). The 
dependence of the Green tensor on IUI/v leads to a no nlinear dependence of 
the hydrodynamic interactions between the particles on the value o f Re. How
ever, for the particular case of the hydrodynamic interactio ns characterized by 
Rem < 1, where Rem = RIUI/v, R - typical distance between the centres o f 
the spheres, we are, qualitatively speaking, close to the Stokes hydrodynamics. 
For that regime, we confine our considerations to the O (Re) convective effects. 
The hydrodynamic interactions are p resented to be due to the mul tiple scatter
ing processes. In terms of the multiple scatte ring events, such properties of the 
hydrodynamic interactions as non-locality and non-addivity can be conveniently 
discussed . Knowing the dependence of the hydrodynamic interactions on Re and 
on the spatial configuration of the particles, we obtain the O(Re )-friction rela
tions. These relations describe the convective corrections to the respective Stokes 
friction relations. The obtained relations have the form of series expansions with 
respect to a, where a = a/ R, a < 1/ 2. 

As an example, we consider the drag and side forces exerted on three spheres, 
placed in the transversal and longitudinal directions with respect to the uniform 
flow of the fluid at infi·nity. The dependence of the associated hydrodynamic 
interactions on a is taken into account up to the terms of o rder O(a). 
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2. Multiple scattering representation of the hydrodynamic interactions 

We adopt the idea of induced forces fj , j = 1, .. . , N, distributed on the 
surfaces of the spheres [10], to describe the presence of the spheres in the flow. 
The dependence of the induced forces on the uniform velocity of the fluid U can 
be expressed in terms of the following set of integral equations [1] : 

R j(S?1) = v0(Rj (S?1)) + j df?jT[Rj (Itj)- Rj(f?j)] ·~(f?j ) 
N 

(2.1) + L jdstkT[Rj(Itj ) - Rk (17~; )] ·fk(f?k); 
kt-i . 

R j := 0 , 

where v1 is the relative velocity of the j-th sphere with respect to the fluid, R1 -

position coordinates of the points on the surface of the j-th sphere, R J - velocity 
of the j-th sphere, T(Rj - Rk) - Green tensor of the problem considered. The 
first integral on the r.h.s. accounts for the interaction of the j-th sphere with the 
fluid, the second integral is due to the hydrodynamic interactions between the 
spheres. 

The convo lution form of Eq. (2.1) reflects the non-local character of hydro
dynamic interactions. For the present purposes it is convenient to work with the 
Fourier transform of the Green tensor [11]: 

(2.2) J rlk exp(ik ·r) ~~ 

T(r) = (211-)3 JL(k2 + iv - 1 U ·k) (t - kk) , 

where k = k/J kj, k = jkj, tt - the dynamic viscosity of the fluid. 
The dependence of the Green tensor on IUI /v leads to the nonlinear relations 

between the induced forces fj and Re. These relations can be expressed in terms 
of admissible sequences of the hydrodynamic interactions. To deduce the multiple 
scatttering representation of the respective interactions, we follow the procedure 
used by YosHTZAKJ and Y AMAKAWA for the case of the Stokes hydrodynamics [12]. 

After the two steps: 
(i) expansions of v1, r1 in terms of the normalized spherical harmonics, 
(ii) integrations with respect to the angular variables st1, 

we arrive at the set of algebraic equations, relating the expansion coefficients 
fj,l,m, of the induced forces to the expansion coefficients Vj,l,m, of the relative 
velocities: 

N 

(2.3) Vj,11m1 L T:~:~(Oj ) •fjhm2 + L L T:~:~ (Rjk ) •fkhm2 , 

I 2m2 kf' j I 2m2 
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where rj = Rj - R~, rj = r1(a , .ltj ), Rjk = R2 - R~, and R9 -position of the 
centre of the j-th sphere, 

(2.4) Vj,/m = ' 
{ 

- U 

0, 
l = 0 } · 
l ~ 1 

Tensors T:~:~ (Oj) are called the self-interaction tensors, representing the particu
lar type (specified by the indices /1 mt. 12m2) of influence of a single sphere on 
the surrounding fluid; tensors T:~:~ (Rjk) denote the mutual interaction tensors, 
describing the interaction between the j-th and k-th spheres, respectively. D e
pendence of the above tensors on the spatial configuration of the spheres can be 
presented in the following form: 

(2.5) 

where spherical polar coordinates Rjk(IRjk!, r21k) are used. 
Next, we formally solve the basic set o f the algebraic eq uations by ite ratio n, 

(2.6) fj,t1m1 = :L 1':~:~ (01 ) ·Vjhm2 

127112 

N 

- :L :L :L :L T:~:~ coj ) ·T:~:~ (Rjk) ·'~':;:;co~c ) ·Vk,t4m 4 + . .. , 
k 'f j / 2m2 /31113 /4 m 4 

where T
1
127112 is the inverse self-interaction tensor. The inverse tensors can be 
' ) 711 1 

expressed by the following approximate formula [1]: 

(2.7) 

where T d are diagonal, and T od - off-diagonal in l (it means, they are of the 

form T: ::~(OJ ) and T:~:~ (Oj ), where /1 :f 12, respectively). Thus the expansion 
coefficients of the induced forces are expressed in terms of admissible sequences 
o f the hydrodynamic interactions. These seq uences, depending on the properties 
of the interaction tensors involved, present the allowed types of coupling of the 
spheres to the fluid. 

3. Weak inertial effects 

Considering the weak inertial efTects, we focus o ur attention on the low Re 
properties of the hydrodynamic interaction tensors. In paper [1 ], the dependence 
of the tensors o n Re is expressed in terms of the modified Bessel functions /11 + 1; 2 
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and l\.11 + 112. From the properties of the Bessel functions for Re ---+ 0 it follows 
that the Stokes self-interaction tensors are equal to 

(3 .1) Tlpn 2(Q ·) _ 1 1 K l1 m 2 
l tm t J - 4yJrCLJ..l (ll + 1/ 2) 1,m 1,00 ' 

where 
Kl2m 2 = -il1-l2- l3 J dk(l _ kk)Y: -m1 ym2y-m3. 

l1 m 1 .l3m3 l1 l2 l3 

It was shown in the paper [12), that K:~:~ , /3m3 :f 0 for the following sets of indices 

(3 .2) n = 0, 1, 2, ... 

We note that the Stokes self-interaction tensors are diagonal in l. 
The Stokes mutual interaction tensors, under the assumption of Rem ---+ 0, 

can be obtained in the following form: 

•F4 [-m, I,+ /2 +m+~; I,+~ · /2 + ~; C~J , ( R:J] , 
where ll1 + l2 + 2m - l3 l = 0, 

and F4 is the hypergeometric series. 
The allowed values of the respective indices read: 

(3.4) 
(i) 

(ii) 

1n = 0, l, +l2=l3 , 

1n = 1, lt + /2 + 2 = '3· 

From (3.3) we obtain the following leading order dependence of the interaction 
tensors on Rj k: 

(3 .5) 

This property is characteristic for the Stokes flow regime [1 2). 
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The next step is to consider the quadratic dependence of Fj and Tj on U. To 
that end, we have to take into account the O(Re) contributions to the interaction 
tensors. First, we have the self-interaction tensors, being o f the leading order 
of O(Re), 

T lzmz (O ) _ Re [o K lzmz 
lz+ 1mt J - 8J3 ,(iraJ.t(l2 + 1/ 2){!2 + 3/ 2) z lz+ 1mt.IO 

{3.6) + ~ (Vx- iVy) K:2:~m 1-1 + ~ (Vx +iVy) K :z::m Ill + ···' y 2 2 l o v2 2 I • 

Tlzmz (0 ) = - T iz+ l-mt{O ). 
lz+ 1 mt J lz - mz J 

They are ofT-diagonal in l . Then, the O(Re) contributions appear in a series 
expansion of the tensor T88 with respect to Re [1]. 

The mutual interactio n tensors, be ing of the leading order of Re, under the 
assumption Rem < 1, read: 

(3 .7) 
lzmz _ Loo t2m2,m _ i 1- 13 Re J 27r (2/3 + 1) 

T - T - - (J(-m3) 
ltmt .IJmJ m=O ltmt, l3m3 16attF(l1 + 3/ 2)f{l2 + 3/ 2) 

· { ~~>r J21· + 1 K:~:~ ,rs (- 1 r(J(-s) ( ~ ~ ~) [ hfJz ( -~13 ~ : ) 

- (D3.- tDy) ( 13 1 7
. ) + (D1 . + ,Dy) ( 13 1 r)]} 

-m3 1 s -m3 - 1 s 

• ( _!!__ ) l t+lz f (L1 + /2 + 2m + 1 /2) ~(1 1 + /2 + 1n + 1/ 2) , f(() 
Rjk m=O m . l(Z +l) 

·F, [ -m,t,+ /2 + m + ~; /1 + ~ · /2 + ~; ( ~~:J , ( ~~~Jl + , 

where ( :::) is the Wigner 3 - j symbol [15], 

11, +l2+2m - l3l = 1; 

r= l fo r l3= 0; T=(l3 - 1, 13 +l) for /3~ 1 ; 

(J (s) = (- 1)3s+ lsi)/2. 

In contrast to the Stokes regime, we have here the fo llowing sets o f admissible 
indices: 

(i) m. = 0, ll + 12 - /3 = 1, and lt+ l2 - l3 = - 1, 

(3.8) (ii) m = 1, [1 + [2 - [3 = -1 ' and /1+/2- /3 =-3, 

(ii i) m = 2, /1 + /2 - /3 = - 3. 
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The above tensors exhibit the following leading order dependence on R jk: 

(3.9) 

We have also the second source of the contributions to the mutual interaction 
tensors, being of the order of O(Re): a series expansion of the tensor Tgg(Rjk) 
with respect to Rem [1]. 

4. Friction relations 

In the present section we wi ll examine the friction rela tions which express the 
forces and the torques, experienced by the spheres, as quadratic functions of the 
fluid velocity U. To that end, the forces and torques are presented in terms of 
the respective expansion coefficients of the induced forces: 

( 4.1) 

where 

Fj = - fj,OO , 

1 

Tj = € : L (rj )-mfj,1m, 
m=- 1 

Using the result (2.6) for the expansion coefficients, the friction relations can be 
written in the following fo rm: 

N 

F J = L. TV 
€. j k ·U, 

(4.2) 
k= 1 

N 

T J = L nv U ~jk • , 

k= l 

where €.j'; denote self-, and €.3'~· · j 'f /,;, the mutual friction tensors. 
The above relations are of a structure similar to that of the respective Stokes 

fric tion relations, the difference consisting in the properties of the friction tensors. 
The tensors involved can be presented as a sum of the Stokes contributio ns and 
the corrections due to weak convection. That sum accounts for the influence of 
the spatial configuration of the spheres on their hydrodynamic interactions. 
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The translational self-friction tensors are equal to 

TV - "' - - - - ,1 (4.3) f_11 = Tj + L Tj ·Tjt ·Tt ·Ttj ·T1 + 1 i 
lf j 

- "' [I- - I] +Tj · L T11 ·Tt ·Ttj + T jt ·Tt ·T1i 
IF) 

The Stokes dependence of the friction tensor on a is described by the first 
two terms, being of O(a0) and O(a2), respectively. The Stokes hydrodynamic 
interactions between two spheres contribute to the above tensors. The remaining 
terms express the inertial corrections, being o f 0 ( a 0), 0 (a 1) and 0 ( a 2) , respect
ively. They are due to two and three-sphere interactions. The non-additivity of 
the interactions appears in the inertial corrections through the terms of order 
O(a 2) . The self- and mutual interactio n tensors entering the expression for f.Jt 
are equal to 

(i) the self-interaction tensors 

(4.4) 
Tj = 6npa I , 

Tj = 6-rrJUL [
1
3
6 

(31 - 00)] Re, 

(ii) the mutual interaction tensors: 

T11.: = 6 
1
R· [ -4

3 
(1 + e.i~.-eik)] , ei" = Ri~.-/I Rik l, 

1rf1. ]k 

1 _ 1 [ 3 ( ~ ~ ) 3 {1 ~ / m 
(4.5) T jk - - 67rJLa 16 31 - UU + fi4V 5 m~ l .:(-m)Lt(m )) 1 (J2jk) 

- Ji( /
6
/f ,.~,' (-m )L3(m) l '3"' ( !ljk)] Re, 

where 

( 
q 1 1" ) [ ~ ( q 1 1' ) Lq(m) = Lir~K5 (- 1 Y .: ( - s) JiUz _ O ~ 

,.s 0 0 0 m , 

( ~ . ~ ) ( (j 1 1') ( ~ . ~ ) ( q 1 '/' )] - u X - tu y + u J" + l Uy , 
- m 1 s - m - 1 s 
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and tensors Ks are given by YosHtZAKl, and YAMAKAWA [12): 

Ko = ~( - exex - eyey + 2ezez), 

K1 = exez + ezex - ieyez - iezey , 
K2 == e..~: ex - eyey - ie:J;.ey - ieyex , 

K_m = K~ , 

239 

where the complex conjugate is denoted by an asterisk, and (ex. ey, ez) is an 
external Cartesian coordinate system. 

The first two tensors describe, for the particular case of a single sphere, the 
Stokes and Oseen contributions to the drag force, exerted by the fluid on the 
sphere. 

The translational mutual friction tensors read: 

m m 

- ~ ~ [ I - - 1 l - -, ~ ~ - -+Tj • ~ ~ Tj1 ·T1 ·Tu, + Tjl ·T1 ·Tn ·Tk + T 1 • ~ ~ Tjl ·T1 ·T1k ·Tk 
l 'f- k l 'f- j l'f- k l'f- j 

- ~ ~ [-1 - - -,] +Tj • ~ ~ T11 • T1 ·Tn ·Tk + T, ·Tn ·Tk 
l 'f- k lt-j 

- Tj • L L L [Tji 'TI •T}11 •Tn •Tnk 
l'f-k n 'f-1 n'f- j 

1 - - --- 1] -+Tjl ·T1 ·T1n ·Tn ·Tnk + T ji'TI 'Tin ·Tn ·Tnk ·T,~; + . . . . 

The Stokes contributions to the friction tensors are described by the first two 
terms, being of O(cr) and O(cr2), respectively. For that regime, the hydrodynamic 
interactions of two and three spheres occur. The remaining terms are due to the 
inertial effects. They contain two, three, and four-sphere contributions. In the 
Stokes regime, the property of non-additivity appears starting from the terms of 
O(cr2), whereas in the O(Re) regime, the three-body effect enters at O(cr 1) . 

The mutual friction tensors ~J~v are built up of the following interaction 
tensors: 

(i) the self-interaction tensors: 

T1 and Tj, given by the expressions (4.4) , 

(4.7) Tl;} (Oj ) = J67r !-LaRe [J2Dz8rno+ (Dx- iUy ) Dm(- l) + (Dx + -i Uy)om(I)J I, 

T??,, (Oj ) = - J6rr1wRe [J2ifz8mo+ (Dx+iUy)<\ n(- 1)+ (Dx- iUy ) om(l) JI; 
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(ii) the mutual interactio ns tensors: 

Tjk and Tjk , given by the expressions (4.5) , 

T6Q'(Rjk) = LT~tm3( !Rjk!)Ytm3 ( f2jk ) + 2::Tb0,3m3(IRJk i)Y3m3(f2jk), 

where 

T/,Q:l m, = 3~/1 ( R:,) 2 K!XJ:J m, + . .. ' 

T6Q,3m3 = _21 (Ra .) 2 K{;)3m3 + ... ' 
Ofl j k ' 

(4.8) J1?,
1
(Rjk) = - T6Qm(Rjk), 

TJk = 6Re (Ra ) 2 [ ~ t £( -m)Lt (m)Ylm(f2jk) 
1r)W Jk 2v 5 m=- l 

- ~!¥ mt E(- m)L,(m)l',m(!ljk)] . 

In view of the properties of the considered hydrodynamic interaction tensors, 
the 0 (Re) contributions to the friction tensors tJ~v do not obey the symmetry 
relations 

(4.9) ( TV) ( TV) t )k = ~kj . 
pq qp 

characteristic for the Stokes contributions [1 3]. 
The rotational self-friction tensors are of the fo llowing form: 

( 4.1 0) t~v = - e: t (rj )-m ['f??,l(01 )·LTit ·Tt ·Tt1·Tj 
m=- 1 l'fJ 

+ I::t:: 1(0i ) · l::'f??n1(Rjt) ·Tt ·T}1 ·T;l + ... , 
mt /'f j 

where 

T- l m t (0 ) 6 r::: K- l m1 
I j = vnJw 1 oo + .... m m, 

There is no Stokes contribut io n to the approximation considered. The inertial 
contributions consist of two terms of o rder O(a2), due to two-sphere interactions. 
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It is seen from the properties of the tensors ~(Oj ) that 

1 

(4.11) e: : L (rj )-m ~(Oj) ·Vj,OO = 0. 
m =-1 

Hence we have recovered the well known result that, due to the symmetry of the 
problem, the to rque acting on a single sphere vanishes. 

The rotational mutual friction tensors read: 

(4.12) 

+ i'??n(Oj ) • L LTjl -'f1 •T 1k •l\ 
I# l'f j 

~ - l m 1 ~..rl\0 - I - ] + 0 Tl m (Oj ) • L 0 1 lmi (Rjl) •TI 'Tik •Tk + .. . . 
m 1 l'fk l'f j 

The Stokes contributio ns to the friction tensors, due to two-sphere interactions, 
are given by the first term, being of O (a 2) . The remaining four terms describe the 
convective inertia efTects, being of O(a1) and O(a 2) , respective ly. They contain 
two- and three-sphere co ntributions. The non-additivity comes in at O(a 2) . 

To conclude: the weak convectio n e tTects enhance the hydrodynamic coupl ing 
of the spheres to the flu id. In the approximation considered, this enhancement 
consists in the fo llowing effects: 

(i) The Stokes interactio ns invo lve not more than three spheres, the O(Re) 
interactions - fo ur spheres; 

(ii) the non-additivi ty effects appear at O(a2) for the Stokes regime, but at 
0 (a 1) fo r the Oseen regime; 

(ii i) the tensors t jlv, vanishing for the Stokes flows, occur in th e Oseen flows; 

(iv) the contribut ions to f..Jt, dependent on the angular, but not on the rad ial 
variables, absent in the case of Sto kes interactions, are generated in case of the 
Oseen interactio ns. 

5. Three-sphere effects 

As an example, the forces acting o n three rigidly held spheres are calculated for 
two particular configurations of the spheres. Consider first three spheres with the 
centreline perpendicula r to the flow direction (IRd = IR23I = R, U = (0 , 0, U)). 
U p to the te rms of the order o f O(a ), the hydrodynamic interactio n tensors 
required read: 
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(i) the self- interaction tensors 

T j = 67rJW1 , 
(5.1 ) 

TJ = 61r JW [ 
1
3

6 
Re(3er ex + 3eyey + 2ezez)] , 

(ii) the mutual interaction tensors (a ~ 1/ 2, Rem < 1) 

I. P IENh:O WSh:A 

(5.2) 

1 3 
T:2 = T:3 = T13 = - -6 - 16Re [3exe2. - eJ.eZ + 3eyey- ezex + 2ezez] ' 

7r JW 

1 3 
T11 = Tj1 = Tj2 = - -

6
- -

6
Re [3exex + exez + 3eyey + ezex + 2ezez)], 

1rJW 1 

in the external Cartesian coordinate system (ex, ey, ez). 
The obtained d rag forces, exerted by the flu id on the spheres, are given by 

the fo llowing form ulae: 

(i) fo r th e side spheres: 

(Ft)z = (F3 )z = 61r11JlU [1 + ~Re - ~a + ~Re (1- ~~a)+ ... ] , 

(
5

.3) (ii) fo r the central sphere: 

(F2 )z = 61r1WU [1 +~Re - ~a + ~Re (1- 3
: a) + .. .J. 

The inertia l contributions to (F1 )z and (/'3)z are due to the fo llowing types of 
interactions: 

(i) self-in teraction of a single sphere: 3/8Re, 
(ii) pair-wise interactions, independent of R: 3/ 4Re, 
(iii) R -dependent pair-wise inte ractions: - (108/ 64)Rea, 
(iv) no n-additive interactions: - (63/ 64)Rea. 
For the vecto r component (F2)z, the respective te rms are qualitatively similar, 

3
Re ~Re - (

72
) Rea and - (

27
) Rea . 8 ' 4 ' 32 32 

In the expressio n (5.3), the first two terms describe the drag force, experi
enced by a single sphere; the remaining terms describe the decrease of the drag 
forces due to the hydrodynamic interactions between the spheres. The vector 
components (P; )x, (Fi )y, i = 1, 2, 3, representing the side forces, read 

(Fl)x = - (F3)x = - 61r1wU [~Re (1 - ~~a) + ... ]. 
(5.4) (F2)x = 0, 

(F;)y =O, i =1 , 2, 3. 
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We note that the two side spheres are repelled. The side forces contain pair-wise 
contributions equal to - 3/ 8Re (3/ 8Re, respectively), and non-additive contribu
tions, equal to (45jl28)Rea ( - (45/ 128)Rea, respectively). 

Let us now consider three spheres in line with the flow di rection (IRd = 
IR23I = R, u = (0 , 0 , U)). 

Here the respective interaction tensors read: 
(i) self-interaction tensors are given by the formulae (5.1 ), 
(ii) mutual interaction tensors (a ~ 1/ 2, Rem < 1): 

(5.5) 

1 3 
T jk = -

6 
-a-

4 
[exe.c + eyey + 2ezez] , 

1f)la 

1 3 Tl2 = TlJ = T~3 = - -
6

- -
8

Re(3exex + 3eyey + 2ezez), 
1fJ.la 

T l - Tl - T l - 0 21 - 31 - 32 - 0 

The obtained drag forces are given by the formulae, 

(i) fo r the leading sphere: 

(5.6) 

(FI) z = 61r j.tnU [1 + ~Re - ~a + ~Re ( 1 - ~a)+ ... ] , 

(ii) for the central sphere: 

(F2)= = 61r J.wU [1 +~Re - 3a +~Re ( 1 -
3
} a) + . .. ] , 

(iii) fo r the rear sphere: 

[ 
3 9 63 ] ( F3)= = 61r pnU 1 + 8Re - 4a - T6Rea + .... 

The inertial contributions to the drag forces, quadratic in the fluid velocity, are 
generated by: 

(i) self-interactions of the respective spheres: 3/ 8Re, 
(ii) pair-wise interactions, independent of R: 3/ 2Re, 3/ 4Re, 0, respectively, 
(iii) R-dependent pair-wise interactions: - 27 / 8Rea, - 9/ 2Rea, - 27 / 8Rea , re-

spectively, 
(iv) non-additive interactio ns: -27/ 8Rea, - 27/ 16Rea, - 9/ 16Rea, respect

ively. 
Let us note the differentiation of the drag fo rces, exerted by the fluid o n the 

spheres. The side forces are equal to zero, due to the symmetry of the considered 
spatial distribution. 

The above examples illustrate the properties o f the frictio n tensors f_Tiv and 

f_]~v up to O(a 1) . We note that the multisphere interactions, giving rise to the 
drag and side forces, canno t be described in a pair-wise additive scheme. The 
approximations in the Oseen equations can in principle be refined, hy using the 
results presented in a series of papers by FrNN (14], for a particular class of flows. 
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Stiffness loss of laminates with aligned intralaminar cracks 
Part I. Macroscopic constitutive relations 

T. LEWINSK.I and J. J. TELEGA (WARSZAWA) 

THE PAPER deals with analysis of reduction of the in-plane effective elastic moduli of the ]0~./90~ ] . 

laminates weakened by al igned cross-cracks in the 90°-layer. A regular crack pattern is assumed. 
The case of de nse crack distribution is modelled by (ho, lo) approach, while the case of arbitrary 
crack density cd is described by a more accurate model (ho, 1). Both models have been derived in 
our paper 11 01. Closed-form formulae describing decaying curves E t(cd), Ez(cd), vt2(cd), Vzt (cd), 
G tz(cd) are found by solution of the local proble ms for both models. 

1. Introduction 

CROSS-PLY LAMINATES of the [0~1 /90~] s type incur matrix cracking, interlaminar de
lamination and fibre breakage. The matrix cracks observed are straight or curved, 
cf. GROVES et al. [3] . The aim o f the present paper is to assess the loss of effec
tive elastic characteristics of the laminates with the straight matrix cracks going 
transversely through the whole thickness of the 90°-plies. The influence of crack 
curving as well as the onset of delamination is neglected. The cracks are assumed 
to be al igned. The present paper is mainly concerned with the case when these 
cracks are equally spaced. The assumption seems to be non-restrictive, since ma
trix cracks form usually regular patterns, cf. GARRElT and BAILEY [2], HrGHSMrTH 
and R EIFSNIDER (6], GROVES (4] and GROVES et al. (3]. The method (ho , l) to be 
used has been proposed by us in [9, 1 0] and mathematically justified in TELEGA 
and LEWINSKJ [1 5]. This method makes it possible to evaluate reduction of all 
components of the ~tiffness matrix of the three-layer balanced (transversely sym
metric) laminates with transverse cracks in the internal layer. 

The aim of this part of the paper is to find closed-form formulae interrelat
ing effective Young's moduli £ C), £ C2, efiective Kirchhoffs modulus c c,2 and 
Poisson's ratios 11c a/3 with crack density cd . The second part of the paper [11] is 
devoted to placing these results into the available literature of the subject as well 
as to compare the theoretical predictions of the (h0 , l) model with experimental 
data. 

The following conventions are employed: small Greek indices (except for .:) 
run over 1, 2, while Latin ones (except for h) take values 1, 2, 3; h labels quan
tities of the homogenized description. Summation convention concerns repeated 
indices at difierent levels. Sometimes the same letter denotes an index and a par
ameter (e.g. a, (3, , , 8, etc. defined in the Appendix), which should not lead to am
biguities. The system of notations is compatible with that employed in LEWINSKI 
and TELEGA [9, 1 0]. Some auxiliary quantities are defined in the Appendix. 
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2. A laminate composed of orthotropic plies. The case of short cracks parallel 
to the axis x2 

The aim of this section is to exhibit simplifications in the homogenized de
scription of in-plane deformations of the cracked laminate considered in [10] 
which take place when: 

i) the plies are orthotropic, and 
ii) the cracks weakening the internal layer are aligned. 
Assume that the axes x 1, x2 are axes of orthotropy. Cracks are parallel to 

the axis x2, cf. Fig. 1. In view of the orthotropy assumption, the only non-zero 
components of the stiffness are 

A aa/3,13 A a,t3a,t3. A aa . A ao/3,13 Aa,t3a,t3 
V ) V ) VtU ' VU ' VU ) 

A a a A oa/3,13 Aa,t3a,t3 . A . a 1 2 
uw> u • u • w' Cl'. , fJ = ' · 

(2.1) 

Xz 

I ·-
[\ 

VI I I I I 

< 
I I I I I I 

-

I I I I I 
'\ I I I 

x, 

r i G . 1. Laminate with short aligned cracks. 

Consequently, the only non-vanishing components of the tensors A ~i3A11 , cf.([l 0], 
Eqs. (4.9)), are 

(2.2) A aa/3,13 A oa/3,13 A a,t3a,t3 = J\ o,t3o,t3 1a!3C>{3 = \ a,t3a,t3 
I 1 2 1 1 V , I 2 I vu . 

Note that A 11 22 - A2211 but 11 1122-1- A22 11 
I - I 2 T 2 · 

The compo nents of the vectors N, T are (0. 1) and (1 1 0), respectively, (cf. 
[1 0], Fig. 1 ). According to the definition ( 4. 7) given in [1 0] of the tensor of crack 
deformation measures e: F , one finds: 

(2.3) F 0 € 22 = , .\ = 1, 2. 
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Thus, regardless of the type of the scaling, the homogenized constitutive relations 
have the form (cf. [10], Eqs. (4.5), (5 .36)) 

N il- Allll ( "' C"h + "' C"h a cF ) h - 11 '-'11 '- 11 '-'12c 22 - f-' 11 ~ 11 ' 

(2.4) N 22 11111 ( h h a F ) h = 1 11 O' J2c 11 + 0'22c 22 - 1~21 c 11 , 

N 12 = 2A 1212 (.sh _ O:.s F) 
h 11 12 12 ' 

where .s~13 = .s~13 (.s ~1 , .sq2, c~2); the coefficients involved in (2.4) are defined by 

Eqs. (A.l). We cannot expect that in general c{.Ot = c{.Ot (c~1 ,.sq2) and .sf2 = 
.s f2 (.s ~2), since the cracks considered are of a unilateral type. 

3. Parallel cracks: effective characteristics according to the (h0 , /0) approach 

From now onward we shall deal with a laminate composed of orthotropic plies 
and weakened by straight-line cracks in the internal layer, lying at equal distances 
l. The crack lines coincide with x 1 = nl lines (n = 1, 2, .. . ), cf. Fig. 2. The aim 
of this section is to find effective stifTnesses of the laminate considered resulting 
from the (h0 , /0) method discussed in ref. [1 0), Sec. 4. This method follows from 
the in-plane scaling: h ~ h, lOt ~ clOt , and hence it will also be called the in-plane 
sca ling approach. Results of this model apply for laminates with cracks of high 
density. Predictions of the model will be independent of the value of the I j h 
ratio. 

FIG . 2. Laminate with infinite aligned cracks. 

The key to homogenization is to find solutions to the local problem ( P1':x) 
formulated in Ref. [1 0), Sec. 4. Geometry of the periodicity cell is here simple, 
cf. Fig. 3. For the sake of simplicity, the crack F is located so that it divides the 
cell into two equal parts. 
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F 

l, 

~h I ~h 
Y, 

l = 2 ~h 

FIG. 3. Basic cell of periodicity. 

Since the crack F lies along the axis y2, one can guess that the sol ution to 
the basic cell problem ( P1~) of Sec. 4 in [10] does no t depend on y2• Similar 
problem has been solved by LEWINSKI and T ELEGA [8], hence only the o utline of 
the derivation will be given here. 

The unknown fields of (P1~) are vJ(y,), ttl(y,) and vd(Yt), 1ti(Yt)· It turns out 
that these two pairs of funct ions a re solutions of the independent ( decoupled) 
stretching and shearing problems. 

3.1. Solution of the loca l st retching problem. Stiffnesses A~<>PP 

The unknown fields are vf (y1) and u l (y 1 ) . Let ~ = yJ/ h be a no n-dimensional 
variable;~ E (0, 2£?); 2£? = l j h. Analysis of the local equations of (F1~) shows 
that both unknown fields are p iece-wise linear in ~. i.e. 

(3 .1) 1 { c 1 ~ + cz , 1 { E 1 ~ + Ez , 
V I = u 1 = 

D 1 ~ + Dz , F1 ~ + F2 , 

~ E (0, e), 

~ E (g , 2g). 

The stress resultants (cf. [10], Eqs. (4.11)) are given by 

11 1 [ ltltdv,' lllldu,tl + nil N0 = - A - + A2 -
h 1 d~ d~ 0 , 

(3.2) 
11 1 [ tllldvJ lllldtt l] + 111 Lo = - !12 - + A4 - o ' 

h d~ d~ 

where nb1, L61 are defined by Eqs.(4.14) in Ref. [10]. 
The constants ea, Da, Ea, Fa are interrelated according to: 
• periodicity conditions 

(3.3) 
vf (0) = v} (2 l? ), 

NJ1(0) = NJ1(2g) , 

7d (0) = td (2g ), 

L61(0) = L6 1(2g); 
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• switching and contact conditio ns 

vf(Q- 0) = vf(Q + 0), 
(3.4) 

(3.5) 

Analysis of the above conditions leads to 

I 

Here ( · ) = ~ j ( · )dy1• Since u 1 is periodic, cf. Eq. (3.3)2, one can make use of 

0 
the relation: (!f1(u

1) ) = -[u\]/l. 
Hence we find a non-zero component of the crack deformation tensor (2.3) 

(3.6) 
p __ [uj]_{o, 

Eu .- - , - - o 
FII E'" 

if Eh :::; 0 (the crack is closed) , 

if Eh > 0 (the crack is open), 

where, cf. Eq. (4.14)2 in Ref. [1 0) 

(3.7) 
1;->0 - Allll/Allll 

11 - v r l4 ' 
E = 111 / A 1111 

h 0 V l 

or, using relations (R ef. [1 0], E q. ( 4.12)2, ( 4.12)1 ), (A.l ) we can write 

(3 .8) 

Acco rding to the fo rmula ( 4.5) in Re f. [1 0) and Eqs. (2.4 ), we arrive a t the ho
mogenized constitutive rela tio nships for axial stress resultants 

(3 .9) 

where 

(3.10) 

fo r Eh :::; 0, 

fo r Eh > 0, 

A aa/3/3 = A aa/3/3 _ A a-a- 11A li /3/3 (A II I l ) - t 
c 1 2 3 4 . 

Re la tio ns (3.9) are continuous alo ng the line Eh = 0. 
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By virtue of the symmetry re la tions (cf. (10], Eqs. (4.9) 1 and (4.12)1) 

(3 .11) 

we have 

(3 .12) A oo{3{3 = A {3{3oo 
c c , 

hence the symmetry A~211 = A~ 122 holds also when the crack is open. 
It turns o ut to be helpful to write the components A ~of3!3 in the form 

(3 .13) 

the non-dimensional coefficients a;..IJ. and {3,,~, being defined in the Appendix. 
In the " technical" no ta tion relationships (3.9) should be rewritten as fo llows: 
• in the case of closed cracks (Eh ~ 0) 

(3.14) 

• in the case of open cracks (Eh > 0) 

(3 .15) 
V

C £Cl [e-h l 12 ...1 1 '- 11 . 

E c e-h 
J2 en 

The o rthotropic constants for the case of closed cracks are given by 

(3.16) 
A1 122 

1112 = ----hi-1 , 
AI 

A 1122 
- I 

v21 - A2222, 
I 

The components vf2, 1121 and E~ are defined in te rms of A~of3!3 in a similar 
manner. 

3.2. Solution of the shearing local problem. Stiffness J\~212 

It turns o ut that the unknown fields vd, ui are piecewise linear functio ns: 

(3 .17) 
I { C J~ + C2, 

v2 = 
Dt~ + D2 , 

The stress resultants, cf. ([10], Eqs. (4.11)-(4.14)) 

N
0
21 = ]_ [11 2121 dvd + A2 121 dui ] + 1121 

h I d~ 2 d~ 0 ' 

(3.18) 

= ]_ [ A2121 rlvd + A2121 dtti] + 121 
h 2 rl~ 4 rl~ 0 , 

~E (O,g) , 

~ E (g, 2g). 
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are piecewise constant. T he periodicity conditions read: 

(3.19) 
vi{O) = vi(2p), 

NJ1(0) = NJ1(2p), 

while the switching conditions are 

(3.20) 
vl{p - 0) = vl(P + 0) , 

NJ1(p - 0) = NJ1(g + 0), 

Using (3.17)- (3 .20) one finds 

ui(O) = ui(2p), 

L61(0) = L61(2p), 

l 21 

( y (1) - 0 'hi u ) - - 2;\2121 . 
4 

Due to the orthotropy we have A~121 = A~121 . By virtue of the relation L61 = 
2A~121c~2 and Eq. (4.6) in [10], one finds 

(3 .21) c-F - e-h 
c 12 - c 12. 

Therefore the homogenized constitutive relation (2.4)3 assumes the form 

(3.22) A 1212 j A 1212 = 1 _a 
c u , 

where a is defined by (A.1)5 . According to (A.2) we have 1 - & = cl / h. The 
efiective IGrchhofi moduli of the cracked and uncracked laminate are 

(3 .23) G =A 121 2/ 2h 12 u , 

3.3. The homogenized potentia l 

Having found relationships (3.9) and (3 .22), one can express the ho mogenized 
constitutive relations in the hyperelastic form, cf. [10], Eq. (4.18) 

(3.24) 

the potentia l vh being defined by 

(3.25) { 
vo 

V - h 
h - vc 

h 

for Eh ~ 0, 

for Eh ~ 0, 

where, cf. [10], E q . (4.22) 

2VO = """' A aa/3{3 e h e- h + 2A 1212 [(eh )2 + ( Eh )2] 
h ~ · I aa'-{3{3 c 12 21 ' 

a,/3 

2Vh = L A~a{3{3E~a€~{3 + 2A!212 [(E~2)2 + (d 1)2]. 
(3.26) 

a,/3 
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The formula (3.26)2 can be rewritten as follows 

(3.27) v c = vo _ ~A tttt Fo (E )2 
h h 2 V )) h " 

By virtue of (3.27) one can readily prove that Vh is of class C 1 (not C2) , the result 
already known from Sec. 4 of Ref. (1 0) . We see that the line Eh = 0, cf. (3.8)2, 

(3 .28) 

is a line of discontinuity of the second order derivatives of the potentia l Vh, cf. 
Fig. 4a. This figure characterizes the (0° f 90)]s glass/epoxy laminate examined in 
detail in Sec. 3.1 of the second part of the present paper (11 ). 

N~2 

F IG. 4. a. (e ~1 , e~2 )-p lane; condition £ ,. > 0 for the crack ope ning in the glass/epoxy [0°, 90~ ], 
laminate tested by HIGIISMrr u and R ELFSNIDER [6]; Eh = 0. 4298e~1 + 0 . 1 286e~2. b. (N1~ 1 , N~2 )-pl ane. 

Condition N,. > 0 for the crack opening; the same laminate, .N, = 0.632N1~ 1 + 0.0408N1~. 

3.4. Inverted form of the homogenized constitutive relations 

The constitutive relations (3.24) can be inverted. We shall now find this inverse 
form. The main problem reduces to inverting relations (3.9). For this purpose we 
introduce here matrix notation. 

Let us define the following vecto rs and matrices 

(3.29) 
[ At t tt A 1122 ] 

Am = m m m = 1 or 
A~22 A~22 ' 

c, 

E = [ h h ( cll ,c22 ' N= [N tt N22]T 
h ' h . 
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The constitutive relations (3.9) can be written as follows 

(3.30) 
for k·e: ::; 0 , 

for k· e: ~ 0. 

This relation is continuous because Vh is of class C 1; hence 

(3 .31) 

Let us set e = Ce:, e = (e1 , e2). The inverse re lation reads 

(3.32) 

Hence (3.30) assumes the form 

(3.33) 

where 

(3.34) 

Consequently 

(3 .35) 

where 

(3 .36) 

{ 

B 1e, 
N= 

Bee, 

c- I = _l_cr. 
det C 

for e1 ::; 0, 

for e1 ~ 0, 

for e 1 ::; 0, 

for c 1 ~ 0, 

Our aim is to express condi tions P1 < 0 or P 1 > 0 in terms o f N. To this end let 
us define a new vecto r [ = 0 1 N. This defi nition does not depend o n the sign of 
e1• We exp ress (3.35) in terms of [: 

(3.37) 

where 

(3.38) 

One can prove that 

(3 .39) 

{ 
£, 

e -
P£ , 

o r 

p _ detA 1 
11 

- detAc 

fo r e 1 ::; 0, 

fo r e1 ~ 0, 

and pl2 = 0. 
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The last equality is crucial he re. It is a consequence of contin uity requirements 
(3.31 ). The relation (3.39)1 implies P11 > 0. Hence we conclude that 

(3.40) 
for e 1 ::; 0, 

for e 1 2: 0, P11 > 0. 

The relations given above show that sign e1 = sign £1. which makes it possible to 
rewrite (3.37) in the form 

(3.41) CE: = 

and, finally, to find 

(3.42) 

{
DIN, 

DeN, 

for £1 ::; 0, 

for £1 2: 0, 

for £1 ::; 0, 

for £1 2: 0. 

The condition [.1 ::; 0 can be expressed as Nh ::; 0, where 

(3.43) N h = (fJ JI 0'22 - fJ21 ()'2 I) N,~ 1 + (a i ifJ2I - fJ JJO' J2)Nl2, 

and sign N h = sign Eh. 
The inverted form of the homogen ized relations (3.9) is 

{ 

1 (JV O'O' ~, {3{3) 
2/ E' h - 11f3 alv h ' 

C" h - l (Y 

'-oo - 1 
-- N ew- 1/ N {3{3 
2h£ c ( h (Jo h ) , 

0' 

(3 .44) 
fo r 

and ,6 = 3 - a; do not sum over a and ,6! 
Recalling relations ( 4.22) of Ref. [1 0] and (3.22) one can easily express Vh in 

terms of N: f3 . Its line of disco ntinuity of its second orde r derivatives is N h = 0, 
cf. Fig. 4b. The data for this figure were taken fo r the laminate considered in 
Sec. 3.1 of Ref. [11]. 

REMARK 3.1 

The considerations of Section 3 may be viewed as a practical procedure for 
finding the complementary or dual effective potential v,:. Detailed study of duality 
is provided by our mathematical paper (TELEGA and LEWINSKI [15]). Neve rtheless 
it is worth noting that v,: may be determined as the Fenchel conjugate of Vh, i.e. 

(3.45) 

The complementary potential v,: is strictly convex, o f class C1 and 

(3.46) 
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4. Parallel cracks: the space-scaling homogenization approach - model (h0 , l) 

The aim of this section is to fi nd effective characteristics of the laminate of 
Fig. 2 accord ing to the (ho, l) model of Sec. 5, Ref. [10]. The predictions of the 
loss of e fTective stifTnesses found in this sect ion involve the I I h ratio and apply 
for arbitrary values of this ratio. 

Similarly as in the in-plane scaling method, the local problem (P1~) (formu
lated in Sec. 5.2 of Ref. [1 0]) spli ts up into two: stretching and shearing problems. 
The unknown functions depend solely on y1 = h~ . 

4.1. Solution of the stretching local p roblem 

The u nknown functions are v~, u ~ and w 2• The non-vanishing stress resultants 
are given by Eqs. (5.20) of Ref. [10]; they assume the fo rm 

(4.1) 

NJ l = A~lll(v' + a.u'+ f3w)+ n61 , 

NJ2 = A~111 (f3 t v' + f34u' + fJ2w) + n62
, 

Lb1 = A~/ 1 1 (av' + 1u' + AtW) + L61
, 

L62 = A~ 1 11 (f34 v' + /3U 1 + f33 w) + 162
, 

flo = ~2 A~111 ({3v' + A1u' + J1W ) , 

Q6 = fA~l ll(u- w'), ( ·)' = d( · ) ld~ ' 

where new u nknowns have been int roduced 

(4.2) 

(4.3) 

v = v l/ h , 

w = w 2 I h2 + wo , 

The quantities n0a , L0a are defined by Eqs. (4.14) of Ref. [10]. T he new coeffi
cients involved in ( 4.1 )-( 4.3) are defin ed by (A.1 ). 

The equilibrium equations reduce to the fo rm 

(4.4) 
d N II _ o_ = 0 
d~ ' 

dLbl - I Ql --:if - t 0 ' 
rfQI 
-

0 = - hRo . 
d~ 

On expressing the equilibrium equations (4.4) in terms of the unknowns (v , u, w), 
one arrives at the fo llowing system of di fTerential eq uations 

(4.5) 

v" + a.u" + {Jw' = 0, 

a.v" + (T1t11
- 8u) + >-.w' = 0, 

-{Jv' - Au' + (ow" - J1W ) = 0. 
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The strong formulation of the local problem amounts here to find ing the fields 
(v, u, w) defined on the interval [0, 2o] such th at: 

• the equations ( 4.5) are satisfi ed for each ~ E (0, o) u (g , 2o ); 
• the periodicity conditions 

(4.6) 
v(O) = v(2g ) , 

NJ 1(0) = NJ 1(2g) , 

u(O) = u(2e ), 

Lb1(0) = Lb1(2e), 

w(O) = w(2e ), 

Qb(O) = Qb(2e) 

are satisfied; 
• the switching conditions are fulfilled at ~ = l? 

(4.7) 

(4.8) 

v(e - 0) = v(e + 0), 

NJ 1(g - 0) = NJ 1(g +0), 

w(e - 0) = w(e + 0) , 

Qb(e - O) = Qb(o + O); 

L = Lb1(t?- 0) = Lb1(o + 0) ~ 0, 

L[u] = 0, [u] = u(g + 0) - u(g - 0) ~ 0. 

A detailed solution to the problem stated above wi ll be given a little later. Suppose 
now that this solution is known. Similarly as in Sec. 3, the problem can be reduced 
to finding the field E~ given by (2.3) 1• In the case considered here s 1 = 0, s 2 = 12, 

JYI = ltlz = llz; hence 

(4.9) - F . - [ u l] - [ u] 
E tt . - -~ - - 2o . 

The tilde over E j~ indicates tha t this quantity is evaluated by the (ho , /)approach. 
Thus the only unknown which is really needed for assessing the loss of stiffnesses 
is the jump [ u ]. 

