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Thermodynamic potentials and extremum principles
for a Boltzmann gas

Z. BANACH and S.PIEKARSKI (WARSZAWA)

IN THIS PAPER, a thermodynamic interpretation of the kinetic theory and Boltzmann's equation is
explicitly obtained; the nonequilibrium thermodynamic space consists of the nonnegative distribu-
tion functions. Beginning from a molecular expression for entropy in the form of Boltzmann’s H
functional, the systematic construction of thermodynamic potentials is demonstrated for gaseous
systems beyond local equilibrium (“not infinitesimally near to equilibrium”). Since the nonequi-
librium thermodynamic space provides natural comparison states for the principles of maximum
entropy or minimum encrgy, a simple critcrion for the choice of gas-state variables can be given
which shows that the maximization of the Legendre transforms of entropy is logically equivalent to
the minimization of the Legendre transforms of encrgy. This criterion is sought after in such a way
that the concepts of temperature and pressure need no reformulation out of equilibrium. After
these preparations, the technique of functional differentiation is used to derive the gencralized
Gibbs equation (relation) for Boltzmann’s entropy. Finally, the paper presents an analysis of how
the functional representation of this cquation relates to the method of moments.

1. Introduction

IN GiBBSIAN THERMOSTATICS [1 - 3], one postulates that all macroscopic properties
of a thermodynamic system are contained in a fundamental equation representing
either the entropy or the energy as a function of additive conserved quantities.
Thus in both the entropy and energy representations the extensive parameters
play the roles of mathematically independent variables, whereas the intensive par-
ameters are introduced in a systematic manner as derivatives of the fundamental
equation. The energy-language fundamental equation can be taken as the ba-
sic relation on which the Legendre transformation is performed. Such Legendre
transforms of the energy are usually called thermodynamic potentials. Another
set of thermodynamic functions (Massieu’s functions) can be obtained by per-
forming the Legendre transformations on the entropy rather than on the energy.
In the entropy representation the entropy is maximum for constant energy, and
from this it follows that each Legendre transform of the entropy is maximum for
constant values of the transformed (intensive) variables. Similarly, in the energy
representation the energy is minimum for constant entropy, and from this it fol-
lows that each Legendre transform of the energy is minimum for constant values
of the transformed (intensive) variables.

However, it has been known for a long time that the consistent development of
these ideas is contingent on the solution of a methodological problem of Gibbsian
thermostatics illustrated by the following paradox: how are we to give a precise
meaning to the statement that entropy is maximum for constant energy, whereas
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792 Z. BANACH AND S. PIEKARSKI

entropy is defined only for systems in equilibrium? Many authors have grappled
with this dilemma until a partial solution was found in terms of the composite
system. The basic purpose of this paper is to present a simple alternative solution.
Based on the kinetic theory of rarefied gases, we approach the question by means
of a molecular expression for entropy in the form of Boltzmann’s /[ functional.
As we shall soon see, the introduction of nonequilibrium distribution functions
enables us to define comparison states for the extremum principles and thus to
solve the aforementioned paradox.

Our method is, in fact, quite straightforward. We provide a thermodynamic
interpretation of the kinetic theory in which the nonequilibrium states of the
gas are described by means of the nonnegative distribution functions f. This
description can be used in various ways to introduce also other variables. For
example, an interesting alternative is to use the specific volume v, the internal
energy density ¢, and an appropriately defined phase-space function &, and then
to express Boltzmann’s entropy £ (per unit mass) in terms of (v, e, () rather than
f. These two descriptions appear on an equal footing, and we can choose either
one to suit the problem at hand.

If we choose (v, ¢, ), we will be able to exhibit the decomposition of Boltz-
mann’s entropy A into two physically different parts:

(1.1) h(v,e,G) = hp(v,e) + A(G).

The first part, denoted for brevity by Az, represents the thermostatic entropy
(which is a function of v and ¢), while the second part, denoted by A, gives
the functional contribution to & independent of (v,2) and vanishing at equilib-
rium; A depends only on . The resulting expression (1.1) for & is such that the
derivatives of h with respect to v and ¢ are the same functions as in equilibrium,
and Gibbsian thermostatics is not to be viewed simply as a first approximation
to the full description of the system, but, instead, as an exact theory valid for a
suitably chosen parametrization of the space of nonequilibrium states. The moti-
vation for the introduction of Eq. (1.1) may be understood in terms of our desire
to insure that the entropy maximum principle will go over into an energy min-
imum principle on inversion of & = h(v,e, ) with respect to ¢: ¢ = (v, h,G).
The extremum principles in the Legendre transformed representations are then
proved to be logically equivalent to the maximization of the entropy or to the
minimization of the energy.

Mathematically, the nonequilibrium method presented in this paper is parallel
to the equilibrium method of CALLEN [2], but has the following feature distin-
guishing it from that encountered in thermostatics: when the system is removed
from equilibrium, the theory of Legendre transforms and thermodynamic poten-
tials depends very much on the choice of variables in terms of which it has to
characterize the state of a system. Clearly, if one is interested only in the discus-
sion of the equilibrium case, one knows full well what the “right” variables are

http://rcin.org.pl



THERMODYNAMIC POTENTIALS AND EXTREMUM PRINCIPLES FOR A BOLTZMANN GAS 793

and these sorts of complications may be avoided altogether. For the general case,
however, the optimum definition of state variables is not a trivial problem. As a
matter of fact, one will be unable to obtain any successful theory of thermody-
namic potentials unless one formulates some adequate criterion for the choice of
state variables. In our approach we introduce this criterion in such a way that the
concepts of temperature and pressure need no reformulation out of equilibrium
and the extremum principles are valid for the Legendre transforms of entropy
and energy.

If the