Let us proceed now to the analysis of th e local problem. One can note first 
that the unknown w can be eliminated from E qs. ( 4.5). One finds 

fLll v" + (J-qz u" + /Lt31' ) = 0, 

(JJ,z tv" + J-Lzzv) + (JL2J1L
11 

+ JLz4u) = C t ~ + cz, 
(4.10) 

where fLak are defined in the Appendix and c01 are arbitrary constants; u" = 
d2u / de. The fields u and v satisfy th e following uncoupled equations 

(4.11) L1L = 0, 

where 

(4.12) 
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the coefficients a1, a 2 and a3 are defin ed in the Appendix. Let ±a, ±w be the 
roots of the characteristic equation 

(4.13) 

In general, a and w can assume real or complex values. In the latter case a = w; 
the bar denotes the complex conjugate. 

Symmetries characterizing the problem imply that the fields ( u, v) are anti
symmetric with respect to the poin t ~ = (}. Thus we can write 

(4.14) 

where 

(4.15) 

(4.1 6) 

{ 

U [ ' 
u -

un , 
v-

{

V [ ' 

vu , 

~ E (0, e), 

~ E (e , 2e), 

U [ = B te-a( + n2e-a(e-0 + B 3e-wf. + n4 e-w(e-0, 

U [( = -flte-a(2e- 0- n 2e-a((-e)- D3 e-w(2e-O- n4e-w((-e ); 

V [ = Dt~ + D2 + G 1e-a( + G2e-a(e-( ) + G3e-w(. + G4e-w(e-0, 

vu = F1~ + F2- C1e-a(2e-0- C2e-a(f.-e) - C3e-w(2e-0- G4e-w((-e ), 

here fl;, C;, Da and Fa are unknown constants. The first equilibrium equatio n 
(4.5)1 makes it possible to determine the function w, being equal to w1 for ~ E 
(0, g) and 11 11 for ~ E (o, 2g) 

W [ = K1 + ?_ (a B1 + C 1)e-af.- ?_ (a lh + C2)e-a(e-0 
(J (J 

+~ (n B3 + G3)e-wf.- ~ (a fl4 + C4)e-w(e-0, 

(4.17) 
wn = L 1 + ?_ (a B1 + C 1)e-a(2e-0- ?_ (a B2 + C2)e-a((.-e) 

(J (J 
+ ~(aB3 + C3)e-w(2e-0 - ~ (afl4 + C4)e-w(f.-e). 

Having fou nd the fo rmulae ( 4.14 )- ( 4.17) o ne can express the stress resultants 
N J 1, Lb 1, Q b in terms o f the functions involved in ( 4.15)- ( 4.17) and unknown 
constants Da, Fa, ! ( 1, L 1, B ;, C;; i = 1, 2, 3, 4; a = 1, 2. We shall omit details of 
the evaluation of these constants and report only the fin al results. The relative 
opening of the crack €ft defin ed by Eq. ( 4.9) depends on sign tb 1 = sign Eh: 

(4.1 8) 
fo r Eh ::; 0, 

fo r Eh > 0, 
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where Eh has been defined by Eq. (3.8)2 and the function F 11 (e) has the form 

(4.19) [
(J ]-1 

Fll(£1) = !11 a2~2 g1(a,w) + 92(a,w)F(e;w,a) , 

where 

(4.20) ( ) - 2 2 ( 2 2) 9cx a,w - lcx i + l cx2a w + lcx3 a + w 

and 

(4.21) e (cth we cth a e) F(e;w, a)= ----::;--=----,. a2 - w2 - w- - - a- · 

Parameters lcxk , ! 11 and (J11, depending on the geometry and materia l p rope rties 
of the laminate, are defined in the Appendix. 

Note that the function F 11 (e) preserves its form after the change: a ____, w, w ~ 
a; moreover, g0 do not depend on whether a and w are real- or complex-valued. 
In fact , in view of (4.13) 

(4.22) 

If a = p- iq, w = a = p + iq (p, q E IR) we change the definition 

(4.23) F((!; w, a) = Fo(e;p , q). 

After appropria te manipulatio ns we find 

(4.24) 
f(pe, qe) 

Fo(e; p, q) = 2 ( 2 + 2) , pq p q 

where the function f is de fined by 

(4.25) 
y sh 2x + x sin 2y 

f( x , y) = ----
eh 2x - cos2y 

4.2. Assessing loss of the ii~ o !l!l stiffnesses 

Having found the relation £{:; (£ h) one can determine the homogenized con
stitutive relationships via Eqs. (2.4) 

(4.26) 
for Eh :::; 0 , 

fo r Eh > 0, 

where the reduced stiffnesses can be expressed by a single formula 

(4.27) A,\,\pJ.L/A 1111 - (J (3 F ( ) c v - a .\J.L - A 1 I' 1 11 (! , 



http://rcin.org.pl

STJF'F'NESS LOSS OF' LAMIN ATES WIT II AJ.IGNED INTRALAMINAR CRACKS. PART [ 259 

and the coefficients CX >.. Jl and fJ >..Jl are defined by Eqs. (A.l). The relations (4.26) 
are continuous along the line Eh = 0. 

The constitutive relatio nship ( 4.26) can be expressed in terms o f o rthotropic 
constants. For the case o f closed cracks (Eh ~ 0) these relations have the fo rm 
(3.14), and for the case of open cracks (Eh > 0) they assume the form 

(4.28) 

where 

(4.29) 

;pm 
- c c 
1/12 = -

J\1111' 
c 

The formula for Ef(g) does not coincide with the analogous formula found by 
HASHIN [5], although one can note a similarity between the fo rmulae (2.40) and 
(2.46) ofHASHIN [5) and form ulae (4.27) for .A = Jt = 1, (4.19) and (4.24) derived 
above. 

R EMA RK 4.1 

The constitutive relations (4.26) can he inverted to the fo rm similar to (3.44), 
where instead of E~ , t/;;f3 one should put f;;~ , v;;f3 . The condition Nh < 0 o r 
Nh > 0 remains unchanged. 

4.3. Solution of the shearing loca l problem 

The dimensionless fields 

(4.30) v = vi/h , 

will play the ro le of basic unknowns. The stress resultants that intervene in the 
shearing deformation a re, cf. ([10), Eq. (5.20)) 

_ 12 121 (dv _du. 2 h) 
- j V rl~ + (\' d~ + [ 21 l 

( 4.31) - - . 2121 ( dv du 2 " ) - a A - + - + E21 
V d~ d~ l 

The equilibrium equations 

dN2I 
0 -0 
~ - ' 

(4.32) 
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expressed in terms o f the unknowns ( 4.30) assume the form 

(4.33) 

Further analysis will be confined to the case when the matrix 

(4.34) 
[

A2 t2t A2121] 
V IJU 

A 21 21 A2121 
IJU U 

is positive definite, which for real laminates is not a restrictio n. T his means that 

(4 .35) 0 < & < 1, 

which is readily satisfied since & = cj h, cf. (A.2). Let us pass to the stro ng 
formulation o f the local p roblem considered. Our goal is to find the fi elds (v, u) 
defined o n [0, 2e] and satisfy ing: 

• the equations ( 4.33) for ( E (0, e) and ~ E (e, 2g ) , 
• the conditions of periodicity 

(4.36) 
v(O) = v(2a ) , 

NJ1(0) = NJ1(2o), 

• the switching conditions at ~ = g 

( 4.37) 
v(a - O) = v(a + O), 

u(O) = u(2a ), 

L61(0) = L61(2o), 

Prior to solving the local problem form ul ated above let us recall that the o nly 
field we need for assessing the loss of C 12 is the quanti ty c(; , cf. Eq. (2.3). Here 

(4.38) 2 - F · - [ui] - [u] 
[ 12 • - -~- - 2g . 

The tilde indicates that we use the space-scaling (h0 , l) method. The homogenized 
constitutive relatio n has the fo rm (2.4)3 with .:{; defined by E q. (4.38). 

Bearing in mind that we are now interested o nly in fin ding the field £f2, 

we proceed to analyze the local problem. Equations (4.33) yields the governing 
equations of the fo rm 

(4.39) Lv = o, Lu = o, 
d4 · ~ 2 d2 

L = -d 4 - ( .-\ ) -l 2. 
( c~ 
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The parameter 

(4.40) ). = [ b ]1 / 2 

&(1 - &) 

is positive, cf. Eq. (4.35). Taking into account (A.2) one can express ~ by the 
formula 

(4.41) ~ = !!_ [ 3((c/d) + 1) J 1/
2 

c (dGA / cGT) + 1 

Thus the fields (u, v) are spanned over the basis { 1, ( , exp(~O. exp(- ~0} on 
both subintervals (0, g) and (e , 2g ). For the sake of brevity we omit the derivation 
and report only the final result: 

(4.42) 

- F h , c' ) h [ 12 = - 1' 12 Al_) [ 12 , 
c 

( 
l ) - 1 

F12(x ) = 1 + ~x cth x 

4.4. Assessing the loss of the Kirchhoff modulus 

According to the defin ition (2.4)3 combined with (4.42), one finds 

(4.43) 

(4.44) 

N 12 _ 2 11 212C' h 
h - r c " 12 ' 

G- C = j'f1 212/ 2h 
12 c , 

.41212/A 1212 = l _ F (~ n) 
C V 12 ~ > 

where Glz is the reduced Kirchhoff modulus of the laminate. One can prove that 
fo rmulae (4.43) and (4.44) coincide with those of HASHIN [5, Eq. (3.22)), T AN and 
NUISMER (14] and TSAI and DANIEL (16). 

4.5. Homogenized potential 

Having derived the homogenized constitutive relations (4.26) and (4.43) we 
can combine them to form the hyperelastic law, cf. Eq. (5.30) in Ref. [10] 

N o/3 = aWh 
h & h . 

o/3 
(4.45) 

The hypere lastic potential is given by 

(4.46) 
for Eh ~ 0, 

for Eh~ 0, 
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where 

(4.47) 

The potential Wl for the case of open cracks can be expressed as fo llows 

(4.48) w e = W O _ ~A III1 F (n)( E ) 2 h h 2 u 11 e: Jh . 

By virtue of the above expression one easily veri fies that the potential W h is of 
class C 1, Eh = 0 being its line of non-smoo thness of its fi rst o rder derivatives. 
The complementary effective potential Wh. (N:13) can be calculated by using the 
Fenchel transformation of Wh, cf. Remarks 3.1 and 4.1. The potential W17, defined 

on the space lE; remains smooth, the equation N h = 0 (cf. E q. (3.43)) de te rmines 
the line of the non-smoothness of its fi rst order de rivatives, cf. F ig.4b. We recall 
that lE; is the space of symmetric 2x 2 matrices, here identified with its dual. 

5. Final remarks 

Accuracy of the formulae for effective moduli of the cracked laminates fo und 
in this wo rk is examined in the second part of the paper [11]. There we refer 
to o ther known analytical models concerning aligned, regularly distributed cracks 
as well as to available experimental data. We show that for the case o f aligned 
cracks the predictio ns o f the model (h 0 , l) lie closely to results of Mc CARTNEY 
[12, 13]. In their principles, however, these models are completely d iffe rent, see 
Introductions to Refs. [9, 1 0] . 

Possible generalization of the formulae fo und in this paper to the case of other 
damage modes and, in general, to the case of angle-ply laminates would be of 
vital interest. For instance one can choose a different way: use the homogeniza
tion scheme of Caillerie - Kohn - Vogelius (cf. Ref. [7]) and then apply the finite 
element method to solve the local problems. The recent paper of ADOLFSSON 
and GuDMVNDSON [1] goes in this direction, yet in the manner that circumvents 
the homogenization formalism of the passage from the o riginal problem to the 
effective macroscopic problem and the underlying local analysis. 

Appendix 

The following non-dimensional parameters depending o n the quantities de
fined in Ref. [10] are used in the present paper: 

(J = 11,\,\"'' 11111 
,\ /L 2 I V ' 
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(o (3"' b) = (AIIll h2A ll Al lll h2lf l l ) /A lll l 
' ' I ' VU ' VW ' U ' V ' 

(A.l) (At , J.L) = (h2A ~!u,h4 Aw)/A~111 , A= 6 +At, 

((3 (3 (3 (3 ) (A \122 /2A22 12 ., 22 11122 A\122)/ 1ttll 
I > 2, 3> 4>13 = u ,! vw> 1 ·'1uw> ~ uu > u 1 11 > 

(& ;:y 8) = (A2121 A2121 h f1 22) /A2121 
' I' VU ' - U ' V " 

Since D NL = - D N we have A 1212 = A 1212 Hence one can prove that 12\ 2 1212 tJU U ' 

and 

(A.2) 

- - c o = i =h , 

A~212 = 2hGA 

8 = 3 [ dG A + .:_] - 1 

hGr . h 

~ = h(b/cd) 112 . 

The parameters appearing in Eqs. ( 4.1 0), ( 4.13), ( 4.19) and ( 4.20) are defined by 

tt11 = 1 - o(3/ A, tt1 2 = o- f31/ A, J.l l3 = 6(3/ A, 

J.l21 = Ofl \3, fl22 = f3
2

- J.l , J.l23 = 1/l \3, 

JL24 = (3 A - 6ILJ3 - J.LO, J.l44 = P13 / t t 11; 

a1 = tLt2fl21 - tll ttL23, a3 = t LI3tL22 , 

(A.3) a2 = fL22/lJ2 + Jlt3IL2J - JL24IL!l; 

f1 1 = 0 - IL12/Ptl , 

/ 11 = ll44 ((3 - fl44) , 

b 2 
/22 = p (! 11) , 

6 2 
/21 = -p (f3 - /l44) , 

1L12 
/ 12 = - !J I , 

flll 

/ 13 = Jl44!11 , 

b 
/23 = p !t l ((3 - /L44)· 

The pameters o;..Jl., f3>.Jl. defin ed by (A.1)1,2 can be expressed in terms of o ther 
parameters as fo llows 

0 11 = 1 - (32/lt , 

(A.4) f3 u = o- f3 At /lt, 

f32t = f34 - f32A I I J.L , 

0 ]2 = f3 ! - (3f32f lt , 

f3 t 2 = f34 - (3(33/ J.l, 

(322 = / 2 - f32f33/ tL. 

Note that 012 = 021 but fJ12 f. f32t· 
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Stiffness loss of laminates with aligned intralaminar cracks 
Part II. Comparisons 

T. LEWINSKI and J. J. TELEGA (WARSZAWA) 

TilE EFFECTIVE MODELS (ho, lo) and (h0 , I) 171 describing reduction of the in-plane effective mod
uli of the [0~/90~]. cross-ply composites cracked in the internal layer and subjected to in-plane 
boundary forces are applied to the description of the degradation of the effective Young, Kirch
hoff and Poisson moduli of the [0° /90°], and [0° /903 ]. glass/epoxy and [0° /9021• graphite/epoxy 
laminates. lt is shown that the graphs of E1 (cd) (cd represents crack density) lie slightly above the 
Hashin's curves, while G12(cd) predictions coincide with the curves of Hashin. Evaluation of the 
off-diagonal terms, i.e. v12(cd), V2t (c,t) are incorporated in the algorithm. In all comparisons with 
the experimental results of Groves, Ogin, Highsmith and Reifsnider the predictions of E1 (cd) ac
cording to the model (ho, I) provide lower bounds, slightly better than the bounds of Hashin. Some 
predictions of the model (ho, I) arc proved to be similar to McCartncy's "generalized-plane-strain" 
results. 

1. Introduction 

THE FIRST DAMAGE mode observed in the in-plane loaded, three-layer, balanced 
cross-ply laminates is usually transverse cracking along the fibres of the o uter or 
inner layers. When stretched along the fibres of the outer layers or sheared in its 
plane, samples o f the balanced [0~)90~] s laminates undergo transverse cracking 
in the 90° layer, with values of crack density cd determined by magnitude of 
the in-plane loads applied. Such cracks lead to degradation of effective elastic 
characteristics of the laminate. A unified model of such degradation has recently 
been proposed in Refs. [I.9, I.1 0] (Roman numeral I refers to bibliography of 
the first part of this paper, [7]) and in Ref. [7], where the case of aligned cracks 
is dealt with in detail. The aim of this paper is twofold. First we show that the 
(ho , lo) model (Ref. [I.lO], Sec. 4) concerns the case of infinitely dense distribution 
of cracks. Consequently, this model provides the asymptotes for the curves of 
decay of the effective moduli with respect to the crack density. Then we check 
the accuracy of the (ho , l) model proposed in Ref. [1.10]. To assess its accuracy 
with respect to the experimental results published in the available literature, we 
analyze the decay of: 

• the effective Young modulus Ef of laminates of the [0~,/90~]s type. Accuracy 
of the (ho, l) predictions is examined for the laminates tested by GROVES [1.4] (cf. 
LEE et al. (6]), HIGHSMJTH and R EIFSNIDER (J.6] and by 0GIN et al. [9]; 

• the effective moduli of K.irchhoff (Ch), Young (E2) and Poisson (v~11 ) for 
the [0° j90)]s laminate tested by HIGHSMITH and R EIFSN IDER [J.6). 

The results concerning Ef show that the (h0, l) method leads to lower estimates 
of the experimental data, providing the curves lying closer to the test data than the 



http://rcin.org.pl

266 T. LGWINSK I AND J .J . TELEGA 

curves produced by the method of HAsHIN [I.5] and almost coinciding with recent 
McCARTNEY's [!.12, 1.1 3] GPS (generalized plane stra in model) - predictions. 

The formula for Gh coincides with that found by H ASHIN [I.5] and rederived 
later by TAN and N UISMER [1.14] and TSAI and D ANIEL [I.16]. According to the 
experimental results published in the last paper, concerning the graphite/epoxy 
[0° j902]s and [0° f 904]s laminates, the accuracy of this fo rmula is satisfactory. 
On the other hand, the experiments concerning graphite/epoxy AS/3502 (02/902) 
laminates perfo rmed by HAN an d HAHN [4] do no t confirm its util ity, cf. their 
paper and the discussion by MoTOGr and FuKUDA [8]. 

Our analysis shows that p redictions of the (ha , L0) model proposed in Ref. 
[!.10] are comparable with the p ly-discount method. 

The (ha, l) method predicts a small decay of the Efj modulus o f the [0° / 90)]s 
glass/epoxy laminates, very similar to that predicted by the GPS model of 
Me CARTNEY [I.1 3]. Other methods known to the present a utho rs do no t describe 
the decay of £1_ o r keep an open mind on the subject. 

The (ha , /) method provides a unified algorithm for p redicting decay of all 
components o f the stiffness matrix. In particular, the method makes it possible to 
evaluate the decay of Po isson ratios. In the present pape r the curves o f the decay 
o f these ratios fo r the glass/epoxy [0° / 90)]s laminate a re given and compared with 
GPS-predictions o f Mc CARTNEY [1.1 3]. A very close juxtaposition of these pred ic
tions are no ted. For the laminate analyzed no relevant experimenta l results were 
available to us. The o nly experimental resul ts available to the present autho rs, 
concerning reduction o f Po isson ratios o f other types o f lamina tes, are given in 
SMITH and Wooo [10]. A comparison of these results with (h0 , l) predictions will 
be published separately. The present paper concerns o nly the case of cracking 
in the intern al layer. A gene ralization to the case of the simultaneous cracking 
in external and internal layers requires a reformula tion o f the o riginal model of 
Sec. 2 proposed by LEWINSKI and TELEGA [I.9], which could probably be done by 
adopting the assumptions put f01ward by HASHI N [5] and TSAI and D AN IEL [I.1 6]. 

The system o f no tations is compatible with that employed in Part I of the 
present paper, namely in Ref. [7]. Fo r the sake o f brevity, Roman numeral I 
refe rs also to equatio ns or sections o f Part I. 

2. Parallel cracks. Comparison of (ha , lo) and (ho , /) predictions 

The subject of conside ration will be the same as in Ref. [7], Secs. 3, 4. We 
examine a three-layer laminate o f thickness 2h weakened by regula rly d istributed 
transverse cracks in the internal layer, and subject to in-plane loading; the crack 
spacing equals l , cf. Fig. I.2. These cracks result in the degradat io n of effective 
moduli. The aim of this sectio n is to prove that decaying curves o f moduli degra
dation predicted by the (ha , l) model presented in Ref. [7], Sec. 4, tend to crack 
density-independent values o f the effective moduli, p redicted by the (ho, L0) mo del 
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proposed in Sec. 3 of [7], if the number of cracks tends to infini ty. 

2.1. Stiffnesses A~"1313 versus A~oiltl 

Let us compare formulae (I.3.9) with (!.4.26) and (!.3.13) with (1.4.27). Note 
that the line of non-smoothness o f the constitutive relations: Eh = 0 is com
mon for both approaches, which makes the results of both approaches similar. 
However, Eq. (1.3.10) is independent of {! = l j 2h. Let us examine the A~C\'.a.a(r!) 
curves. 

If {! tends to infinity, F11 (g) tends to zero. Hence 

(2.1) lim A Cl' Cl' .a .a = A Cl' Cl' .a .a. 
e-oo c I 

T hus if the crack spacing is much greater than h, the loss of sti tTness will no t 
be observed. This etTect is also observed in experiments, wh ich will be discussed 
in Sec. 3. According to the (h0 , lo) model, the loss of stitTness is {!-independent 
provided that {! is small, cf. comments in Ref. [!.10). 

Consider the case when the number of cracks increases to infinity; then {! ~ 0. 
One can prove th at 

(2.2) 

lim Fo(g;w,o-) = --
e-0 a2w2' 

Since a 2w 2 = (p2 + r?)2, we see that both limits coincide, irrespective of whether 
the roots of polynomial (1.4.13) are real or complex. Hence we have 

(2.3) 

for the case Eh > 0, where F11 (0) = lim F 11 (g) is given by 
e-0 

(2.4) F 11(0) = a3fu [(.811111 + 1 21 )n 1 - (/311/13 + 1 23)a2 + (.8111'12 + 122)a3r
1
. 

O n the other hand, according to the (ho , lo) approach, for the case Eh > 0 one 
finds 

(2.5) F /E· - , .. o E 11 h - 11 • 

FP1 being defin ed by Eq. (1.3.8)1• By using the relations between constants sum
marized in the Appendix of [7], after lengthy algebra ic calculations one can prove 
that F11 (0) = FP1, which confirms the thesis of Sec. 5.6 of Ref. [!.10] : the (ho , lo) 
model provides asymptotes for the curves predicted by the (ho, l) model, namely 

(2.6) lim !l~o,O,O = A~C\',0,0 . 
e- O 
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2.2. Stiffness A~21 2 versus A~2 1 2 

One can prove that 

(2.7) 
~ c 

lim F12(>-.g) = -h , 
e~O 

and hence, cf. Eq. (!.3 .21) 

(2.8) 

(2.9) 

I. -F F 
tm € 12 = €12, 

e-O 

lim jfl212 = A 1212. 
(J-+ OO C V 

T. LEWlNSK l AND J. J . TELEGA 

lim F12 (>-.g) = 0, 
e~oo 

lim jf l212 = A 1212 
0 

c c , 
e-

Thus, if the crack density g- 1 tends to zero, the stifTness A~212 tends to the 
stiffness A~212 of the uncracked laminate. If the crack density tends to infinity, 
the (ho, l) predictions tend to (ho , 10) predictions (I.3.21) - (I.3.23). In particular, 
a constant line Gh = A~212 / 2h is an asymptote for the Ch curve describing the 
decays of the efTective Kirchhofi modulus. 

We observe that (2.6) and (2.9) imply the relation between hyperelastic po
tentials 

(2.10) 

The line of non-smoo thness of both potentials t;h = 0 remains g-independent. 

3. Degradation of effective stiffnesses of laminates [0~/90~nl s · Comparison with 
experimental results and with other analytical predictions 

In this section we shall veri fy the (h0 , lo) and (ho, l) models predictions for: 
i) (0~/90~n] s glass/epoxy laminates tested by HIGHSM ITH and R EIFSNIDER (I.6] 

and by OGIN et al. [9] . 
ii) [0° /902]s graphite/epoxy laminates tested by GROVES [I.4] (this paper was 

not available for the present autho rs; Groves' results are reported he re after LEE 
et al. [6]). 

The results of Sec. I.4 will be compared with theoretical predictions of ABouor 
[1], HAsHIN [I.5] and L EE et al. [6]. 

3.1. [0° /903) , glass/epoxy lamina le 

We start with the laminate first examined by HtGHSMITH and R EIFSNIDER [I.6] 
and then often referred to in the relevant lite rature. The complete characteristics 
of this laminate have been recorded by HASH IN ([I.5], Sec. 4). We repeat them to 
make our paper self-contained. The external p lies a re 0°-p lies, their thickness d 
being equal to 0.203 mm; the internal layer composed of 90°-plies has thickness 
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2c, c = 3d, cf. Fig. 1.2. The compliances Dnkt (n = m , f) cf. Eq. (2.3) of Ref. [1.9] 
are defined by 

J - m - 1 
Dnn - D2222- E ' 

m _ J _J _ m _1 
Dntl - D2222 - D3333 - D3333 - Er ' 

'A 

D J - D m - DJ - Dm - 1/ A 
1122 - 1122 - 1133- 2233- - EA ' 

m _ DJ _ 1/T 
(3.1) Dll33 - 2233 - -Er' 

1 
D J - Dm - om -

1212 - 1212 - 2323 - 4G A ' 

J _1 m_J _1 
Dl313 - 4G A ' Dl313 - D2323 - 4GT' 

where, according to Table 1 of HASHIN [1.5], 

(3.2) 
EA = 41.7GPa, 

Gr = 4.58 GPa, 

Er = 13.0 GPa, 

1/A = 0.30, 

CA = 3.4GPa, 

1/T = 0.42. 

The index A labels the fibre direction, while T indicates the direction transverse 
to the fibres. 

Now we can determine the generalized compliances o N, nL, o NL, DQ, o nL, 
o RN, DR by Eqs. (2.17) o f Ref. [1.9]. Then we invert the constitutive matrices of 
E qs. (2.19) and (2.20) of R ef. [1.9] and find the stifTness matrices o f the primal 
constitutive relationships (2.24) and (2.25) o f [T.9]. We can calculate the stifT
nesses (4.9) of Ref. [I.lO] and then the efTective moduli (I.3.16) of the uncracked 
laminate. We obtain 

(3.3) 
E 1 = 20.30 GPa, 

l/ t2 = 0.193 , 

E2 = 34.75 GPa, 

1/21 = 0.113. 

G 12 = 3.40 GPa, 

The first three results coincide with the data reported by HASHIN [1.5], while re
sults concerning EQ and IJC</3 coincide with those obtained by McCARTNEY ([I.1 2], 
Appendix A). 

According to the in-plane scaling ((ho , !0) approach), the reduced moduli are 
crack density independent. Using formulae (1.3.13) and (1.3.16) for the case of 
tJ~/3' E~, and (1.3.23)2, (1.3.22)2 we find 

(3.4) 
Ef. = 10.70GPa, 

vf2 = 0.0943 , 

£1_ = 34.53 GPa, 

v1_1 = 0.0292. 

G!z = 0.85 GPa, 

According to the experimental data of HIGHSMITH and REIFSNIDER [1.6], the min
imum value of Ef achieved for 0.75 cracks/mm equals 11.0 GPa wh ile ./~ 1 = 
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21.0 GPa. However, it is not sure whether the values measured in the paper cited 
above are viewed as the effective Young moduli or have been defined by means 
of the longitudinal stiffnesses 

E~ = A! 111 j 2h. 

It is worth noting that the results £ 1 = 20.76 GPa, E~ = 10.73 GPa lie closer 
to the values found experimentally than the quantities Bt, 1:-f. which are Young 
moduli by the definition. 

The experiments show that the reduction of the effective characteristics de
pends upo n the crack density. The space-scaling (h0 . !) approach accounts for 
such a dependence. H aving found the matrices invo lved in Eqs. (3 .16) of [T.lO] 
one can calculate the parameters defined by Eqs. (T.A.1) - (I.A.4) and then the 
coefficients of Eq. (1.4.13). The roots of this characteristic equation turn out to be 
complex (p , ±q), where p = 1.98025 and q = 0.8934, hence the function F 1t (p) is 
defined by means ofF = Fo, cf. Eqs. (1.4.23) and (1.4.24). The decay of stiffnesses 
is defined by (1.4.27) and (1.4.43)2. The effective Young, Po isson and Kirchhoff 
moduli are given by Eqs. (1.4.29) and (1.4.44). 

As it has been emphasized by LEE et al. [6], the decay of the stiffnesses should 
rather be displayed versus the crack density defined by 2c/ I (crack depth/crack 
spacing). However, to co mpare our results with the theoretical predictio ns of 
HASHIN [J.5) and With experimental data o f HlGHSMITH and R EIFSNID ER [J.6), we 
quote them in some of our fi gures also as functions o f the crack density cc1 defined 
as 1 mm/1. 

.,?-556 

. ....... ........ 

5.0 -·-

0 

-·-·-
-··-·- -· ·-·-

crock density per rrvn . 1 mm/l 

·-. .,l 
0.5 1.0 100 0 

~--· 

F1c. 1. [0° / 903], glass/epoxy laminate tested by HlGHSMIT II and R EIFSNIDER [L6]. The crack 
opening [ul/h, ] = [u: / h] (normalized with respect to En ) versus crack density. 

The crack opening [ tt[ I h~] = [ ul I h] + 0(.:) decays to zero if cd tends to 
infinity, cf. Fig. 1. The longitudinal crack deformation f i t behaves quite differ
ently. The curve f it (cd ) sta rts from zero and tends asympto tically to the .:f1 value 
predicted by the in-plane scaling method (ho , !0) , cf. Fig. 2. The shear crack de
formation f f2 behaves similarly, cf. Fig. 3. For sufficiently large values of cd the 
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crack defo rmations l f1, l f2 become practically independent o f the crack density. 
This insensibility to large values of cd correspo nds to the satura tion of cracks 
observed in experiments, cf. G ARRETT and B A ILEY [I.2]. 

in- plane scal ing : E~,/ Eh 2.326 f-_;_ ___ ...:....__;____.:..:. _________ ....,_-=_::-:. :=-""'~~~!- ·-·-

2.0 

1.0 

I 

I 

I 
i 

i 

/ 

I 
/ 

I 
/ 

i 

·" / 

/ 

/ / t.;,J Eh 
/ 

-·-

crock density per mm. 1 mm/ 1 
os 1.0 10.0 

f rG. 2. The same laminate. Longitudinal crack deformation versus crack density. T he in-plane 
scaling predictio n: ~ r; ::::: ~ :\ + 0 . 299~~2 is an asymptote for the space scale predic tio n ef"t· 

1.0 F h 
in - plane scaling: E1z/Eu 

QS 

0 

I 

I 

/ 

" 

.-

0.5 1.0 

.- · -.-· 

crock density per mm, 1 mm/1 

2.0 

f rG. 3. The same laminate. Shear crack defo rmation versus crack density. The in-plane scaling 
predictio n ei; = ~~2 is an asymptote for the space scaling prediction ef"z· 

The decay of the effective Young mo dulus Ef observed in experiments by 
H IGHSMITH and R EIFSNIDER [1.6] and predic ted by the method of H ASHIN [1.5], 
the GPS method o f M c CARTNEY [I.1 2], the method of L EE et al. [6], cf. ALLEN 

et al. [2], and by the space-scaling based (h0 , l) method is presented in Fig. 4. 
The Hash in's curve has not been repeated after Fig. 3 in HASH IN [I.5] but has 
been independently plotted by the present authors. The experimental data are 
placed acco rding to Fig. 14 in HrGHSMITH and R ErFSNIDER [I.6] and Fig. 1a in L EE 
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density. Experimental resu lts of HlGIISMITII and RHFSNlDER [I.6] are denoted by circles. 

0.2 
0.193 

' ' 
Vl 
0 
I-
<( 
a: 0.15 

z 
0 
Vl 
Vl 

0 
Cl. 0.113 

\ 
UJ \ > 0.1",., 
i= 
u 
w 
u. .... 
w 

B OD5 
>= 
u 

' ' ' 

\ 

' 
' · 

' 

' 
' ·, . \J~ (h 0 ,l J;(GPS) 

' ...... ... 
:;:, 
0 in - plane scaling : V~ -·-·- · - ·---- -·-1~ · -· 
UJ 
a: 0.0292 

crock density per mm. 1 mm /I 

0.5 1.0 j~ 

F IG. 5. The same laminate. Effective Poisson ratios as functions of the crack density. 

(272] 



http://rcin.org.pl

STIFFNESS LOSS OF LAMINATES WIT H ALIGNED INTRALAMINAR C RACKS. PART ff 273 

et al. [6]. The Hashin's curve lies slightly below the curves p redicted by the G PS 
model and by the (ho , l) space-scaling method, the juxtaposition o f the last two 
curves being too close to be noticeable in Fig. 4. T he curves mentioned above 
provide lower bounds for the experimental results. Small differences in these 
results can be read ofi from Table la. O n the other hand, the predictions of LEE 

et al. [6] are upper bounds for the experimental data. The in-plane scaling method 
((h0 , l0) approach) determines a horizontal asymptote for the Ef/ E1 curve; the 
conventional p ly-discount assessment lies a little below and is an asymptote for 
the H ashin's curve. 

Table l. Decay of E~ I Ea , ~~~!3 as function of crack density 2cl I for the (0° 190) ), glass/epoxy 

laminate tested by HIGIISMmi and Rf:IFSNrDER (1982). Comparison of predictions by (ho, I) 
model proposed with results due to HASIIIN (1985) (case Ef I E 1) and model (GPS) of 

McCARTNEY (1992, 1993). 

(a) (c) 

Efl r:;, ~~~. 

2cl1 Hash in McCartncy Lcwinski and 2cll McCartncy Lcwinski and Telega 
(1985) (1992) GPS Tclcga (ho, I) (1992) GPS (ho, I) 

0.1 0.9069 0.90918 0.90914 0. 1 0.09684 0.09688 

0.5 0.6609 0.66638 0.66628 0.5 0.05375 0.05390 

1.0 0.54782 0.55347 0.55341 1.0 0.03371 0.03393 

100. 0.52 127 0.52683 0.52681 100. 0.0290 0.02922 

(b) (d) 

c 
1112 Ef l Ez 

2cl l McCartney Lcwinski and Tclega 2cl l McCartncy Lcwinski and Tclega 
(1992) G PS (!to , I) (1992) GPS (ho, I) 

0.1 0.1 8215 0.18223 0.1 0.99929 0.99930 

0.5 0.13753 0.1380 0.5 0.99644 0.99650 

1.0 0.10362 0.10432 1.0 0.99428 0.99437 

100. 0.09353 0.09432 100. 0.99364 0.99374 

T he decaying character of the graphs vf2, v!j_1 is reported in F ig. 5. The in-plane 
scaling pred ictio ns are constants lines - the asympto tes of mo re realistic space
scaling results. The GPS and (h0 , l) predictions turn o ut to be very simila r, see 
Tables lb, l e. 

A very slight decay of E!j_ is predicted by G PS as we ll as by the (ho , l) method, 
cf. F ig. 6. Bo th models mentio ned lead to very similar results, see Table ld. The 
decay of E!j_ as well as of v~f3 canno t be described within the framewo rk of 
HASHIN'S [1.5] approach, hence the lack o f comparisons. 
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FIG. 6. The same laminate. Decay of the effective Young modulus £ 2 . 

The method of HASHIN [1.5] and the (h 0 , l) method lead to the same for
mula describing the decay of the Kirchhoff modulus, cf. Fig. 7. Recently TsAr and 
DANIEL [I.16] have confirmed that th is formu la predicts values of G'h comparing 
favourably with experimental data concerning graph ite/epoxy laminates, cf. Fig. 5 
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FIG. 7. The same laminate. Decay of the effective K irchhoff modulus. The HASI ILN's [1.5] and 
(ho, I) predictions coincide. Predictions based on the in-plane scaling coincide with 

ply-discount result. 
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in the cited paper. On the other hand, the experimental results due to HAN and 
HAHN [4] concerning the GFRP [02, 902]s laminates lie far away from the Hashin's 
curve. Experimental data concerning Gh for the laminate considered here were 
not avai lable to the present authors. 

3.2. (0° /90°], glass/epoxy laminate 

Consider the [0° /90°]., glass/epoxy laminate tested by OGIN et al. [9] for which 

(3.5) 
c = d = 0.125 mm, EA= 40GPa, 

GA=5GPa, Gr =3.87GPa, vA 

ET = 11 GPa, 

= 0.3, IJT = 0.42. 

These data, except for the last two which are assumed here, are taken from 
ABOUDI [1]. 
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FIG. 8. The [0° / 90°], glass/epoxy laminate tested by 0GIN e/ al. [9] (circles). Assessing the loss 
of the effective Young modulus £ 1• 

The Hashin's curve as well as the almost coinciding curves provided by the 
GPS model of M cCARTNEY [1.1 2] and by the space-scaling (h 0, l) method yield 
lower bounds for the experimental results of OGrN et al. [9], cf. Fig. 8. The ac
curacy, however, is not so satisfactory as for the laminate considered previously. 
Better results are provided by the displacement-based method of ABouDI [1 ]. His 
method, however, similarly to that of Hash in is based on comparing energies and 
hence is uncapable of assessing ofT-diago nal terms o f the efTective stifTness matrix. 
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The precise values o f E~/ Ea and v~13 predicted by the GPS model of McCAR
TNEY [I.12, 13] and by the (ho, I) model proposed in the present paper are set up 
in Tdbles 2a-2d. It is seen that both models produce almost identical results. In 
particular, these differences could not be displayed in Fig. 8 concern ing Ef j E 1• 

Table 2. Decay of E~ /Eo, v~p as function of crack density 2c/ / for the (0° /90°). glass/epoxy 

laminate tested by OGrN et al. (1985). Comparison of predictions by (ho, /) model proposed and 

GPS approach of McCARTNEY (1992, 1993). 

(a) (c) 

Ef/Er v21 
2c/1 McCartncy Lewinski and Tclcga 2c/l McCartncy Lewinski and Tclega 

(1992) GPS (ho, /) ( 1992) G PS (ho, I) 

0.1 0.96195 0.96194 0.1 0. 11 773 0.11789 

0.5 0.83782 0.83780 0.5 0.07964 0.08030 

1.0 0.79856 0.79846 1.0 0.06759 0.06839 

100. 0.79333 0.79322 100. 0.06599 0.06680 

(b) (d) 

c 
V12 E2/ Ez 

2c/1 McCartncy Lewinski and Tclcga 2cfl McCartncy Lcwinski and Tclega 
(1992) GPS (ho , /) ( 1992) GPS (ho , I) 

0.1 0.12224 0. 12241 0.1 0.99876 0.9988 1 

0.5 0.09448 0.09529 0.5 0.99394 0.99421 

1.0 0.08397 0.08501 1.0 0.99212 0.99247 

100. 0.08250 0.08356 100. 0.99186 0.99223 

3.3. [0° /90~ ] , graphite/epoxy la minate 

Let us consider th e loss of Young modulus of the [0°, 902]s graphite/epoxy 
laminate with the fo llowing characteristics 

(3 .6) 
d = O.J27mm, 

CA = 4.8GPa, 

c = 2d, EA = 144.8 GPa, Er = 9.6 GPa, 

Cr = 3.29 GPa, 11A = 0.31, vT = 0.46. 

The experimental resul ts of GROVES [I.4] lie between the curve of LEE et al. [6] 
and the curve of H ASHrN [T.S] ; the curves (almost coinciding) provided by the 
GPS model and the space-scaling (h 0 , l) approach lie slightly over the latter one, 
but all three curves are so close to each other that practically they overlap, cf. 
Fig. 9 and Table 3a. As in other cases, the in-plane scaling method leads to a 
line Ef = 0.8842 being an asympto te for the space - scaling curve. The Hashin's 
curve tends to th e value 0.8840. 
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PIG. 9. The [0" /902), graphite/epoxy laminate tes ted by GRovES [1.4] (circles). Assessing the loss 
of the effective Young modulus E 1. 

Table 3. Decay of E~ /Eo , v~ 13 as function of crack density 2c/ I for the (0" f90n. glass/epoxy 

laminate tested by GROVES et al. (1986). Comparison of predictions by (ho, I) model proposed and 

GPS approach of McCARTNEY (1992, 1993). 

(a) (c) 

E~/E1 v2t 
2c/l McCartney Lcwinski and Telega 2c/l McCartney Lcwinsk.i and Telega 

(1992) GPS (ho, I) (1992) GPS (ho, I) 

0.1 0.98269 0.98270 0.1 0.02688 0.02689 
0.5 0.91971 0.91973 0.5 0.01609 0.01614 
1.0 0.88964 0.88964 1.0 0.01094 0.01101 
100. 0.88418 0.88418 100. 0.01001 0.01001 

(b) (d) 

c 
U 12 E2/ E2 

2c/ l McCartney Lcwinski and Tclega 2c/l McCartney Lcwinsk.i and Telega 
(1992) GPS (ho, I) (1992) GPS (ho , I) 

0.1 0.04986 0.04988 0.1 0.99936 0.99936 

0.5 0.03182 0.03192 0.5 0.99683 0.99685 

1.0 0.02234 0.02248 1.0 0.99550 0.99553 
100. 0.02055 0.02069 100. 0.99525 0.99528 

[277] 
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The precise values of E~/ Ecx and v;f3 predicted by the GPS model of McCAR
TNEY [I.12, I.13] and by the (ho , l) one are given in 'Pdbles 3a-3d. The results are 
almost identical. 

4. Final remarks 

The analysis of the response of the cracked [O~n , 90~.] laminates did no t en
compass a stress analysis. A detailed stress analysis will be published separately. 
We put only some relevant remarks concerning relations between (h0 , l) stress 
predictions and those found in H ASHIN [1.5]. 

Within the framework of the (ho, l ) approach, the stresses in periodicity cells 
are expressed in terms of macrodeformations E~fJ' cf. Eqs. (2.7)-(2.9) of [1.9] and 
(5.19)- (5.21) of [I.lO]. On the other hand, in H ASHIN [1.5] the stresses are deter
mined by the density of the boundary shearing T and tensile a loading. To bridge 
a gap between both approaches let us introduce the fo llowing inte rpretations of 
T and a in terms of macro-stress resultants of the (ho, l) model: 

(4.1) T = Th = N~2j2h , 

Let us focus our attention on the stresses arising at shear. According to (1.4.43) 
one finds 

(4.2) 

Note that within the interpretation suggested by ( 4.1 ), Th becomes crack-density 
dependent: Th = Tft (Q). A direct relation links T h and .: j'2, owing to which one can 
compare formulae for a;;I = a12(x, z), lzl < c, due to HASHIN [1.5] with those 
resulting from the (h 0 , l) model. 

Using Eqs. (2. 7) of[I.9] and (1.4.31) o ne fi nds 

(4.3) 

where To = 2G A E~2 stands for the shear stress in the uncracked laminate and 

(4.4) S
m( . ) _ x(ch x- ch y) 
12 x , y - c 

- sh x + x ch x 
d 

Note that To does not explicitly depend upo n the crack density. 
HASHIN [1.5] obtained the following relation 

(4.5) 12 eh A.~ 
am/T = 1 - - --. 

ch A.o 
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Thking into account (I.4.42h and ( 4.1) one can readily prove that formulae ( 4.3) 
and ( 4.5) coincide. Similarly, one can show that other co mponents of the sta te 
o f stress appearing when the laminate is subjected to shearing are predicted in 
the same manner by both models, inasmuch as a "bridging" relation (4.1) is 
acceptable. 

Comparison of the formulae for stresses related to tension is less clear, since 
in general Nl2 :f 0 while in HAsHrN [1.5] only the case NP = 0 (according to our 
interpretation) is considered. On imposing NP = 0 one can derive a formula for 
a!,{ = a11 (x, z), lzl < c: 

(4.6) 

where ah = ah(Q), cf. (4.1 h. HAsHrN [1.5] no rmalized the stress a!,{ with respect 
to the averaged stress in the middle layer. This formula does not co incide with 
( 4.6) even if the latter is appropriate ly rearranged. Fo r the laminate considered 
in Sec. 3.1, formula ( 4.6) produces results somewhat greater than its counterpart 
fou nd by HAsHrN [1.5], but the difTerences are measured in pro milles. 

The fo rmulae found in the present paper fo r the decay o f the efTective stifi
nesses and possible to find (but not displayed) fo rmulae for stresses due to tension 
are more complicated than those found by H ASH!N [I.5] and Mc CARTNEY [I.12, 
mode l GPS]. This is a consequence of treating the stress resultants Na/3 as in
dependent unknown variables and completion o f the model with displacements 
va relevant to them. Note, however, that an independent treatment of Na/3 is 
in gene ral indispensable when the shapes o f the laminate is arbitrary and Na/3 

canno t be determined directly by the boundary loading. 

Thus the present paper does no t present any set of fo rmulae for the analy
sis of cracked laminates, but fo rms a consistent and we ll-posed laminate model 
(ho , l) from which such formul ae can be inferred. This model makes it possible 
to approximate boundary value problems fo r a relatively large class. It seems that 
the model constitutes a reasonable starting po int to the construction of a damage 
model tha t would take into account: 

i) damage induced anisotropy, and ii) unilateral efTect of damage. 

According to CHABOCHE [3], none o f hitherto existing theo ries of damage of 
laminates satisfi es both the co nditions simultaneously. 
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On finite deformation dynamic analysis of saturated soils 

Notations 

M. T. MANZARI (WASHINGTON) 

A GENERAL FORMULATION is proposed to treat the dynamic response of saturated soils in finite 
deformation regime. Considering the soil as a saturated porous medium, the formulation for finite 
deformation analysis was established by extending Biot 's classical theory to incorporate finite de
formation effects. Particular attention was !;iven to the floV>' of water through the soil while the soil 
skele ton unde rgoes a finite deformation. 1l1e derived formulation consti tutes the theoretica l basis 
for analysis o f the liquefaction induced Aow failure in soil embankments. Due to the integral form 
of the governing equations, they are specially suitable for application of numerical methods such 
as the finite e lement method. 

('f3), ('+6rf3) body configurations at time I and t + Lll, respectively, 

Kronecker delta, 6,; 

ol? . 'e, r+6re 

n 
tAo;kl 

r+6rb, 

1+6,'b, 

l+ L\l Ci; 

t+L\tf.a , t+Ll'f.s 

n 

p 

mass densities of soil per unit volume in the configurations 
at time 0, t, t + Llt, respectively, 

mass density of solid particles and pore water, respectively, 

Cartesian components of the Cauchy total stress tensor 
measured at time 1 + .1t, 

total stress and effective stress tensors, respectively, 

corotational rates of the to tal stress and effective stress tensors, 
respectively, 

material spin tensor, 

finite deformation tensor of tangent stiffness moduli , 

i- th component of body force per unit mass measured at time t + Llt, 

body force in the configuration at time t + Llt ('+ 6 'f3) and measured 
in the configu ration at time t ('f3), 

volume of an infinitesimal clement in the configuration at 
time 0, t, t + Llt, 

Cartesian components of infin itesimal strain tensor measured at 
timet + LH , 

the Green- Lagrange strain tensor, 

components of the applied body forces and surface tractio n, 
respectively, measured at t ime t + Llt , 

surface traction in the configuration at timet+ Llt ('+ 6 'f3) and 
measured in the configuratio n at time t ('f3), 

permeability tensor, 

bu lk modu li for solid particles and pore fluid, respectively, 

porosity, 

pore water pressure, 
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t+L>t Su, t+LltSr , 

r+.c. • Sp , •+L>•sq 

t+Ll.' s,, 
u, 

t+Ll.t t u, , u, 

u, 

1. Introduction 

M .T. MA N7.Alll 

different portions of body surface, respectively related to prescribed 

displacement, traction, pore pressure, and flow, measured at time t + Lll , 

the second Piola- Kirchhoff stress te nsor, 

compone nts of incremental displacement at time I, 

components of displacemcnts at time t + L:l t , and I , respectively, 

components of the absolute velocity of pore water in the d irection of L, , 
relative surface velocity of pore water with respect to the soil ske leton, 

coordinates of a generic particle of the body in Cartesian coordinate 
system at time t. 

ANALYSIS OF SOIL liquefaction and its consequences, such as permanent deforma
tions in constructed facilities or earthen structures, requires a rational analytical 
procedure. Such a procedure should be based on a proper understanding of 
the physics and mechanics o f soil as a particulate medium composed of th ree 
phases, i.e. solid particles, water, and air. Due to discontinuous nature of granu
lar soils, it appears that the best approach to study the mechanics of soil is a 
micro-mechanical approach. In principle, if the behaviour of saturated granular 
soils on the microscopic scale was known, it would be possible to calculate the 
behaviour of granular soils o n the macroscopic scale by applying appropriate sta
tistical methods. In practice, however, such calculations are extremely diflicult 
and, at the present time, limited to some simple cases. On the other hand, our 
knowledge of mechanical behavio ur of soils is mainly based on observations and 
experimental studies of the samples o f soils whose dimensions are large com
pared to those of an individual particle. In particular, most of the experimental 
results available in the fi eld of soil mechanics are expressed in terms of the overall 
macroscopic quantities, such as confining pressure, axial stress, axia l strain, etc., 
which indicate a wide acceptance of continuum approach in the study of soil be
haviour. In a continuum approach, the particula te nature of soil is ignored and it 
is assumed tha t material is uniformly distributed througho ut the regions of space. 
For dry soils o r in th e case of dra inage processes for saturated soils, the regular 
equations of continuum mechanics may be used to formulate the p roblem. But in 
the case of saturated soils which are subjected to d isturbances of transient nature, 
the effect of pore water pressure should be considered by a proper regularization 
of soil as a two-phase medium [4, 5] o r a mixture of two different materials [23, 
24, 43]. 

Both of the aforementioned approaches, i.e. the micro-mechanical and con
tinuum approach, have received much attentio n during the past three decades. 
Micro-mechanical approaches have been continuously used to study some of 
the important features of granular soils, such as dilatancy, shear strength, and 
anisotropy. However, the ir application to bo undary value problems has been 
started only recently by introduction of the distinct element method [10, 11, 12] . 
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The distinct element method considers an assembly of large number of particles 
representing the soil mass and solves the dynamic equilibrium equations for each 
particle, subject to body forces and boundary interaction forces. The method 
can potentially handle nonlinearities which may arise from large displacements, 
rotation, slip, separation and material behaviour, but its performance is highly de
pendent upon the constitutive laws selected to represent the inter-particle forces. 
In addition to application of the distinct element method to the dry soils [2, 11 ], 
a few attempts have been reported [42] to utilize the method in a simulation of 
soil liquefaction. However, these developments are in the initial stages and the 
micro-mechanical approach is far from application to the real boundary value 
problems. 

In contrast to micro-mechanical approach, the continuum approach has been 
successfully used in the analysis of geotechnical problems during the past few 
decades. Following the introduction of a coupled stress-flow formulation for dy
namics o f porous media by BIOT [4, 5], many investigators employed the new 
formulation to solve some practically significant boundary value problems using 
the finite element method [38, 48, 18, 19, 21, 40, 36, 37, 49, 50] . A historical 
review of such applications for liquefaction analysis is given in [33]. Recently 
ADvANI, et al. [1 ] have used a generalized fo rm of the Bio t's formulat ion for 
hygrothermo-mechanical evaluation of porous media under finite deformation 
regime. CHOPRA and DARGUSH [9] have also utilized the Biot's formulation for 
large deformation analysis of time-dependent problems. 

In this paper, a generalized fo rm of Biot's formulation for dynamics of porous 
media [5, 50] is derived by taking into account the finite deformat ion effects. The 
developed formulation serves as the basis fo r the numerical procedure proposed 
in a companion paper on the analysis of soil liquefaction and deformations in a 
fin ite deformation regime. 

2. Statement of the problem 

For a saturated earthen structure which occupies an initial volume of 0 \1 
with the boundary surface 0 S at time 0, we seek to establish the governing field 
equations necessary to evaluate its equi librium posi tions and entire time histo ries 
of responses during a quasi-static o r transient process of deformation. 

It is assumed that specified displacements, surface traction, pore water press
ure, or water flow boundary conditions are defi ned on different portions of the 
boundary surface t +.1t S at a generic time l + L1l. These portions of the bound
ary surface are named t+.1tsu, t+ .1tSr, t+.1tsP , and t+,jtsq, respectively. It is 
attempted to establish the govern ing equation without imposing any restriction 
on the magnitude of strains and displacements which the soil body may experi
ence in the course of deformation. In o rder to deal with no nlinearities involved 
in the problem, an incremental analysis is adopted and the equilibrium position 
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at time t + Llt is searched for, assuming that the solutions for all time steps from 
time 0 to time l are known. 

We adopt a Lagrangian (materia l) formulation and fo llow the material points 
in their motion. Therefo re, in a generic time step from time I to time l + Lll , it is 
assumed that the initial configuration o f the soil body (0 13) and the configuratio n 
at time t (113) are known and we are searching for the configuration of structure 
at time t + Llt e+Lltl3). In the fo llowing development, an updated Lagrangian 
formulation is fo llowed. 

3. The principle of virtual work 

Let us consider the motion of a generic point P of a saturated earth structure 
(Fig. 1 ). In the process of defo rmatio n from the initial configuration at time 0 to 
the configuration at time t, its coordinates wi th respect to a fixed Cartesian co
o rdinate system change from (0x 1, 0x2, 0x3) to (1 x 1, 1x2, 1x3) , where the le ft-hand 

F IG. 1. Three different configuration of the soil body during its motion. 

superscripts refer to the configuratio n of body, and the subscripts refer to d iffer
ent axes of the Cartesian coordina te system. In our analysis, we seek to fi nd the 
position of each mate rial point in the next co nfiguratio n, i.e. at time l + Ll l .. Let 
us suppose that the so il body, in the configuratio n at time I + .J.t , is subjected to a 
virtual d isplacement field 8u which satisfies all the boun dary conditio ns (Sec. 6). 
The principle of virtual work requires that the virtual work performed, when the 
soil body undergoes a vi rtual displacement 8u, is equal to the external work done 
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by the body forces and su rface traction, i.e. 

(3 .1) t +Ll t w~nt = j t+Llt a ;jb t+ Llte;/+Lltdv 

<+6<V 

= t+ Ll t wcxt = J t+Llt f BSu ·t +LltdV + J t+LltfSbu ·t + Llt d S 
V t t 1 t 1 

t+6tV <+6<Sr 

where the t+Lltaii a re Cartesian components of the Cauchy total stress tensor, 
the t+Ll te;j are Cartesian components of infi nitesimal strain tensor, t+ Ll t / ;8 and 
t+ Ll t f ;5 are the components of the applied body forces and surface traction, re
spectively, and Su; represents the components of virtual displacement fi eld in the 
direction of axis i of the Cartesian coordinate system. The t +Llt ST is a part of 
soil body surface on which a specified traction t+Llt JP is applied. The 8 t+Llteii is 
the variation in the small strain tensor defined as fo llows: 

where u; is the incremental displacement at time l defined as 

in which t+ Lltu; and 1u; deno te the displacemen ts at time l + ..Jt and l, respectively. 
No te that the first term o n the right-hand side of Eq. (3.2) implies the partial 
deriva tive of the variatio n u; with respect to t+Lltxi . 

In a dynamic loading of saturated so il systems, there are three contributions 
to the body fo rces t +Ll t f ;8 in Eq. (3.1): 

t+Ll t(g b;) body force due to gravity or centrifugal acceleration, where 
t+Ll to is the mass density of the soil and t+ Llt&; is the i-th 
component of body fo rce per unit mass, bo th measured at 
timet + Lll, 

t+Llt (gii;) body fo rce due to acceleration of the soil skeleton t+Llt u;; 
negative sign is used because this fo rce is in opposite direc
tion to t+Llt ii;, 

t+Llt! ;Bw body force due to relative acce lera tion of the pore water with 
respect to the soil skeleton. 

The fi rst two terms are common in any structural dynamics problem, but the 
third term t+Llt f ;8 w is due to th e presence of water and its relative motion with 
respect to the soil skeleton. To account for t+ <1t f ;8 w , we note that in a differential 
volume t+Lltd v of the soil with porosity n, only (n t+.1 tdV) is occupied by the 
pore water, therefo re g 1 (n t+ Ll tdV) is mass of the pore water available in the 
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differential volume of the soil. H ere Q 1 is the mass density of pore water and the 
following relation holds: 

(3.3) (} = n{}J + (1 - n ) {!s , 

where (}s is the mass density of solid particles. 
Now if we define a re lative average or superficial displacement, w; , so that 

w; is the relative supe rficial velocity(') of the pore water with respect to so il 
skeleton (in the direction of axis i, i = 1, 2, 3), the actual displacement o f water 
in the pores is w;jn. The body force due to the relative acceleratio n of pore water 
with respect to the soil skeleton is expressed by 

(3.4) 

where D I Dl is the symbol o f total derivative with respect to time e). H ere we 
must use a total time derivative, because w i is measured with respect to the 
soil skeleton that itself is moving and makes a moving coordina te system for 
measuring w i· The negative sign in Eq. (3.4) is used because the t+.dt f ;8 w applies 
in the opposite direction of water flow. It must also be noted that the effect of 
change of porosity has been ignored in the acceleration term in Eq. (3.4). Th is 
effect will be very small during a usual time step. 

Considering the above mentioned contributions to the hody fo rce t+ .Jtf ;8 w , 

we can now write Eq. (3.1) as 

(3 .5) t+.dtw~nt = j t+.JtO"iJ b t+ .:lte;/+ .1tdV 

t+~<V 

= t + .1 t w~xt = j t +t:J.t f /' ou/' t+..ltd S 

c+.:.csT 

+ j [t+.dt nt+ t:J. tb · _ t+ .1t0 t+t:J.tii · _ t+ .1 t n t+t:J.t (D ·ti; ; )] ou ·t+ .1trlv 
e:- I ~ I '-f Dt t • 

<+il<V 

There are two major difficulties in application of Eq. (3.5) to a finite defo rma
tio n problem involving saturated soils. First, the configuration at time l + fj f is 

(') This is the superficia l velocity of water used in Darcy's law for seepage of wate r through a porous 

medium, i.e. w, = v, = k,1 (oh/ 8x 1 ), where k,1 is the hydraulic conductivity of the soil in the di rectio n i due 
to a unit flow in the d irect io n j and h is the hydraulic potent ial at the point of interest. 

(') The material time derivative or the rate of a quantity, A = !l(.r(t) , t ) is defined as 

OA · 8 .4 o A . 
- =A= - + -x, , 
Dt ot D:~.· , 

where A is a scalar quantity and it is a function of time a nd space. 
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unknown and the integration over the t +.1t v and t+.11Sr cannot be performed 
before calculating the equilibrium position at time l + .dl. The second difficulty 
is the presence of total stress tensor, t + .1tO'ij in Eq. (3 .5) which does not have any 
direct influence on the mechanical behaviour of the soil and cannot be used in 
a realistic constitutive equation relating a proper measure of stress to a measure 
of strain. To resolve the first difficulty, we can rewrite Eq. (3.5) by referring the 
applied forces, stresses, and strains to a known eq uilibrium configuration, such 
as the initial configuration at time 0 (Total Lagrangian Formulation) or the con
figuration at timet (Updated Lagrangian Formulation). The second problem can 
be resolved by applying the principle of effective stress and introducing effective 
stresses in Eq. (3.5). The aforementioned measures are adopted in the following 
sections. 

4. The principle of effective stress 

Terzaghi's principle of effective stress can be written in the following form: 

(4.1) 

where O'ij and O'ij are the total stress and effective stress tensors, respectively, 
and p stands for the pore water pressure. The O;j is the Kronecker delta defined 
as 

DiJ = 1 

Dij = 0 

fo.· 1 = J, 

for i f; j . 

In direct notation, Eq. ( 4.1) can be written as 

(4.2) a=a-pl , 

where 1 is the symbolic fo rm of the Kronecker delta. 
Here the conventional sign convention o f solid mechanics is used which con

siders tensile stresses as positive values and compressive stresses as negative val
ues. The negative sign of p in Eqs. ( 4.1) o r ( 4.2) is associated with the fact that 
pore pressure is conside red as a compressive stress. 

Since the effective st:-ess principle is defined in terms of the Cauchy stress 
tensor which is no t an objective measure of stress, it is important to establish a 
suitable rate form for Eq. ( 4.2). Taking the time derivative of Eq. ( 4.2), we find 

(4.3) 
D D D 
- (cr) = -(Cf) - - (pl) 
Dt Dt Dt 

or 
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where e; and ei are the unit vectors in a Cartesian coordinate system. The ; and 
'V 

u are corotational rates of the total stress and effective stress tensors, respectively. 
Using Eq. (4.2), we can write the above equation as 

(4.5) 

Equation ( 4.5) is of paramount importance in our subsequent developments. We 
will use this equation in development of the incremental equations governing the 
dynamjcs of saturated soils. 

As previously mentioned, Eqs. ( 4.2) and ( 4.5) enable us to formulate the gov
erning equations of motion (Eq. (3.5)1) in terms of effective stresses. However, 
substitution of Eq. (4.2) in Eq. (3.5) leads to the appearance of a pore pressure 
related term which prevents a direct application of Eq. (3.5) as a sole field equa
tion in the solution of boundary value problems in soil dynamics. The additional 
unknown, p, requires an additional field equation which governs the flow of water 
through the soil. Derivation of this equation is the subject of the next section. 

5. Equations governing the How of water through a saturated soil 

In Sec. 3, we derived an integral equation governing the motion of the soil 
mass by making use of the principle of virtual work for the bulk mass of the 
soil body. In this section, we consider the equations of motion and mass balance 
for the pore fluid (water) alone in order to establish a complementary equation 
to Eq. (3.5). Th this end, let us consider a unit volume of the soil in the current 
configuration at timet+ !lt as a control volume for the flow of the pore water. We 
assume that the coordinate system is attached to the soil skeleton and is moving 
with it. The flow of water in this control volume is affected by inertial forces and 
by a viscous (velocity-dependent) drag force due to interaction of the pore water 
and solid grains. In the following consideration, it is assumed that the viscous 
drag force can be determined by application of Darcy's law. In a quasi-static flow 
of the pore water, Darcy's equation is written as 

(5 .1) w· = - k · 
8

P 
' •J fJx . 

J 

in which 

(5.2) 

where k;j is a component of the permeability tensor. The 1u; in Eq. (5.1) is the 
superficial velocity of water, i.e. the volume of water flowin g per unit time and 
per unit gross area through the face of the control volume perpendicular to the 
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x; axis. The negative sign in Eq. (5.1) emphasizes that the water flow occurs in 
the direction of decreasing potential. 

Now if we define the resistivity tensor r ij as the inverse of the specific permea
bility tensor, 

(5.3) 

Eq. ( 5.1) can be written as: 

(5.4) ()ap = -r;j Wj = ffi;, 
x · 1 

where ffi ; is the viscous drag force in the direction of x; axis applied to the pore 
water flowing through a unit control volume of the soil. Considering the effects 
of the inertial and body forces (Fig. 2), Eq. (5.4) can be generalized, 

(5 .5) ap . ( .. D t"u i) 
- ox; - r ;_i Wj + PJ b;- t l ; -----;)t 

where 
D w; · ·tot 

tt; +-- = u · 
Dt 1 

represents the total acceleration of pore water. 

r---
. . fol 

9t U; 

p(x) r---

r---

Note: 

R,. 

9t b; 

·· tot . . DW; 
U; =U; +Of 

-
-
-

= 0, 

x,. 

FIG. 2. Free body diagram for the pore fluid in a control volume. 

In o rder to reduce E q. (5.5) to a form containing only the displacements of 
soil skeleton ( u) and pore water pressure (p ), we first use the axiom of mass 
balance to establish a relationship between the rate of change of pore pressure j; 
and the rates of volumetric strains for the pore water ·w;,; and the soil skeleton 
u;,;. Such a relationship can be used to remove the relative displacement of the 
pore water w from Eq. (5.5). 
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Let us consider a unit volume of the soil in which the masses of the pore 
water and solid grains are respectively ng 1 and (1 - n ) f! 5 . The axiom o f mass 
balance requires that in the process of flow of the water through the soil, these 
two masses must be conserved, i.e. 

(5.6) zl j(nfJJ)dV = 0, 
V 

(5.7) ~~ [/(1 -n)es dV] = 0. 

Equations (5.6) and (5.7) lead to: 

(5.8) 

(5.9) 

TtflJ + nb1 + (nfJJ ) U;,; = 0. 

- 1ig5 + (1 - n) g5 + (1 - n )g8 it; ,; = 0, 

where U; is the component of the absolute velocity of pore water in the direction 
of x; axis, i.e. 

(5 .10) w; = n( U; - ·it ;). 

Dividing Eqs. (5.8) and (5.9) by f!J and g8 , respectively, and adding up these two 
equations, we find : 

0 0 

(5.11) ng f f2 s [ 0 ] - + (1 - n) - + n( U i ,i- it;,;) + ·it ;,; = 0, 
{}J Os 

or by using Eq. (5.10), we have: 

0 0 

(5.12) ng 1 + (1 - n)~ + tu;,; + it ;,; = 0. 
(} f f!s 

The first term in the above equation represents the compressibility o f the pore 
fluid (water) which is of cardinal importance in dynamic analysis of saturated 
soils. In o rder to stress the importance o f this term, it suffices to mention that 
the compressibility of po re water (fluid) is highly dependent on the degree of 
saturation of the soil , and a small fraction of percentage o f air in the pore water 
may significantly increase its compressibility [31]. The second term in Eq. (5.12) 
acco unts for the compressibility o f solid grains a nd, in general, is much small er 
than the first term. ln the following considerations, we seek to substitute the first 
two terms in Eq. (5.12) by mea ns of simple constitutive equatio ns. To this end, 
we note that a change of efTective stress will result in a change of volume of solid 
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particles, while a pore pressure change will induce a change o f volume in both 
the solid particles and the pore water. Thus 

(5.13) 

( • ) fJ(Q f) . 
(}! = -.-]J ' Dp 

( • ) _ fJ(es) • + &(gs) _!._ •. 

f2 s - &p p o ((f;;)a". 

In practice, the iJ 
5 

is very small and negligible as compared to the iJ 1. Thus it can 
be ignored in the subsequent procedure. However, it is kept in the formulation 
for the comparison purposes. It is no ted that the constitutive law represent ing 
the change of f2 5 is similar for the change of hydrostatic pressure or the change 
of po re water pressure. Therefore, the terms o n the right-hand side in E q. (5.13)2 
can be described in terms of the change of hydrostatic to tal stress (a;; ), i.e. 

(5 . 13)3 ( • ) - &(g s) • .. 
f2 s - &a;; a " . 

It is also assumed that the fo llowing linear relationsh ips exist between the 
change of pore water pressure (or any hydrostatic pressure) and the changes of 
volumes of the pore water and solid grains: 

av __ s 

(5.14) ____Q£_ 1 

Vs /1.S ' 
OVw 

~ 1 
= 

\1 fi.J ' w 
(5.15) 

where Vs and Vw are the volumes of solid grains and the pore water in a uni t 
volume of the soi l mixture, respective ly, while l1·s and 11·1 indicate the compress
ibili ty of the above constituents. In general, X s is by several o rders of magni tude 
larger than /1' f. Considering Vs = (1 - 11 )g s and V w = ng 1, and ignoring the 
change o f soil po rosity due to the change of p, we can rewrite E qs. (5.14) and 
(5.15) as 

Of2s 

(5.16) __1p_ 1 
= 

k s ' f2s 

Of2! 

__1p_ 1 
= 

{!J fi .J 
(5.17) 
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Substituting Eqs. (5.16) and (5.17) in Eq. (5 .12), we finally find the equatio n 
of mass balance in a desired form: 

(5.18) 

Denoting: 

(5.19) 

- + - - •J + w· · + t t · · = 0. ( n 1 - n) . . . 
l\.f A's r '· ' '•' 

1 n 1 - n 
- = - + --r A"1 A's 

Eq. (5 .18) is written as 

(5 .20) 
1 . . . r P + w;,; + u ;,; = o. 

Equations (5.20) and (5.5) yield the following relations: 

(5 .21) 

or 

(5 .22) 1 • • a ( ap ) a ( 6 ) 
1
, p + tt;,i- -

0 
k;1 -a + -

0 
kij {!J J 

.Tj .Tj Xj 

a [ ('" JJtvJ )] - axi k jj {} j Uj + Dt = O. 

This is the fi nal equation govern ing the Oow of the pore fluid (water) through 
the soil and combines the axiom of mass co nservation and equation o f motion 
for the pore fluid . Presence of the term Di'v1j Dt in the above eq uation is sti ll an 
undesirable feature which inhibits a direct coupling o f Eq. (5 .22) with E q. (3 .5) 
in order to get a coupled systems of equations in terms o f u and p . However, 
it has been shown [49] that for the range of frequencies encountered in the 
earthquake loading, the relative acceleration of the pore water with respect to 
the soil skeleton is negligible. Therefo re by ignoring Dti;Jf Dt in Eq. (5 .22), we 
find: 

(5 .23) 1 . . a ( ap ) a c ) a c .. ) - p + u i ; - -. . - k;·- + - k; ·{! JU - -ki"{!J U~ = 0. 
r , a .T j J ax j Dx; J J a x; J J 

Equation (5.23) is written in terms of u and p and is suitable to be solved in 
combination with Eq. (3.5), for which we a lso neglect the Dti'i/ Dt term for the 
foregoing reaso ns. 
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6. Boundary conditions 

As it was mentioned in Sec. 2, we assume that four types of boundary con
ditions are specified on different portions of the boundary surface t+Ll tS of the 
soil body at a generic time t + L1t. These boundary conditions are defined in the 
following sub-sections. 

6.1. Displacement boundary condition 

It is assumed that on a portion of the boundary surface t+Llts of the soil body, 
displacements of soil skeleton are specified as follows: 

(6.1) on t+Llts 
u, 

where t+Lltui is the specified value of displacement on the boundary surface 
t+LltSu at time t + L1t. 

6.2. Pore pressure boundary condition 

The pore water pressure boundary condition is defined on t+LltSP as fo llows: 

(6.2) on t+Llts 
p , 

where t+Lltp is the specified pressure o n the surface t+LltSP at time t + .J. l. 

6.3. Traction boundary condition 

We assume that on a portion of the boundary surface, there is a specified 
tract io n which must be in equilibrium with the internal total stresses, i.e. 

(6.3) t+Llt0 . ·n . = t+Llt! S 
I ) ) I On t+Llts T, 

where the t+Llt!F is the specified traction on the surface t+LltsT with a unit normal 
of n, and t+Llta;1 is the to tal Cauchy stress tensor acting on the neighborhood of 
the t+LltJr 

6.4. Water flow boundary condition 

It is assumed that on some portio n of the boundary surface, the water flow 
boundary conditions are specified. One o f the typical examples o f such boundary 
conditions is the impervious boundary. The water flow boundary condition follows 
from Eq. (5.8) and is expressed as a nux condition, i.e. 

(6.4) w;n; = [- k;i :~Ji + k;1 e1 bj- kii&>J (iii + DD~i)] n; = t+Lltqs on t+Lltsq , 

where n; denotes the i-th component of the outward unit normal to the surface 
t+LltS q, and t+Lltqs is the prescribed fluid flow on the t+LltSq. 
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7. Constitutive equations for the soil skeleton 

The governing field equations developed in Sec. 3 (Eq. (3.5)) and in Sec. 5 
(Eq. (5.23)) along with the boundary conditio ns defined in Sec. 6 are no t suffi
cient to solve a boundary value problem in so il dynamics. For ten unknowns (3 
displacements of soil skeleton, pore pressure, and six components of stress tensor) 
in a boundary value problem, we have established only fo ur governing equations. 
Thus six constitutive equations are necessary to make the problem well-posed. 
Due to nonlinearity of soil behavio ur, it is desirable to define the constitutive 
equations in a ra te form relating an appropriate measure of stress to the rate 
of deformation. In a finite defo rmation analysis, an objective stress rate must be 
used to ensure that the efTects of rigid body rotation are correctly co nsidered. 
This criterion, however, does no t determine completely which stress rate should 
be used. There are difTerent forms of stress rates wh ich satisfy the objectivity 
requirement. The most commonly used objective stress rate is the JAUMANN [27, 

28] corotational rate of the Cauchy stress tensor, 6-;1, defi ned as fo llows: 

(7.1) 

where lJ ij is a Cartesian compo nent of the material (time) derivative of the 
Cauchy stress tensor, and J2;1 is a Cartesian componen t of the spin tensor, i.e. 

(7 .2) 

Numerous application of the Jaumann stress rate have been reported in the 
fin ite defo rmatio n analysis of crystalline solids in the crystal plasticity context (e.g. 
22, 35). In a crystal plasticity application, the material spin tenso r n is replaced 
by the rate of rotation o r spin of the crystal lattice. However fo r non-crystalline 
solids, a proper cho ice of the spin tensor is not clear. Previous study by NAGTEGAAL 
and D E JOND [34] has shown tha t a d irect application of E q. (7.2) in the large 
strain simple shear ana lysis of a material obeying a M ises-type kinematic harden
ing plasticity results in an oscillatory response during mo notonic shearing. Such 
an unrealistic result has motivated several investigators (e.g. reference [13]) to 
explore the possibility of removing th e stress oscilla tio n by using difTe rent spin 
tensors. Later the original suggestion by MANDEL [32] and KRATOCHVIL [29] for a 
decomposition of the spin tensor to an "elastic" o r " rigid" part and a plastic pa rt, 
and Mandel's concept of material underlying substructure, motiva ted D AFALI AS 
[13, 14, 15] and LoRET [30] to propose some constitut ive equations for the p lastic 
spin in the case of anisotropic materials. These studies suggested that the "elastic" 
part of the spin tensor must be used in a Jaumann-type corotatio na l rate. 

The concept of plastic spin has received increasing attention in the recent 
years and many investigators have studied the efTect of plastic spin o n the large 
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deformation of solid ma~erials (e.g. [44, 45]). One interesting point shown in 
the closed form analytical solutions presented by DAFAUAS [13, 14, 15] is that 
unless strong initial anisotropy preexists, the difference in the material response 
between using the substructure and material spin for a material which is initially 
isotropic becomes important only after very large strains (of the order of 100%) 
are developed. 

In the light of the above discussion and due to the lack of experimental data 
necessary for calibration of the constitutive equations for the plastic spin, we 
will use a corotational stress rate without restricting the formulation to particular 
choices of the spin tensor. 

Assuming an inelastic behaviour for the soil skeleton, we choose the following 

" incremental form to relate the corotational rate of the effective stress tensor O';j 

to the rate of deformation tensor dkl = 1j 2(o it!.)oxl + o iti/Dxk ), 

v 
(7.3) a ;i = Dij klrlkl , 

where D is the tangential stiffness tensor which may be a function of the current 
state of effective stresses, strains and some internal variables. 

The specific fo rm of the tangential stiffness tensor will depend upon the type 
of mathematical framework (e.g. , elasticity, plasticity, viscoplasticity, etc.) that we 
choose to model the behaviour of the soil skeleton. Equation (7.3) is general 
enough to enclose a wide variety o f existing frameworks for the soil constitutive 
modeling. 

8. Expression of the virtual work equation in terms of the coordinates 
of the configuration at time t 

As mentioned in Sec. 3, all the integrals appeared in Eq. (3.5) must be written 
in terms of a known configuration, such as the initial configuration of the so il 
body (013) or its converged equilibrium position at the end of the previous time 
step el3). Here we choose the latter option and our aim in this section is to 
rewrite Eq. (3.5) in terms of the coordinates of the configuration at time t . 

Let us consider an infinitesimal cubic element of the soil body (Fig. 3) whose 
. 3 

volume in the configuration at time t can be expressed as 1dV = I1 d.xi. During 
i= l 

the mo tion o f soil from time L to time t + L11, the material enclosed in the cubic 
element 1dV will occupy a new volume of t+LltdV and the initial shape of the 
element will be distorted. Considering the axiom of mass balance, we can relate 
t+LltdV to 1dV by the following equation: 

(8.1) 
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where 0 g, 1g, and t+Llt(J are the mass densities per unit volume in the configurations 
at time 0, t, t + .dt, respectively. The 0d\l is the volume o f the infinitesimal element 
in the initial configuration at time 0 (013). 

FIG. 3. The soil body at two subsequent configurations. 

In general, the external loading, such as surface traction, external water press
ure, gravitatio nal and centrifugal loading are deformation-dependent. However, 
in most geotechnical structures, the aforementioned loading does not induce such 
a large displacement, large strain, or large ro tat ion which would require a finite 
deformation analysis. Therefore, it is reasonable to assume that the magnitude 
and direction of surface force and body forces are independent of the current 
configuratio n of the soil body, i.e. [3] 

(8.2) 
t +Lltb · 

I 

t + Ll tf is t + Ll td S 

= t +Lltb · 
t I l 

= t + Llt1s t r~s 
£ I · ) 

where t+ Llfbi and t +LllJi5 are respectively the body force and surface traction in 
the configura tion at time t + .dt (l+Ll t13), and measured in the configuration at 
time t (113 ). Combining Eqs. (8.1) and (8.2)1 , we have: 

(8.3) 

If we further assume that the efTect of the pore water relative acceleration 
Diu 1 I Dt with respect to the soil skeleton is negligible as compared to the in-
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e rtial effect of the soil bulk mass, we can rewri te Eq. (3 .5) by using Eqs. (8.1 ), 
(8.2) and (8.3): 

(8.4) t +<1 t w ; xt = j tfl t+ <1fb ; ou; tdv - j ofl t+<1t i~ 8n; od v 

' V nv 

+ j t+<1UP ouf 1d S . 

1ST 

The second integral on the r.h.s. in Eq. (8.4) is evaluated using the init ial configur
ation (0~) and hence its contribution can be calculated prio r to the incremental 
step-by-step analysis. 

As to the internal virtual work (Eq. (3.5) 1 ) , we first use the principle of effective 
stress (Eq. (4.1)) to rewrite (3.5)1 in terms of effective stresses. Thus, substituting 
Eq. (4.1) in Eq. (3.5) 1 leads to 

or 

t+<1twint _ j t+ <1ta ·. , e· . t+<1tdV 
V - I) U t+;1t · IJ 

r + .<..~rv 

= j ( t+<1tu;i - t+<1tp 8;1) o t+<1 teii t+ <1trtv 

t +:..ltV 

(8.5) t+<1tw~nt = j t+ <1tUij o t+<1teij t+<1tdv- j t+ <1 t7J O;j O t+<1tPij t+<1tdv. 

t+dtV t+-.\qf 

We now need to refer the Cauchy effective stress tensor t+<1tu;1 and the infinitesi
mal strain tensor t+<1t eij to the configurat ion at time t e~). It is well known that 
the second Piola - Kirch h off s tress ten sor t+ <1fS;j and the G reen - Lagrange s train 

tensor t +<1fc;1 are a work-conjugate pair of stress and stra in measures which rela te 
the t+<1tUij and t+<1te;1 to the configura tion at timet. The second Piola - Kirchhoff 
stress tensor t+ i1fS;1 is defined as [8]: 

(8.6) 
t n Atx · Atx · t+i1t _ <::" V · 1 _ V · ] 

t s ij - t+<1t fjt+ <1 t. amn ()t+<1t. . 
{! Xm Xn 

The G reen - Lagrange strain tensor can be defi ned by considering the deformation 
of a generic line segment of the so il body whose lengths are denoted by 1ds and 
t+ <1 td s in the configurations at time t and t + dt , respectively. Without giving the 
details of this deriva tion, we find [8]: 

(8.7) 
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Taking a variation of the both sides of Eq. (8.7), we have 

(8.8) 0 t+Lltc = ~ [o(ou;) + o(oui ) + o(ouk) auk + Duk o(buk)l 
t 2 ()tx j ()tx; i)tx; ()tx j ()t.'l:i ()txJ , 

where ou; is the variation (virtual displacement) in the displacement t+Llttt ; . We 
also note that: 

(8.9) 

Combining Eq. (3.2) and the above equation, we can relate the variation o t+Lllc ij 

to o t+Llt emn in the following manner: 

(8 .10) 

Finally by using Eqs. (8.1 ), (8.6), and (8.10), we can write Eq. (8.5) as 

(8.11) t+Llt •v int = j t+ Llts .. , t+Llt .,. tdv -j ( t+Llth . ·) 0 t+Llt., .. tdv 
V U t t) U t "- t) t I ) l "- 1) > 

V 1 V 

where 

(8.12) 

Equation (8.11) together with Eq. (8.12) complete the virtual work expression 
in terms of the coordinates of the configuration at time t (1(3). However, in 
order to use this equation in an incremental analysis, it is necessary to establish 
its equivalent incremental form. Derivation of such incremental form will be 
discussed in the next section. 

9. Incremental form of the virtual work equation 

An incremental form o f the internal virtual work equation (8.1 1) can be es
tablished by introducing truncated Taylor series expansions of the second Pi
ola- Kirchhoff stress tensor and the h tensor, i.e. 

(9.1) 

t+Llts . . 
t t ) = ;s ij + [(~lt (S;j)L ..JI +higher order terms, 

= lh;j + [.!:._(h;j )J LJ.t +higher order terms, 
dt t 
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where 

(9.2) 

(9.3) 

:sij = 1
CJij, 

: h ;J = t ]Jb;j . 

299 

Ignoring the higher order terms in Eqs. (9.1) and using Eqs. (9.2) and (9.3), we 
have 

(9.4) 
t+LlfS;i = tCi;j + [:t ( S;i )] t ...1t ' 

t+Llfh;j = tpb;j + L~~l(h ;J )]t Llt. 

In order to evaluate the second terms on the r.h.s in Eqs. (9.4), we make use 
of the following kinematic rela tionships [8] 

(9.5) d ( 
1

e ) 
Le 0t +Lltv; 

= t+ Ll te [) t+ Ll tx; ' ell t+Ll t g 

(9.6) d ( {)
1
x ; ) 

[)I+LltVk {)tx; 
= ' dt Dt + ,jt .'I:J [) t +..1 t x i [)t+ .::J t.'Ck 

where t+ Lltvk denotes the velocity o f the soil mass in the direction of axis k. 
Utilizing Eqs. (9.5), (9.6) and (8.6), we find : 

(9.7) 

. T 
in which t+ Llt77 kl is the Truesdell rate o f the e ffective stress tensor 77~,,. 1 and defined 
as 

(9.8) t + Llt-
0
' r _ t+Llt -

0
' + t + Llt t+.::J k-

0 
t+Llt t + Ll k-

kl - kl Vm ,m kl - 1/[,m Okm 

t+ Llt
11 

t+Ll k-
0 k ,m m /· 

Since we seek to find [ ~lt (S;j )] t' E q. (9.7) should be evaluated at time I, i.e. 

(9.9) [ 
d ] 1.:... T t ' t t- t t - t t-
dl (Sij ) t = a ij = (j ij + llm m a ,j- Vj .m Oim- /li,m Omj. 

The Truesdell stress rate appearing in Eq. (9.9) can be related to the Jaumann 
stress rate by decomposing the velocity gradient 1/i,m to the sum of the rate of 
deformation tensor d;711 and th e spin tensor Jt;711 , i.e. 

(9 .] 0) 
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Substituting (9.1 0) in Eq. (9.9), leads to 

(9.11) [~ csij)L = tifij + 1
vm,m 

1
CTi j - (tdjm + t.ajm ) 

1
aim 

- ( t d im + t f?;m ) 

or by using Eq. (7.1), we find: 

(9.12) [ 
d (S )] t ~ + t t- t I t- td t-
dt i j t = Ojj 1/m, m Ojj - l jm a ;m - im Omj' 

'Q 

where 1 a;j is the Jaumann rate of the effective stress tensor. 
'Q 

Considering the genera l form o f the constitutive equation (7.3) applied to 1 a;j 

and substituting (9.12) in E q. (9.4), we have: 

(9.13) t+Llts _ t - /\ . ( D 1 L 1 t- 11 t- t L t- ) t i j - Ojj + "-ll t ijk/ ( k / + 1/m,m O jj- Gjm Oim- Gim Omj · 

It must be noted that the 1D ijkl appearing from now o n in the subsequent equa
tions is the one which relates the ra te of deformation tensor to the Jaumann 
rate of effective stress. However, if the initial fo rmulat ion of the constitutive law 
calls for the use of a corotatio nal rate with respect to a different spin than 1 f?; j , 

then one must perform a subsequent transformation to a J aumann rate for the 
effective stress with simultaneous change of the constitutive moduli which wil l be 
again defined by 1D;jkl after the transformation. 

Equation (9.13) can be written in a compact form by using the following 
relations: 

(9.14) 

where Llum is the m-th component of the incremental displacement at a generic 
point of the soil body. Thus Eq. (9.13) can be written as: 

(9.15) t+Llts _ t- 11 1 ij - Oij + t ijkl tekl , 

where 

(9.16) 

The 1A, j kl is the finite deformation tensor of tangent stiffness moduli and it 
includes the regular tangent stiffness moduli tensor and the effect of stresses at 
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the beginning of the step. It must be noted that if the components of the effective 
stress tensor are of the same order of magnitude as the t D ;jk/, contribution of 
the initial stresses to the 111;jkl tensor can be significant. 

Similarly to Eq. (9.9) fo r the rate of the second Piola- Kirchhoff stress tensor, 
one can write the following equation for the rate of the h mn , 

(9.1 7) [ 
d (h )] d ( J:: ) t t J:: t t . t t dl mn t = dl ]JUmn + Vk ,k P Umn - lln,m ]J - llm,n p 

recalling that 

(9.18) 

Eq. (9.17) can be written as 

(9.19) [ 
d (I )] t • c t t , 2 t t l dl Lmn t = ]J Umn + Vk ,k fJ Prr111 - P ~ mn . 

Using Eqs. (9.20) and (9.14), we can now write (9.1)2 as 

(9.20) t +.1th - t • ( t ,\ J:: ) t • 2 t t mn - ]J Um n + LJ.]J llm11 + tCkk ]J Umn - P tCmn , 

where 

(9 .21) 

R d . th . . . I G L . t . • t+.1t egar mg e van at1on m t 1e reen - agrange stram ensor, I.e. u 1c ij, 
we note that: 

(9 .22) 

whe re 

(9.23) 

and 

(9.24) 1 ( &uk &uk ) 
t 1]ij = 2 Dtx; &txj 

in which 7tk is the incremental displacement. 
Substituting Eqs. (9.15), (9.20), and (9.22) in Eq. (8.13), we find 

(9.25) 

'V 

- j (tPOm n + t L::.pbmn + tCkk 
1

]J0mn - 2 1P tCmn ) (b tCmn + 0 t 1]mn ) 
1dV. 

'V 



http://rcin.org.pl

302 M .T . NZARI 

This is the final form of the internal virtual work expression in terms f the 
coordinates of the configuration at time t. A more compact and computa tonally 
useful form of Eq. (9.25) can be obtained by utiliz ing Eq. (4.1) and corrbining 
the effective stress-related terms implicit in the 1 A ijkt tensor (Eq. (9.16)) wth the 
pore pressure-related terms in Eq. (9.25). We finally find: 

(9.26) t+ Lltwint = j (ta · . + L ) (' e + r 71 ) tdV v I ) t i jk/ tCk{ O t i j Ut•1 ij 

'V 

- j (t Llp) (o 1e ;; + o trtri ) 1
dV, 

' V 

where 

(9.27) L D t r t r t r t 
t i j k/ = l ij k/ + C7j j Uk/ - C7 j[ Ukj - Uj{ C7 k j 

or by using Eqs. (3.5), we have: 

(9.28) 

'V 'V 

+ J t L ijktt Ck t btrJij
1
dV + J 1a ;jO t7ij

1dV 
1 V 1V 

- j t (i1p) o t 1lii tdv = t +Ll tw~xt - j t a ;J o t fij trl v . 

' V 1 V 

The last three terms on the left-hand side of E q. (9.28) are due to fi ni te deforma
tion effects, and they may be omitted in a small defo rmation analysis. In the case 
of infin itesimal st rains and small rotat ions, the 1 L ,jkt tensor will also redJce to 
the 1D ;jk/, tensor of tangent sti ffness modul i. I t should be mentioned that in an 
incremental numerical solution, E q. (9.28) is normally linearized by ignori:1g the 
third and fi fth terms on the left-hand side in this equation. This lineariza:ion is 
just ifi ed due to small effects of these higher o rder terms in a regular earthquake 
engi neering problem, where the time steps are generally small if a plasticity-based 
constitutive model is to be used. 

H ere it must be noted tha t Eqs. (9.25) and (9.28) are incremental ar;proxi
mations o f th e internal virtual work at time I + ...J. /. T hese equations, alo ng with 
equations governing the motion of the po re water (E q. (5 .23)), are used to calcu
la te an incremental displacement and po re water pressure. The calculated incre
mental values are then used to evaluate approximatio ns to the displacements of 
soil skeleton, strains, stresses, and pore wa ter pressure at time t + Llt. T he calcu
lated values of displacements can be employed to establish an approximation to 
the configuration at time L + .<:11. e + Ll tr3 , t+ .:ltv , t+ LltS ). Therefo re it is possible 
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to calculate the difference between the internal virtual work evaluated with the 
calculated static and kinematic quantities at time t + L1t, and the external vir
tual work. In general, lineariza tion of Eq. (9.28) introduces some errors and the 
aforementioned difference may not be negligible. Thus, in o rder to reduce the 
difference be tween the estimated internal work and the external work, an itera
tive solution strategy is necessary. Different schemes may he used for an iterative 
analysis. A full Newton - Raphson iteratio n scheme leads to the following fo rm: 

(9 .29) j tLijkl (m) L1 tekl(m) 6 t e;/ m ) 1dV - j 1 Llp(m ) 6 1e; ;(m ) 1dV 

1 V 1 V 

+ j t Lijkl (m) L1tekl(m) 6 tTJ;/m) 1dV + j 1a; j 811 t1Ji/ m ) 1dV 
1 V 1 V 

_ j t (L1p)(m ) 8 t 1Jii (m) tdV = t+Ll tw;xt _ j ta;/ m-1) 8 1eJ m-l) tdV, 

rv rv<m-1) 

where m is the iteratio n number and the fi rst iteration (m = 1) corresponds to 
E q. (9.28). The L11ed "'> in Eq. (9.28) is a component of the incremental strain 
tensor for iteration m, i.e. 

(9.30) 

Simila rly, the 6Ll t1J;/ m) is defined as 

(9.31) 

Iterations are repeated until the r.h .s. in Eq. (9.29) is negligible within a certain 
convergence to lerance. After each itera tion, the displacements and pore water 
pressure are updated. 

The full Newton scheme adopted in Eq. (9.29) is obviously expensive due to 
the necessity o f evaluation o f the constitutive tensor 1L;jkl at each iteration . A 
modified Newton scheme can be achieved by keeping the constitutive tensor 1L ijkl 
constant during each step of incremental solution, i.e. 

(9.32) j tLijkt Llt ek/m) 8 te;/"') 1dV- j 1Llp(m)6 1e)"'>1dV 

rv rv 

+ j t Dijkt L1tek/m) 8tTJ;/m) tdV + j 1a;j 8L1 1ry;/ m)trlV 

rv rv 

_ j t (L1p)(m ) 8 t1Jii(m ) tdV = t+Lltw ; xt _ j ta ;/ m - l ) 8 1e;/m- 1) tdV. 

rv r y(m - 1) 



http://rcin.org.pl

304 M .T. MANZARI 

Such a solution strategy has been successfully used in some of the app lications 
reported in [33]. 

As a final note in this section, it should be mentioned that the case of a 
deformation-dependent exte rnal loading can be conveniently handled by applying 
an itera tive incremental procedure as described for Eq. (9.29). For example, in 
the case of centrifugal loading, the body force applied to an infinitesimal volume 
o f the soil is a function o f its current position, i.e. 

(9.33) 

In such a case, the corresponding term in Eq. (2.5)1 is approximated as follows: 

(9.34) 

where 

(9.35) 

;:::: j t + L1 t
0

(m- 1) t + Lltb i ( t +Lltx(m - 1)) ou; t+Ll tdV , 

t+~ty(m- 1 ) 

The approximation introduced in Eq . (9.35) is only accurate fo r a small load in
crement. Evidently, a better approximation for the finite load increments can be 
achieved by linearizing t+Lltb;, as it was done fo r the second Piola - Kirchhoff stress 
tensor and the Green - Lagrange strain tensor. Such a linearizatio n, however, in
troduces a new contribution to the stiffness matrix and reduces the computationa l 
efficiency of the fo rmulation, as mentioned in [3]. 

10. Integral form of the equation governing the flow of the pore water 

In Sec. 5 we have established a di fierential equation (E q. (5 .23)) governing the 
flow of the pore wa ter through the s.o il. For the purpose of numerical solutions, 
however, it is appropriate to develop an integral fo rm of this equation which 
complements the virtual work eq uation developed in the previo us sectio n. 

In o rder to establish an integral fo rm o f Eq. (5.23), we recall that this equation 
is basically an expression of the axiom of mass balance implying that a tendency 
of volumetric strain in the soil skeleto n (first term in Eq. (5.23)) is counteracted 
by a change in pore pressure (seco nd term), and by the flow o f the pore water 
through the soil (the last three terms). Therefo re, a weak form of Eq. (5.23) can be 
generated by using the G alerkin weighted residual method and recogniz ing that 
the pore water pressure is the appropriate weighting functio n on the vo lumetric 
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strain rate, i.e. 

(10.1) J { 1 t+ Ll t • t+Llt tl .. r JJ + ,,, 
l +L11V 

where b t+ Ll tp is a virtual pore water pressure analogous to the virtual displace
ment bu previously used in the virtual work expression (Eq. (5.1)). 

An expanded form of Eq . (10.1) can be written as 

(10.2) 

Applying the Green 's theo rem to the last integral, we have: 

(10.3) 

+ j ( t+Lltk ·. a t+ Ll tP _ t+Lltk ·. t+Llt{! t+ Ll tb . 
1J at+ .1tx . IJ j J 

I +.C>tV J . 

+ t+ Ll t~.; . t + Ll tn t +Llti" ·) a ( ot+Llt, ) t + Llt l\1 
•J o:! lJ at+ Ll tx ; p c 

+ j (- t+Lltk · . a t+ !l tP + t+Lltk· . t+ Ll t t+Lltb . 
•Jat+ .1tx · •J {!J J 

r+d<S · J 

_ t+ Ll tk ij t+ !l te1 t+ Ll tiiJ ) .n; 0 t+ !l tp t +LltdS = o, 

where n; is the component of outward unit normal vector to the surface t+ Ll tS in 
the direct ion of x; axis. 
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Utilizing the water flow boundary condition (Eq. (6.4)), we can write Eq. (10.3) 
in the form 

(10.4) j t+Lltu. i,io t +LltP t+L\tdv + j ~ t+L\IP 6 t+LliP t+Lltdv 

t+LltV t+Ll<V 

+ J ( t +Lltk · . {) t+ Lltp - t+Lltk ·. t+Llt(! t+ Lltb . 
'l f)t+Lltx · 11 f 1 

t+Ll<V 
1 

+ t+ L\ tk ·. t+Lltf2 t+ L\ tii ·) a ( o t+Lltp) t+.Jtdv 
' 1 f J {)t+Lltxi 

+ j t+Lltq
5 8 t+L\ tP t+Lltds = o. 

t+Ll<Sq 

Equation (1 0.4) is written in terms of the coordinates of the current configura
tion t+Llt l3, whose equilibrium position is to be calculated while proceeding from 
time t to t + £11 in the incrementa l solution. By applying the chain rule and using 
Eq. (8 .1), we can write Eq. (10.2) in terms of the coordinates o f the configuratio n 

· l A · at tune t, ..... , t.e. 

(10.5) 

+ j _!_g__ [ t+ Lltk . t+Llt(! t+Llt .. . a (o t+LltP)] 
t+Lltg •J f uJ D '·x, 

t+Ll<V 

+ j t+Llfqsot+ Lltptds = o, 
'Sq 

where t+Llfq5 was assumed to be a deformation-independent flow on t+Ll tSq, so 
that 

(10.6) t+Llt -( t+ Llt 15' _ t+Llt7 t(LS' I ( - t'ls · · 

It is noted that due to the presence of t+Lltg1 , t+ Lltk;j , and the inverse of the de
formation gradient tensor, (8 1x1)/ (8 t+Lltx; ), in Eq. (10.5), most of the integrals in 
this equation cannot be evaluated without further simplifying assumptions. Similar 
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to the procedure adopted in Sec. 8, one may utilize linearization technique to re
duce Eq. (1 0.5) to a suitable form for incremental iterative analysis. Linearization 
of Eq. (10.5), however, leads to a very complicated equation which significantly 
reduces the computational efficiency of the formulation. Therefore, in order to 
avoid such a difficulty, it is suggested to use some reasonable approximation for 
the aforementioned redundant terms (I+Ll te 1• t+Lltk ;j, ... ) . For example, in the 
first iteration, one may utilize the values obtained from the previous time step. 
Corrections to the results of the first iteration can be achieved by establishing 
approximate position of the configuration at time t + Llt. The new configuration 
can be used in iterative solution of Eq. (10.4) written in the following form: 

(10.7) 

+ J t+Lltk ; .(m-1) [ EJ t+Lltp _ t+.:lt{! (m- 1) t+ .:l tb (m- 1) 
J i) t+Lltx (m- 1) 1 J 

t+.:ltV(m- 1) ) 

+ t+.:lt {m- 1) t+Lil"] D(bt+!llp) t+.:ltlV 
{!1 ll j ~ t+.:lt. {m- 1) ( 

U X; 

+ J t+Lltfisbt+Lltpt+LltdS= O, 

t+:.ltSq(m-1) 

where the right superscript (m - 1) refers to the iteration number (m- 1), and 
the case m = 1 is defined as 

(10.8) 

and t+.:lt{! Jm- l) is calculated hy using the fol lowing equation: 

(10.9) 

In Eq. (10.9), we assumed that the change of soil porosity during the time incre
ment was negligible. T his assumption is used to prevent the need for iteration 
over porosity. 

Equation (10.7) has a number of special characteristics which distinguish 
it from the virtual work expression, i.e. Eq. (9.25). First, the dependence of 
the acceleration term on t+.:!. tf! 1 and t+ .:l tk ij requires that the corresponding 
"mass" matrix in a discretized solution procedure should be calculated in every 
iteration. Similar situation renders the body force contribution in Eq. (1 0.7) a 
deformation-dependent loading. It is also noted that components of the effective 
permeability tensor are variable quantities which may change due to the change 
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of fabric in the soil skeleton. Unfortunately, experimental data in o rder to char
acterize such a change in the soil fabric is very limited. 

In so far as the permeability tensor is concerned, it is important to note that 
in a finite deformation regime, a generic element of the soil system may unde rgo 
large rotations. Therefore, special care is necessary to defin e the coefficients of the 
permeability tensor in terms of the coordinates of the Cartesian reference system 
used in the Lagrangian formul ation. Assuming that the permeability coefficients 
are intrinsic to the soil element, it can easily be shown [7] that the matrix of the 
permeability coefficients obeys the following transformation: 

(10.10) 

where ko is the matrix of permeability coefficients in the initial positio n and R 
is the matrix characterizing the rotation of the soil element with respect to the 
reference Cartesian coordinates. 
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Stokes flow past a composite porous spherical shell 
with a solid core 

B.S. PADMAVATill and T . AMARANATH (HYDERABAD) 

A GENERAL SOLLJTION of the Brinkman equations in the form of an infinite series is presented. A 
representation for the solution of Brinkman's equations is also proposed and its equivalence to the 
infinite series is established. 11te usefulness of the representation is demonstrated by applying it to 
design a general method of solving an arbitrary Stokes flow past a composite porous spherical shell 
with a rigid core. Some physical properties, such as the drag and torque exerted on the composite 
sphere are calculated. Several illust rative examples are discussed. 

1. Introduction 

IN THE STUDY of flow and heat transfer problems in porous media, two models 
which have been extensively used are those due to DARCY [1 ] and BRtNKMAN 
[2]. However, the Brinkman model seems to be favo ured in some problems in 
porous media, owing to the limitations of D arcy's law. The inadequacy of Darcy's 
law in the formulation of problems in bounded porous media is primari ly due to 
the order of Darcy's equations being lower than the second o rder Navier - Stokes 
equations. A variety of f1ow and heat transfer problems in porous media were 
solved using the Brinkman's equations. In th is paper, we give a general solution 
of the Brinkman equations in the fo rm of an infinite series by using a procedure 
fo llowed by LAMB [3] in the case of Sto kes equations. We also propose a represen
tation for the solution of Brink man equations in terms of two scalar functio ns and 
establish its equivalence to the series solution. We shall use this representation to 
study the problem o f an arbitrary Stokes flow of an incompressible, viscous fluid 
past a composite poro us sphere with a rigid core, using the Brinkman model in 
the po rous regio n. The results obtained by MASLIYAH et al. [4] who co nsidered a 
unifo rm flow past a composite porous sphere with a rigid core can be recovered 
as a special case. Some illustrative examples are discussed. 

2. Structure of the general solution of Brinkman's equations 

We consider Brinkman's equations 

(2.1) 2 J.l 
- \17; + J.LV V = k V, 

and the eq uation o f continuity 

(2.2) \l ·V = 0, 
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where V is the velocity, p is the pressure, I' is the coefficient of dynamic viscosity, 
and k > 0 is the permeability coefficient of the porous medium. Equation (2.1) 
can be rewritten as 

(2.3) 

where A2 = 1/ k. 
The general solution of the equation 

(2.4) 

is as follows: 
00 

(2.5) If/= L(XnFn(Ar) + Ynlln(Ar))Xn, 
- 00 

where X n, Yn are arbitrary constants, Xn = rnSn (B ,</;) is a solid harmonic of 
degree n, and 

n 

Sn (B , </;) = L P,:" (()(Anm cos m </; + Dnm sin m</;) , ( = cosB. 
m=O 

The functions Fn(z) and Ifn(z ) (z = Ar) are defined as follows, 

where 0
2

71" f + 1 ( z) and 0
2

71" /\" + 1 ( z ) are the modified spherical Bessel functions 
V l; " 2 V l; " 2 

which are finite at the origin and infinity, respectively. The functions Fn(h) or 
Hn(A r) are retained in the solution depending on whether the motion is finite 
at the origin o r at infinity, respectively. Suppose we assume the condition of 
finiteness of the motion at the origin r = 0, then the general solution of Eqs. (2.2) 
and (2.3) is 

00 

P = LPn, 
-oo 

(2.6) V= ~ ( [Cn + 1 )F~- 1 (A7') + nFn+l (Ar)A2r.2] 'V </Jn 

- n(2n + l)Pn+ l (h)A2r<Pn - F,.(h)\1 X (rxn ) - + 'Vpn) , 
A P 

where Xn, <Pn and Pn are solid harmonics of positive degree n. When the condition 
of finiteness at the origin is not imposed, we have an additional system of solutions 
in which the functions }~t(Ar) are replaced by 11n(A1-). 
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3. A representation for the solution of Brinkman's equations 

We now propose a representation for the velocity and pressure in I3rinkman's 
equations (2.2) and (2.3) in terms of two scalar functions A and B and establish 
its equivalence to the series solution given in (2.6). We assume the following form 
for the velocity V, 

V = curl curl(rA) + curl(rB), 

= grad div(rA) - v2(rA) + curl(rB). 
(3.1) 

Equation (2.2) is satisfied identically and substitution of (3.1)2 in Eq. (2.3) results 
in 

(3.2) grad (p - JL ~- [r(\72 - ), 2)A]) 

= JL ( -er1·(V'4 - >.2v2)A + eo cscB : 1> (\72 - >.2)8- e<l> :
0

(\72 - >.2)B) , 

where er, eo and e<l> are the unit vectors along the radial, transverse and azimuthal 
directions, respectively. Equations (2.2) and (2.3) are satisfi ed if 

P = Po + JL ~ [r (v2- >.2).4], 
vr 

(3 .3) \72 (\72- >.2)!1 = 0, 

(\72 - >..2)B = 0. 

A general solution of (3 .3)2 is given by A = A 1 + A2, where A 1 and ;12 are, 
respectively, the solutions of 

(3.4) 
v 2A 1 = o, 

(v2
- >. 2 )A2 = o. 

Equation (3.1 ) 1 can also be written as 

f) 
(3 .5) V= 2grad A + r or grad A - r \72 A + curl (rlJ). 

From the above equation, we recover the solution given in Eqs. (2.6) by assuming 

00 

-oo 

(3.6) ~ 1 Pn A I = - L.., - ____:__:.:___ 
- oo ),2JL (n + 1) ' 

00 

-oo 
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It is observed that such D, A 1 and A2 satisfy Eqs. (3.3)3 and (3.4), respectively. It 
may be noted that when the condition o f finiteness at the o rigin is not imposed, 
the functions Hn(>..r) also have to be considered along with the func tions Fn(>..r) . 
Thus (3.1)1 and (3.3)1 give a general solution of the Brinkman's equations. Similar 
representations have been considered earlier in the literature and, more recently, 
in connection with the solution of Stokes equations by P ALANIAPPAN et al. [5]. 
However, the application of the representa tion proposed here to the Brinkman's 
equations is new and this representation lends itself to useful applications in 
problems of flows through porous media; in particular, in problems involving 
spherical boundaries, owing to the simplicity of its fo rm. This fact is exemplified 
in the next section in the discussion of a general, non-axisymmetric Stokes flow 
past a composite porous sphe rical shell with a rigid core, using the Brinkman 
model in the porous region. 

4. Stokes flow over a composite sphere: Solid core with a porous shell 

Consider a stationary, solid, impermeable sphere of radius b surrounded by 
a porous shell of permeability /..; and thickness (a - b). We shall consider a 
non-axisymmetric, Stokes flow o f an incompressible, viscous fluid over the com
posite sphere. The Sto kes equations are 

IL\12V = \lp, 
(4.1) 

\l·V=O. 

We find it advantageous to use the representation, proposed by P A LANIAPPAN 

et al. [5] for the solution of th e Stokes eq uat ions ( 4.1 ), given below in the form 

(4.2) 
V = curl curl(rA) + curl(rfl) , 

where 

(4.3) 

Suppose now that the basic, unperturbed velocity is given by 

(4.4) Vo =curl curl(rAo) + curl(rBo), 

where 
00 

Ao = L ( O'nrn + a;t1.n+2
) Sn(B , c/Y) , 

(4.5) n =l 
00 

Bo = L ~n 1.nTn (B ,cp) , 
n =l 
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where 
n 

Sn(B , qy) = L p~n (()(A nm COS mqy + Bnm sin mqy), ( = cos B, 

(4.6) 
m =O 

n 

Tn(B, qy) = L P::" (()(Cnm COS mqy + Dnm sin mqy), 
m=O 

O'n , a~ , ~n, Anm , Bnm , Cnm and Dnm are known constants and ?;:" (() is the Leg
endre polynomial. For the flow quantities in the region a < r < oo we shall use 
the superscript e. Therefore in the presence of the sphere, we shall assume the 
modified flow in this region to be given by eve, pe) in terms of two scalar functions 
A e and n e, where 

(4.7) 
\74Ae = 0, 

\72 n e = 0. 

The equations which describe the flow field in the porous region b < r < a 
are assumed to be the Brinkman equations (2.1) and (2.2). We make use of the 
representation (3.1) 1 and (3 .3)1 proposed for the Brinkman's equations, to find 
the modified flow (Vi, 7i ) in this region in terms of two scalar functions Ai and 
n i, where 

(4.8) 
\72( \72 _ ,\2) Ai = O, 

( \72 _ ;...2)Bi = O. 

We assume the fo llowing forms for these scalar functions as 

Ae(r , (} , qy) = f ( O'nTn + a~rn+2 + r~: J + r~: l) Sn(B , qy), 
n= l 

B e(r·, B, qy) = f ( ~n rn + r~: 1 ) Tn(B, qy), 
n = l 

Ai(r , B, qy) = A1 (r, B, qy) + J\~(r, B, qy), 
(4.9) 

00 

ni (r·, e, qy) = L b nfn(>.. r) + ~~gn (>..r·)) T!l (B, qy), 
n =l 

where 

(4.9') 00 

A~ (r, B, qy) = L (onfn(>..r) + o~gn (>..r')) Sn(B , qy), 
n = l 



http://rcin.org.pl

316 13 .S. PAOMAVAT H I A N D T. AMARA N ATI I 

where f n(z ) = /"'fln+~ (z) and .rJ11 (z ) = /"'f r~·n+! (z) . The boundary conditio ns 

to be satisfied at r = a and 1· = b a re 
1) continuity of velocity components on the surface r = a 

(4.10) 

q~ (a , 0, <P) = q; (a, 0, </J), 
qO(a, 0, <!J) = q~ (a , 0, </J), 

q: (a , 0, <P) = q~(a , 0, <P); 

2) continuity of stresses on the surface r = a 

(4.11) 
1';r(a, 0, </J) = Tjr (a, 0, </Y) , 

T,~o (a , 0, <P) = Tj0(a, 0, </J), 

r :q, (a, 0, <P) = 1~q, (a , 0, <P); 

3) no-slip conditions o n the surface r = b 

( 4.12) 

q:.(b , 0, <P) = 0, 
qb(b , 0, <P) = 0, 

q~ (b , 0, <P) = 0, 

where q~ , qb and q~ are the radia l, transverse and azimuthal veloci ties, T:r is the 

no rmal stress and Tj0 and Tjq, are the tangen tial stresses in the regio n b < 1· < a. 
The correspo nding velocities and stresses in the regio n a < 1· < are de fined 
in a similar manner using the superscript e. 

In terms of the scalar functio ns which appear in ( 4.8)- ( 4.9'), the bo undary 
co nditio ns ( 4.1 0)- ( 4.12) can be restated as fo llows 

(4.13) 

Ac(a, 0, </J) = Ai(a, 0, </J), 

A~ (a, 0, </J) = r1 :. (a, B, </J), 
A~r (a , (} , </Y) = A:or(a , B. </J), 

a(A~rr (a , 0, <P) - 11 :.n. (a. , 0, </Y)) = --\2 ~~ (r Ai)(a, 0, </J), 
U l' 

IJe(a, B, </J) = JJ ' (a, 0, </J), 

B~ (a. , B ,<Jy) = n;.(a , B,</J), 

A' (b ,O,<Jy) = 0, 

A~ (b , 0, <P) = 0, 
IJ;(b , O,<Jy) = 0. 

The functio ns !1 e , ne, A i and IJ i which co rrespo nd to the modifi ed flow can be 
determined by determining the nine unknown co nstants f3n, {3~ , O'n, En,£~ , On, o:l, 
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/n , and ~~ from the nine equations (4.13) in terms of an, a~, ~n, Anm, B nm, Cnm 
and Dnm· The nine unknown constants are determined to be as follows: 

(4.14) 

where 

f3n = 
numb 

de no ' 

{3~ = 
numb' 

deno ' 
nu me 

En = 
deno ' 

I nu me' 
[n = 

deno ' 

bn 
numd 

= 
deno ' 

b' 
numd' 

= ' n de no 

[ Sn (l + 2n)] 2n an = - a+ A a ~n, 
l n 

(1 + 2n)a"- 1g,l (A.b) 
In = A[ ~n' 

7l 

~~ = 
(1 + 2n)an- l f n(A.b) 

- A.! ~". n 

deno = 2an+S bn+ 1 A-3 {[(I + 11 )a2n+3 &A 2 + 'lla2&2+2n A. 2 -n (1 - 4n2)a 1 +2nb ]a,, 

+(1 - 2n)A[(1 + n)a2+2nb + na&2+2n]bn 

+ n(l - 4n2)anb2+nCn + n(l - 4n2)a11+2b11 r 11 

-n(1 + 2n)A.a2&1+2ns11 - n(1 - 4n2)ab1+2ntn}, 

numb= a3"+6b"+1A. 3(2n - 1){ [a2n+3bA.2(1 + n) + 2a2n+ lb(1 + n)(1 + 2n) 

+ a2b2n+2/\2n]an + 2a&A.[a2n+ l(l + n) + b2n+ In]bn 

- 2anbn+\1 + n)(1 + 2n)cn + 2a2+11U71 n(l + 2n)1'11 

- a2&1+2n>..n(1 + 211)sn - 2a&1+2"n (1 + 2n)t11 }CI'n 

+a3n+6&n+ 1A. (1 + 27l){ab[a2n+4>..4(1 + n ) 

+a302n+l_A.4n + 4a2n+2A.2(2n + 5) 

-4a2" (1 - 4n2)(2n + 3) + 4A. 2au2n+i (2n + 3)]an 

+a& A. [4a2n+3_A.2(1 + n) + 4a2b2n+l_A.2n 

- 4a2n+l (1 - 2n)(2n + 3) + 4&2"+ 1(1 - 2n)(2n + 3)]bn 

+2anbn+2(1 + 2n)[2(1 - 2n)(2n + 3) - 3A.2a2]cn 
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- 2a71 +2b71 (1 + 2n)[3c/ )..2 - 2(1 - 2n)(2n + 3)]rn 

-a2b2n+l ).. (1 + 2n)[a2 A2n + 4(2n + 3)]sn 

- 4nb271 +1(1 + 2n)[a2 )..2n + (1 - 2n)(2n + 3)] 1n}a~ , 

numb' = -a371 +6b71 +2(1 + 2n)A4{[a2"+1(1 + n) + b271+1n]An71 

- b2nn(1 + 211 )s,. }an 
- a3n+6bn+1(3 + 2n)A3{[a2n+3b.-\2(1 + n) + n2b2n+2)..2 11 

+2a 271+1b(l + n)(l + 2n)]a11 + 2.-\[a2n+2b(l + n) + ab2n+2u]bn 

+2a71b71 +2n(l + 2n)cn- 2a71 +2b71 (1 + n)(1 + 2n)7'71 

- a2u2n+ l .-\n(l + 2n)s - 2ab271 +1n (l + 2n)t }a' n n n' 

numd = 2a2n+Sbn+l.-\2(1 - 4n2){an+ibnn(l + 2n)g,.(.-\a) 

- A[b2n+2n + a2n+Jb(l + n)]gn- !( .Xb) - b2n+in(l + 2n).IJn(.-\b)} an 

+2a2"+6bn+l).. (1 + 2n)(3 + 2n){[a2n+2b.X2(1 + n) 

+ 1\ 2ab2n+2n - 2a2"b(1 - 4112)]gr, - I(.-\b) 

- a71 +2b" .X(n - 2)(1 + 2n).r;11 (Aa) + 2n"+ 1b" (l - 4n2)gn- I(.-\a) 

+ab2n+ i .-\n(1 + 2n)gn (.-\b)} n~,, 

numd' = - 2)..2(1 - 4n2)n2"+5b"+ 1{a"+ 1b"n(l + 2n)f,.(.-\a) 

+ ~\(b2n+2n + a2n+lb(1 + n))fn- 1 (.-\b) 

- b2"+1n(l + 2n)j, ()..b)} a, 

+ 2.-\ (1 + 2n)(3 + 2n)n2"+6bn+ l {a2n+2u.-\\1 + n)fn- 1 (.-\b) 

+a"+ 2b" A(n - 2)(1 + 2n)J,.(>..a) 

+2nn+lb" (1 - 4n2)fn- J(.-\a) + ab2" +2n.X2f n- J(Ab) 

-nb2"+ 111(1 + 2n)>..fn(l\b) - 2a2nb(l - 41/)fn- J(>..b) }a~ , 

nume = - 2.-\3a2n+Sbn+2n(1 - 47/)[an+ ln,- bn+ lc, ]an 

+2>..2n2"+7bn+2(1 + 2n)(3 + 2n){a"+ 1(n- 2).-\an 

- 2a11 (1 - 2n)bn- b"+ 1 n.-\c 11 }rr~, 

nume' = 2.X2a3" +6b2n+2(1 - 4u2 ){Ab''+ 1
1W11 - b71 n(1 + 2n)sn 

+Aa71b(1 + n)cn}Cl'n 

+.-\a3n+6b2n+\1 + 2n)(3 + 2n){ - 2.-\2a2bn+l(n- 2)an 

+4.-\ab71 +1(1 - 2n)b, + (4a 71 b(1 - 4n2) - 2)..2an+2b(1 + n))c11 

+2~\a2b11 (n- 2)(1 + 2n)s11 + 4ab71 (4n 2
- 1 ) t, }a~, 
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and 

Un = gn(>..a)fn- 1(>-. u) + fn(>..a)gn- l(>..b) , 

Un = gn- l(>..a)fn- 1(>..&) - fn- t(>..a)gn- 1(>..&) , 

Cn = .9n(>..b)fn-l(>..u) + fn(>..u)gn- 1(>-.b), 

rn = gn(>..a)fn- I(Aa) + fn(>..a)gn- 1(>-.a), 

Sn = gn(>..a)fn(>..b ) - fn(>..a)gn(>..b) , 

tn = gn(>..b)fn- l(>..a) + f n(>..u)gn- 1(>-.a). 

5. Drag and torque 

The force exerted by the fluid on the composite sphere is given by 

(5.1) D = X/Y, 

where 

(5 .2) X= { l27rp>..c/{ (2a3 + u3)>..a1 - 3u2sl}a1 

319 

+207rpn3{(2a4 >..2 + ab3>..2 + 12a2)a l + 2>..(2a3 + u3)bl 
2 2 2 2 '} """:" """:" -+6& c1 - 12a r 1 - 3au >.. s1 - 6U tt}a1 (A 1 1 ~ +Bt u + !110k ), 

= 611"JlAa2{(2a3 + b3)>..n t - 3b2s t} (Vo]o 

(see Appendix) 

+ 7rJW3{(2a4
)..

2 + ab3).. 2 + 12n2)a l + 2)..(2a3 + u3)ul 

+ 6u2c1 - 12a2r 1 - 3ab2 >..s1 - 6b2t t}[\72V0]0, 

(5 .3) Y = {(2a4>..2 + ab3>.. 2 + 3a2)a t - >..(2a3 + b3)b1 

-3u2c1 - 3a2r1 - 3ab2 >.. s1 + 3&2ti} , 

and where Vo is the velocity corresponding to the basic flow, and [ ]0 deno tes 
the evaluation at the origin r = 0. 

Similarly, the torque T is given by 

(5.4) 

(see Appendix). 
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It is found that when a = b, in the limit k ____. 0, i.e., .A - oo, we recover the 
well known Faxen's laws [6] for drag and torque acting on a rigid sphere of radius 
a, 1.e., 

(5.5) 
D = 67rJ.ta(Vo]o + 7rJw 3[\72Vo]o , 

T = 47r rw3[\7 X Vo)o. 

Similarly, when b = 0, we recover the expressions for drag and torque obtained 
by PADMAVATH£ and AMARANATH [7] for the Stokes flow past a porous sphere, i.e., 

D = l27rJ.La3_x2!J(.Xa)(Vo]o 
((2a2,X2 + 3)!J(.Xa) + 2a.Xfo(.Xa)) 

(5.6) 
21rft [(a5 .X2 + 6a3)!J (.Xa) - 2a4 .Xfo(.Xa)][\72Vo]o 

+ ((2a2A2 + 3)!1(-Xa) + 2a.A fo(.Xa)) ' 

T = 4 ( a
3

-X fo(.Xa) - 3a
2
JI(.Xa)) [" V] 

1r ft .Xfo(.Xa) v x o O· 

6. Effective viscosity 

The effective viscosity J.L* of a dilute suspension of composite porous spheres 
with rigid cores, each of outer radius a is found (as in [7]) to be 

(6.1) fl. = J.l { 1 + ~~ p} ' 
where 

R = a.A [(3a5 + 2b5).Xa2- lOb4s2], 

(6.2) S = 2[(a.X2(3a5 + 2b5) + 30a4)a2 - 3.X(3a5 + 2b5)b2 

- 10ab(3b2c2 + 3a27'2 + .Xb3s2) + 30&41.2], 

where <!> denotes the concentration by volume of the fluid containing the spheres. 
When a = b, in the limit k ____. 0, we obtain the well known formula due to 

EINSTEIN [8] for the effective viscosity of a dilute suspension of rigid spheres 

(6 .3) J.L* = fl· { 1 + ~<l>} . 
When b ____. 0, we recover the formula obtai ned by P ADMAVATHI and AMARANATH 

[7] for a dilute suspensio n of porous spheres of radius a 

(6.4) 
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7. Examples 

7.1. Stokeslet 

Consider a Stokeslet of strength F1 j 81r JL located at (0, 0, c), c > n, its axis ex
tending along the positive direction of the x-axis. The corresponding expressions 
for Ao and B0 due to the Stokeslet are [5] 

F1R1 cos ~ 
-
8
-(rcosB- c + R1)-.-() , 
7rJLC r sm 
F1 sin ~ 

-
4

- (rcosB- c + R 1) -.-() , 
7rJLC r sm 

(7.1) 

where 

(7.2) 

For r < c, 

Fl oo [ r n+2 

Ao(r , B,~) = 81rp,?; (n + 1)(2n + 3)c"+2 

(n - 2)1'n ] 1 
(7·3) - n(n + 1)(2n- l)c" P" (()cos ~, 

F1 Loo [ r" ] 1 Bo(1· , B,4J)= -4 ( l) +I Pn (()sin ~. 1r jJ. 11 11 + en 
n= l 

The drag D and torque T are given by 

(7.4) 

where 

M ~ 
D = - l ;t i N , 

M = (3>.a2c2{(2a3 + b3)>.a1 - 3b2s J} 

+ a3 {(2a4 >. 2 + ab3>.2 + 12a2)at + 2..\(2a3 + b3
)b1 

+6b2
c1- 12a2

r l - 3ab2>.si- 6b2tJ}) , 

(7.5) N = 4c3{(2a4 >. 2 + ab3>.2 + 3a2)a1 - ..\(2a3 + b3)b1 

- 3b2
c l - 3a2

r l - 3ab2 
ASJ + 3b2tl} , 
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As before, the results for the rigid case [5] are recovered by putting k ____, 0 i.e., 
.\----> oo and a = b. 

(7.6) 

D= 

a3 ~ 
T = 2 FI). 

c 

Similarly when b ----> 0, we recover the results obtained for the case of a porous 
sphere [7] 

D = ((3a3c2.X2 + a5.X2 + 6a3)JI(.Xa) - 2a
4
.\fo(.Xa)) Fli 

2c3[(2a2.X2 + 3)ft(.\a) + 2a.\fo(.Xa)] ' 

T _ a3 .\fo(.Xa)- 3a2 !1 (.\a) F ~ 
- c2.Xfo(.Xa) 11· 

(7.7) 

7.2. Uniform flow 

The basic, undisturbed flow is given by 

u 
Ao= - rcosB 2 , 
Bo = 0, 

(7.8) 

where 
Z = 2a4.X2 + ab3 .\

2 + 3a2. 

This result agrees with that of M ASLI YAH et al. [4] who solved the uniform flow 
past a composite porous sphere with a rigid core. 

8. Conclusions 

An infinite series solution and a representation for the solution of Brinkman's 
equations are presented. They are shown to be equivalent. It is found that this 
representation is very useful for discussing an arbitrary Stokes flow past a co m
posite porous sphere with a rigid core, and a general method is suggested for 
finding the solution. The formulae to calculate drag and to rque are given. The 
effective viscosity of a dilute suspension of composite porous spheres with rigid 
cores is calculated. The previous results pertaining to Stokes flow past rigid and 
porous spheres are recovered as special cases. It may be noted that the method 
suggested in this paper can also be used effectively to discuss the problem of 
Stokes flow past a porous spherical shell , where the rigid core in the present 
problem is replaced by a region filled with a viscous fluid. 
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Appendix 

[Vo]o = (2gradAo]o = 2a1[Au7 + B11 ] + A10k], 

[V'2Vo]o = 2oaaA117 + B11] + A10k] , 

[V' x Vo]o = 2~1[C117 + Du]+ Cwk] . 
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1\vo-dimensional Hooke's tensors - isotropic decomposition, 
effective symmetry criteria 

A. BLINOWSKI, J. OSTROWSKA - MACIEJEWSKA 
and J. RYCHLEWSKJ (WARSZAWA) 

MY FOUR'rn RANK plane tensor H obeying the "Hooke's" symmetries (H,1 kt = H 1 ,kt = l-fkto 1 ) 

can be split into three parts, behaving differently under the two-dimensional space rotation and 
belonging to the three different, mutually orthogonal, two-dimensional subspaces remaining stable 
under the rotation. Such representa tion leads to a convenient set of functionally independent 
invariants, vanishing of some of these invariants demarcating the transitions of the tensor to the 
highe r symmetry class. A non-trivial effective condition of orthotropy has been obtained. Some 
problems concerning the necessary and complete set of measurements of the elastic properties are 
also e ncountered. 

1. Introduction 

LARGE VARIETY of engineering problems of structural mechanics concerning the 
applications of natural or man-made anisotropic composite materials can be effec
tively analyzed with the use of the plane stress and/or strain state concepts. Thus 
the convenient description o f the plane elasticity and limit criteria is not only of 
theoretical, but also of practical interest. In some recent papers [8, 9], it was shown 
that some problems, which, due to their discouraging complexity, look rather bor
ing and demanding time-consuming analysis in general (three-dimensional ) case 
(cf. [5]), can be, with moderate efforts, effectively solved in the plane case. 

In the present paper the authors will demonstrate an effective description of 
the properties of Hooke's tensor making easier both the better comprehensio n of 
the matter and the practica l applications of the results. Almost all the considera
tions can be applied without change to elastic stiffness and/or compliance tensors 
as well as to the quadratic limit condition tensor. The results, together with the 
earlier obtained results presented in [8, 9] exhaust most of the practical aspects 
of the description of anisotropy of the plane, linearly elastic and quadratic limit 
properties e). 

2. Hooke's tensors 

Our subject are plane tensors of the fourth rank H 6 Tt., having the following 
internal symmetries: 
(2.1) ff ;jkl = ll jikl = ll;jtk = lhtij . 

( ') Some interesting but purely theoretical problems, like the polynomial integrity basis, remain out of the 
sphere of our interest in the present paper. 
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The most important tensors of this kind are the stiffness tensors and the com
pliance tensors of the theory of plane elasticity, thus in [3] it was proposed to call 
them Hooke's tensors. Among the applications of Hooke's tensors one can men
tion their role as linear operators a. ---+ H·a., bilinear fo rms (a. , f3) ___... a·H·f3 or 
as quadratic functionals a. ---+ <:x.·H·a., e .g. functionals of energy or the limit stress 
intensity [1]. A Hooke's tensor H can play a role of the stifTness or compliance 
tensor only if a.·H·a. ;:::: 0 for every a.. 

In the present section we shall present the important decompositions of the 
Hooke's tensors, useful for the analysis of the symmetries and the invariance. It 
would be convenient to begin with recalling the notions and the notation for the 
second rank tensors. 

2.1. Second rank plane tensors 

All the isotropic orthogonal decompositions of the plane second rank te_~;~sors 

are included in the following formula: 

(2.2) 72 = S + A = P + V + A , 22 = 3 + 1 = 1 + 2 + 1, 

where S is the three-dimensional space of plane symmetric tensors a. T = a. , A is 
the one-dimensional space of skew-symmettic tensors a. T = - a. , P is o ne-dimen
sional space of isotropic tensors 'U 1 and V is the plane of the two-dimensional 
deviators: a. T =a., tra. = 0. These decompositions are o rthogonal, S .l A , P 1. 

V . To these decompositions correspond the fo llowing orthogonal decompositions 
of unity I of E 0 E (see (A.S)) 

(2.3) 

where 

(I s )ijkt 

('Ip )ij k/ 

= ~ (8ikOjt + 8it8Jk) , 

1 
= 20jj0kt . 

The unity Is of the space S (see (A.5)) acting on the second rank tensors, 
a. ---+ Is ·<:x., performs an orthogonal projection of the space 72 onto the S space, 
hence Is· a. =a. iff a. E S. The other unities I v, 'Ip , TA act in a similar way. 

In the forthcoming considerat io ns the one-dimensional space A and its unity 
TA will remain out of the scope of our interest. 

Taking an arbitrary Cartesian basis w 1, w 2, w3 inS and an arbitrary Cartesian 
basis T 1, T 2 in V, one can write 

(2.4) 

Is = w 1 0 w 1 + w 2 0 w 2 + w 3 0 w3 , 
Iv = T 1 0 T 1 + T 2 0 T 2 , 

1 
'Ip = 2 10 1. 
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For every tensor w E S takes place the well-known spectral decomposition 

(2.5) 

where w1, w2 is the Cartesian basis in the physical plane ww1 = w1 w1 , ww2 = 
w2w1. Thus every deviator has the following canonical form: 

(2.6) 

where d·d.L = 0, ldl = ld .L I. It can be also represented as T = m Q9 n + n Q9 m, 
n•m = 0. The interpretation of the deviators as stresses is shown in Fig. 1; thus 
we shall further call them pure shears. 

F I G. 1. 

The following expression, uniquely representing a tensor w E S as the orthog
onal sum of the isotropic tensor and the pure shear: 

(2.7) 

we shall call the isotropic decomposition of a second rank tensor. 
The rotations R (and the min·or reflection M) of the physical plane act in Ti 

according to the rule: o. -> R * o., where 

(2.8) 

One-dimensional subspaces P , A are the axes of every rotation R*. In the plane 
of deviators V, a rotation R( <p) of the physical plane by the angle <p acts as a 
rotation R( <p )* by the double angle 2<p (Fig. 2). Indeed, since 

(2.9) 

thus 
(2.10) 

R( <p )d = cos <pd + sin <pd.L , R( <p )d.L = - sin <pd + cos <pd.L 

The action of the mirror reflections is similar. 
If a Cartesian basis ( n 1, n2) in the physical plane is chosen, then the vec

tors x are represented by the pairs of numbers (x 1,x2) and the tensors by the 
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p 

0 

F IG. 2. 

number-valued matrices 2 x 2 ( aij ). Then 

R( c.p) ,..., [ ~s <p 
Stn <p 

- sin c.p l , 
COS <p 

(2.11) 
- sin c.p l [ a 11 a 12 ] [ COS <p 

cos <p a21 a22 - sm <p 

2.2. Decompositions of Hooke's tensors 

sin c.p l · 
COS <p 

During the last decade the spectral decomposition of the elasticity tensors 
(which can be traced back to Lord Kelvin and has been recalled by J. R YC HLEWSKJ 

in early eighties [2]), is becoming almost canonical and even finds its way to 
textbooks [10] . In the plane case, such a decomposition o f the two-dimensio nal 
Hooke's tensor has the form 

(2.12) 

where the tensors w K (A' = I, IT, ITI), called the proper states - the e igenelements 
of the symmetric linear operator a -+ H·a constitute an o rthonormal basis 

(2.13) 

XI\ being the corresponding eigenvalues e). 
It is not difficult to observe that, if one of the proper states is a pure shear, 

then the other two should be mutually coaxial. Indeed, if, say, wm is a deviator, 

(') For the case of the elastic stiffness tensor S J. R YCHLE WSKI proposed [2( to call these eigenvalues denoted 
by >. K the Kelvin moduli, the ir reciprocals I />. K are the e igenvalucs of the clastic compliance tensor C, which 
has the same elastic proper states as S, while the independent parameters, defi ning the elast ic p roper states r;.

1 
he proposed to call the .l·tif!ness di.1·tributurs. 
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then there exists such a basis in the two-dimensional space that 

(2.14) 

Thus, due to the orthogonality condition, the other two proper states should have 
in the same basis the following diagonal representations: 

(2.15) WJ rv [
cos a 0 l 

0 sin a ' 
Wn rv [

- sin a 0 l 
0 cosa 

(we recall here that a has nothing in common with any rotation, it is merely a 
convenient parameter). 

Obviously, such a set of proper states describes the orthotropic material -
the reflections with respect to any o f the two common proper axes of Wt and w 11 

merely changes the sign of wm leaving C unchanged. Moreover- vanishing of the 
trace of at least one proper state is the necessary condition of o rthotropy. If the 
pure shear T along the orthotropy axis were not a proper state, then it would give 
rise to non-vanishing diagonal terms in H·T tensor. The reflection would change 
the sign of T while H·T would change according to a different rule (diagonal 
terms are insensitive to such a transformation) i.e., against the assumption, the 
reflection would not preserve the shape of H. 

According to (2.6), the rotatio n by 1r / 2 interchanging the vectors d, d l. (the 
change of sign is insignificant) transforms arbitrary traceless tensor T into - T, 
hence if in (2.15) a = 1r / 4, then we are dealing with the tetragonal symmetry 
(the symmetry of the square). Observe that in such a case the hydrostatic state, 
(proportional to the unit tensor) must be a proper elastic state. 

At last, if the two Kelvin moduli, corresponding to the two pure shear proper 
states, are equal - one obtains the case of isotropic materia l. We shall prove in 
the forthcoming consideration, that no other symmetries of the plane Hooke's 
tensors are possible. 

The spectral decomposition (2.12) is an exact counterpart of the spectral de
composition (2.5). Let us find a counterpart of the isotropic decomposition (2.7). 

The rotations of the physical plane R act on the fourth-order tensors according 
to the rule A --+ R * A (see (A.2)). It is evident tha t every Hooke's tensor H, 
being rotated preserves its "Hookean nature", any linear combination of Hooke's 
tensors produces again a Hooke's tensor. Thus the set of all Hooke's tensors is 
the tenson"al space (see (A.2)) 1t c ~ . For further considerations only this space 
will be of our interest; it is evident that dim 1t = 6. We have to find an isotropic 
decomposition of the space H. 

The earlier introduced unities Is, Ip, Iv are Hooke's tensors. Moreover, every 
isotropic Hooke's tensor is a linear combination of the two arbitrarily chosen 
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tensors out of this threesome. In such a way we obtain the tensorial plane J c 1t 
consisting of the isotropic Hooke's tensors. The pair 'Ip, Iv is an orthonormal basis 
in J, thus every isotropic Hooke's tensor has a unique orthogonal decomposition 

(2.16) 'Ip ·'Iv = 0. 

The orthogonal complement of this plane J .L is a four-dimensional tensorial 
space. Its possible isotropic decomposition can be only of the fo llowing form: 
J .L = A + B, 4 = 2 + 2. Indeed, all one-dimensional tensorial subspaces in 1t 
belong to J. The conditions of orthogonality of the tensor H to J, Ip · H = 0, 
Iv · H = 0 are of the following form 

(2.17) 1·H·1 = H iijj = 0, Tr H :::::: lliji j = 0. 

These conditions meet e.g. all the tensors from the set A of the following form: 

(2.18) 1 0 T + T 0 1, T E V. 

Since for every rotation R* the tensor R* (1 ® T + T ® 1) = 1 ® (R * -r) + (R * -r) @ 1 
remains in A and every linear combination of the tensors from A belongs to A, 
thus A is one of the two tensorial planes in J .L, dim A = dim V = 2. 

The last component of the isotropic decomposition of the space 1t is the 
orthogonal complement B of the space A in J .L. Let us find the general form of 
the tensors D E B. From the orthogonality condition D .lA we have (l ·D)·T = 0 
for every T E V. Combining this with the condition 1· D·1 = 0 one can see that 
(l·D)·o. = 0 for every o. E S , therefore 1·D = 0 E S . Making use of the spectral 
decomposition 

(2.19) 

from the conditions 1· D = 0, TrD = 0, one obtains readily 

A1trw1 = Autrwu = AIIItrwiii = 0, 

AI + Au + AIII = 0. 
(2.20) 

The only solution, other than D = 0, is the following one 

(2.21) Am= - .A.I , Au = 0, trw1 = trwm = 0. 

Thus every tensor D E B can be uniquely expressed in the fo llowing form 

(2.22) 

where T·T.L = 0, 1-r l = 1-r.LI. It is not difficult to check that the tensor D is 
totally symmetric and traceless, i.e. 

(2.23) D ;;kt = 0, 
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where a is an arbitrary permutation. Thus the plane B consists of the plane fourth 
rank deviators [3] e). Thus, concluding: 

Isotropic complete decomposition of the space of plane Hooke 's tensors has the 
following form 
(2.24) 'H = J +A+ B, 6 = (1 + 1) + 2 + 2, 

where J is the plane of space of isotropic Hooke 's tensors, A is the plane of the 
tensors: l 0 T + T 0 l, T denoting pure shear, B is the plane of the fourth -rank plane 
deviators. In other words: the isotropic decomposition of every plane Hooke's tensor 
has the following fom1: 

(2.25) H = >..pi p + >..viv + (1 0 T + T 0 1) + D, 

the four components defined above being mutually orthogonal; invariants A. p and 
>..v and the deviators T , D are the linear isotropic fun ctions of Hooke's tensor. (4) 

The rotation R( <.p )* is a rotation of the six-dimensional space 'H around the 
fixed plane J. It is evident that the tensorial plane A rota tes by the double angle 
2<.p. The deviatoric plane B rotates by the quadruple angle 4<.p, because, according 
to th e fo rmulae 

(2.26) 
R( <p) * T = COS 2<p T + sin 2<p T \ 

R(<p) * T l. = - sin 2<p T + COS 2<p T l. , 

taking D = T 0 T - T l. 0 T l., one obtains 

(2.27) 

3. Hooke's tensors as the second rank tensors 

The intriguing similarity between the cano nical fo rms of the pure shears T 

(2.6) and the Hooke's deviators D (2.22) can be noticed. The explanation of 
this fact is simple and leading to the well known techniques of handling stiffness 
tensors, commonly used in the engineering applications. 

The space Tt can be considered, if it is convenient, as any tensorial product 
T; 0 Tj , i + j = 4. The representa tion Tt = 7i 0 7i turns out to be especially 
useful; it means that the tensors of the fourth rank are considered as the "second" 
rank tensors from the sequence Q9P 7i , p = 1, 2, . . . . This is particularly useful 
in the case of the Hooke's tensors. 

(') The last expression wll be called the canonical fonn of the deviator D; (in 131 the canonical form of the 
plane deviato r of arbitrary rank has been shown). 

(•) 2.\ p = 1•11•1 , 2.\ p =Trll - >. p , 2T = II• 1 ->.7>1, 

I 
D = H+ >.pTp-.\ v Tv - 21(11•1) 0 1+1 ® (11•1 )] . 
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The space o f the plane symmetric second-rank tensors is the symmetrised 
tensorial square of the physical pla ne E, 

(3.1) S = sym E ® E, dimS= 3. 

Quite similarly, it is convenient to consider the space of the Hooke's tensors as 
the symmetrised tensoria l square of the S space, 

(3.2) 1{ = sym S ® S , dim 1{ = 6. 

In other words: H ooke's tensors can be considered as the sym metric "second 
rank" tensors, generated by the tensors a E S , exactly in the same manner as the 
tensors a E S are generated by the vectors x E E. Such a viewpoint is correct and 
useful , under the fo llowing important condition, however: the o rthogo nal gro up 
O(S) of the transfo rmatio ns of the Euclidean three-dimensional spaceS contains 
such rotation and mirror refl ectio ns, which are no t generated by the rota tions and 
the reflectio ns of the physical pla ne E, for example, the rotat io n transforming the 
iso tropic tensor 1 E P into the pure shear T E V, ITI = Il l = v'3. Such ro tatio ns 
and reflectio ns remain o ut o f the scope of our interests. 

If { v r:} , A" = I , IT, III is a Cartesian basis in S, then { v r,· 0 v L} is a Cartesian 
basis in S® S, thus we can write 

(3.3) 

Symmetrising dyads v 1,· ® v L one obtains a basis in the space o f the Hooke's 
tensors. 

The usefulness of the descrip tio n of the Hooke's tensors as the "second rank" 
tensors can be demonstra ted using the three fo llowing examples: 

1. Taking in the last re la tio n the proper states w 
1
, o f the tensor H as the base 

eleme nts v K, one obta ins th e spectral decomposit io n of the tensor H (2.12). 

2. Acco rding to the new view o n 1{, we shall express the ro tations a --+ R * a 
and H ___, R * H in the fo llowing fo rm 

(3.4) R * a = R ·a, 

where R E S Q9 S, R T o R = I s . 
Since a ---.. R * a is the rota tio n of the three-dimensio nal space S aro und the 

unit base vecto r 1/ .Ji by the do uble a ngle (Fig. 3), th erefore C) 

(3.5) n = I p + cos 2cp i v + sin 2<p Ev, 

(" )This is a gcncrali7.at ion of the ro ta tion in the three-dimensio na l Euclidcan vecto r space aro und the unit 
vecto r n by the angle <p, R = n 0 n + cos <p (I - 11 0 11 ) + sin <p E, where E = n 1 1\ n2 := n, 0 112 - 112 0 n, a nd 
{nt , 02 , n} is an orthonormal basis. 
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p 

FIG. 3. 

where Ev is the tensor o f o rientation of the deviato ric plane V , i.e. 

(3.6) Ev = o. ®13 - 13 ® o. , 

where {o. ,l3} is an arbitrary basis in V left-oriented in the o rientation of Ev. 

3. Let us adopt in S an o rthogonal basis, generated by the isotropic state 
1 E P and the pure shears o. , 13 E V, o.·l3 = 0, lo. l = 1131 = Ji. Symmetrised 
and normalised tensor products o f these tensors generate the fo llowing Cartesian 
basis in 7-i: 

1 
82 = VZiv, 

1 
84 = M" {l ®l3 +13 ® 1), 

2v 2 
(3.7) 

1 
8 3 = M"{l @o. +o. @l ), 

2v 2 
1 

86 = M" (o. ® l3 + 13 ® o.). 
2v 2 

1 
8 s = M" (o. @o. - 13 ®13), 

2v 2 

Clearly the pairs (8 1, 8 2) , (83 , 8 4) , (8 5 , 86) are the bases in the correspond
ing tensorial spaces J, A, B. Hence the matrix of rotatio n R* has in the basis 



http://rcin.org.pl

334 A. il L I OW SIO , J. 0 STTlO W!"K A- 1\1 ACIE.Jf: W SK A AND J . 11YCIILE W SK I 

B1, •• • , B6 the following fo rm: 

1 

(3.8) 

The decomposition 
(3.9) 

1 
cos 2<p - sin 2<p 
sin 2<p cos 2<p 

can be reduced by denoting 

1 
(3.10) T = r-> (H3o. + H4r3) , 

2v2 

to the isotropic decompositio n (2.25). 

cos 4<p - sin 4<p 
sin 4<p cos 4<p 

The last example leads to some interesting relations, which will turn out to be 
useful in the forthcoming considerations. Introducing the fo llowing notation: 

R1 := j Jiff + !!J , 

(3.11 ) 

one can write 

(3.12) 

The angles (3 and 1 are not merely the handy parameters, they change under the 
rotation of the physical plane. Using the representation (3.8), one can write 

(3.13) R * H = I/1B1 + II2B2 + R1 [cos((J + 2<p)B3 + sin((J + 2<p)B4] 

+ R2 [cos(/ + 4<p )B5 + sin (J + 4<p )B6] . 

This relation clearly discloses the geometric interpretation of the angles (3 and 1 
(see e.g. Fig. 4). 

Let us establish the way of choice of bases inS and inS® S. Le t { n 1, n2 } be 
a Cartesian basis in the physical plane E; we shall adopt the following Cartesian 
basis in S (6) 

(3.14) 

Note that v 1 + vn = I E P, v 1 - v 11 E V, v 111 E V . 

( 6) TI1e coefficient I / v'2 in the expression fo r v 11 1 is essenl ia l. Taking instead the symmetr ic part (I / 2)( n1 0 
n2 + n2 0 DJ), we wo uld not obtain the Cartesian basis, compare [1 2). 
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F IG . 4. 

In S Q9S we sha ll take the Cartesian basis v 1,· 0 V £, 1\·, L = I, IT, liT. The 
expressions fo r the tensors a. E S and A E S ® S, 

(3.15) 

in the fixed basis {n1, n2} are determined by the mutually unique rela tions: 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

moreover: 

(3.20) 

(3.21) 

Ct ,...., [ :~ l = [ :~~ l , 
l"l'3 J2a12 

A13 ] [ J\ 11 11 
!123 = A22 11 

J\33 J2;t 1211 

A1122 

A2222 

J2Am2 

J2A 1112] 
J2A2212 , 

2A 1212 
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The representations of some important tensors have the following form: 

[1 0 ~] ' 
Ip ~ q~ 

1 

~] ' I rv 0 1 1 

0 0 0 0 
(3.22) 

Iv ~ H -~ 
- 1 

~] ' Ev "'-
1 [~ 

0 -1] 1 0 1 , 

0 V21 -1 0 

while, for the base tensors Br;, one obtains 

[ 1 1 0] 
B2"' -

1
- [ - ~ 

- 1 

~] ' B1,...., ~ 1 1 0 , 1 

0 0 0 2Vl 0 0 

[ 1 0 0] n, ~ q~ 
0 J (3.23) B3 rv ~ 0 - 1 0 , 0 

2 
0 0 0 

Bs"' -
1
- [ _ ; 

- 1 

~] ' n,~ q~ 
0 -J 1 0 

2Vl 0 0 - 2 - 1 

Under such a choice, the components If 1 of the Hooke's tensor H in the base 
BK and the components of the "second rank" representatio n of the same tensor 
Hij are related by the following equali ties: 

TT = H11 + H22 + 2!/12 
. I 2 , 

(3.24) I! = H11 - H22 
3 V2 , 

H _ H11 +H22- 2H,2- 2J/33 
5 - 2Vl , 

At last, the representation of the rotation tensor R given by (3.4), (3.5) has the 
following form : 

(3.25) 
[ 

1 + cos 2<p 

RI\L"' ~ ] - COS2<p 

V2sin 2<p 

1 - cos 2<p 

1 +cos 2<p 

- Vlsin 2t.p 

-V2sin 2<p l 
Vi sin 2<p . 

2cos 2<p 
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4. Invariants and symmetries - effective formulae 

4.1. Symmetries 

The problems of the symmetries of plane Hooke's tensor has already been 
discussed in the previous section in terms of proper elastic states and Kelvin 
mo duli. In the case of the "second rank" representations, the matter is also not 
difficult if only an axis of the presumed symmetry is known. In such a case, 
taking one base vector, say n 1 a long this axis, o ne can determine the convenient 
"second rank" representa tion If K L of the Hooke's tensor C). Inspecting the shape 
of this representatio n and recalling some considerations from the Subsec. 2.2, 
particularly the expressions (2.15), (216) and the two subseq uent paragraphs o f 
text, one can easily tell, what kind of symmetry we really observe, depending o n 
the shape of the representation of the Hooke's tensor, namely: 

full symmetry (isotropy), 

lln - [~ ~ 0 l 0 ' 
(a- b) 

symmetry of the square, (tetragonal), 

symmetry of rectangle ( o rthotropy) 

'''" - [ ~ b 0] 
c 0 . 
0 cl 

The problem arises if we find 1!13 and/or IJ23 difTerent from zero: it is difficul t 
to say, in this case, if there is no symmetry at all o r, maybe, we have chosen a 
wrong axis. We must check up in this case if there exists such a rota tion by the 
angle cp wh ich annihilates the terms containing 8 4 and 8 6 in the expression {3.13). 
To this end the fo llowing two re lations must hold true: 

(4.1 ) 

or 
(4.2) 

sin(.B + 2cp) = sin J3 cos 2cp + cos J3 sin 2cp = 0, 

sin(/+ 4cp) = sin 1 cos 4cp + cos A/ sin 4cp = 0, 

tan 2cp = - tan /3, tan 4cp = - tan / · 

(')The corresponding measurement rules will be discussed in the last subsection of this section. 
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These two equations can be fulfilled simultaneously if the following relation holds 
true: 

2 tan {3 
tan 1 = 2 = tan 2{3 . 

1 - tan {3 
(4.3) 

Using (3.11) one can rewrite this condition in terms of the representation of 
the Hooke's tensor in the basis {BK} obtaining the following effective symmetry 
criterion for the Hooke's tensor H: 

Hooke 's plane tensor H obeys at least orthotropic symmetry if and only if the 
components of its representation in the basis {BK} fulfil the following relation: 

(4.4) 

We shall prove in the next subsection that J5 is invariant under rotation (but not 
under reflections). The condition (4.4) is trivially fulfilled, if R1 and/or R2 vanish. 
Looking at the relation (3.13) one can readily observe that: 

R 1 = 0 yields symmetry of the square, while simultaneous vanishing of R1 and 
R2 give rise to the isotropy of the Hooke's tensor. 

As it has already been shown, the presence of th e plane of symmetry bears 
o rthotropy. We shall prove now that 

The only possible non-trivial (i.e. different from the total isotropy) rotational sym
metry of the plane Hooke's tensor is the in variance under the rotation by 1r /2 - the 
tetragonal one. 

Indeed, in virtue of the uniqueness o f the tensor deco mpositio n in given o r
thonormal basis and the functional independence of sin(· ) and cos(·), to preserve 
the plane H ooke's tensor under the two-dimensional rotation by the angle 21r / n 
one has to fulfil the following two conditions: 

(4.5) 

(4.6) 

{3 47r {3 + - = + 21r1n 
n 

87r 
I + - = I + 27rk 

n 

o r R1 = 0, 

or n2 = 0 , 

where n, m and k are arbitrary integers. The on ly (no n-trivial) solution of (4.5) 
and ( 4.6) is: R1 = 0, n = 4, k = 1, what proves our assertion (8 ) . 

( 8 ) One may ask, why by cutting off a slice perpendicularly to the axis of the tr igonal symmetry of the 
three-dimensional body we are gaining additional rotational symmetry? A closer inspection of the case shows 
that the trigonal symmetry of the three-dimensional body is connected with shearing in the planes orthogonal 
to the axis of the trigonal symmetry. This shearing stiffness is immaterial in the case of a plane state. 
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4.2. Invariants 

Looking at the relation (3.13) one can tell at once that the following four 
quantities: 

(4.7) 

1 
J1 = H1 = 2(Hit+Hn + 2Ht2) , 

1 
h = II2 = ;;:;U!ll + [[22 - 2[[12 + 2JI33), 

2v2 
1 h = RI = ITl + HJ = 2(fl11 - 1122)2 + (Jl13 + 1123)2

, 

1 
J4 = R~ = Hff + Hl = S(Jfu + Hn- 2HI2- 2JJ13)2 + (Il13- JJ23)2 

are invariants of the proper orthogonal group (the group of rotations). The plane 
Hooke's tensor, however, has in general six independent components, while the 
proper plane orthogonal group is one-parametric, thus one can expect five func
tionally independent invariants. 

Let us denote: 
(4.8) {3 := {3 + 2cp, ::Y := 1 + 4cp. 

Certainly the quantity 
(4.9) 'lj; = ::Y - 2{3 = 1 - 2{3 

is invariant with respect to the proper orthogonal group, and, moreover, it is 
(modulo 211' ) uniquely determined by the components of Hooke's tensor in an 
arbitrary basis. On the other side, if the values of the previous four invarian ts 
as well as 'lj; are known, then the relation (3.13) determines the Hooke's tensor 
to within the accuracy of an arbitrary rotation. Thus these five invariants consti
tute a complete functionally independent set of invariants with respect to the proper 
orthogonal group (complete irreducible hemitropic function basis). 

Tracing the derivation of the orthotropy condition ( 4.4) one can observe that its 
left-hand term can be expressed by 'ljJ e) and the condition ( 4.4) can be rewritten 
as follows: 
(4.10) Js= /lfl72sin 'lj; =O. 

Any reflection tensor in two-dimensional space can be represented as the 

superposition of the axes exchange (reflection) [ ~ ~ J and some rotation, the axes 

exchange merely changes the sign of the terms containing B3 and B6 changing {3 
into 11'-{3 and 1 into -1, i.e. V' (taken modulo 211' ) changes its sign; thus only cos 'lj; 
but not 'lj; itself or sin 'lj; is invariant with respect to the complete orthogonal group 
(i.e. containing both the rotation and the mirror reflections), while the previous 

(
9

) The square, or absolute value of this term can be considered as an invariant measure of deviation from 
the orthotropy. 
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four rotationally-invariant terms are the invariants of the complete orthogonal 
group as well. 

These considerations lead to the following important conclusion: 

No rotation in the plane of the stress (strain) of the plane elastic state is able 
to change the sign of 'lj;, thus the class of the materials of the lowest ~ymmetry can 
be subdivided into two classes of "left" and "right" materials, depending on the sign 
of 'lj;. 

The "left" materials can be changed into "right" ones by the ofT-plane turning 
them upside-down. This means that the sheets of such a material have two distinct 
sides, which should be specially marked in order to make the information on the 
elastic properties meaningful. 

For completeness we shall express the obtained invariants in terms of the 
four-index representation of the Hooke's tensors. 

Using relation (3.17) to express the first two invariants ( 4.7) by the components 
H ijkl it is not difficult to observe that the following two identities hold true: 

( 4.11) 

(4.12) 

The expressions for the remaining invariants are no t straightfo rward. Observe 
that they depend only on the traceless part H' of the Hooke's tensor H (3 .12): 

(4.13) 

or 

(I!f;u = 0, ll ftil = 0). 

Substituting relations (3.7), (3.11) and (3.23) into ( 4.13) one obtains the fol
lowing representation of the plane second rank tensor H' ·1 : 

(4.15) 

Thus 
(4.16) 

sin !3 l 
- cos /3 · 
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Due to the orthonormality of the base tensors {BK}, directly from ( 4.13) it follows 
that 
(4.17) H'·H' = J/:j kl f/ :j kl = Ri + RL 
hence: 
(4.18) 

The most time-consuming is the derivation of the last relation - the one de
scribing the "shape of deviatoric part", i.e. expressing the functions of 1/J in terms 
of polynomial invariants of the Hooke's tensor. Omitting the tedious calcula
tions eo) we present the following result: 

( 4.19) 

It is not difficult (however it can be fairly boring) to show that our set of invariants: 
H 1, !12 , Ri, R~ and Tr(H'3) is equivalent to the set of invariants obtained by 
ZHENG [9], who proved that they constitute the complete irreducible isotropic 
function basis. 

One cannot expect to find an expression o f such a kind for sin 1/J. There is 
a simple reason for this: all the polynomial scalar expressions obtained by the 
contraction are invariant with respect to complete orthogonal group while sin 'lj;, as 
we have already shown, is the hemitropic fun ction of the plane Hooke's tensor. 

The last questio n, concerning the invariants of the Hooke's tensors, which has 
to be discussed are the co nditio ns of positive definiteness 

(4.20) 

for every o. E S , which are required for most applications of the Hooke's tensors. 
In the case of the spectral decomposition of the stiffness (compliance) tensor the 
problem reduces to the trivial conditions of non-negativeness of the three Kelvin 
moduli, which are equivalent to the conditions: 

(4.21) 

>-1 + >-2 + >.3 ~ 0, 

>-1 >-2 + >-2>.3 + >.3>.1 ~ 0, 

>-1>.2>.3 ~ 0. 

Recalling that in the basis of proper states the representation of the Hooke's 
tensor is diagonal, and taking into account that a ll three expressions ( 4.21) are 
invariant with respect to any orthogonaltransformation in S ® S (including those, 

( 
1 0

) The following interesting rela tions can m<Lke this boring procedure slightly simpler: B~ = i I Bt + \1'2(82 + 
Bs)J.Bi = HB1 + Vl(~ - B5 )],B~ = B2 , B~ = B2, sym(B:;B4) = 2~Br, , sym(B3Bs ) = 2~B3, syrn(B3Bo ) = 

2~ 84 , sym(B4B5) = - 2~ 84, sym(B4 Bt\) = 2~ 8 3, sym(Bs Br,) = 0. 
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which do not correspond to any rotation of the physical plane), after some rear
rangements one can express these conditions by the polynomial invariants of H 
as the fourth-rank tensor 

nH ~ o, 
(4.22) (TrH)2 - 1fH2 ~ 0, 

1 1 1 
3TrH3 - 2nHTrH2 + 6(TrH)3 ~ 0. 

The same relations can be expressed in the language of the invariants gener
ated by the isotropic decomposition as follows: 

(4.23) 

!11 + hff2 ~ 0, 

!1} + 2J2H1H2- RI- R~ ~ 0, 

vf2H 1(H} - R~)- RI(H2 - R2cos 1/;) ~ 0. 

It is not difficult to notice that no restriction on the sign of 7j1 has been imposed 
by the "thermodynamic" condition of the positive definiteness o f the Hooke's 
tensor. Thus both " left" and " right" materials are thermodynamically admissible. 

4.3. The rules of the measurements 

The procedures of measurements of the elastic properties in the case of ma
terials supplied in the form o f sheets and foils very seldom include direct measure
ments of the shear moduli e I); not only the standard, but even more sophisticated 
laboratory equipmen t is usually rathe r inappropriate for such measurements. Usu
ally the Young moduli and Poisson ratio in the chosen directions are measured 
and then, if needed, the o ther elastic constants are calculated. 

Let us denote the direction of uniaxjal tension by 3· 1 and let C denote the 
elastic compliance tensor, then the stress Cl and stra in €: have the following rep
resentations: 

(4.24) 

Consequently, by the definitions of the Yo ung modulus E and the Poisson ratio 
v, one can write: 

(4.25) 
1 
E = e ll· 

V - = -C21· 
E 

In general we have to determine six unknown elastic constants; to this end we 
should take at least three specimens o riented at three different angles <t?i ( i = 
1, 2, 3) with respect to some fixed material basis. Performing measurements we 

(' 
1

) We shall leave aside in this paper the acoustic rncasurcrncnt techniques. 
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would obtain then six quantities: E;, v; (i = 1, 2, 3). Making use of the Eq. (3.13), 
and substituting expressions (3.23) for the base tensors 8 1-;, one can write relations 
( 4.25) in the fo llowing form: 

(4.26) 

(4.27) 

Using (3.11) one can rewrite Eq. (4.26) and (4.27) in the following form: 

(4.28) 1 C 1 C cos 2c.p; C sin 2c.p; C 
2 1 + 2.;2 2 + .j2 3 - .j2 4 

cos 4c.p; C sin 4c.p; C _ 1 
+ 2 .j2 5 - 2 .j2 6 - E; ' 

(4.29) _ cos 49; C + sin 4c.p; C = _ v ; 

2.;2 5 2.;2 6 E; . 

Taking i = 1, 2, 3 we obtain the system of the three pairs of equations for six 
unknown constants C r-· . The determinant L\ of this system can be expressed as 
follows : 

(4.30) L\ = 2hsin\9 I - 9 2) sin2(c.p2 - 9 3) sin2(9 3 - 9 I) 

x cos( <fJ I - 9 2) cos( 9 2 - c.p3 ) cos( 9 3 - <fJ I ). 

Hence the following rule of the measurements should be observed: 

For the detemzination of the plane Hooke's tensor for the matetial of no (or 
unknown) symmetry, using the uniaxial tension tests one should take at least three 
specimens whose axes are neither parallel nor Ot1hogona/ to each other. e2) 

It is not difficult to show that if the axes of orthotropy are known, only two 
specimens a re necessary (the one along an o rthotropy axis and the o ther under the 
angle o f -rr / 4 being particularly convenient). In the case of the isotropy recognized 
in advance, only one specimen is necessary. 

Appendix 

A.l. Plane tensors 

TWo-dimensional Euclidean plane E consisting of the elements x, y, . . . with the 
scalar product x·y we shall call the physical plane (it can be e.g. the plane tangent 

( 12 ) This result is no t quite unexpected: it is not difficult to observe (compare (4.27)) that for the orthogonal 
directions v, I E, = v1 I El' · 
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to the median surface of the shell at an arbitrary point). The plane E generates 
the plane Euclidean tensors as the elements of the tensorial powers Tp = Q9P E, 
p = 1, 2, .... Every tensor A E Tp is a finite linear combination of the simple 
tensors x1 ® ... ® xp. 

A.2. The rotations and mirror reflections of the tensors 

Every rotation x ---+ Rx of the physical plane, R E E ® E, rotates a ll the tensors, 
A ---+ R * A. The operators R* are linea r and defined on the simple tensors as 
follows: R*(x1 ® . . . ® xp) = Rx1 ® ... ® Rxp. Simjlarly act the mirror reflections 
x ---+ Mx, M E E Q9 E. 

A.3. Tensorial spaces 

Every linear subspace U c Tp invariant under the rotations and the mirror 
reflections of the physical plane, R*U = U, M~ = U, we call the tensorial space. 
The representation of the tensorial space U (as well as the whole space Tp) in 
the form of direct sum of the tensorial spaces U = U1 + ... + l-h· we call the 
isotropic decomposition of this space. The linear operato rs mapping U o nto itself, 
particularly the rotations and the reflections, can be considered as the te nsors 
from UQ9U. 

A.4. The tensors of the second and fourth rank 

In the present paper we use the second rank tensors denoted (except for 
I , R , M) as a, ~ •... and the fourth rank tensors denoted as A, B , .... The 
tensorial operations which we use can be expressed in the well-known language 
o f the Cartesian representa tio ns as follows: 

(A.1) 

x·y ~ x;y;, 

tra = o;;, 

A·a ~ A;jpq<l'pq, 

A·B = Apqrsflpqrs, 

The following relations hold true 

a @ ~ ,__. O'i j/3pq' 

TrA = Apqpq , 

A o B - !lij pq fl pqkt. 

(x ® y)z = (y·z)x, (a ® ~)·'T = @·T)a , 

(A.2) (a ® ~) o (T ® v) = @·T)a ® v , 

R*(a ® ~) = (HHx) ® (R * ~) . 

A.S. The tensorial unities 

The tensorial unity of the plane E we sha ll denote by 1, while the unity of the 
space E ® E- by I, thus lx = x, I a = a for a ll x E E, a E (E ®E). In a similar 
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way one can introduce the tensorial unity Iu E U tg)U into every tensorial space 
U. In the language of Cartesian representations: 

(A.3) 

A.6. Euclidean tensor spaces 

In every tensor space Tp a scalar product A·B, defined for the simple ten
sors: (x1 0 .. . 0 xp)•(y1 0 ... 0 Yp) = (x1y1) . . . (xpyp) can be introduced, yielding 
2P-dimensiona/ Euc/idean space. Every orthonormal basis in Tp we shall call Carte
sian . Only such rotations of the Euclidean spaces Tp remain in the scope of our 
interest, which are generated by rotations of the physical space, as described 
in A.2. 
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Stress tensors associated with deformation tensors via duality 

P. HAUPT (KASSEL) and CH. TSAKMAKIS (KARLSRUHE) 

THE CONCEPT of dua l variables, initially introduced by HAUI'T and TSAKMAKIS !3], enables us to 
relate to each other strain a nd stress tensors, as well as associa ted rates, independently of particular 
material properties. Generally, it is different than the method of conjugate variables, as defined e.g. 
by MAcVEAN 121 or HILL I~J. The dua lity concept postulated by HAuPT and TSAKMAKIS [3] deals 
only with two classes of dual stress and strain tensors. The second Piola-Kirchhoff stress tensor 
a nd the Green strai n tensor, as well as the negative convected stress tensor and the Piola strain 
tensor, arc respectively the Lagrangean stress and strain tensors included in the two classes of 
dual stress and strain tensors. However, there are further (infinitely many) Lagrangean stress and 
strain tensors, which may be taken into consideration. The aim of the present paper is to develop 
further the concept of dual variables to take into account the whole set of Lagrangean stress and 
strain tensors. Doing this, we obtain a specific mat hematica l structure in the sets of a ll st rain and 
stress tensors, which makes it possible to re late strain and st ress tensors, as well as associated rates, 
independently of the particula r material properties. 

1. Introduction 

IT IS WELL-KNOWN that in the theory of fi nite deformations, several stress and strain 
tensors can be introduced in various ways. These stress and strain tensors are not 
a priori related to each other, raising the question of whether or not there exists 
a method to associate with each stress tensor a strain tensor independently of 
specific material properties. The stress power is usually the convenient framework 
for answering this question. 

Accord ing to ZIEGLER and MAc VEAN [1, 2], a stress tensor is assigned to a 
given strain tensor, if the stress power can be represented by this stress tensor 
and an appropriate rate of the given strain tensor. We call stress and strain 
tensors related in this way conjugate in the sense of Ziegler and MacVean. Note 
in passing that this definition of conjugancy was also adopted by HAuPT and 
TsAKMAKlS (3]. However, in HAUPT and TSAKMAKIS (3], it was also shown that the 
above definition brings out the difficulty that arises because the stress and strain 
tensors associated in such a manner are not unique. For example, consider the 

strain tensor K = 1 ( 1 - F- 1 FT- I ) . K is conjugate in the sense of Ziegler and 

MacVean, on the one hand, to the stress tensor T = (det F)FTTF, with respect 

to the material time derivative K, and on the other hand, to the stress tensor 
- 6 • • • 

S = (det F)RTTR, with respect to the rate K= K + (uu- 1)K + K(uu- 1), 

- • - 6 

HI =T·K =S·K 
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In these relations e), F denotes the deformation gradient tensor, with polar de
composition F = RU, T is the Cauchy stress tensor, and I V the stress power per 
unit volume of the reference configuration. 

Another concept used to relate stress and strain tensors within the framework 
of the stress power is due to Hill (see e.g. HILL [4--6] as well as HAVNER [7], 
0GDEN (8, Sec. 3.5.2] and WANG and TRUESDELL (9, Secs. 3.8 and 3.9]). According 
to this concept, a stress tensor t is postulated to be conjugate (in the sequel called 
conjugate in Hill 's sense) to a given strain tensor e if the inner product of t with 
the material time derivative of e yields the stress power W, i.e., if 

w = t·e . 
Clearly, all pairs of stress and strain variables conjugate in Hill's sense are also 
conjugate in the sense of Ziegler and MacVean, but the converse is generally not 
true. 

Hill 's concept of conjugancy has the characteristic feature that there exjst stress 
tensors which do not necessarily have any conjugate strain tensor associated with 
them having an integrable strain rate. Strain rate tensors are called integrable (Z) 
(not-integrable) if they are expressible (not-expressible) as material time deriva
tives of some strain tensors, which are defined as funct ions of the deformation. 
It is well-known that the strain rate D, representing the symmetrical part of the 

velocity gradient tensor L = F F- 1, is a non-integrable rate in general. Thus the 
weighted Cauchy stress tensor S = (det F)T, having the property IV = S ·D, is 
e.g. not conjugate in Hill 's sense to a strain tensor which possesses an integrable 
rate. The same is also true for the stress tensor S. On the other hand, if a strain 
tensor is given, it must not necessarily have a conjugate stress tensor associated 
with it. As an example of strain tensors to which no stress tensor conjugate in 

Hill's sense exjsts, we mention the Almansi strain tensor A= ~( I - FT- IF- 1
) . 

These issues have also been discussed e.g. by OGDEN [8, p. 159]. 
A further possibility for associating stress and strain tensors within the frame

work of the stress power has been proposed by HAuPT and TSAKMAKIS [3], and 
referred to as the concept of dual variables e). Several mathematical aspects 
from a local differential geometric point of view were discussed by SvENDSEN and 
TsAKMAKlS [11 ]. The relation between stress and strain tensors within the dual
ity concept of HAUPT and TSAKMAKIS [3] is unique; in fact, this constitutes the 

( 1 ) The nomenclature is introduced in the Secs. 2 and 3. 
(')The term integrable (not-integrable) strain rate is adopted from PALGEN and DRUCKF.I~ f1 0f. 
(') We take this opportunity to correct some misleading a nd erroneous statements in HAUI'I' and TSAKMAKIS 

[3]. TI1e no tion of conjugancy used in this reference should be unde rstood in the sense of Ziegler a nd MaeVean, 
even though in some places this notio n was att ributed to Hill. Further, on page 184 in HAUI'r and TSAKMAKIS J31, 
the interpretation of the term "direct flux" in Hill 's expression " RT OR is not a direct flux", as the specification 
of a strain tensor with the associated rate RT DR, is not correct. Indeed, the term "di rect flux" as used by Hill 
must be interpreted to mean the mate rial time derivative. Furthermore, the statement on p. 174 that 'l', which 
is no t necessarily assumed to be the gradient of a vector field, induces a system of spatial coordinates, is not 
true in gene ral. 
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differences to the conjugancy concept according to Ziegler and MacVean. In addi
tion, concerning dual pairs of variables, use is made not only of the material time 
derivative, but also e.g. of the so-called objective derivatives. This clarifies the dif
ferences compared with the conjugancy concept due to Hill. In the present work, 
the concept of duality will appropriately be generalized, to include the general
ized Lagrangean strain tensors, which are introduced in Sec. 5.1. To be definite, 
the duality concept postulated in HAUPT and TsAKMAK!S [3] deals only with two 
classes of dual stress and strain tensors, called family 1 and 2. Representative 

(Lagrangean) strain tensors are the Green strain tensor E = ~ (FTF - 1) (family 

1) and the Piola strain tensor E = ~(F- 1 FT- J - 1) (family 2). The purpose of 

the present paper is to complete the duality concept of HAUPT and TSAKMAK1S 
[3] by introducing further classes of dual strain and stress tensors, which include 
the whole set of generalized Lagrangean strain tensors. 

After introducing the notation and some background relations in Secs. 2 and 
3 we show in Sec. 4 how various so-called objective time derivatives can be as
signed to the Cauchy stress tensor. To each of these objective time derivatives 
of the Cauchy stress tensor corresponds a Lagrangean stress tensor. It turns out 
that, among all these derivatives, only two possess the structure of generalized 
Oldroyd time derivatives (the term "generalized" Oldroyd time derivative is spec
ified in Chapter 3). In other words, among all Lagrangean stress tensors, only two 
are associated to the Cauchy stress tensor with respect to the defi nition of the 
generalized Oldroyd time derivatives. This resul t motivates in Sec. 5 the intro
duction of a set of general ized strain and stress tensors respectively. Considering 
various scalar quantities, which are requ ired to be form-invariant with respect 
to the chosen configuration, the above sets can be partitioned into equivalence 
classes of generalized strains and associated generalized dual stress tensors, re
spectively. The concept of duality used here is a generalization of that in HAUlYf 
and TSAKMAKIS [3]. Furthermore, to each strain and stress tensor, a time deriva
tive can be associated, having the form of "generalized" Oldroyd time derivative. 
This way, we obtain a specific mathematical structure in the sets of all strain and 
stress tensors, which enables us to relate strain and stress tensors, as well as the 
associated rates, independently of particular material properties. Some examples 
formulated using strain and associated dual stress tensors, are briefly discussed 
in Sec. 6. Finally, in Sec. 7, the duality concept is appropriately extended to take 
into account two-point tensor fie lds, as well. 

2. Preliminaries 

We denote by lR and N the sets of real and natural numbers, respectively. 
The absolute value of c E lR is le/. We use the letter I for the time variable. If cp 
is a function of t we write 9 or dcp / dt for its material time derivative. For the 
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n-th material time derivative of t.p we write also dnt.p/dln, where n E N, n 2: 0. 
If x is a scalar variable other than t and f (x ) is a function of x, then we denote 
the derivative of f( x) with respect to x by f'(x). In particular, we write f'(a), 
a E IR, instead of f'( x )ix=a · Commonly the same symbol is used to designate 
a function and the value of that function at a point. However, if we deal with 
different representations of the same function, then use will be made of different 
symbols. 

Given two sets A and B, th e Cartesian product of A and B is denoted by 
A x JJ . In particular, we write 

An = A X A X ···X A , 

n- timcs 

n E N, n 2: 1. Let a and b be elements of a three-dimensional Euclidean vector 
space V. By a ® b, a x b and a ·b we denote the tensor product, the vector 
product and the inner product, respectively. The magnitude of a is denoted by 
llall = ~-In this work, we identify the vector space V with its dual space V*, 
the identification being specified with the help of the metric tensor induced hy the 
inner product in V. Thus, any n-order tensor T on V is regarded as an n-Iinear 
function from vn to IR, denoted by T E L(V", R). In the following, second-order 
tensors (like vectors) are denoted by boldface letters, whereas for fourth-order 
tensors we use script letters. For example, A, B, . .. denote second-order tensors, 
whereas A, B, . .. denote fourth-order tensors, respectively. 

Let A, B he second-order tensors. We write tr A, det A and AT for the trace, 
the determinant and the transpose of A, respectively, wh ile A ·B = tr (ABT) is the 
inner product between A and B. We write I = o,J e; (>) e1 for the identity tensor 
of second order, where o;j is the Kronecker delta symbol and { e; }, i = 1, 2. 3, 
is an orthonormal basis in V. Further, we use the notations AB = ;\ ij lJ;kei 0 ek 
and AT- I = (A- 1f, provided A- 1 exists. In these relations the convention of 
summation over repeated indices is employed. 

If A is a symmetric and positive definite second-order tensor having eigen
values ..\ ; and corresponding eigenvectors a ;, then the spectral decomposition 
(see e.g. GuRTlN [1 2, Ch. I.2]) 

3 

A= L..\;a; ® a; 
i=l 

applies. In this case, we denote by A"', m E R, the second-order tensor 

3 

A"' = I:.>.i'a; IS) a,. 
i= 1 

Let K, P be two fo urth-o rder tensors, i.e., linear transformations from the space 
of second-order tenso rs into itself. With respect to the orthonormal basis { ei}, the 
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fo llowing rules apply: if K , P and A are represented by K = k ijklei ® ej 0 ek ® e,, 
P = P ijkl e i ® ej ® ek ® e,, and A = A;j ei ® ej, respectively, the rela tio ns 

KP = l\' ijmn P mnklei ® e1 ® ek ® e, , 

K T = A ' i j kl ek ® e, ® ei ® ej , 

K(A] = A .ijmnAmnei ® ei 

ho ld. In add itio n, if B is a second-order tensor, we have A ·K(B] = B .J.CT[A]. We 
write I fo r the fourth-order identity tensor, 

The tensor I can be decomposed in the fo rm 

I = £ + .], 

where 

and 
1 

~1 = 2 (b;j bmn- b;"bmj)e; ® em 0 ej ® en. 

T his implies £ [A] = ~(A+ AT), .J[A] = ~(A - AT), and I [A] = A. 

3. Background rela tions 

Consider a materia l body B which occupies the regio n Ro in the three-dimen
sio nal E uclidean point space E in some reference configurat ion. Choosing a fixed 
point (origin) in E, we identify each particle of [] by the position vecto r X to the 
place X in Ro occupied by the considered particle. We write x fo r the position 
vecto r to the p lace x occupied by the same material part icle in the (current) 
configuratio n a t time t . In this co nfigura tio n, the body B occupies the regio n R1 

in E. 
A motio n of fl in E, i.e., an o ne-para meter family o f configurations parame

terized by the time t, is a mapp ing 

(3.1 ) x : (X, t) >----+ x = x(X, t) , 

which has an inverse X = X(x, t) fo r fixed time l . In what fo llows, it is assumed 
that all functio ns possess continuo us derivatives up to any desired o rder with 
respect to the space variables and the time l . 

The defo rmatio n gradient te nsor correspo nding to (3.1) is denoted by 

(3.2) 
Dx 

F = oX= GRADx. 
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We distinguish between GRAD and grad, representing the gradient operato r with 
respect to X and x, respectively. Furthermore, det F > 0 is assumed. 

The right Cauchy-Green tensor C and the left Cauchy-Green tensor 8 are 
given by 

(3.3) 

(3.4) 

in which U and V are the right and the left stretch tensor, respectively, appearing 
in the polar deco mposition of F: 

(3.5) F = RU = VR . 

Here, R represents a proper o rthogonal second-order tensor. Since U and V are 
symmetric and positive definite, they possess the spectral decompositio ns 

3 

(3.6) u = L Aj M; ® M; , 
i= l 

and 

(3.7) 
i= l 

respectively, with 
(3.8) 1-L; = R M; . 

A; (i = 1, 2, 3) are positive eigenvalues and M;, as well as 1-L; are the co rresponding 
unit eigenvecto rs. I t is common (see e .g. O GDEN [8, Sec. 2.2.5]) to call M; and 1-L; 
the Lagrangean and E ulerian principal axes, respectively. Note tha t the spectral 
decomposition (3.6) implies 

(3.9) 
3 1 

u- ' = 2: - M ; 0 M ,. . 
i= t A; 

Let X be the place of a material pa rticle in Ro and deno te by y the place of 
the same material particle in an arbitra ry configuration, in which IJ occupies the 
region M. Further, we denote by TyM the tangent space o f M at y. Note that 
M does not need to be an Euclidean manifold. This is fo r example the case fo r 
the non-Euclidean intermediate configura tion in plasticity. An n-order tensor A is 
called a tensor at y E M if A E L((TyM)n, ~) . If M = R0 , A is called a Lagrangean 
tensor at y E Ro. In the case when M is different than R0, the tensor A is called 
a spatial tensor at y E M. In particular, if M = Rt. then A is called an E ulerian 
tensor(4) at y E R1. In the fo llowing, we denote by 

(3.10) 'l1 = ~(X , t) E Lin + 

{
4

) The definition on spatial tensors given here is not standard. The definitions on Lagrangcan and Eulcrian 
tenso rs are taken from O GDEN (8, Sec. 2.4. 1 ]. 
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a space- and time-dependent linear transform ation (second-order two-point ten
sor field CS)) mapping vecto rs fro m Tx Ro o nto TyM ("W E L(Tx Ro x TyM, !R)) and 
having a positive determinant. 

Let X k ( k = 1, 2, 3) be a system of material coordinates, and let 

(3.11) 

be the position vector of a material particle in the reference configuration. The 
coordinate system induces the local basis of tangent vectors {Gk}, 

(3.12) 

and the gradient vectors { Gk}, 

(3.13) 

being the reciprocal basis o f the tangent vectors {Gk} , where 

(3 .14) 

are the re lations inverse to (3.11 ). With respect to (3.1 0), (3.12) and (3.13), vario us 
bases {g~tJi)} in Ty M, with reciprocal basis {g(tJi)k}, can be defined by 

(3.15) 

(3.16) 

(tJi) · -gk . - 'l!Gk, 

(tJi)k ·- ,T, T - l G k g .- 'i.' r . 

Note that the special case "W = F defines the so-ca lled convected coordinate 
systems. From (3.15), (3.16), 

(3 .17) .(tJi) ~ -w - l(tJi) 
g k gk , 

(3.18) g (tJ!)k = -c~-w-l fg(tJ! )k . 

Next consider the spatial, time-dependent tensor field u, having the representation 

(3.19) 

The relations 

(3.20) 
8( . ) 
- u ·= 8t . 

(3.21) ~u ·= 8t . 

(') 'llf can be interpreted to be related with a local deformation process. 
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define time derivatives which are called generalized Oldroyd time derivatives of 
u. Clearly, from (3.17)-(3.21 ), 

(3.22) 

(3.23) 

r ( .) 
U ' •Tr •Tr - 1 Ttu = u - ':t:" ':t:" u , 

~u= u+(~W-l)Tu. 
ot 

Note that the time derivatives o(·)ujot and o<·> uj ot are related to the material 

time derivative of the Lagrangean vectors u<L), u(L)• 

(3.24) 

(3.25) 

thro ugh 

(3.26) 

(3.27) 

u(L) := q,- 1u ' 

U(L) := q,T U ' 

respectively. These definitions of generalized O ldroyd time derivatives fo r vector 
fields can easily be extended to introduce generalized Oldroyd time derivatives 
for tensor fields. For example, for a spatial symmetric second-order tensor 

(3.28) 

the corresponding symmetric genera lized Oldroyd rates are defined by 

(3.29) 

(3.30) 

It follows that 

(3.31) 

(3.32) 

and that 

(3.33) 

(3.34) 

8(") kl - A -- '1 . (</!) (</!) 
ot ; g" ® g, 

\;>A = it ~,.,g<"'>" ® g(tf!)l. 

8< ··> 
- A= 
8t 

8( .. ) 
- A= 
ot 

A - ~ q, - I A - A(~ q, - 1 f ' 

A +(~w- 1fA +A~w- 1 , 

A (L) = q, - 1 (
0{") A) q,T-1 
ot ' 

• T (8(") ) 
A(L) = W 8i:A W, 



http://rcin.org.pl

STRESS T ENSORS ASSOCIATED WITH DEF'Ofli\IATION TENSOflS VIA D UALITY 

where 

(3.35) 

(3.36) 

A(L) := w- 1AwT-I , 

A(L) := 'l!A'l!T. 

355 

Next we note that with respect to the basis {Mi}, various strain tensors can be 
defined. In order to obtain the Lagrangean strain tensors introduced by Hill (6), 

we consider monotonic scalar fu nctions g : (0, oo) --. IR, such that 

(3 .37) g(1)=0, g'(l ) = 1. 

Then, the symmetric tensors G(g)• defined by means of the isotropic tensor-valued 
function g( · ), 

3 

(3.38) g : u ..___. G(g) = g(U) := L g(>.;) M; @ M;' 
i= l 

represent Lagrangean measures of strain, referred to as Hill 's Lagrangean strain 
tensors. Examples of such functions are given hy (m E IR) 

(3.39) 
{ 

2_(,\'!l- 1) 
g(m)(-\ ;) := m ' 

In>. ; 

if 11/ t= 0, 

if m= 0, 

inducing the strain tensors C) 

(3.40) 

3 1 1 L - (>.in - l)M; ® M ; = - (um - 1) if mE (IR\0) , 
i= l rn m 

3 

L(ln >.;)M; 0 M; = In U ;f m = 0. 
i = l 

In relating stress tensors to the given strain tensors, we will employ the stress 
power per unit volume of the reference configuration W, which can also be 
written in the form 
(3.41) l i'= Tn ·F . 

In this formula, T n stands for the first Piola - Kirchhoff stress tensor, i.e., 

(3.42) T 17 = (det F)TFT- I = SFT- I , 

(
6

) The treatment of Hill's Lagrangean strain tensors given here is taken from O GDEN [8, Sec. 2.2.71 as well 
as WANG and TRUESDELL [9, Sec. 3.8]. 

(') These Lagrangean strain te nsors were introduced for the first time by D OYLE and ERtCKSEN Jl 3, Ch. 4J. 
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where T and S :;;: (det F)T are the Cauchy and the weighted Cauchy (or Kirchhoff) 
stress tensor (8), respectively. Furthermore, we have 

(3.43) W:;;: S·D , 

where D represents the symmetric part of the velocity gradient tensor L (the 
antisymmetric part of L being W): 

(3.44) 

(3.45) 

(3.46) 

4. Objective rates for S 

L :;;: grad x :;;: F F- 1 :;;: D + W , 

1 D :;;: 2(L +LT), 

1 T W:;;: 2(L - L ). 

In this section, we shall consider the Lagrangean stress tensors conj ugate 
(in Hill 's sense) to the strain tensors (3 .37)-(3.40). As a first step towards the 
development of a general duality concept for associating strain and stress tensors, 
we will derive the re lations between these Lagrangean stress tensors and the 
weighted Cauchy stress tensor S. These relations are expressed in terms of linear 
transformations and using the same transformations, we shall establish various 
so-called objective rates for S. It turns out that , among all the transformations 
corresponding to arbitrary m, on ly those for 111 :;;: ± 2 lead to objective rates for 
S having th e structure of a generalized Oldroyd time derivative. 

In order to derive this result, we turn to the strain tensors Gc9 > defin ed by 
(3.38), where g(>. i) may be specified by (3.29). First of all, the stress power 11' is 
rewritten as 
(4.1) w :;;: Tens) • U • 

where 

(4.2) 

is the symmetric part of the Biot st ress tensor 

(4.3) T T(B) := R Tn 

(see OGDEN [8, Sec. 3.5.2]). The definition of the stress tensors T (g)• conjugate in 
Hill's sense to G (.q)• should be based on the identity 

. . 
(4.4) T (BS) • U = T (y) • G (y) . 

( 8 ) We are concerned here only with nonpolar materials, so tha t T, a nd therefore S, is symmetric. 
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In view of G (g) = g(U), by (3.38), we obtain 

(4.5) G (g ) = U(g )[lJ] 

where 

(4.6) 
8g 

u<9> = av 
and 
(4.7) u<9> = u<~> , 
i.e., U(g) is symmetric. Furthermore, there exists a symmetric fourth-order tensor 
1(9 ) satisfying the re lation 

(4.8) 

Thus, 

(4.9) 

and 
(4.10) 

With respect to the basis {M;}, the fo llowing representations hold: 

3 

(4.11) U(g) = Lg'(>.;)M; ® M; 0 M; ® M, 
i = l 

(4.12) 

where 
{ !g(.\ j ) - g(.\;) if >.; f >.i ' i f j, 

2 >. · - >. · (4.13) e< > . . ·= J • g l ) . 1 
2g'(>. ;) if >.; = >. j, if j . 

(For a more detailed derivation of the relations ( 4.1 )-( 4.13) see OGDEN (8, 
Sec. 3.5.2]). 

In order to express the dependence on the weighted Cauchy stress tensor S, 
we note that in view of ( 4.2) and (3.42)2, (3.5), the equation 

(4.14) T (BS) = ~ ( u - tRTSR + RTSRU- 1
) = : K[S] 
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applies. Taking into account the re lations (3.6)-(3.9), it is not difficult to derive 
for K the representation 

3 3 
~ 1 "" "" ..\; + ..\ j ( ) (4.15) K = 4 0 0 ..\ ·..\ . M; ® Mj ® ~; ® ~J +M; ® Mj ® ~J ® ~ i . 

i =l j = l l J 

Inserting (4.14)2 in (4.10) yields 

(4.16) 

with 

(4.17) A (g) := 7(9 )K . 

From (4.1 2) and (4.15) we obtain 

(4.18) 
3 1 

A (g) = L ..\ · '(..\) M; ® M; ® ~; 0 ~; 
i=\ ,g I 

+ L O'(g )i j ( M; ® Mj ® ~ i ® ~j +M; ® M; @ ~j ® ~;) , 
ih 

where (no summation over i, j, i 'f j) 

(4.19) 

Introducing the fourth-order tensor P (g) by 

(4.20) 

where 

3 

(4.21 ) P (g) = L ..\;g'(..\ ; )~; ® ~i ® M; @ M; 
i= l 

in view of (4.18), we deduce fro m (4.16)z that 

(4.22) 
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The tensors P(g) and A(g) induce transformations relating the stress tensors T(g) 

and S, respectively. This enables us to associate with each function g( ·) an ob
jective rate of S, defined by application of the same transformation P(g) to the 
material time derivative of the Lagrangean stress tensor T(9 ): 

(4.23) • [D(g) ] T (g) = A(g) Dt S . 

From this, as well as from (4.16)2, we obtain 

(4.24) 

Inserting herein the relation 

. . 
(4.25) P(g) A (g) = - P (g)A(g) , 

which follows from (4.20), and taking into account (4.20), we see that 

(4.26) D(g ) S = . . [S] 
DL S - p (g)A(g) . 

It is verified in Appendix A that the rate D(g)S / Dt constitutes an objective Eu
lerian tensor. 

Next, we discuss the requirement that the objective stress rate D(g)S / DL should 
fit into the structure of a generalized Oldroyd time derivative. We see, that this 
requirement implies a special structure of the fourth-order tensor A(g), namely 
the property 
(4.27) A(9 )[S] = 'l!~)S'll (9) , 

valid for all Eulerian second-order tensors S, where '11 (g ) E Lin +. Indeed, if this 
relation is true, ( 4.16)2 reads 

(4.28) 

and (4.23)2 implies 

(4.29) 

with 

(4.30) 

Using the representation 

(4.31) '11 (g) = tJi(g)ij~; 0 M j , 
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we conclude from ( 4.28) that 

(4.32) A(g ) = ~ 1/i(g )pq l/i(g)mn ( M q ® Mn ® J..l. p ® J..Lm + M q ® Mn ® J..Lm ® J..Lp). 

Comparing this with ( 4.18), ( 4.19) yields 

( 4.33) 
3 

w (g ) = L 1/i(g )ii J..L; ® M; , 
i= l 

and therefore 

3 

(4.34) A(g) = L(l/i(g)ii )
2M; ® M; ® J..L; ® J..Li 

+ ~ L l]i(g)ii l]i(g )jj (M; ® Mj ® J..Li ® J..l.j +M; ® Mj ® J..l.j ® J..L;) . 
ifj 

Hence, through ( 4.34) and ( 4.18), ( 4.19), it follows (no summation over i , j ) 

(4.35) 
2 1 

(1/i(g)ii) = .A;g'(.A ;) ' 

1 )..2 - )..2 
l]i l]i - ! J 

(g )ii (g )jj - 2 .A;.AJ(g(.A ;) - g(.Aj )) (4.36) 

If i ::f j and ).. i = >.1, only (4.35) appl ies, so that it suffices to concentrate on 
.A; ::f ).. i· Since { ( .A~ - .AJ)/ (g(.A;) - g(>.1))} > 0, from (4.35), (4.36), we have 

( 4.37) 

We recall that .A;, being eigenvalues of the positive defi ni te second-order tensor 
U, are positive. Thus, if ( 4.29) holds, the function g( ·) has to satisfy the re lation 
( 4.37) for all positive Ai , ).. 1. 

Now, suppose g( ·) belonging to the one-parameter set of functions !J(m ) ( • ) , 

defined by (3.39). It is readily seen that fo r m = 0, equatio n ( 4.37) cannot be 
satisfied. For m ::f 0, on use of (3 .39)1> we obtain fro m ( 4.37), afte r some algebraic 
manipulations, 

On taking the derivative with respect to .A; and then to >.1, (4.38) reduces to 

(4.39) c;~ + 1) (; - 1) (>. / .>..'f -
2 

_ ).. ,_
2

>. j ) = 0. 
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This formula must be satisfied for all >.;, Aj > 0 with>.; ::f >. j , which is possible if 
and only if 
(4.40) m= 2 or m = -2. 

For m = 2, o n the basis of (3.40)t. we have 

(4.41) G(2) : = E = ~ ( U2 
- 1) , 

which is called the Green strain tensor, while for m = -2 we have 

(4.42) G(-2) := -£ = ~ (u-2 -t) . 
£ is called the Piola strain tensor. The corresponding conjugate stress tensors in 
the sense of Hill are given by 

(4.43) T(2) := i' = F- 1sFr- 1 

and 
(4.44) 

referred to as the second Piola - Kirchhoff stress tensor and the convected stress 
tensor, respectively. Clearly, along with G( _2) and T( _2), the variables £ and - T 
form also a pair of conjugate (in Hill's sense) strain and stress tensors. 

This general result suggests the following restriction on the choice of La
grangean strain tensors: If we define the associated Lagrangean stress tensors 
which are conjugate in the sense of Hill, various objective time derivatives can be 
assigned to S. If we require from these derivatives the structure of generalized 
Oldroyd time derivatives, then only two strain tensors are left, namely E and £ . 
We remark that the Lagrangean variables (E, T) and (£ , T), where 

(4.45) T := - T = FT <;F 

and 
(4.46) <; := - S , 

were chosen in HAuPT and TSAKMAKIS [3] as basic pairs for introducing, by means 
of linear transformations, two different classes of pairs of spatial strain and stress 
tensors, referred to as family 1 and family 2, respectively. Strain and stress meas
ures forming a pair belonging to one of the two classes were called dual variables. 
As it will be seen in what follows, the pairs of Lagrangean variables (G(m) , T(m)) if 
m > 0, or ( - G(m), - T(m)) if m < 0, are representatives of related classes, which 
can be interpreted as classes of generalized dual variables. Moreover, similar to 
the cases m = ± 2, each of the Lagrangean stress tensors introduces a specific 
"generalized" Oldroyd time derivative for each of the stress tensors belonging 
to the same class. In fact, such a concept is established in the next section and 
essentially, it can be conceived as a generalization of the concept developed in 
HAUPT and TSAKMAK1S (3]. 
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S. The concept of generalized dual variables 

5.1. Generalized Lagrangean strain tensors 

We remark that the set of strain tensors defined by (3.40) includes for each 
m 'f 0 the strain tensor G(m) as well as its counterpart G(-m)· However, if m = 0, 
there is no such counterpart for In U. This motivates the definition of a set of 
generalized Lagrangean strain tensors, slightly different from that introduced in 
(3.40), as follows. 

The two-parameter set of functions 

(5.1) 

where 
(5.2) qE{-1 , 1} and mE (0, oo), 

introduces the strain tensors 

(5.3) 
3 

_ "' l ( qm ) E.(qm) - L - \ - 1 M; ® M;. 
i = l 7n 

Note that the functions g(qm )• in contrast to (3.37), are monotonic but not necess
arily increasing with 

(5.4) g(qm)(1) = 0, 

Since q is equal either to + 1 or to - 1, we have 

(5.5) 

(5.6) 
t(qm) lq=- 1 = E.(-m) ' 

E. (qm)l q=l = E. (m ) · 

Notice that, by taking the limit for m ---+ 0, we arrive at the strain tensors 

(5.7) 

which is equivalent to 

(5.8) 

lim E.(qm) = q In U , 
m~O 

{ 
lnU 

lim E. (qm ) = 
m~o In u-1 

if q = 1' 

if q = - 1. 

We call the set of all strain tensors defined by (5.2), (5.3), together with the strain 
tensors In U and In u- 1, the set of generalized Lagrangean strain (deformation) 
tensors and denote it by DL: 
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In order to give a geometrical interpretation to the Lagrangean strain tensors 
included in DL, it is convenient to introduce the generalized Green strain tensors 
E(m )• and the generalized Piola strain tensors E.(m)• defined by 

C5.10) 

C5.11) 

{ 
t(m) = m1 

cum- 1) 
E(m) := 

In U 

· - { E.( -m) = _!_cu-m - 1) 
E:(m) .- m 

Inu- 1 

if m, > 0, 

if m= 0, 

if m> 0, 

if m= 0. 

Further, we denote the set of all E(m) by DLG and the set of all E:(m ) by DLP, 

C5.12) 

C5.13) 

Clearly, 
C5.14) 

and 
C5.15) 

DLG := {E(m)/m ~ 0} , 

DLP := { E:(m)/m ~ 0} . 

Next, we give geometric interpretations for the Green strain tensor E = E{2), 
defined by C4.41), and the Piola strain tensor E: = £(2), defined by C4.42). As we 
shall see below, the geometric interpretation of the generalized strains E(m ) and 
E:(m ) is similar to that for E and E: , respectively. 

Let dX be a material line element in the reference configuration, which is 
transformed, under the deformation, into the material line element dx in the 
current configuration, i.e., 
C5.16) dx = FdX. 

Then we have the well-known formula 

(5.17) 
1 

L1 := "2 (dx ·dx - dX ·dX) = dX ·EdX. 

To obtain a geometric interpretation for the Piola strain tensor E: , we consider 
a material surface PCX) = C = const in the reference configuration. In the 
current configuration this surface has the time-dependent form cpCx, t) = C, where 
cp(x(X, t) , t) = ct>(X) holds for all X satisfying ct>(X) = C. It follows that 

(5.18) 

where 

C5.19) 

C5.20) 

f. = grad cpCx, l) , 
8 = GRADct>CX) 
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and 

(5 .21) 

P . IIAU PT A ND Ctl. TSA KMM\ IS 

8 := ~ (f_ of_ - 8 o 8 ) = 8 o e:8 . 

Thus, the G reen strain tensor E is used to refer to the reference configuration 
the diffe rence Ll between material line elements in the current and the reference 
configuration. Analogously, one can make use of the Piola strain tensor e: in 
order to refer to the reference configuration the diffe rence 8 between no rmals to 
material surfaces in the current and the reference configuration. 

Now, consider linear transformatio ns described by F (m)• det F(m) > 0, m > 0, 
where F (m) is constructed as follows. From the polar decomposition theorem we 
have 

(5.22) F (m ) = ~m)U(m) = V(m)~m), 

(5.23) Ufm ) = c (m ) = FTml(m) ' 

(5.24) V fm ) = B (m) = F (m) F Tm)' 

where R (m) denotes a proper orthogonal tensor. If we defi ne 

3 

(5.25) U ·- u m/2- ".xm/ 2M ·"" M · (m).- - ~ i t v t ' 

i= l 

(m > 0), then it fo llows that U(m ) describes a class of right stretch tensors. Fur
thermore, defi ning R (2) = R , we have F(2) = F. Clearly F, and so U, must satisfy 
the compatibility conditions e) in order to form a deformation gradient tensor 
derived from a deformation functio n. Although U and F satisfy the appropriate 
compatibili ty conditions, U (m ) and F (m ) in general do not. 

Proceeding to complete the definitio n o f F (,n ) • we note that all U(m) possess 
the same principal vectors M; . This motivates to define all the corresponding 
left stretch tensors V (m) to have the same principal vectors. Since the principal 
vectors of V(2) = V are ~(i ) (see Eqs. (3.7), (3.8)), we have 

(5.26) 

and 
(5.27) 

3 
V ·- y m/2 - "A m/211 "" 11 (m) .- - ~ i r i 'U r i 

i= l 

R (m ) := R . 

Notice that F (m ) can be inte rpreted as a two-point tensor fi e ld which maps tangent 
spaces of material points in the reference configuratio n onto the corresponding 
tangent spaces of the same material points in configuratio ns at time t. This fact 

(
9

) A deta iled discussio n on the compatibility conditions concerning F, as well as U and R, is given by 
NAGHDI and V ONGSARNPIGOON (1 4]. 
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follows by virtue of U and V (and therefore U(m) and V{m) too) operating within 
the tangent spaces of material points in the reference configuration and tangent 
spaces of material points in configurations at time t, respectively, and R mapping 
tangent spaces of material points in the reference configuration to the corre
sponding tangent spaces of the same material points in configurations at time t 
(see e.g. MARSDEN and HUGHES (1 5, pp. 51- 52]). 

Thus, analogous to Fin (5.16), F{m) transforms line elements dX in the refer
ence configuration to vectors dx(m) in configurations at time t: 

(5.28) 

If we define 

(5.29) 

dx{m) = F(m) dX . 

L1(m) := ..!._ (dx(m) • dx(m) - dX • dX) , 
111 

then we have, in view of the transformation rule (5.28), as well as the relations 
(5.22)t , (5.10)1 and (5.25), 

(5.30) 
1 

L1{m) := - dX • (Um - 1) dX = rlX • E(m)X , 
m 

with the property rlx{2) = dx and .J(2) = L1. On the other hand, F{m) can be inter
preted to transform normals 3 on material surfaces in the reference configuration 
to vectors t {m)' 

(5 31) t FT- I -
. ~(m) = (m ) .::. ' 

in configurations at time l , which generalizes the transformation formula (5.18). 
On defining 

(5.32) 

we obtain, by virtue of (5.22) 11 (5.11) and (5 .25), 

(5.33) J: ·- 1 o;:;' cu-m l ) o;:;' - o;:;' £ o;:;' 0 (m ) . - - .._.' - .._. - .._.' {m )._. · 
111 

Obviously, we have t {2) = t and 6(2) = D. This completes the geometrical inter
pretation of E{m) and £(m)· For arbitrary m > 0, these strain tensors represent 
the differences L1(m) and D(m ) with respect to the reference configuration. We 
may extend the result to the limit case m = 0, by defining 

(5.34) 

and 
(5.35) 

.d(O) := lim .d(m) = dX • E(o) X 
m-0 
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5.2. Generalized strain tensors and associated rates 

Let dX and S be material line elements and normals on material surfaces in 
the reference configuration, which are mapped by the linear transformation w, 
to vector fields dx(l/l) and s<l/l), respectively (cf. (5.16) and (5.18) in Sec. 5.1): 

(5.36) 

(5.37) 

rlx(!ft ) := 'l!dX , 

~ (!Jt ) := -wr-'s . 
Next, consider for arbitrary but fixed 'l1 E Lin + and m 2: 0, the differences L\(m) 
and O(m)· Requiring the derivatives dn L\(m)/ dtn and dno(m)/ dt 11 

( n E N, n 2: 0) 
to be form-invariant with respect to the chosen configuration, various symmetric 

strain tensors IT~~~ and 'TC~~)' as well as the associated time derivatives (rates) 

D 1l rr<!Jt ) I Dtn and D" 'TC(!Jt) /D l 11 can be defined (10) : 
(m ) (m) 

(5.38) 

(5.39) 

d" 
-.d( ) dt 11 m 

These definitions imply 

(5.40) 

(5.41) 

as well as 

(5.42) 

(5.43) 

l>. 

l>. 

/) n d" 
D tn E (m ) = rLt n E (m), 

l>. 

D" d11 

JJt n £ (m ) =: rf tn £ (m) ' 

- 1t >=M - £ nn (1/1 [ d
11 

] 

Dln (m ) (1/1) dl 11 (m ) ' 

where .C(!ft) and ~~(!ft ) are fourth-order tensors operating on the set of all La

grangean symmetric second-order tensors S: 

(5.44) 

(5.45) 

S 1--- .C(!ft)[S] = -wr-'sw-1
, 

- - - T S 1--- M (1/!)[S] = 'l1 S'lf . 

('
0

) Here, and in what follows, symbol 6 denotes the associated time derivative for the strain tenso r consid
ered. In other words, t>. defines different time derivatives depending o n the kind of the s train tensor conside red. 
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In particular, for n == 0 we have 

(5.46) 

(5.47) 

n (tJi) _ r [E ) _ ,T,T- 1E ,T, - 1 
(m ) - '--(1/1) (m) - '*' (m )'*' ' 

(tJi) - _ ,T, ,T,T 
1t(m) - M(tJi)[E(m ))- '*'E(m ) '*' . 

It is readily seen that 

(5.48) 

L; L; 

n <"'> ·- _Q_n<"'> == ii<"'> + c~w- 1 )r n<"' > + n<"'> ~w-1 
(m ) .- Dl (m ) (m ) (m) (m) ' 

L; 

~(1/1) ·- D
2 

n<"'> = (~<"'>). + (~w- l)T ~(lP) + ~<"' > ~w- 1 
(m ) .- Dt2 (m) (m) (m) (m) ' 

as well as 

(5.49) 

L; L; 

(tJi) D (tJi)_ .(1/l) ,-f,,T, - 1 (tJi) (tJi)( ,-f,,T, - 1)T 
1t · - - 1t - 1t ( ) - '*' '*' 1t - 1t '*' '*' (m ) .- Dt (m) m (m ) (m ) • 

367 

Further relations are obtained if we represent the various strain tensors with 

respect to the bases {g~"')} and {g~"'>}. From 

(5.50) 

(5.51) 

as well as 

(5.52) 

(5.53) 

we infer that 
(5.54) 

and 
(5.55) 

kt G G 
E(m ) == E (m ) k ® I' 

1t(l/l) - 1r (tJ!)kl (tJ!) (tJ!) 
(m ) - (m ) g~,- 0 gl ' 

l-. 17 (tJ!) 
~(m)kl = (m )kl 

kl - (tJi)kl 
[ (m ) - 7r(m ) ' 
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respectively. In addition, it holds 

"' 
(5.56) D n n <oJi ) = ( !!:_ n<oJi ) ) g<l/l )k 0 g<l// )1 

Dl" (m) dl n (m )kl 

and 

(5.57) 

c, n 

which indicates, that the operators D (·) I D ln induce generalized Oldroyd time 

derivatives. We call the strain tensors II ~~) and 1t~~)) generalized strain tensors. 
The set of all generalized strain tensors is denoted by D, 

(5.58) { 
(VI ) (1/i) 

D := II(m)' 1t(m) I m ~ 0 , 

Obviously, for a rbitrary but fixed m ~ 0, the sets of all generalized strain tensors 
related to the difTerences L1 (m ) and b(m ) constitute equivalence classes in D. We 

denote these equivalence classes by eg,~~ and e~;:)' respectively, 

(5.59) 

(5.60) 

e<n) := {rr(V!) I wE Lin+} 
(m ) (m) ' 

e<") := { 1t(l/i) I w E Lin +}. 
(m) (m) 

Then, for the system .r.?0 of all equ ivalence classes in D , 

(5.61) 

the equali ty holds 

(5.62) 

· - { - ( n ) - ( 11") } .no .- e<m>' e<m> 1 m ~ o , 

5.3. Generalized st ress tensors and associa ted rates 

For defining the generalized strain tensors and their associated rates, use is 
made o f the scalar quantities dnL1(m)l rlln and rlno(m)l dln. These scalars were 
required to be form-invariant with respect to the chosen co nfiguratio n. In the 
fo llowing we consider the stress power as well as the material time derivatives 
dn W I dtn and req uire from these scala r quantities to be form-invariant with re
spect to the chosen configuratio n. This leads to the int roduct ion o f generalized 
stress tensors and the associated rates. 

Proceeding to define generalized stress tensors, we draw attention to symmet
ric stress tensors o nly and assign to the general ized Lagrangean strain tensors 
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E(m) and e:(m)• the symmetric generalized Lagrangean stress tensors T(m) and 
T(m)• respectively, so that 

(5.63) W = T(m) • E (m) = T(m) • E (m) , 

for each m ~ 0. The set of all generalized Lagrangean stress tensors is denoted 
by SL 

(5 .64) SL := {'f(m)• T(m) I T{m)• T{m) : symmetric , 

w = i'<m> • E<m> = 7-<m> • e:<m>• m~ o }. 
The set SL for the stress tensors is the counterpart of the set DL for the strain 
tensors, while the sets 

(5.65) {'f{m) I m ~ 0} 

and 
(5.66) { 7-<m> I 111 ~ o} , 
are the counterparts of the sets DLG and DLr, respectively. Moreover, to the 

genera lized strain tensors rr~:)) and 'Tt ~:)) the symmetric generalized stress tensors 

(5.67) 

and 
(5.68) 

can be assigned, respectively, so that 

6 6 

(5.69) w = ~(<Ji) . rr<"') = a ("') • 'Tt(!Jt ) 
(m ) (m ) (m) (m ) ' 

fo r each m > 0 and W E Lin +. 
Notice tl~at (E(m)• T(m)), as well as (e:(m)• T(m)), are pairs of variables wh ich 

are conjugate in the sense of Hill. H owever, this is in general not true fo r the 
pairs of va riables 

(5.70) (rr<"'> ~<"'>) (m )' (m ) and ( 
(<Ji) (!Jt)) 

'Tt (m ) ' a (m ) . 

For arbitrary m ~ 0 and w E Lin +, the pairs o f variables (5.70) are called pairs of 
generalized dual variables, or simply dual variables. Equivalently, the generalized 

stress tensors ~~~) and a~~/) are sa id to be dual to the generalized strain tensors 

II(<Ji) and 'Tt (!Jt) respectively and vice versa ( 11 ) . 
(m ) (m )' ' 

( 
11

) This notation of generalized dual variables is just a genc rali7..at ion of the duality no tation introduced in 
HAun and T SAKMAKJS [3]. 
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If we write S fo r the set of a ll stress tensors :E ~~)) and <r ~~~))' 

(5.71) ·- { (</1 ) (</1 ) s .- :E<m>' a<m> I m ~ o, 

then S can be partitioned into the equivalent classes 

(5.72) 

and 
(5.73) 

e<E) ·= { :E(</1) I w E Lin+} 
(m) • (m ) 

e(u) := {a(l/i) I w E Lin +} 
(m ) {m ) ' 

which for m > 0 cover S. No te that the counterpart of the sets D, G~~j a nd 

e~~) for the strain tensors are the sets s, e~~~ and e~:\ for the stress tensors, 
respectively. 

To determine the time deriva tives which are associated with the generalized 

stress tensors :E~~)) and <r~~))' we next co nsider the quanti ty \~i1 , wh ich like W is 
required to be fo rm-invariant with respect to the chosen configuration. On taking 
the material time derivative o f (5.63), we obtain 

. . ..... . - .. 
(5.74) 

W = T (m) • E (m ) + T (m ) ' E( 711 ) . 
"""" . ....... .. 

= T (m)' € (m ) + T {m ) ' € {m) 

Using the stress and strain tensors included in the equivalence classes G~~~j, e~;~~ 
and G~~) ' e ~:!)' respectively, as well as the associated strain rates defi ned by 

(5.48) and (5.49), the terms T {m) • E (m ) and T (m ) • E (m ) can be rewritten in the 
form 

I:; I:; 

(5.75) - .. = ~<w ) • n <"'> 
T{m ) • E(m ) L..r(m ) (m ) ' 

I:; I:; 

(5.76) 
- •• - (</1 ) (</1 ) 
T(m) ' €(m ) - <T(m ) •1t(m ) · 

Thus, the quantities T(m ) • E(m) and T(m) • E(m ) represent, fo r arbitrary but fixed 
m ~ 0, scalars which are form-invariant with respect to the chosen configuration. 
Consequently, the terms 

(5.77) 

and 

(5.78) 

. 
Wincr · - T- E. 

(m ) . - (m)' (m ) 

. 
W incr ·- ;r ~ 

(m).- 1 (m ) ' c;,(m ) ' 
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which are called the incremental stress powers W(:=) and w(~). respectively, must 
also be scalars which are form-invariant with respect to the chosen configuration. 
Indeed, we have 

" 6 

(5.79) wincr - :E(<P) 
(m) - (m ) 

• n <<P> 
(m ) 

and 
" 6 

(5.80) wincr -cr(<P) (<P) 
(m) - (m ) • 1t(m) ' 

where use is made of the definitions C2) 

(5 .81) 

(5.82) 

This way, by considering form-invariant scalar quantities, we can associate with 

each stress tensor :E~~,>) and er ~~)) a time derivative of the form (5 .81) and (5.82), 

respectively. Similarly, by considering higher time derivatives d11 W / di n , associ-

" " ated time derivatives of higher order Dn :E~;,// Dtn and Dn a~;,}/ /J /11 can be 
introduced in a natural way. In particular, we have 

(5.83) 

and 
" 

(5.84) 
_on _ dn _ 

- T ( ) = - T () _D[n m - din m ' 

as well as 

6 

(5.85) _on :E(<P) -M [~T ] = W T - I (~T ) w-l 
_D[n (m ) - ( .P) d/.n (m ) din (m ) 

and 

(5.86) 

C2 ) Similar to the notat ion of the symbol 6 for the strain tensors (sec footnote 11), symbol " denotes the 
associa ted time derivative for the stress tensor considered. 



http://rcin.org.pl

372 P. JI AUPT AND CH. T SAKMAKIS 

5.4. Properties of dual variables 

Using the bases {Gk} , {g~tli)} and their reciprocal bases { G k}, { g(tli )k }, as well 
as the representatio ns 

(5.87) 

(5.88) 

and 

(5.89) 

(5.90) 

we readily obtain 

(5.91) 

(5.92) 

and 

(5.93) 

V 

- Gk G1 
T(m) = T(m )kl 0 ' 
<T(( tlim)) = a(l/i ) g(l/i )k 0 g (l/!)1 

(m)kl ' 

j k l _ E (l/l)kl 
(m ) - (m ) ' 

T = a (l/l ) 
(m )kl (m )kl 

(5.94) Dn <1 (1/1) = ( .:!:_a(l/l) ) g(l/l)k 0 g(t/l )l . 
Dt" (m ) rl l" (m )kl 

T he relations (5.93), (5.94) together with (5.85) and (5.86) ind icate that, simi larly 
V 

to the case of the generalized strain tensors, th e operators f) n ( • )/ Dtn induce 
generalized Oldroyd time derivatives. 

We now compare the relations (5.56), (5.57), which concern the generalized 
strain tensors, and the relat io ns (5.93), (5.94 ), which concern the generalized 

stress tensors. It turns o ut that IT~~)) and ~~~1)) o r 7t ~~)) and a~:)) ' as we ll as the 
associated time derivatives, display their physical and geometrical properties in 
the context of a representation relative to a basis and the co rrespo nding reciprocal 
(dual) basis, respectively. Moreover, the duality concept can also he verified by 
means of the following scalar products, which are form-invariant with respect to 
the chosen configuratio n: 

(5.95) 

(5.96) 

I N /\ 1 ·
(m ) . -

i N M · (m ) . -

D N ~(1/1) D !l '~ rr<t/1> 

( 

V ) ( C. ) 
DtN (m ) • Dtll l (m ) ' 

( 

V ) ( C. ) 
D N (1/1) D 111 (t/1) - - a . --7t 
DtN (m ) Dti\1 (m ) ' 
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where m ~ 0, and N, M E N with N, AI ~ 0. Some particular cases of (5.95) and 
(5.96) are: 

1 

(5.97) 

(5.98) 

l oo - - E - ~<"'> n <"'> 
(m) - T(m) ' (m ) - L.l(m) ' (m)' 

·00 - - - (<Jt) (Vi) 
l(m) - T(m ) 'E(m)- (J'(m ) •1t(m) · 

(Scalar product of dual stress and strain tensors). 

2 
"' 

(5.99) rol _ - • ~<"'> n <"'> 
(m ) = W = T(m ) • E(m) = L.l(m) • (m ) ' 

"' 
(5.100) ·01 - - - • - (Vi) (Vi) 

l(m) = W - T (m ) • E (m) - O'(m) • 1'((m ) • 

(Stress power per unit volume of the reference configurat ion). 

3 
<7 

(5.101) 110 - ~ (Vi) .n<"'> (m) - T (m) • E(m) = :E(m) (m ) ' 

v 

(5.102) ·10 
t(m) = !. - (Vi) 

T (m) ' E (m) - O' ( m) 
(<Jt ) 

• 1'((m). 

(Complementary stress powers). 

4 

(5.103) /11 _ 1,vincr _ 
(m) = (m) -

(5.104) i ll _ 
1 

incr _ 
(m ) = 1 (m ) -

(Incremental stress powers). 

6. Some examples 

<7 
~ • - (1/1) 
T(m) • E(m ) -:E(m) 

<7 
~ • - (<Jt) 
T (m) • E (m) - O' (m) 

"' . n <"'> 
(m) ' 

"' • 1'((1/1) 
(m ) 

In most applications, m is chosen equal to 2. In such a case, the eq uivalence 

classes e~~) and e~~) (e~;? and e~;?) are denoted as family 1 of strain tensors 
and family 1 of stress tensors (family 2 of strain tensors and family 2 of stress 
tensors), respectively. Some examples for particular choices of 'W are given (13) 

in Tables 1 and 2 (the o rthogonal second-order tensor P is given by P = WP). 
Possible physical interpretations for the stress tensors :E~~/ and cr~;/ are given in 
Appendix I3. 

('
3

) For more details see liAUI'r and T SAKMAKIS (3]. 
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Table I. Dual variables and associated derivatives: family I. 

A V 

"If n<'~'l = \fT-IE\f-1 
(2) 

n<'~'> = "otr-1 E"ot-1 
(2) 

E ('i') = -ii"fT 
(2) 

EC'~'l= \fT\fr 
(2) 

1 A i = F-1sFr- l 1 E = - (C - 1) E =: E T 
2 

A= !(I- 8 - 1) 
A V • T F A = A + L'~"A + AL = D S =(del F)T S = S - LS - SL 

2 

- 1 "' 'V 

R K = - (8 - 1) K= K - RRTK + KRRT ~ = RTRT ~=~ - Rl(r.s_ - ~ RRT 
2 

li = ~(1 - C
1
) 

6. • • ~ 
V 

u .K= .K + (U u - 1)7 li s = UTU S= s- uu- 18 
+li u u - • = RTSR -s(uu- lf 

"' E w = P'fPT 
V . 

p n w = PEPT ll iV = ll w- Wll w E w= E w - WEw 

+ll w W +EwW 

Table 2. Dual variables and associated derivatives: family 2. 

"' V 

"If "lt('i') = "lfE"IfT 
(2) 

1{('1') = WE WT 
(2) 

< ~'> _ wr-1- w- 1 
CJ( 2) - T 

< ~·>- wT-1 ~ w-1 
CJ(2)- T 

I E = !(c-•- 1) 
2 

"' T = FTc;F E =: E T 

1 A 
0. - ~ - CLLT = - D c; = - (dct F)T 

V 
+LT<;+ c;L F CL = - ( 1 - B) CL= <; = <; 

2 

"k = !(u-1 - t ) "' 'V 
R k = k - R RTk + kRRT 5. = RTRT s.=s.- R R T 5. + 5. R RT 

2 

1 "' uu- l~ <; = u - 1:ru - 1 V 

~ +(uu- ')T~; u ~ = 2(1 - C) ~= ~ - <;= 

-~(u u - ' f = RTc;R +<;uu- l 

p = PEPT "' i:w - W1t w + "lfw W = PTPT 
V 

O. w - Wa w "lf w "lt\-11 = (J IV a \V= 

+cr w W 

Next, we give the equivalent representations of hyperelastic constitutive equa
tions using generalized dual variables. By defi nition, an elastic material is hyper
elastic if and only if the work done by the the actual surface tractions in every 
closed homogeneous deformation process is non-negative (see e.g. TRUESDELL 
and NOLL [1 6, Sect. 82 & 83]). This is equivalent to the existence of scalar-valued 
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functions II(m ) and h(m )• 

(6.1) 

(6.2) 

satisfying the relations 

(6.3) 

and therefore 

If(m ) = fi (m)(E(m)) , 

h(m ) = h(m)(E(m)), 

. . 
l¥ = H (m) = h (m ) 

- {)J[(m) - Oh(m ) 
(6.4) T(m) = -;;m-, T(m) = -8~ , 

(m) ~(m) 

375 

respectively. Thking into account the relations (5.44)-(5.45), H(m) and h(m ) can 
also be written in the form 

(6.5) 

(6.6) 

respectively. From these equations, the stress relations (6.4) 1,2 as well as the 
transformation formulas (5.67) and (5.68), we conclude that 

(6.7) :E(<Ji ) - arr(m) 
(m) - an<IP> ' 

(m ) 

(6.8) <T(IP) - oh.( m ) 
(m)- 8 (t/1) ' 

1t(m ) 

which are the spatial counterparts of (6.4) 1 and (6.4)2, respectively. In view of 
(5.50)-(5.57), also the representations 

(6.9) 

(6.10) 

:E(t/1) = 
(m) 

<T(IP) -
(m ) -

f)lJ( m ) (l]r) (1/i) 
f)E gk 0 g, , 

(m )kl 

f)h(m ) g(l/i)k ,o., g(IP)I 
{) ckl '<Y 
~ (m) 

apply, where the functions 11 (m ) and h(m ) are given by 

(6.11) 

(6.12) 

respectively. 
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For m = 2 we write £(2)kl = Ekl and eN) = ckl . Then, for '11 = F, 

(6.13) 

(6.14) 

In this case, (6.7)-(6.10) reduce to 

(6.15) 

(6.16) 

. I F h . G ·- G G - (F) (F) 11 respective y. urt errnore, settmg · ij .- i ' 1• lij :- g i ·g1 , as we as 
Gij := G i .cJ, /.ij := g(F)i .g<F)j, we arrive at the identities 

(6.17) 

(6.18) 

Hence, 

(6.19) 

and 

(6.20) 

1 
Ek1 = 2{Ykl- Gk, ), 

_ 1 ( kl ck' ) c k/ - -I - · 
2 

81 
c = 2~g(F)k 10. g( F )l 
~ 81,k, IC:J • 

where the funct ions li(2)( ·) and h(2)( · ) are defined by 

(6.21) H(2) = Jl(2)( Ek,) = lf (2) (~bkl - Gki )) = : lr(2)(!kL) , 

(6.22) h =h ( kl ) =h ( 1 ( kl c k')) -1 ( k') (2) = (2) c = (2) 2 I - = : l (2) I · 

Equation (6.19) corresponds to the well-known Doyle - Ericksen formula (see 
DOYLE and ERICKSEN [13]). 

Further examples for the application of dual variables and their associated 
rates in Continuum Mechanics are provided in HAUPT and TsAK.MAKlS [3]. 
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7. Duality for two-point tensors 

The concept of dual variables developed can be extended to two-point tensors 
as well. For example, formula (3.41) shows that F is conjugate in Hill's sense to . 
T R· However, F does not indicate the same properties as F under an observer 

A 

transformation. Proceeding to define an associated rate F for F which behaves 
like F under the observer transformations, we consider a skew-symmetric tensor 
n, so that (3.41) is rewritten as 

(7.1) W = T n ·(F - OF). 

This is possible, since T nFT is symmetric. Note that by the po lar decomposition 
F is rela ted to the Lagrangean tensor U by means of (3 .5)1. Therefore, it appears 

A A • 
natural to define F in such a way, that F is related to U in the same manner as 
F to U: 

A 

(7.2) 
D A • 

- F = F= RU Dt - . 

From this, as well as (3.5)1 and (7.1 ), it follows that 

(7.3) 

and therefore 

(7.4) 

A 

It is not difficult now to show that F and F behave similarly if the observer 
transformations are regarded. 

Foliowing steps similar as in the case of symmetric tensors, we define higher 
associated derivatives ofF by 

(7.5) 

A 
Dn 
- F= 
Dln . 

Next, we note that 

(7.6) 

where 

(7.7) 

( 

~n- 1 F)' 
Dtn-1 

- 1 ( T T ) Tp) = T(BS) = 2: T nR + R Tn 
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was referred to in ( 4.2) as the symmetrized 13iot stress tensor C4 ). This motivates 
us to define the associated time derivatives for T 11 in the form 

(7.8) 

having the property 

(7.9) 

"' "' As a result, we have then (Tn: = D T n/ Dt): 

(7.10) 
"' D. 

(Tn ·F)' =Tn ·F + Tn • F 

The results derived above, concerning the pair (F, Tn), can be extended, in exactly 
the same way, to the pair (FT - l , T n), where 

(7.11) T n := <;F = - (detF)TF. 

We recall , from the polar decomposition (3.5)1, that 

(7.12) 

This motivates us to defin e the associated time derivatives of FT- I as follows: 

(7.13) 

Thus, the stress power W becomes 

(7.14) 

where 

(7.15) 

(
14

) The analysis in the p resent paper is based o n the re lat io n betwee n T n and T(IJS)· However, the resu lts 

remain valid, if the analysis is referred to the relation be tween T n and the Bio t stress tensor T(IJ) = RTT n, 
defined in ( 4.3 ). 
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Furthermore, the identity 

(7.16) 

holds, where 

(7.17) - 1 ( 7' 7' T) 
'T(I) = 2 'TnR+ R 'T R . 

379 

T he last relation motivates us to define the associated time derivatives of 'T n by 

(7.18) ( ~ )' ( ~ ) n n- l • T n n-! 
- - 'T - RR --'T Dtn- l R Dtn- l R ' 

satisfying the relation 

(7.19) 

Again, a relation of the form 

(7.20) 

holds, where 

(7.21) 

Traditionally, in formulating constitutive eq uations, we assume rn = 2. However, 
if we deal e.g. with problems concerning uniq ueness o r constitutive inequalities, 
further pairs of dual variables may be convenient in formulating the theory. As 
an example, discussing intrinsic stabi li ty of the material, Hill (see H ILL [4-6]) 
proposed a class of constitutive inequalities, which must be sati.,fied for some 
domain of deformation spaces. In the nomenclature of the present work, Hill's 
inequalities correspo nd e ither to 

~ A 

(7.22) 
(1/1) (lP) 

wincr = ~ . n (,n) > 0, (m ) (m) 

o r to 
~ A 

(7.23) w incr - ~(lP) • 1t((n~)) > 0. 
(m)- (m ) , 

As a conseq uence, fo r m = 1, Eqs. (7.22) and (7.23) reduce to 

(7.24) 
. .!. • '\} D. 

W(~r = T (I)· E(l ) =TR • F > 0 , 



http://rcin.org.pl

380 P. II AUPT AND CH. TSA h:MAKIS 

and 

(7.25) incr T.!. £. T"' ·(FT- I)"" > 0 , 
w (l) = (1) • (I) = n 

respectively. These relations demonstrate that dual variables, in combination with 
associated time derivatives, are appropriate terms for formulating objective con
stitutive inequalities, even in the case of two-point stress and strain tensors (in 
this context see also OGDEN [8, p. 407]). 

Appendix A 

Let 
(A.l) x* = c(l) + Q(t)x, t* = t- a 

describe an observer transformation in E, where c(t) denotes some vector-valued 
function of time and a E JR. For our purposes, it suffices to assume Q(t) to be a 
proper orthogonal second-order tensor. 

Assuming the reference configuration to be independent of the observer, the 
observer transformation (A.l) implies for the motion (3.1) 

(A.2) x(X, t) = c(t) + Q(t)x(X, t) , 

Well-known results obtainable from (A.2) are the transformation rules 

(A.3) W=QR, u· = u, 

An Eulerian second-order tensor A is said to be objective if it satisfies the trans
formation rule 
(A.4) A * = QAQT 

under the observer transformatio n (A.l ). Commonly, it is assumed that the stress 
tensor S is objective, i.e., 
(A.5) S* = QSQ T . 

Now, let S be represented by 

(A.6) 

so that 

(A.7) 

by ( 4.16)2, ( 4.18). On using the relations (A.3), it is a straightfo rward matter to 
derive the transformation rules ( i, j = 1, 2, 3) 

~i = Q~;' Mi =M;, 

(AS) X!' = .-\;' g(.Xi ) = g(.X;), g'(.Xi) = g'(.X;), 
' 

f(g )ij = e(g )ij , n(9 )ij = O'(g )ij, s,~1 = s.-1 . 
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Hence, 
(A.9) 

from (A.7). Thus, we have 

(A.10) 

and therefore (i,j = 1,2, 3) 

{A.11) Mi 0 (T(g))' Mj = M; 0 T (g)Mj . 

381 

Next, we discuss how D(g)S/ Dl is affected under the observer transformation 
(A.1). To this end, using (4.21), we rewrite (4.23) 1 in the form 

(A.12) 
D(g) o 

Dt S = P(g)[ T (g)] 

3 

= L A;g'(A;) (M; 0 T(g)M;) ~; ® ~i + ~ 2: :g) (M; oT(g)MJ) ~; ® ~j . 
•= I •'1-J O;j 

From this result, as well as from (AS) and (All), we conclude that 

D(g) s· = Q ( D(g) s) QT 
JJt· Dl ' 

which shows that D(g)S/ Dl represents an objective Eulerian second-order tensor. 

Appendix B 

In this Appendix we give possible physical interpretations for the stress tensors 

:E~~/ and a~~/. which confessedly are somewhat artificial. 
By Cauchy's theorem, we have 

(B.1) 

where t represents the stress vector acting o n a surface element in the current 
configuration 
(B.2) da = n da , 

oriented by a unit normal n, and 

(B.3) m := - n . 

Let now da be represented by 

(B.4) da = dxp1 x dx121 , 



http://rcin.org.pl

382 P. II AUPT AND Cif. T - AI,MAKIS 

where dx1;1, i = 1, 2, are non-coll inear line elements in the current configuration. 
For the corresponding surface element 

(B.5) rLAQ =No dA 0 

(No ·No = 1) in the reference configuration, the well-known formula 

(B.6) 

holds, with 
(B.7) 

and 

da = (det F)FT- l dAQ 

dAQ = dXpJ X dX[21 

(B.8) dXJiJ = F- 1dx(il • 

by (5.16). Furthermore, assuming that the transformation rule (5.16) applies also 
to the vector t da, we can introduce a transformed " force" dQ in the reference 
configuration by 
(B.9) t da = F rLQ . 

Analogously, further transformed "forces" rfQ (tJi) are given by 

(B.1 0) 

with dQ(F) = t da. In addition, we define the "stress vecto rs" 

(B.11) 
(tJi ) · - dQ(tJi) 

t . - r/ , \ (tJi) ' 

where dA (tJi) is given by the relation 

(B.12) 

(N(tJi) ·N(tJi ) = 1 ), which is analogous to (B.6). Fina lly, on the basis of (B.1 )2, it is 
not difficult to derive the relation 

(B.13) 

with (t<F> , ~f;? , N(F)) = (t , S, n). Thus, the stress tensor :E~~/ acting on the 

"weighted normal" (detw)- 1N(tJi ) gives the "stress vector" t( tJi) . 

The physical inte rpretation of cr ~~) is simiiar. We start by conside ring again the 
surface element da (see Eqs. (B.2) and (B.4)). Besides (B.6), the surface element 
da can be mapped on the reference configuration as follows. Let rN1;1 be vectors 
in the reference configuration, which are related to dx1;1 by means of (5.18), 

(B.14) T r/YJiJ = F rlxliJ· 
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We define the transformed "surface element" in the reference configuration da0 
by 

(B.15) dao = nodao = eN[! I x dY121 , 

with no ·no = 1. It is readily shown that da is related to rlao through 

(B.16) da = (detF)- 1Fda0 . 

Next, assuming the transformation formula (5.18) (or (B.14)) to apply also to the 
vector t da, we can introduce a transformed "force" in the reference configuration 
dq by 

(B.17) t da = FT- I dq . 

Analogously, further transformed "forces" dq(eft) are defined through 

(B.18) 

Finally, we introduce the "stress vectors" 

(B.19) 
(eft ) ·- dq(eft ) 

t . - cfa(l/l) ' 

where da(eft ) is given by the relation 

(B.20) 

(n(eft) ·n(eft) = 1), which is analogous to (B.16). Then, on the basis of (B.1)3, it can 
be seen that 

(B.21) 

where 

(B.22) 

(1/1) _ (eft) [(det'l!) (eft)] 
t - a (2) ( det F)2 m ' 

and (t(F> , a~~> , m<F>) (t , <; , m). That is, the stress tensor a~~? acting on the 

"weighted normal" (Cdet'll)/ (detF?) m<eft > gives the "stress vector" t<tP> . 
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On the existence of solutions for two-dimensional Stokes flows 
past rigid obstacles 

M. KOHR-ILE (CLUJ-NAPOCA) 

I N n us PAPER we obtain some existence and uniqueness propert ies for the solut ion corresponding 
to the problem of the plane unbounded Stokes flow past rigid obstacles. The stream function of 
the flow is represented in the form of simple layer potent ials. 

1. Introduction 

IN SOM E PREVIOUSLY published papers [5, 6, 7], the autho rs treated the problem of 
an unbounded two-dimensional viscous flow past an arbitrary obstacle, using the 
method of matched inner and outer expansions of the corresponding solutio n. 
These results were then generalized to the three-dimensional case. 

The purpose o f this paper is to present a method for studying the problem of 
the Sto kes flow past some rigid two-dimensional obstacles, using the properties 
of simp le layer potentials. 

Let N ~ 2 be the number of obstacles denoted by Di , i = 1, N, J2 denoting the 
region exterior to these obstacles. The flow is described by the velocity u and the 
pressure p. We suppose tha t u --+ Ui, p --+ p as lxl - , where x = x1 i + x2 j , 
and U, p are prescribed constants. Using the dimension less variables: x' = xI l, 
u' = ul U, p' = l(p - Poo )l JLU and the Reyno lds number Re = glU I ll, where l is 
a characteristic length, JL the dynamic viscosity, and g the fluid density, then u' 
and p' are solutions of the Navier - Stokes problem (disregarding the primes over 
u and p) 

(1.1) 

Llu - \lp = Re(u· \7)u 

\7 ·u = 0, 

In [2 , 

u = f ' on C; = fJD;, 

u ...... i, p --+ 0, as 

i = 1, N , 

lxl --+ oo. 

Here L1 and \7 denote the two-dimensional Laplacean and the gradient operato r, 
respectively. We require the given velocities f i , i = 1, N to satisfy the zero outflow 
conditions: 

(1.2) J ri . n i ds = 0, 

c• 

where n i is the exterior vector normal to D;, i = 1, N. 
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We suppose that the R eyno lds number defined above is sufficiently small. 
The Navier - Stokes problem (1.1), fo r the case N = 1, is singula r in the sense 

that the linearized Stokes form: 

(1.3) 
.du - \17J = 0, 

\l· u = 0, 

together with the same conditions as in (1.1 )3,4, has no solution in view o f the 
Stokes paradox. But, in this case, it is possible to obtain a solution, if the condition 
at infinity is replaced by: 

(1.4) u = A ln lxl + 0(1) , as lxl -. oo, 

for any given constant vector A [6, 7]. Also, in the case of N ~ 2, we prove that 
there exists a constant vector A such that the problem (1 .3) has a solutio n, if the 
condition a t infinity is replaced with (1.4). 

2. Integral equation of the first kind 

The equation of continuity \l· u = 0 implies the existence o f a stream function 
'!/; such that 

(2.1) 

where vl. denotes the vector obtained by ro tating the vector v = v1 i + v2 j by 1r / 2 
co unterclockwise, so tha t vl. = -v2 i + vd. Because the do main n is not simply 
connected, the condition (1.4) is only local, i.e. '!/; might no t be a single-valued 
function . But the following arguments prove that '!/; is necessarily a single-valued 
function . 

Let c be any closed CUIVe bounding the domain n° c n and n· = (f?\J2°) n 
Bn, where Bn is a large disk o f radius R. Applying the Green's fo rmula, we 
obtain: 

N 

(2 .2) 0 = j divudx = L j u·nds + j u·nds- j u·nds. 

n· •= 1 c• c aaR 

From (1.1)3 and (1.2), it results that j u · n rls = 0, i = 1,N. 

c • 
From Green's formula in f?n = n n Bn, we have: 

(2.3) 
N 

0 = j divudx = L j u·n ds + j u·n ds . 
nR •= 1 c• aaR 
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Hence (2_3) implies that j u·n rls = 0. The above arguments show that 

8Bn 

j u·n ds = 0, 
c 

Then we express 'ljJ in the form 

so 

X 

(2.4) '1/J (x) = - j u.L · ds, 
xo 

j u.L · ds = 0. 
c 

X E f2 , 

387 

where x o is a fuced point in f2, x is an arbitrary point in f2, and the integral is 
evaluated along an arbitrary polygonal line between x0 and x. Also, it is easy to 
establish the condition (2.1 ). 

Using (1 .3) and (2.1 ), we obtain the Stokes problem for stream function ·tf; : 

6.2'1/• = 0 in f2 , 

V 'lj; (x)= j - f i.L (x), xEC', i= 1, N. 
(2.5) 

We shall prove that there exists a real co nstant vector A such that 

(2.6) "V 'I/•(x) = Aln i.TI + 0(1), as l:z.·l -

and that the problem (2.5)- (2.6) has a solution. 
Fo r these purposes, we represent the stream function 1/J in the form: 

(2.7) 
N 

7/J(x) = L j Vy F(x , y)·<!>i (y) d,.;~, 
•= I c· 

where s~ denotes the arc length measured along Ci, = 1, N and F is the 
fundamental solution of biharmonic equation: 

(2 .8) 
1 

F(x , y) = S1r I·T - yl2[1n lx- yl - 1). 

It is easy to show that 7/.• given by (2.7), satisfies the equation (2.5) 1 and will 
be a solution of the boundary conditions (2.5)2, if the density function ~. with 
~(x) = <l>i (x ), X E ci, i = 1' N , satisfies the following system of integral equations 
of the first kind: 

(2.9) 
N 

L j \lx "V y F(x\ y)<j> i (y)ds~ = gk(:ck ), 
•= I c • 

k ck 
X E ' ' k = 1,N, 
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where 

(2.10) k • r k l_ g := J - 0 

The integral operator V i defined hy 

V' <t>i(x ) := j \7~. \7yF(x 1 y)<!> i (y)ds~ 1 X E C' 

c• 

has a kernel with logarithmic singularity. 
Differentiating (2.9) with respect to the arc length s~, k = 11 N , we obtain the 

set of integral equations with a Cauchy singularity: 

(2.11) k = 11 N . 

Because F is a function of lx- vi only, it is seen that the ad joint homogeneous 
system of (2.11) has the form: 

(2.12) k = 11 N. 

N 

We remark that the functions .S'i: U ci ~ ne, given hy 
j = l 

(2.13) C') 
X E 1 j = 1,N 1 

with a~ , bj denoting constants, are the solutions of the system (2.1 2). These 
functions determine a linear space with 3N dimensions, which implies that the 
dimension of to solution space corresponding to the homogeneous system (2.11) 
is at least 3N. We use here the fact that the homogeneous system (2.11) and the 
adjoint system (2.12) have the same number of linearly independent solutions 
(see [10]). 

THEOREM 1. There exist at most 3N linearly independent solutions of the homo
geneous system (2.11 ). 

P r o o f. The functions 

N 

r' : U ci _, IR2 1 

j= l 

7' (.1: ) = 0 . { 0. 
T' (:t) 1 

:r E Ci 1 j f i, 

.1: E Ci, 

i = 1, N, where T;(.r ) denotes the unit tangent vecto r in the point x E Ci , are N 
linearly independent solutions of the homogeneous system (2.11 ). 
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N 

Let {j) : U Cj __. ~2 be any 2N + 1 solutions of the homogeneous system 
j = l 

(2.11), and 1/Ji = 1/Ji(<;si ), 'i = 1, 2N + 1, deno te the co rresponding stream func
tions, as in (2.7). The n functio ns 1/Ji satisfy the equations 

1121/Ji = 0 in J2, 

(2.14) v 1/Ji 1 = cj , J = 1, N , 
CJ I 

'V 'lj;i (x) = Ai In lx l + 0 (1), as ixi __. oo, 

where c{ is a constant vecto r and 

We de fine th e functio n <;si as <;si (x ) = ~t>) (x ) fo r x E CJ, j = 1, N. 
We can choose real constants a 1, . . . ,0'2N+ J. not a ll eq ual to zero, and the 

vector c(c1, c2), such that: 

(2.15) 

2N+ I 

~ a d - c = O L..-t l 1 , 

i= l 

N 

L a; A; = 0 
i= I 

j = 1, N , 

because we have here 2N + 2 ho mogeneous equatio ns with 2N + 3 unknowns. 

Le t the functio ns 1/Jo and Jo be defined by: 

2N + 1 N 

(2.16) V'O = L O'j'lj;i, Jo = L n ;ipi . 
i = l i = l 

T hen 1/Jo satisfies the equation 

1121/Jo = 0 

'V'l/Jo(:r) = C , 

'V'l/Jo(x) = 0 (1), 

m ft, 

(2.17) E CJ . - -1 1\f X , J - , n , 

as ix i - oo. 

The problem (2.17) has a so lu tion o f linear form '1/-•o(x) = c·x. Fro m the 
uniqueness theo re m of the solu tio n correspo nding to the exterior Stokes problem 
(see T heorem 3), we deduce tha t 1/Jo is the unique sol ution of (2.17). The fu nctio n 
1/Jo given by (2.16) is also biharmonic in each domain ft; a nd is continuous together 
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with its first derivatives on Ci, i = 1, N . Using the uniqueness result of the inner 
Stokes problem, we conclude that '1/-•o has also a linear form in ft; , i = 1, N. 

Using [5], it is easy to prove that on each contour Ci , j = 1, N, the stream 
function 'lj; given by (2.7) has the properties: 

(2.18) 

where the symbols +, - denote the limits in n and nj, respectively, and a 1 ani 
is the normal derivative on C i, j = 1, N. 

Since 'tf;o has a linear form in f/ and S?j, respectively, from (2.18) we obtain 
that there exists a constant (3J such that: 

(2.19) 

where the function <t>b is defined by ~o(x ) = <t>b(x), x E CJ, j = 1, N . 
Hence we deduce that 

N N 

(2.20) ~o(x) - "i:. f3iri (x) = 0, :rE U c1 
j =l j= l 

or 

2N+ I N N 

(2.21) I:. a;<P; (x ) - L f3jr1 (:r) = 0, .T E U Cj, 
i= l j= l j= l 

with the functions :ri defined above. It results that the functions <pi , ri, i = 
1, 2N + 1, j = 1, N , are linearly dependent. 

So, we have proved that the dimension of the solutions ~ace of the homo
geneous system (2.12) equals exactly 3N, and each solution S has the form : 

(2.22) X E C' , i = 1) .N , 

where ai, b; are constants. 
Using the theory of singular integral equations (the Fredholm al ternative, 

[10]), the system (2.11) has solutions if and only if 

(2.23) 
N J d . . . L -. g' (.1: )·S '( :r )ds~ = 0, 
._

1 
ds~ 

,_ C • 

where S, with S(x) = S'(x), x E Ci, i = 1, N, is a solution of the adjoint 
system (2. 1 2). 
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From (2.22), (2.10) and (1.2) the conditions (2.23) follow immediately. 

Let J0 be a solution o f the system (2.11), with J01c
1 

= <!>~, j = 1, N. The 

corresponding stream function ·t/;0 = 1j;0(J0) satisfi es: 

t127j;0 = 0 in Jl, 

(2.24) '\l 'lj}(x ) = gi(x) + ki, x E C', i = 1,N, 

'\17j;0(x) = A0 lnlxl + 0 (1), as lxl---; oo, 

where 
N 

A
0 = 4~ L j <l>~(x) ds~, 

J = l C'J 

- N 2 
and ki, i = 1, N are constant vectors. Let 1.:0: U C i ____, JR. be defined by 

j = l 

k0 I = ki' j = 1 ' N. 
C J 

Also let <pi, i = 1, 2N and ::;:i , j = 1, N , be the 3N linearly independent 
solutions of the homogeneous system (2.11 ). Then the stream functions t/Ji = 
'lj;i (<pi ), i = 1, 2N satisfy the equations 

t127j;i = 0 in n, 
(2.25) 'V't/J' (x)= kj, xEC1 , j= 1,N, 

'V 'Ij;i (x ) = Ai ln l.rl + 0(1), as lxl-. oo, 

with 

. 1 N J . . 
A' = 

4
11' L tpj (x)dsi, 

J= l CJ 

. I . 
-· t <p CJ = IPj' j = 1, N and kj, j = 1, N, 

N 
are the constant vectors, i = 1,2N. Let f::i: U Ci ____, IR.2, be given by J..il = k~ , 

j= l CJ 

j = l , N, i = 1, 2N. 
Let V be the set defined by: 

V = { k : LJ ci ---+ IR.2 I k( x) = kj, x E C1
, ki a constant vector, j = 1, N }. 

j= l 

V is a linear space with dim V = 2N, and the functions k0 , J::i, i = 1, 2N belong 
to V. Hence, there exist the real constants a 1 , . .. , a 2 N with the property: 

2N 

(2.26) L a;ki (x ) + k0(x ) = 0, 
i =l 

2N 

X E u Ci, 
j = l 
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if we suppose that the functions (j; i, i = 1, 2N, satisfy: 

(2.27) A' = 0, i = 1,2N , 

since k i are linearly independent functions. 
Using (2.24), (2.25) and (2.26), we deduce that the function 

2N 

'1/J = '1/Jo + I:>~;'l/Ji 
i=l 

M. K O HR- lLE 

is a solution of the Stokes problem (2.5). At infinity '1/J satisfies the condition: 

(2.28) '1/J(x) = A0 In lxl + 0 (1), as lx l -+ oo, 

where A 0 is defined in (2.24 ). 
So, we obtain the following result: 

THEOREM 2. If the functions r: Ci -+ IR2
, i = 1' N satisfy the conditions (1 .2), 

then in the hypothesis (2.27), there exists a constant vector A such that the problem 
(2.5) with the condition (2.28) at infinity, has a solution 1/J. 

In the proof of the Theorem 1, we used the uniqueness property of solution 
for the exterior Stokes problem. This result is given by: 

THEOREM 3. The Stokes problem (2.5) has at most one solution (up to an 
additive constant), under the condition that 

(2.29) 

and 

(2.30) Jaw . an (x)ds~ = 0, i = 1, N, 

where w = 6. '1/J. 

P r o o f. We suppose that there exist two solutions ,p and 'l/;2 of the problem 
(2.5). If we consider the difference '1/J = .,P 1 - 'l/;2, then 1/J satisfies the equation 

(2.31) 
in n, 
i = 1, N, 

with the additional conditions (2.29) and (2.30). 
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Let r2n = r2 n Bn, where 1Jn is a large disk o f radius /? . F ro m Green's fo rmula 
we obtain: 

(2.32) j [1/J(x)Ll2 7jJ (x) - (Ll 7/l(x))2
] dx 

On 

where 8BR denotes the boundary of the disk B n. 
From (2.32), it resul ts that the integrals taken along 81Jn are zero, fo r R ---. oo. 

From the homogeneous conditions (3 .31)2 we have 

J 8·1/J . 
w(x) on (x)ds~ = 0, i = 1,N. 

Also 7/1( x) = c;, for x E C'i, where c; is a real constant, i = 1, N. 
Now, if we use the conditions (2.30), we deduce: 

~ j ow · ~ ! Dw · L- 7/J (x )~(x ) ds~ =L-e; -D (x ) ds~ = 0. 
. un . n 
•= I c • •= I c • 

Hence the above ident ity (2.32) implies <1 7/1 = 0 in r2. 
Applying again the Green's fo rmula, we obtain: 

(2.33) 0 = j 7/J(x)Ll7/J (x) dx 
On 

Using the conditio ns (2.29), (2.30), (2.31 )2 we obtain \17/J = 0 in r2 , hence 7/1 
is a constant in r2 and 7/11 = '~h (up to an additive constant). 

R EMARK. Since we determine the stream function 7/1 in the fo rm (2.7), the 
conditions (2.30) are easily obtained as a consequence o f Green's identity. 

U sing the stream function ·lj; determined above, we obtain the velocity u = 
(\17/J ) j_, and the pressure pas the harmonic conjugate of w = Ll·lj;, but only locally, 
because the domain r2 is not simply connected. 
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The development of a nonstationary separation and coherent 
structures in a two-dimensional viscous incompressible flow 
around a body 

M.N. ZAKHARENKOV (MOSCOW) 

Dedicated to the memory of Vladimir M. Calkin 
killed in an aircrajt crash in September 1994 

TwO-DIMENSIONAL VISCOUS incompressible flows around a circular cylinder and a 12% Zhukovsky 
airfoil arc considered. Numerous examples of complex separated flows around these bodies with co
herent structures and detached separation generation, as well as examples of flow stabilization and 
separation destruction arc obta ined. Numerical experiment technology based on paramctrization 
of the far-field boundary conditions and effect of sequential exclusion of the scheme parameters 
and problem statement disadvantages is proposed. 

1. Problem statement 

THE STATEMENT of the problem and solution procedure are detailed in [1 , 2]. 
'TWo-dimensional N - S eq uations are written in terms of the stream function 
l]i and vorticity n, which are defined by relations 11 = D!P I fJy, v = - DIJ! I Dx, 
n = Dnl fJy - Dvl fJx: 

(1.1) 

(1.2) 

where lf 2 is the Jacobian of transformation of Cartesian coordinates x, y to curvi
linear orthogonal coordinates ~. 7] . A grid of "0"-type obtained by a conformal 
mapping of an airfo il onto a circle is used. Re= Uooblv is the Reynolds number, 
where Uoo is a free stream velocity, i.J is a characteristic length, 11 is coe,fncient of 
kinematic viscosity. Dimension less time l is defined by the relation t phys = t.i.J I U 00 , 

where b is eiter the chord of a irfo il or i.J = n is radius of the cylinder. 

Boundmy condition . On a solid body surface S the following no-slip conditions 
are defined: 

The condition fJ!JiiD~/s =IT j(r7) is transformed in to a boundary condition for a 

vorticity Ds [1 , 3] by using a two-parameter approximating formula; this permits 
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us to eliminate the approximation effect on the solutio n accuracy and to maximize 
the iterative solution process rate by employing the procedure described in [1 ). 

Over the far boundary 5 00 (being about 10 chords away from the body), the 
following boundary conditions are specified: 

(1.3) 8f2j8~ = 0, 

(1.4) [)1[! I a~ = Voo ( ~; sin a - ~~cos a) 
- ~: [Dx sin(17- a) + Dy cos(ry - a )] - r j27r , 

where Dx, Dy and r are parameters. 
The fl ow starts from the state when the body and fluid are at rest. 

2. Method of solution 

A solutio n of decoupled equatio ns of the system is used. Equation (1.1) is 
solved directly by expansion into a Fourier series in terms o f the cycl ic coordi
nate ry . 

Equation (1.2) is solved by the ADI method. Central differences for second 
derivatives and one-sided upwind differences for non linear te rms in (1.2) a re 
used. 

At each time step an iterative process is e mployed. A zonal approach used in 
[4] is applied. 

3. Flow past a circular cylinder 

1Wo problems are considered. 

3.1. 

Unifo rm flow around a circular cylinder in a viscous incompressible fluid th at 
is preliminarily spun can serve as an interesting example. An initially steady flow 
around a cylinder rotating at a constant angular velocity lV in a uniform viscous 
flow has been obtained by calculation for Re = Uoo R/ v = 200 (R denotes the 
radius of the cyl inder) and Rossby number Ro = W R/Uoo = 2. In this case the 
boundary conditions o n 500 include the circulation term, as in [5, 6, 7) . When the 
flow becomes steady, the cylinder is suddenly stopped. Tf we apply in this case the 
widely used argument that the velocity over S will change when cylinder-induced 
vortical disturbances carried by the flow reach this boundary, we co nclude that 
after a long time (comparable with the distance between S and .500 ) , the presence 
of the vortex term in the asymptotic on Soo will be reta ined. 

The equi-vorticity lines are shown in Fig. 1 for the solution to N - S equa
tions when the problem statement includes (i) no-slip boundary conditio n over 
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a) I = 16 

b) I= 18 

c) 1 = 20 

[FIG. I a, b, c] 

[397] 
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d) t = 22 

e) I = 24 

\) 

D 
f) t = 25 

[r1c. 1 d , e, f] 

F IG . 1. 

[398] 
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S for immovable cylinder, and (ii) uniform flow with circulation term over 5 00 • 

Reversed Karrnan street is observed: a vortex A, leaving the upper side of the 
cylinder, gets down and is then found under the vortex B which has departed 
from the lower side of the cylinder; and simultaneously, all vortex street is car
ried downwards due to the flow spinning e ffect (or upwards, if the flow has been 
spun in the opposite direction). The first vortices of Golubev street [8] are ob
tained. It follows that a thrust is generated. 

The computation domain size is limited to 20 radii of the cylinder. Therefore 
the vortex street development is computed over a time interval L1t = 15. In this 
case it is clear that changes over S= will occur earlier than the wake will reach 
it. It is obvious that, after the initial vortex street reversal, some time is necessary 
for the Karman street to be restored. 

To study this phenomeno n, the computation domain size should be expanded 
and the problem of proper boundary conditions for S= should be solved. In 
view of technical problems, a more powerful computer than MICROVAX-2 is 
desirable. 

3.2. 

Detached separation in flow around a circular cylinder which performs angular 
oscillations about its axis in a free stream has been studied previo usly in [4). The 
law of oscillations is as follows: 

W = ~A sin(w(/ - to)), 

Figure 2 a presents the equi-vorticity lines at Re = 35. The oscillation amplitude 
A = 45°, reduced frequency A. = R /U= T = 3 (T is an osci llatio n period); 
F ig. 2 b presents the streamlines. One can see a symmetrical separation region 
that is separated from the cylinder by the circular layer in which the flow is 
essentially unsteady. 

At Reynolds numbers as high as 200, the flow topology presented in Fig. 2 
is conserved [4) . Effects of scheme parameters were studied by diminishing the 
mesh steps in both space and time. 

A further study of the problem is concerned with the opportunity of flow 
stabiliza tion of the previously developed separated flow. The unsteady flow with 
a Karman street (Reyno lds number Re = 200) past a circular cylinder was taken 
as an initial state. Attempts to a ttain flow stabilization were made with the help 
of angular oscillat io ns of the cylinder about its axis with the reduced frequency 
k = 3 at rl = 45°. Survey of the equi-vorticity lines in Fig. 3 raises the questio n 
about an intermediate separation, when detached separation with asymmetrical 
flow pattern alternates with the attached (conventional) separation . The vortex 
is detached fro m the cylinder surface by a liquid layer and the inflowing liquid 
particles do not reach the cylinder [4). To compare, one can refer to Fig. 1 drawn 
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a) 

F IG. 2. 

[400] 
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b) I = 25 

c) t = 27 

F IG. 3. 
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t = 23 

b) 

t = 23 

c) 

1 = 26.025 
[F IG. 4a, b, cj 

[402] 
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d) 

t = 26.55 

e) 

I = 26.9 

f) 

I = 30.225 

F iG. 4. 

[403] 



http://rcin.org.pl

404 M. N. ZAKH ARENI<OV 

for a cylinder at the same Reynolds number, but without angular oscillations. No 
differences in generation and motion of vortices are seen. Differences in geometry 
of vortices and hence in their intensity are also not observed. 

However, changing the scheme parameters results in an unexpected new type 
of flow presented in Fig. 4. In this case the calculations are stable and, with 
parameters of the finite-difference scheme being fixed, the results converge pre
cisely to the revealed solution. Different solutions at different parameters of a 
finite-difference scheme means the lack of convergence in a strong mathematical 
sense. So some new aspects of the computational fluid dynamics theory must be 
developed. 

Small vortices generation presented in Fig. 4 reduces the intensity of primarily 
separated vortices, which move away from the cylinder, and even eliminates the 
generation of large vortices that are known as a vortex street of the Karman street 
type. A completely different topology is realized (Fig. 4). 

Note that the time interval from t = 23.0 to t = 30.225 when such changes 
have taken place, is quite sho rt and comparable with the specific period of vortex 
generation in the Karman street. 

At Re = 35 small vortices are not generated, with any finite-difference scheme 
parameters. A considerable growth of e rrors in the region of the reversal wake 
flow is observed at a time step greater than a certa in value. In such a way, at this 
Reynolds number the sol ution converges o nly to the unique flow pattern, which 
is identified as the detached separation, see Fig. 2. 

The examples presented have raised the problem of estimation of adequacy 
of a numerical so lution to physical reality. 

4. Numerical experiment for a f1ow past an airfoil 

Numerical experiment technique was designed for the problem of flow past 
an airfo il. Primary effect of specifying the circulatio n term for a velocity over 500 

on the solution was studied. Flow past the 12% Zhukovsky airfoil with a finite 
trailing edge angle at R e = 104 and angle of attack o = 5° was estimated. For 
the boundary condition (1.4) Dx = Dy = 0 was specifi ed. There exists the range 
of values r = (0 : - 0.21) where the condition of pressure uniqueness over the 
tra iling edge is satisfied [9, 10]. The pressure coefficient Cp = (p - JJco )J1gU'!x, is 
presented in Fig. 5, where a) I' = 0; b) r = - 0.21; c) F = - 0.40. The vortex 
within the domain limited by 8 00 is placed rather arbitrari ly. For example, when 
the centre of the vortex with intensity r = - 0.21 lies on the positive OX axis 
downstream the airfoil at X, = 0.5 or X1 = 2, we obtain the coefficien t Cp 
presented in Fig. 5 d or 5 e, respectively. Pressure coefficient Cp in both cases is 
the same and close to that occurring in the s;ase with X , = 0 (Fig. 5 b). 

When an asymptote of far field flow with two vortices is specified over S'00 , 

we conclude the following: if the second vortex is outside the do main bounded 
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by S00 , then it insignificantly afTects the integral characteristics and Cp (Fig. S f, 
X 7 = 12, r = - 0 .21 ). In this case the first vortex can be located inside the 
computational region (bounded by S00 ) a rbitrarily, retaining the integral char
acte ristics unchanged. Such a dependence of r on Soo and Cp emphasizes the 
connection of this asympto tics with the lifting capability o f the airfo il and makes 
it very suitable fo r modelling these phenomena. 

The dipo le term e ffect was studied. Fo r example, Fig. 6 presents the stream
lines and the equi-vorticity lines (Fig. 6 e) in the vicinity o f the 1/ 4 cho rd o f the 
12% Zhukovsky airfoil; Reynolds number Re = 104 , angle of attack a = 7.2S0

• 

Parame te rs in (1.4) are as fo llows: Dx = Dy = r = 0 (Fig. 6 a-t) and Dx = - 4, 
Dy = 4, r = - 0.20 (Fig. 6 g-1). D evelo pment of coherent vortex structures in the 
vicinity o f the tra iling edge was obta ined. This study is discussed in deta il in [2) . 

The next step o f the investigatio n is to study the flow with an increasing 
Reynolds number. Figure 7 presents the streamlines (7 a-7 f) and equi-vo rticity 
lines (7 g- 71) for the 12% Zhukovsky airfo il at a = S0

, Dx = Dy = 0 and 
r = - 0.21, when the Reyno lds numbers a re the fo llowing: a), g) Re = l.S x 104

; 

b), h) Re = 2 x 104
; c) i) Re = 2.5 x 104

; d), j ) Re = 3 x 104; e), k) Re = 3.5 x 104
; 

t), I) R e = 3.7S x 104• 

Considerable development o f separation over the leeward side o f the airfo il is 
observed. Reyno lds number of 37SOO is th e highest value at which the computatio n 
convergence in the framework of laminar flow is obtained (at a = S0

). In this 
experiment the computations are performed with successively increasing R e and 
the flow for previo us Re is the initial condition for computations of flow at a next 
Re. The fact that distributions C 11 over S (Fig. 8 a for Re = 1SOOO), obta ined by 
integrating (along the different paths but with the same method of integration) 
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f iG. 6. 

the equation of motion, do not coincide, indicates that the solution is not quite 
correct [11] . The study in [12] for a circular cylinder rotat ing in viscous flow 
shows that asymptotic condition for far field flow may be properly stated so as 
to eli minate the pressure nonuniqueness. This is one of the goals of our study of 
the viscous flow around a body with boundary cond itions (1.3) and (1.4), where 
the number of terms in the asymptotic expansion may be increased. 

The efTect of scheme factors and parameters of the mathematical model on 
the problem solution is studied. It has been fo und that, within the investigated 
angles-of-attack and Reyno lds numbers ranges, the flow turbulization canno t yet 
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red uce the separation region, presented in Fig. 7. The I3oldwin-Lomax model was 
used. 

The search of explanations of the causes of the presented topology of flow 
around an a irfo il results in construction of a flow model including a laminar 
wake [13]. In this case the theory suggests the solution in which the flow in 
the wake conserves (and convects) momentum losses of two types. The first o ne 
defines the drag act ing on an airfo il d ue to viscous friction. The second o ne 
corresponds to lift variat ion. Those losses must occur within the near-wall layer 
and then be convected by the wake. In the framework of this theory, construction 
of distributed sources and sinks is necessary. 

We will synthesize the above-mentio ned theory [1 3] with the Lighthill con
struction (14], where the near-wall layer momentum losses are simulated by dis
tributed sources and sinks with their extension into the wake. The latter combines 
the suggestion of (13] and the model of [14] . 
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However, practical application of the part of this theory which deals with 
specification of distributed wake singularities is a difficult problem. It has been 
found that application of this model doesn't resolve yet all the difficulties which 
we have in numerical solution for the flow presented in Fig. 7. Thus, generation of 
a developed separated flow is connected with construction of a general asymptotic 
behaviour of the solution for flow around an airfoil. 

A detailed study by including additional sources, dipoles and vortex terms in 
the asymptotic expansion for velocity over S= was conducted. It is obtained that 
at least one of possible representations includes the additional asymptotics of two 
vortices with opposite signs of circulation and their centres are located inside the 
airfoil. 

0) 

-
b ) 

-
FIG. 9. 

Figure 9 a, b present the topology for Re = l .S x 104, a = S0
, and Fig. 8 b, the 

pressure distribution when the mentioned singularities are added to the initial 
state shown in Fig. 7 a, g. As we see, the flow obtained is similar to that studied 
before at Re = 104 and a = s o and is in agreement with our knowledge of 
the full-scale experiment. Note that the separation region disappears, what is 
especially clear in comparison with flow in Fig. 7. The agreement between Cp 
and cg obtained by different ways of integration [11] indicates mathematical 
accuracy of the solution obtained. 
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After the same construction, the elimination of massive separatio n in the flow 
at Re = 3.5 x 104 is obtained too. It sho uld be no ted that the flow topology 
singularities that were presented in F ig. 7, are still o f interest to investigators 
because similar vortex structures are realized obviously at high angles o f attack. 

At last, Fig. 10 shows a distributio n of circulation 1 alo ng a coordinate line 
~ = const as a func tion of the coord inate x at which this line intersects the positive 
Ox axis; these data indicate that, in accordance with the model of [13], solu tions 
can be realized when value of 1 is bounded by r given at Soo from below, see 
Fig.lO a (o = 5°, Re = 1.5 x 104

, r = - 0.21, Dx = Dy = 0) and flows where 
bl < Fl (at the same Re, Dx, Dy, but the above mentioned two vortices with 
opposite signs of circulation are included in (1.4)). The latter means that in the 
airfoil wall regio n there occur mo mentum losses resu lting in a decrease of Cy in 
comparison with that Cy defined by r in the framework of potential flow theory 
for an ideal fl uid. 

a) b) 
I 2 ] 4 5 6 7 I 2 ] 4 5 6 7 X 

r~ 
I I I I I ' ' 

f--
I I I I I I 

.I 

FIG. 10. 

It can be noted briefly that inclusion of additional vortices into the asymptotic 
for 500 affects signifi cantly the aerodynamic mo ment that is induced by the po
tential part of the solution. T his follows from the Chaplygin - Blasius theorem for 
an ideal fl uid . The results obtained fo r an ideal fluid are no t related directly to 
viscous flows, but mechan ical meaning of inclusion of the mentio ned singula rities 
- to change the aerodynamic mo ment - is certainly the same. 

The examples presented have shown that the application of the techno logy 
of the numerical experiment allows us no t o nly to reveal disadvantages of the 
problem statement but also to eliminate the difficulties. The results concerning 
the flow past the circular cylinder present new problems that couldn' t be studied 
earlier in the framework of numerical experiments. 
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Wave propagation in anisotropic layered media 

M. ROMEO (GENOVA) 

TilE PROPAGATION of time-harmonic waves in a continuously stratified anisotropic, viscoclastic layer 
bounded by two homogeneous anisotropic solid half-spaces, is studied analytica lly. A plane wave 
is assumed to impinge on the boundary of the layer, and the resulting field, inside and outside 
of the layer, is described according to the causality principle and formal wave-splitting. Reflection 
and transmission coefficients a re derived for arbitrary angle of incidence, together with a formal 
expression of the wave field within the layer. A local reflectivity is defined as a function of the depth 
and used to obtain up and down-going modes in the layer. Reduction of the model to particular 
materia l symmetries allows fo r scalar fields whose properties generalize known results concerning 
the isotropic media. Numerical results are given to illustrate the method in the scalar case. 

1. Introduction 

W AYE PROPAGATION in stratified layers has been extensively investigated in con
nection with a wide range of constitutive and geometric models which are mainly 
motivated by geophysical applications. Beside the frequent approaches based on 
homogeneous waves in elastic isotropic materials (see for ex. [1 , 2]), inhomo
geneous waves have also been exploited in order to account for dissipative efTects 
[3, 4], and anisotropic materials have been considered in the multilayered case 
[5, 6]. However, in these last works each layer is assumed to be homogeneous, 
thus allowing fo r an efTective use of the propagator matrix. 

The aim of the present paper is to investigate wave propagation across a con
tinuously stratified (and hence inhomogeneous) viscoelastic solid layer with ar
bi trary materia l symmetry. A time-harmonic inhomogeneous plane wave, coming 
from a homogeneous anisotropic half-space, is assumed to impinge on the outset 
of the layer, giving rise to a reflected field. A transmitted wave field propagates 
along the edge of the layer within a second homogeneous anisotropic half-space. 
For arbitrary angle of incidence, three reflected modes and three transmitted 
modes are, in general, possible within the homogeneous half-spaces. Although 
forward and backward plane waves are allowed in the first solid half-space, the 
causality reasons imply that only forward waves propagate in the second solid 
half-space. Transmitted modes are then exploited to infer a formal wave-splitting 
within the layer, where the wave field is described by three independent compo
nents whose amplitudes and polarizations are functions of the depth. Continuity 
requirements imposed on the displacement and on the traction are used to obtain 
the reflection and the transmission matrices, and to get boundary conditions in 
order to integrate the difTerential equation for the displacement. A wave-splitting 
is then introduced for each wave component in the layer. To this end, a reflec
tivity matrix is defined which satisfi es su itable conditions at the boundaries. As a 
result, the wave field within the layer is given as the superposi tion of three pairs 
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of up and down-going modes. A notable simplification of the present model is 
achieved by considering special material symmetries. In Sec. 6 of this paper it 
is shown that some crystal systems such as orthorhombic, tetragonal, cubic and 
hexagonal systems allow for a decoupling of the governing differential equation, 
which splits into a scalar equation for horizontally polarized waves and a vector 
equation for vertically polarized waves. The first one is analyzed in detail to stress 
the comparison with the known results on isotropic layers [7] . In particular, the 
reflectivity is shown to satisfy a Riccati equation as occurs in scalar theories of 
wave propagation in isotropic layered media [8, 9]. The scalar problem for hor
izontally polarized waves is also solved numerically to explicitly obtain the split 
wave-field. 1\vo examples are considered of the dependence of the constitutive 
properties on the depth. 

2. Stratified anisotropic layers 

We are here concerned with an inhomogeneous anisotropic solid layer £ 
bounded by two plane parallel surfaces SI and S2. A Cartesian coordinate system 
is chosen in such a way that SI and S2 correspond to the planes z = 0 and z = d, 
where d is the thickness of the layer. Inhomogenei ty in [ is assumed to consist 
of a continuously stratified structure along the z direction. lWo homogeneous 
anisotropic solid media 8I and 8 2 occupy, respectively, the half-spaces z < 0 
and z > d. All the media 81> £ , 82 are supposed to behave as viscoelastic ma
terials where the Cauchy stress T has a linear dependence on the strain history 
and an arbitrary dependence on the space coordinates. More precisely, denoting 
by e = Sym ('Vu) the infinitesimal strain tensor, u being the displacement, we 
assume (cf. [1 0]) 

00 

(2.1) T(x, /) = G(z, O)e(x, t) + J Gs(z,s ) e(x, l- s)ds, 
0 

where G : R x R+ _...., Lin(Sym) is the relaxation function and Gs = DG j os. It 
is convenient, in elastic theories of anisotropic solids, to adopt a double-indices 
notation for the relaxation function (see [11 ]), introducing the indicia! corre
spondence (ij) --. a (i, j = 1, 2, 3; a = 1, .. . , 6) given by (11) --. 1, (22)- 2, 
(33) ---+ 3, (23) ---+ 4, (13) __. 5, (12) - 6. The corresponding six-dimensional re
laxation matrix F( z, s ) is assumed to be non-singular for any z E R and s E R +. 
In the following we shall assume that the displacement u has a time-harmon ic 
dependence 

u(x, t) = u(x) exp( - iwl), 

with w E R++. Hence, assuming e(x,- ) = 0, integratio n by parts reduces 
Eq. (2.1) to 

(2.2) T(x, w) = G(z ,w)e(x,w), 
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where T = Texp(iwt) and G(z, w) = - iw J0
00 G(:::, s) exp(iws) ds. Accounting for 

the model we are dealing with, the constitutive parameters take the form 

(2.3) 
{ 

r!}]Cw) for z < o, 
Faf3 = Faf3 (z,w) for z E [0, d], 

/ :
2f3)(w) f d ~ or z > , 

where Faf3 = -iw fo00 Faf3 exp(iws) ds. We also assume that Faf3 are continuous 
throughout z and sufficiently smooth in [0, d]. Additional restrictions hold if par
ticular material symmetries are allowed for the solid media. A classification of 
such symmetries can be achieved by the determination of the planes of reflec
tive symmetry (see [12]) and of the consequent non-vanishing elastic constants. 
For the future purposes we observe that most of the crystal systems (such as 
orthorhombic, tetragonal, cubic and hexagonal) can be characterized by the nine 
non-vanishing parameters 

(2.4) 
with a,{J = 1, 2, 3, 

with 1 =4, 5, 6. 

These, in turn, may reduce to a lower number of independent entries for particu
lar crystal classes (see for ex. [13]). 

3. The governing differential equa tion 

Accounting for layer's inhomogeneities along the ;:; -axis, we assume that the 
displacement u(x) has a plane-wave-like dependence on x and y, that is 

(3.1) u(x, y, z) = u(.:) exp[i(kxx + kyy)] , 

where kx and ky are complex-valued wave-numbers and where u E C3. Avoid
ing inessential formal difficulties, we can choose the x-axis in such a way that 
the real part of kx vanishes. This can be accomplished by a suitable orthogonal 
transformation applied to the constitutive tensor G (see e.g. [5]). We also neglect 
the imaginary part of kx . This amounts to assume that the incident wave-number 
bivector lies on the (y, z) plane. Hence, putting ky = k, Eq. (3.1) takes the form 

(3.2) u(y, z ) = u(z) exp(iky) , 

which, according to the Snell 's law, holds at any point in B~. £, and B2• In view 
of the time-harmonic dependence, the equation of motion for u reads 
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where f! is the mass density. By exploiting Eqs. (2.2) and (3.2) and accounting fo r 
the description in terms of r , we arrive at 

(3.3) 

where C is a linear symmetric difTerential operato r whose entries are expressed 
by 

(3.4) 

C 11 = D:: (TssDz) + -i k( fs6 ,z + 2Ts68:;) - 1.:2166, 

C 12 = 8::U4sDz) + ik( r2s,z + 21468:;) - 1.:2126 , 

C 13 = Dz(T3s8z) + ik( f4s ,z + 2f368z)- 1.:2 r46, 

C22 = 8=(r448z) + ik(r24 ,z + 2F248:: )- k2F22, 

C23 = D: (f348z) + ik(r44,:: + 2fz38z) - e 124, 

c 33 = Oz(r330z) + ik(/':A,z + 2f348z) - k2f44 . 

Equatio n (3.3) is a second order homogeneous linear difTerential equation fo r u. 
More explicitly, it can be written as 

(3 .5) Lu" + (L' + 2ikM ,)u' + (ikM; - ,_zQ + gw2I)u = 0, 

where prime deno tes d ifTerent iation with respect to z , and where 

C" 
r 4s ,,, ) 

C'' 
r 46 r,) 

L= r 4s r44 r34 , M , = r46 124 r23 , 
r 3s F34 /) 3 /36 123 / 34 

C'' 
Fzs r., ) c~ 

r26 r~) 
M2 = r 2s r 24 144 , Q = 126 r 22 r24 . 

r 4s 144 r34 r46 f24 r44 

Since r is no n-singular, the operator L( z ) is invertible for any z E R, hence 
Eq. (3.5) may be rewritten in the fo llowing form 

(3.6) u" + Au' + Bu = 0, 

where 

(3 .7) 

Before developing a procedure to obtain a representation of the d isplacement 
within the layer £ , we look for solutions of Eq. (3.6) in the homogeneous regions. 
In B1 and B2 the tensor r is taken to he independent of z , whence 

A(1•2> = 2ik(0 1
•2>)- 1 M~1 •2 > , 

n ( t ,2) = (UI ,2)) - l[ew2I _ k2Q (l,2)), 
(3.8) 
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with obvious meaning of the superscripts 1, 2. In view of a formal splitting of 
the wave field into elementary modes, we first look for non-dissipative, normal 
incident waves, such that k = 0. Owing to (3.8) we have A(1·2> = 0, and the 
solutions of Eq. (3.6) take the form 

3 

(3 .9) u = 2:)uh+ exp(i(hz) + ""- exp( - i(h z)] , 
h= 1 

where (h ( h = 1, 2, 3) are those solutions of the bi-cubic secular equation 

(3 .10) det[ew2L - 1 - ( 21) = 0, 

which have positive real parts. From Eq. (3.9) the displacement of normal incident 
waves in homogeneous regions consists of three pairs of up and down-going 
modes. For an arbitrary incidence and possible dissipation (k f. 0), Eqs. (3.9) and 
(3.10) must be replaced by 

6 

(3 .11) u = L llh exp(i( hz), 
h= 1 

(3 .12) 

The left-hand side of Eq. (3.12) is a sixth-degree polynomial with constant, com
plex-valued coefficients, parametrized by k. Its zeroes (h (h = 1, ... , 6) appear 
in the representation (3.11). If the solutions ±(h , (h = 1, 2, 3) of Eq. (3.10) are 
distinct, there will be a neighbourhood Ck of k = 0 in the complex k-plane where 
each solution of Eq. (3.12) has a one-to-one correspondence with each value ± (h 
and keeps its own sign. Then , assuming k E Ck. solutions of Eq. (3.12) may be 
represented by the set 

and Eq. (3.1 1) becomes 

3 

(3.13) u = L["h+ exp(i(h+ z) + ""- exp(i(h_z)], 
h=l 

thus yelding three couples of "up" and "down-going" modes. In the following we 
shall assume that the eigenvalue problem (3.12) and the corresponding eigenvec
tor problem have been solved in B1 and in B2 so that the constant amplitudes 
llh± are known. In view of further developments, we represent these vectors in 
the form 

(3.14) 
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4. Formal wave-splitting and the field within the layer 

A plane harmonic wave, coming from the homogeneous region BI> is supposed 
to impinge on the boundary S 1 of the inho mogeneous layer (z = 0). Owing to 
the superposition principle, we can restrict our attention to one of the possible 
up-going modes, labelled by l +, (/ = 1, 2, 3) and study the reflected and trans
mitted modes at the respective surfaces S1 and S2• Each impinging mode allows 
for a superposition of all the possible down-going re flected modes in B1, and all 
the possible up-going transmitted modes in B2, according to (3.13). The causa l-

ity principle implies that no down-going modes arise in B2, that is u~22 = 0 for 
h = 1, 2 , 3. Hence the wave fields in B1 and B2 can be expressed, respectively, as 

{4.1) u(l) = (p~~) exp(i( f:> z) + t Vu, ( p~12 ) exp(id~ z) 
(1) h =l (1 ) 
~+ ~-

for z < 0, 

(4.2) u(2> = t w,h (P~l ) exp( i(~~ z) 
h = l (2) 

qh+ 

fo r z > d, 

for any impinging wave (I = 1, 2, 3). Equations ( 4.1) and ( 4.2) can also be viewed 
as a de finition of the complex-valued reflection and transmission coefficients Vih 
and W11,. Compatibly with the causality principle, each component mode of the 
transmitted field ( 4.2) may be thought of as bei ng o riginated by a corresponding 
field within the layer. Specifically, we decompose the fi eld in £ as 

(4.3) 

and impose continuity requirements on S2, pertinent to each component sepa
rately. To this end we observe that, in view of (2.2), the traction t = Te3 ( e3 being 
the unit vector along the z-direction) is given by 

(4.4) t = ikPu + Lu' , 

where 

and hence 

(4.5) u' = L - 1(t - ikPu). 
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According to the regularity conditions on r at the boundaries, the continuity of 
the displacement and of the traction across S 1 and S2 implies continuity o f the 
derivative of u at layer's boundaries. As a consequence, from (4.2) and (4.3) we 
have, at z = d, 

(4.6) 

(4.7) 

Uj (d) = Wl j ( pt~ ) exp(i(j~d) 
(2) 

qj + 

uj(d) = i(J~Wlj ( pt~ ) exp(i(J~d) 
(2) 

qj + 

(j = 1, 2,3), 

(j = 1, 2, 3), 

for any l = 1, 2, 3. Now we introduce a triad of second-rank matrices Nfj] (j = 
1, 2, 3) such that 

(4.8) u'- = iN[j]u · 
J J (j = 1, 2, 3). 

Substituting this into the governing differential equation (3.6) we obtain the fo l
lowing fi rst-order Riccati-type differential equations for the matrices Nlil 

(4.9) 

Boundary conditions, in order to integrate (4.9), may be obtained from (4.6)- (4.8) 
as 

(4.10) (j = ] , 2, 3). 

According to (3.14) we assume 

( 4.1]) (j = 1, 2, 3), 

where aj(z) are scalar, complex-valued amplitudes and Pj(z), qj (z ) characterize 
the polarization o f the fi eld. Substitution of ( 4.11) into ( 4.8) yields a first-order 
differential equation for a two-dimensional po larization vector, and the expression 
o f the scalar amplitudes in terms of the entries of the matrices N[j l_ Explicitly 

( 4.12) 
(

NUl - NUl 
+ . 22 11 

t [j ] 
N32 
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(4.13) ( -)- (0) [ · j" ( fi l N [j] !i l ) I l a j - - a j exp 1 o i\ 11 + - 12 pi + .1\ 13 q j r. r , 

with j = 1, 2, 3. Equation ( 4.12) has the form of a Riccati equation. Boundary 
conditions are obtained from ( 4.6) and ( 4.11) as 

(4.14) (Pj(d)) = (7J;~ ) . 
ru (d) q]~ 

Consequently, integration of equations ( 4.9) and ( 4.12), together with Eq. ( 4.13) 
allows us to obtain the field in the layer. In order to complete the picture, we 
have to determine the constants of integration a j (O) in Eq. (4.13). This can be 
performed by imposing the continuity of u and t at the surface S 1 (z = 0). As 
a result, we also obtain the reflection and transmtssion matrices V1h and W1h, 

(h , l = 1, 2, 3). Just like the previous conditions at S2, we require the continuity 
ofu and u' at S1. According to (4.11), we obtain, for any impinging mode l , 

3 3 

1 + L \lij = I:: aJCO) , 
j = l j= 1 

3 3 

( 4.15) P~~ + L P}~Vij = L Pj (O)a j (O), 
j =1 j =1 

3 3 

qf~ + L q;~v,i = 2::.:: q1 (0)aJ (O); 
J= 1 J= 1 

3 3 

(l~ + L (J~Vii = L n\i1(0)aj (O), 
j= 1 j= 1 

3 3 

(4.16) cf!>P~~ + L (J~P}~llij = L .O~jJ(O)aj (O) , 
j = 1 j= l 

3 3 

c,(!>qf!> + 2::.:: c]~qJ~'"j = 2::.:: .aY1co)aj (o), 
j =l j =l 

where Eq. (4.12) has been used in working out the last two of Eqs. (4.16), and 
where 

(4.17) 

for any j = 1, 2, 3. From Eq. (4.15) we have, for any/, 

3 

(k = 1, 2, 3), 

( 4.18) a j (O) = v/{(0) + L Vihvjh (O) (j = 1, 2, 3), 
h=l 
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with 

3 

r = L r/j(Jlj+ l - Jlj+2), 
j= l 

419 

(j , rn = 1, 2,3), 

and where a cyclic permutation of the indices j is understood. Substitution of 
Eq. ( 4.18) into ( 4.16) yields, after some manipulations, the reflection matrix as 

(4.19) V= - H:;: 1 H_, 

where H+ and H_ are matrices whose entries are given by 

(4.20) 

3 

(II±)Ih = d~ - L v_j';, (O)f2 \j1(0), 
j= l 

3 

(II±hh = d~]J~,~ - L vjh (O)f2~ 1 (0) , 
j= l 

3 

(Tf±h h = d~rth~ - L v_j';,(O)n;n(O), 
j= l 

with h = 1, 2, 3. The transmission coefficie nts may be obtained from the reflection 
matrix V by simply observing that Eq. (4.13) can be also written as 

H ence we obtain 

(4.21) 

where 

(j , /,; = 1, 2, 3). 
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5. Local reflectivity and couples of opposite modes 

The aim of the present section is to give a representation of the displacement 
within the layer£, as a set of pairs of up-going and down-going modes. Accounting 
for the formal splitting ( 4.3), we write 

(5.1) (j = 1, 2, 3) , 

where the dependence on z of the amplitudes and polarizations is understood. 
Let us introduce the local reflectivity matrix R(z) as 

(5.2) 

From Eqs. (5.1) and (5.2) we can express the amplitudes erJ= in terms of the 
amplitudes erj, which have been derived in the previous section. We get 

(5.3) 

(5.4) 

(eri ,ert,ert) =(I+ R)- 1(er , , er2,er3), 

(er[, er2,er3) = R(I + R)- 1(er, ,er2, a3). 

In order to match the wave-splitting given by (5.1) and (5.2) with the solutio1s of 
Eq. (3.6) in 6 1 and 6 2, according to the analysis of the previous section, we nust 
impose the following conditio ns at the boundaries 

(5.5) 

(5.6) 

(er[ , er2, a3 )1z=O = V (at' , eri, ert)l z=O, 

(er[ , er2 , er3 )1 z=d = 0. 

In view of Eqs. (5.2) and (5.4), this implies that the matrix function R(z) nust 
satisfy the conditions 

(5.7) 

(5.8) 

R(O) =V, 

R(rl) = 0. 

Let us consider the matrix function 

(5.9) R(z) = - H:;1(z) H_ (z), 

where H±(z) are given by (4.20) being tJJh and n[il evaluated at the depth z in 
th~ layer. It is a simple matter to show that (5.9) satisfies conditions (5 .7) and 
(5.8). ln fact, Eq. (5.7) is the obvious consequence of ( 4.19) and (5.8) fo llows from 
the fact that H_(d) = 0, in view of (4.20), (4.17) and (4.10). Hence Eqs. !5.3), 
(5.4) and (5.9) yield the appropriate representation of the spl it field within the 
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layer. However, this descriptio n is not the only o ne, since other representations 
are possible fo r different ma trix functions which satisfy Eqs. (5.7) and (5.8). As 
to the polarizations pj(z ), qj(z ), we can apply the previous analysis in view of 
the formulae 

+ + + - -
o: j Pj o:j Pj = O:jPj, 

with j = 1, 2, 3. 

6. Horizontally polarized waves for particular symmetries 

According to Eq. (2.6), orthorhombic, tetragonal, cubic and hexagonal systems 
are characterizerd by the fo llowing restrictions 

rl4 = r1s = r16 = r24 = r2s = r26 = o, 
(6.1) 

T34 = F3s = r 36 = r4s = r46 = Fs6 = o. 
For waves incident on the plane (y, z ), Eq. (3.5) splits into 

(6.2) 

(6 .3) o ) ( tt2 ) " [ ( r~4 o ) . ( o r23 ) ] ( ·u2 ) ' 
T33 1L3 + o F:!J + 21

.k r23 o 1t3 

[. ( o r~4 ) 2 ( r22 o ) 2 ( 1 o)] ( u2) + tk - k + f!W = 0 
r~4 o o r44 o 1 u3 · 

Equation (6.2) is the governing equation for waves polarized along the x-direction, 
i.e. horizontally polarized waves, and Eq. (6.3) accounts for waves whose ampli
tude lies on the vertical propagation plane, i.e. vertically polarized waves. The 
analysis of Sec. 4 may be applied separately to Eq. (6.2) and Eq. (6.3). Here we 
remark some peculiar features of ho rizo ntally polarized waves. Let us note that, 
according to (6.1) 

t 1 = F55u~ , 

hence continuity of l 1 at the boundaries of the layer is equivalent to continuity 
of u~. The continuity requirements reduce to 

UJ (O) = 1 + ll , 

u~(O) = i ((~1 ) + (~1 )V) , 

u 1(d) = W exp(i(~)d) , 
(6.4) 

u'1 (d) = i(~2>w exp( i(~> d). 
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Introducing the complex-valued functio n a(z) such that 

(6.5) 

Eq. (6.2) yields 

(6.6) 

In addition, from (6.4) we get 

(6.7) 

If E q. (6.6) is solved togethe r with the boundary condition (6.7), the horizontal 
displacement 7t1 (z) may be given in the form 

(6.8) U I ( Z) = (I ) exp t J a ( T) rf T . 
(~I ) - (~I) [ · z l 
(_ - a(O) 

0 

As to the reflection coefficien t \f , Eqs. (6.4) yield 

(6.9) 
_ (~) - a(O) 

V - - ~:------'---"-
(~1 > - a(O) . 

The scatte ring problem has been reduced to the solution o f the first-order Riccati 
equatio n (6.6) for the function a (.:} 

Conside r now the splitting of horizontally po larized waves and introduce th e 
up and down-going modes ui (::: ), nj(z) and a local reflectivity R(z) such that 

(6.10) 

(6.11) R(O) = V, R(d) = 0. 

It is easy to show that the function 

(6.12) R(z) = _ ( +(z) - a(z) , 
( _ (z) - a(z) 

where the functio ns ( ± (z) are defin ed acco rding to 

(6.13) 
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satisfies restrictions (6.11 ). This fact is a direct consequence of Eqs. (6.9) and (6.7). 
We finally show that, in this case, the reflectivity R(z) satisfies a first-order Riccati 
differential equation. To this end we observe that, owing to (6.1 3), Eq. (6.6) can 
be rewritten as 

(6.14) 

Then, differentiating Eq. (6.12) and accounting for Eq. (6.14), we obtain 

(6.15) R'= (~ - [i{(+-(-) -(~ + (~ ]R+ C R2 . 
(+ - (_ (+ - (_ (+ - (-

Integration of Eq. (6.15) with the boundary condition (6.11)2 turns out to be 
an alternative approach in deriving the reflection coefficient. The result (6.15) 
is a generalization of recent results on isotropic layers [7]. More generally, a 
Riccati-type equation for the reflectivity is a common feature of scalar theories 
in layered media (see fo r ex. [9]). 

7. Numerical examples 

In order to varify the method previously outlined, we give a numerical solu
tion for the wave-field inside a solid layer with known constitutive properties. We 
restrict our computations to the scalar problem developed in Sec. 6; extension to 
the more general case may be performed without qualita tive changes. TWo differ
ent examples are considered for the dependence of the constitutive parameters 
on the depth within the layer. In each instance, the quantities r 55 , r66, ~ have the 
same dependence on z and, according to the present model, are C 1 throughout 
z. The first example accounts for a monotone increasing dependence o n z as 

(7.1) (~, Fss, r66) = (~o, r~5 , rg6)[1 + Q{l - cos(1r Z ))], Z E [0, 1], 

where flo, r~5 , r& are constant quantities pertaining to 61> 2Q is the ratio between 
the maximum and the minimum value of the constitutive parameters and where 
the dimension less variable Z = z / d has been introduced. In the second example 
a symmetric layer is considered, with 

(7.2) ZE [O, l], 

so that 6 1 and 62 are mechanically equivalent. 
Effective wave propagation within the layer requires a non-zero real part of 

(±. According to (6.13), this implies 

(7.3) V Z . 
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In view of (7.1) and (7.2), the inequality (7.3) amounts to the following restriction 
on wand k, 

(7.4) 2 0 2 0 ~2Q2 

{!W - r 66k > cr55 1 + 2Q ' 

with c = 1/ 4 or c = 1 depending on the alternative use of (7.1) or (7.2), respect
ively. 

QIS 

/ VI 

0 10 

005 

a 

0 02 Qt 06 08 kl k. 10 

FIG. 1. Reflection coefficient lVI = I R(O)I as a function of k I ko for a layer described by Eq. (7.1 ) 
(curve a) or by Eq. (7.2) (curve b). 

Equation (6.15) has been numerically integrated along with the boundary con
dition R(Z = 1) = 0, adopting Eqs. (7.1), (7.2) and accounting for (7.4). The 
reflection coefficient lVI = IR(O)I has been derived for all possible values of k 

[ 

2 ro 2 2 ]
1
; 2 

(0 ~ k < k0, with ko = f!. ~ - c ~ ~ Q Q ). The values of V have been 
r 66 r 66 1+2 

substituted into the boundary conditions (6.4)1 ,2 in order to integrate Eq. (6.2). 
Then, both solutions for u1 and R have been exploited to obtain the wave split
ting within the layer, according to (6.10). The results are shown in Figs. 1- 5 for 
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0 02 04 06 08 z 1.0 

P IG. 2. Real and imaginary parts of the 
forward wave component within the 

"monotone" layer (see Eq. (7.1 )). 

004 

-002 

- QOJ 

-004 

0 02 Q4 06 Q8 z 1.0 

f' IG . 3. Real and imaginary parts o f the 
backward wave component within the 

"monotone" layer (sec Eq. (7.1 )). 

a layer of zinc (oo = 7135 kg/m3, r~5 = 39· 109 Pa, r~ = 63·109 Pa) with Q = 0.1 
and w = 104 Hz. In particular, Fig. 1 shows I V I versus k for th e "monotone" 
layer described by Eq. (7.1 ) (curve a), and for the symmetric layer described by 
Eq. (7.2) (curve b). Figures 2 and 3 show the real and the imaginary parts tt± and 
tt~ of the opposite modes in the split wave-field for normal incidence (k = 0) in 
the "mo noto ne" layer (see E q. (7.1 )). Analogous results are shown in Figs. 4, 5 
for the symmetric layer (see Eq. (7.2)). From F igs. 3 and 5 is evident the phase 
shift between tt~ and tt~ wh ich shows the mixing effect of the reflectivity R on 
the real and imaginary parts of the fi eld inside the layer. We also observe that the 
reflection coefficient lVI for no rmal incidence in the symmetric layer is by o ne 
order of magnitude greater than that of the "mo notone" layer (Fig. 1 ) . This fact, 
which is also evident from the results o f the reflected amplitudes tt~,b (Figs. 3, 5), 
is due to the steeper profil e of the constitutive properties in the symmetric layer. 
We note, however, that this behaviour is reversed when incidences are considered 
which are close to the limiting value k0 . 
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0 02 04 06 OB Z 10 

FIG. 4. Real a.nd imaginary parts of the 
forward wave component within the symmetric 

layer (sec Eq. (7.2)). 
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The Wigner potential method in the investigation 
of thermal properties of regular composites 

S. MAY, S. TOKARZEWSKI and A. ZACHARA (WARSZAWA) 

FOR PERIODIC, two-dimensional potcntials satisfying the Laplacc equation, a new functional ba
sis, different from that used by RAYLEIGH [ 1), has been derived. This basis allowed us to con
struct a simple recurrence formulae for evaluation of an effective transport coefficients for regular 
two-dimensional composites. As an example, the power expansion of an overall conductivity for 
square array of circular cylinders has been evaluated. 

1. Governing equations 

THE TEMPERATURE distribution and the effective conductivity of composites of 
regular structure were first investigated by RAYLEIGH [1 ]. He performed calcu
lations for rectangular arrays of circular as well as spherical inclusions. The ap
proach of Rayleigh was next developed by many other authors [2-4]. In this paper, 
we present a method of solving the two-dimensional periodic problems by using 
a new functional basis different from that used by Rayleigh. This basis appears 
to be very convenient for seeking the solutions of Laplace equation and leads to 
very effective algorithms. 

Let us consider a material composed of circular cylinders of conductivity >..d, 
embedded in a matrix of conductivity >..c. The composite is subjected to an external 
linear temperature field. The elementary cell is presented in Fig. 1. Let a be the 
cylinder radius, l - the distance between the cylinder axes, yd and y e - the 
temperature of inclusions and matrix, respectively. The temperature field in a 
unit cell fulfills the conductivity equations 

(1.1) 

and the boundary conditions for T = a 

for T > a, 

for T < a, 

y e = yd 
) 

(1 .2) 

where T, () are polar coordinates with the o rigin located on the cylinder axis. 
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r 

I 
I 

'· 2a • I 

FIG. I. 

Rayleigh obtained the solution of Eqs. (1.1) in the form: 

~ ( k bk) T c(r , B) = ~ akr + rk COS kB , 
k =J 

(1.3) 
00 

T d(r, B) = L Ckrk cos kB . 
k=J 

The solution may be interpreted as generated hy an infinite system o f multi
po les located at the cylinder axes. We have here three infinite sets of coefficients 
a~<, b~<. q, (k = 1, 3 , .. . ) since, due to the symmetry conditions, only odd values of 
k are allowed [1 ]. With the aid of the bo undary conditions (1.2), the coefficients 
ak and Ck may be expressed as linear functions of b ~c . To determine b~<, Rayleigh 
made an assumption that the part of the potential in the unit cell correspond
ing to the term of Eq. (1.3)1 which is non-singular in the unit cell center r = 0 
resulted from two sources. The first of them is the external gradient of temper
ature. The second one is a jo int influence of the multipoles from th e other cells 
corresponding to the terms of Eq. (1 .3)1 which are singular in the centers of these 
cells [1 ]. This assumption leads to the following infinite system of eq uations for 
the coefficients bk. 

(1.4) 
•1 (u + 2) _ ~ (k + j - 1)! .. 

bk ,l + k. 2k bk- ~ c._ 1), sk+1&1 , 
ua . 

1 
J . 

] = 

k = 1, 3, 5 . .. ) 

where 

(1.5) 
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(1.6) 

Symbols Sm denote the Rayleigh sums, (xn, Yn) are Cartesian coordinates of 
the centers of the cells, i is an imaginary unit and { n} denotes summation to 
infinity in the directions of x and y over all cylinder centers lying outside the unit 
cell. The sums Sm depend on the geometrical properties of the array. Numerical 
values of Sm for square and hexagonal arrays are given in [2]. 

The approximate values of bk can be calculated from Eq. (1.4) subjected to 
truncation. The effective conductivity of a composite depends on the coefficient 
b1 according to the formula derived by RAYLElGH [1], 

(1.7) 

For a square array of cylinders, the temperature distribution Ti (1· , 0; c.p , u) and 
the effective conductivity Jt(c.p , u) depend on two dimensionless quantities: the 
cylinder volume fraction c.p and physical properties of the components represented 
by u (1.5). Coefficients ab bk and q appearing in (1.3) are functio ns of c.p and 1t. 

It is well known that the Rayleigh method provides the non-unique solutions 
for Acf, since the second R ayleigh's sum .5'2 over the infinite array of cylinders 
is only conditionally convergen t, i.e., it depends on the shape of the exterior 
boundary o f the composite. This was the reason why, for a long time, many 
authors were questioning the correctness of the Rayleigh approach [5]. In 1979 
M c PHEDRAN et al. [2] pointed out that an infinite, flat layer of a composite 
subjected to the external temperature gradient is the only correct sample shape 
for calcuiatiofl" of Acf by the Rayleigh method. 

An interesting approach has been proposed by ZuzovsKr, BRENNER [6] and 
SANGANI, ACRIVOS [7]. Their me thods avoid all the difficulties of the Rayleigh 
method mentio ned above. They decomposed the temperature field into two com
ponents. The first one is a macroscopic shape-dependent component yi,m, and 
the second o ne is periodic, depending on the geometry and physical properties 
of the composite y i,p, 

(1.8) y i = y i,m + y i,p 
' 

where i = c, d. In view of the periodicity of the temperature field and the square 
symmetry of the array, the normal derivative of the periodic component of tem
peratu re is equal to 0 on the cell boundary, 

(1.9) n ·V 'T'c,p = 0, 

where n is a unit vector normal to the boundary of the cell. Condition (1.9) may 
be considered as equivalent to the eq uations of Rayleigh (1.4). 
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It was shown in [6, 7] that the periodic component may be expressed by an 
infinite set of derivatives of a certain function To called the Wigner potential 
(8]. By using these derivatives ZUZOVSK.l , BRENNER (6] and SANGANI, ACRlVOS 
[7] investigated the effective conductivity of regular arrays of spheres. They no
ticed that successive derivatives of T0 formed a functional basis convenient for 
representation of solutions of three-dimensional Laplace equations. 

The main aim of this paper is to construct a new functional basis for periodic, 
two-dimensional potentials generated by the Laplace equation. As an example, we 
will derive a simple recurrence formula for evaluation of the effective conductivity, 
in the form of a power series in u, for a square array of circular cylinders. 

2. The functional basis 

The Rayleigh functional basis consists of multipoles located in the centers of 
single cells. These basic functions do no t fulfill the periodic boundary condition 
on the boundary of the cell. Our aim is to find a basis, the elements o f which 
fulfill identically the periodicity conditions. Such a basis can be built up with the 
a id of the Wigner po tential. In this sectio n we shall limit our investigatio n merely 
to the periodic term Ti ,p of the temperature field. For the sake of convenience, 
the upper index p in T i,p will be omitted, i.e. Ti ,p = T i . 

Let us consider a n infinite system of point heat sources of intensity q, located 
in the nodes of a square array of period /, accompanied by neutralizing fuzzy 
sources of uniform density r = - q / l of the opposite sign. In such a grid, the 
global in tensity of sources is equal to 0. The temperature field generated by such 
a system of sources fulfills the Poisson equatio n (2.1 ) 

(2.1) V 2T = - 27rq . (o(r) - 1~) , 
and the boundary condition (1.9), where o(r) is the Dirac function. The solution 
of equatio ns (2.1) and (1.9) was given by CICHOCKI and FELDERHOF [8] in the 
form: 

(2.2) To(r) = q ·(- In 1· + ~1rr2 + t Am1.m cos m B) . 
m= 4 

Coefficients Am were found in the process of summation over an infinite grid of 
cells, with the exception of the cell located in the center of the coordinate system. 
Coefficients Am are related to the R ayleigh sums Sm (1.6) as follows, 

The index m in (2.2) is a multiple of 4, because T0(r) is independent of rotation 
of the frame of reference by the a ngle 1r / 2. The first term in the parentheses 
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of (2.2) represents the influence of a single source located in the center of the 
cell, the second one is generated by the fuzzy sources, while the third te rm given 
by the infinite sum is due to the sources located in the external cells. Function 
(2.2), called the Wigner potential [8], can be used as a starting point for the 
construction of the functional basis for periodic two-dimensional po tentials. 

A multipole o f order k includes 2k point sources, and it is defined by the scalar 
intensity qk and k unit vecto rs n3 , s = 1, 2, ... , k, representing the directional 
properties of the multipole (see for example [9]). The multipole potential is 
proportional to the k-th directional derivative of the point source potential in 
directions n 1, n2, . . . , n k. respectively. 

(2.3) k = 1, 2, . . .. 

For a classical multipole, To(r) is the potential of a point source in an infinite 
region: in the 2-dimensional case 

(2.4) To(r) = - In r . 

Instead of a single multipole, one may consider an infinite system of identical 
mult ipoles of order k located in the nodes of a square array. To determine the 
potential of such a grid, one should apply the operator of the right-hand side of 
(2.3) to the function T0(r) defined by (2.2). Positive and negative fuzzy sources 
balance each other and they have no influence on the global potential. 

In the operator ns • \1 of directional derivative, one may distinguish two com
ponents of different types o f symmetry, 

(2.5) 

where 

[) sin B [) 
U = cos B- - -- -

8r 1' 88 ' 
. 8 cos B [) 

V = Sin B- + -- - . 
8r r [)() 

Action of the opera tor U on the symmetric o r antisymmetric functions produces 
the results of the same type of symmetry: symmetric o r antisymmetric, respect
ively. On the other hand, operator V changes the type o f symmetry to the opposite 
one. Let us introduce the notatio ns: 

(2.6) c s )k ) cos /,;() 
Tk ' = (- 1 (k - ] ! - -k- + 7r ( OJk TCOS 8 + c52k) 

T 

~ (m + k)! m + ~ I T Ak+m cos mB , 
1 

m. 
m = 
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(2.7) r,ca ( l)k(k l) 'sin kB • . B 1~;' = - . - . --,.- + 7rV]);1'Sin 
1'" 

~ (m + k)! m . + 0 1 
r Ak+m Sin m B. 

m =l rn . 

The differential operators U and V acting on functions 1t'5 (r) and T~'a (r) have 
the fo llowing properties: 

(2.8) 
UT c,s = T c,s 

k k+ l ' 

VTc, s = T c,a 
k k+l' 

UT c,a = T c,a 
k k+ l ' 

VTc,a = T c,s 1 
k k+ l . 

A pplying the operato r (ns · \7), s = 1, .. . , k, to the function To(r) k-times, one 
obtains a sum of the following te rms: 

j = 0, 1, .. . , k; 

hence 

(2.9) 

where Ck and Dk are certain known numerical co efficients. 
The fu nctio ns T~·s and T~·a defined by (2.6) and (2.7) constitute a basis for 

the solutio n in the elementary cell o utside the cylinder. Accord ing to (2.9), the 
potentia l of the grid of k-th o rder multipoles is a linear combin ation of symmetric 
and antisymmetric functions o f k -th o rder. 

The functio ns T~·s and T~·a have singu larities on the axis o f the cylinder, and 
they can no t be used fo r representing the solution inside the cylinder. In this 
regio n, we assume the basis (2.10), (2.11) without singularity 

(2.10) 

(2.11) 

k 

T~l,s = (- ll(k - 1)! r2k coskB + 7r (OJk1'CosB + 82k) 
a 

~ (m + k) ! m B + ~ 1 1' Ak+m COS m , 
m = l rn. 

k 

Tt·a = (- l)k(k - 1)! r
2
k sin kB + 7rOJkTSinB 

a 

~ (m + k)! m . B + ~ 
1 

1' Ak+m Sin m . 
m =l m . 

It is easily seen that for 1· = a, the correspond ing functions in bo th the bases a re 
equal, 

(2.12) 
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Representing the solution in the bases (2.6)-(2.7) and (2.1 0)-(2.11 ), we fulfill 
identically the condition (1 .9) of periodicity on the cell wall, and continuity of 
temperature on the cylinder surface. The condition of equality of normal compo
nents of a heat flux on the cylinder boundary determine uniquely the coefficients 
of expansion of >-et in our basis. 

Let us introduce the symbols for the basic functions in both components of 
the composite: 

(2.13) 
{ 

T. d,s r s - k 
k - T c,s 

k 
{ 

T d,a 
ra- k 

k - y c,a 
k 

r :S a, 

r ~ a . 

Derivatives of the functions 11 and Tf are discontinuous for r = a. Both functions 
(2.13) fulfill the Poisson equations (2.14)-(2.15) given by 

(2.14) 

(2.15) 

\12Tt. = - o(r- a)coskB, 

\12Tf: = - o(r- a) sin kB. 

The relations (2.14)-(2.15) enable another interpretation of the basic functions, 
as a potential generated by the sources located at the cylinder boundary. The 
cosine and sine heat sources generate the symmetric functions (2.6) and (2.1 0), 
and the antysymmetric functions (2.7) and (2.11 ), respectively. In this interpreta
tion, the intrinsic ties between the singular functions for the region outside the 
cylinders and non-singular functions inside the cylinders, are easily seen. For the 
case of circular cylinders arranged in a square array, the solution of (1.1 )-(1.3) 
is a symmetric function. Hence we shall not consider in the sequel the basic 
functions Tf: . 

3. Recurrence algorithm 

Using the functional basis given by the symmetric functions (2.6) and (2.10), 
we shall express the temperature fi eld of the matrix (i = c) and inclusions (i = d), 
determined by Eqs. (1 .1 ), (1 .2) and (1 .9), in the form of a power series expansion 
m tt, 

00 

(3.1) T i(r,B; c.p, u) = T(O) + L T(i,m)(r, B; c.p)um. 
m = ! 

Here, according to the previous definition (1.8), the function T i in (3.1) is the 
sum of both the macroscopic r<0) and periodic (the sum for m ~ 1) parts of 
the temperature field. In this respect, the notations of Eqs. (3.1) and (1.8) are 
difTerent. Following BERGMAN [1 0], we rewrite Eqs. (1.1) in a form valid for both 
the matrix and the inclusion in a unit cell, 

(3 .2) \1 · (1 + uBd)\lT' = 0, 
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where (}d is the characteristic function of inclusions. By inserting the series (3.1) 
into Eq. (3.2) and collecting terms with the same power o f u, we obtain the general 
recurence formula for the coefficients r (i ,m): 

V 2r(O) = 0 , 
(3.3) 

m = 1, 2, .. . . 

The composite is subjected to an external temperature gradient equal to unity. 
Hence the solution of (3.3)1 is given by r(0) = r cos B. 

Now let us turn our attention to the periodic part of the solution determined 
by Eq. (3.3)2. Taking into account properties of the scalar product and of the 
characteristic function Bd, we rearrange its right-hand side and Eq. (3.3)2 takes 
the form [11] 

OTd,m- 1) 
(3.4) V 2r(i,m) = 8(1·- a) , 

OT 

where the functions r(d,m-1) (m = 1, 2, ... ) are defined inside the cylinder, and 
a denotes the radius of the cylinder. Note that the functions r(i,m) determined 
by (3 .3)2 are periodic and can be represented by the series 

00 

(3.5) (i,m) _ ~ ,(m )Ti 
T - L ck k> for m= 1, 2, . .. , 

k = 1 

where Tt are the basic functions given by (2.6) and (2.10), while c~m) are real 
coefficients. 

Now let us present the basic func tions in a renormalized form which wi ll be 
more convenient for further considerations. Superscript s will be here disregarded 
since only symmetric basic functions are the subject of our interest, 

(3.6) TJ = ~~11 [cj -1)! cos/(} + f Pj kTk cos k(}l , 
] • T k = 1 

(3.7) Tf = ~+1
1 [(j -1)! r:i cos jB + f Pjk 1. k cos k(}l , 

J . a k= 1 

where 

(j+k)! ( 1 ) 
(3 .8) Pi k = - k! A j +k + 27rc5j + k,2 . 

Inserting (3.5) into (3.4) and making use of (2.14), we obtain the recursion for

mula for the coefficients c~m) 

00 00 f) 
L C~m+l)cosk(} = - 2: c;m)_ Tf. 
k= 1 j =1 or 

(3.9) 
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Next, introducing T f given by (3.7) into (3.9) and collecting the terms with cos kO, 
we finally arrive at: 

(3.10) k = 1, 2, . . . , 

where the term Pi k is given by (3.8). 
The input data for algorithm (3.7) are 

(3 .11) k = 1, 2, ... , 

since the gradient of external temperature field is equal to unity. The recurrence 

formula (3.10) allows us to compute the coefficients c~m) (m = 1, 2, . . . ) in (3.5), 
and hence to determine by means of (3.1) the temperature field Ti inside the 
unit cell. 

It is worth to note that the solution of Eqs. (1.1) presented by (3.1) with 
(3.5)-(3.8) and (3 .10) satisfies the boundary conditions (1.2), in spite of the fact 
that they were not introduced here explicitly. In fact, the boundary condition 
(1.2) 1 is ful fi lled owing to the form of the basic functions assumed, what can be 
seen from Eqs. (2.12). The condition (1.2)2 can be rewritten, with the aid of (1.5), 
to the fo llowing form: 

(3.12) &Tc I &Td I &Td I 
Or r=a+O - Or r=a - 0 = U Br r=a - 0 . 

Inserting (3.1), (3.5), (3.6) and (3.7) to (3.12) and collecting terms with equal 

powers of u we get fi rst ci'> = 1 (see (3.11)), and then the recurrence expression 

(3.10) fo r the successive coefficients c~m +t). Thus we can see that the procedure 
presented here satisfi es both boundary conditions (1.2). 

4. Calculation of effective conductivity 

Now we shall use the recurrence algorithm to calculate the effective conduc
tivity of the composite. To this end let us consider the temperature field in the 
matrix which can be expressed by Eq. (3.1) with the aid of (3 .5) and the basic 
functions (3.6). This expression may be transformed to the Rayleigh form (1.3)1 
which allows us to calculate the coefficient b1 of the term cos()/ r of the power 
series of u. Inserting b1 into (1.7) we obtain the formula for effective conductivity 
of the composite 

(X) 

(4.1) {t(u) = 1 + L Cntt'\ 
n = ! 
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where 

(4.2) C = ' '"'C( n ) n Y I . 

The coefficients c~n) can be obtained from the recurrence formula (3.10) which 
for k = 1 takes the fo llowing form 

(4.3) (m+ l) = _ (m)~(l _ ) + 2 ~ (m) A ( / )4n 
c l c l 2 . <p L.... c4n- l n 4n <p 1f ' 

n =l 

while coefficients et~ 1 are calculated directly from (3.10). 
We start our calculations with (3.11), and then from Eq. (4.3) we obtain the 

successive coefficients. The fi rst four of them are listed below: 

(4.4) c~ 1 ) = 1, 

(4.5) c~2) = - ~(1 - <p), 

(4.6) c~3 ) = -c~2) ~(1 - cp) + 4 f (4n - 1)(nA4n)2(cp/7r)4" , 
n=l 

(4.7) c~4) = - HJ)~(l -cp) + 2(2- cp) ~(4n- l )(n!l4n)2(cp/7r)4n]. 

The process could be continued, however the expressions fo r coeffic ients o f 
higher order are more complex and they will not be presented he re. The co
efficients of higher order were calculated numerically from the formula ( 4.3). 
The fi rst nonvanishing Wigner coefficients Am which appear in E qs. (4.3) and 
(4.6)-(4.7) are given below: 

A4 = 0.7878030005 , 

A 1z = 0.3282374177, 

A8 = 0.531971 6294, 

A t6 = 0.2509809396. 

The values of coefficients C11 (cp) were obtained from th e fo rmula (4.2). Several 
low order coefficients (up to C6) are gathered in Table 1. 

Now we compare Eq. ( 4.1) with the Maxwell - Garnett formul a (see (11 , 1 2]) 
which is the first approximation of the effective conductivity coefficient. The 
Maxwell - Garnett fo rmula may be presented as a function o f u and <p in the 
following form: 

(4.8) 
cpu J1 = 1 + __ ,.:-_,......,...,.. 

1 + tt(1 - cp)/ 2 



http://rcin.org.pl

THE WIGNER POTENTIAL METHOD IN THE fNVESTIGATION OF' T H ERMAL PROPERTIES . . . 439 

Table 1. Coefficients of the power series expansion of effective conductivity 11. for a square 
array of cylinders. 

'P C t c2 c3 c4 Cs Cn 

0.10 0.10 - 0.04500 0.020250 -0.009113 0.004101 -0.001846 

0.20 0.20 - 0.08000 0.032024 - 0.012830 0.005148 - 0.002068 

0.30 0.30 -0.10500 0.036936 -0.013086 0.004682 - 0.001698 

0.40 0.40 -0.12000 0.036784 -0.011662 0.003884 - 0.001381 

0.50 0.50 -0.12500 0.033646 - 0.010208 0.003615 - 0.001488 

0.60 0.60 -0.12000 0.029979 -0.010181 0.004465 - 0.002255 

0.70 0.70 -0.10500 0.028735 -0.012751 0.006975 - 0.004169 

0.75 0.75 - 0.09375 0.030114 - 0.015261 0.009200 -0.006077 

If we expand (3.20) into a power series of u, we obtain 

[ 
1 2 1 23 1 34 ] (4.9) J.l = 1 + cp u- 2(1 - cp)u + 4(1 - cp) u - S(l - cp) u + .... 

Although this expression ( 4.9) is only a rough approximation of Jt , certain re
semblance to the formula ( 4.1) and ( 4.2)-( 4.7) can easily be seen. In fact, the 
coefficients at the first and the second power of u which appear in ( 4.9), and 
those calculated from (4.4) and (4.5), are identical. The other coefficients of (4.9) 
are identical merely with the leading terms o f the expressions ( 4.6) and ( 4. 7). 

5. Continued fraction expansion 

The power series expression ( 4.1) is not an effective form for representing J.l 
because of the small convergence radius and very slow rate of convergence. It 
is much better to express ;t(cp, 1t) in the form of a continued fraction (see [11, 
12]). Comparison of the two forms ( 4.8) and ( 4.9) illustrates how convenient and 
effective may be the rational representation, as compared with infinite series. 

If we substitute s = 1/u into Eq. (4.1), we can present the series in the form 
of a J -fraction [13] 

kl k2 k3 k4 
J.L(cp s) = 1 + -- -- -- --

, 11 + s - [2 + s - 13 + s - [4 + s -
(5.1) 

where coefficients kn( cp) and In( cp) can be determined using the coefficients Cn 
(Table 1), on the basis of another recurrence algorithm given in the Appendix. 

The coefficients of the first level of the J -fraction calculated in the Appendix 
(A.4) are 

(5.2) 11 = (1 - cp)/ 2 . 
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Inserting (5.2) into (5.1) and assuming the other coefficients to be equal to 
zero, we get 

(5.3) 
~ ~u 

~=1+ =1+ . 
(1- ~)/2 + 1/u u(1 - ~)/2 + 1 

We can see that Eq.(5.3) is identical with the Maxwell - Garnett formula ( 4.8), 
the accuracy of which is limited to small values of u and ~· However, it is an 
advantageous feature of the continuous fraction expansion that successive ap
proximants of the fraction rapidly increase its accuracy. The results presented in 
[11] indicate that for u ---+ oo and ~ = 0. 7, which is a rather high value, only 
three or four levels of the fraction are sufficient to preserve a good accuracy. 
Nevertheless in the asymptotic case, if ~ ---+ ~max = 1r / 4, the method presented 
here fails and an analysis of a different kind is needed [14] . 

In the present paper the algorithm has been applied to a composite which 
consists of a square array of cylinders embedded in a matrix. The algorithm was 
also applied to the composites of hexagonal geometry [15) . 

6. Conclusion 

A new functional basis derived in this paper allowed us to obtain a simple 
recurrence algorithm for calculating the effective transport coefficient of regular 
two-dimensional composites (3.10), (3.11). The algorithm is simply recursive and 
does not involve the solution of a large number of coupled equatio ns. The results 
are used as input data to express the effective transport coefficient in the form 
of a rapidly convergent continuous fractio n expansion. 

Appendix 

The algorithm presented below enables a recurrence calculation of the J -frac
tion coefficients kn and l n , on the basis of the given coefficients Cn of the power 
series ( 4.1 ). The coefficients are calculated from the following formulae [13]: 

(A.1) 

where 

(A.2) 

(A.3) 

n 

CTn = C2n+l + L bnjC2n+ l-j , 

j= l 

T n = -
1 

[c 2n+2 + t bnjC2n+ 2-jl· 
CTn j= l 
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We start with n = 0. The required initial values of parameters are 

' - 1 = 0. 

Hence we have from (A.1 )-(A.3) 

(A.4) 

The successive values of kn, ln are then calculated from (A.1). Several auxiliary 
parameters bnj in (A.2) and (A.3) have the following values: 

bn-1,-1 = 0, bn,n+ 1 = 0, bn+ 1,0 = 1' bo,o = 1' 

the other ones must be determined from the relation 

(A.5) 
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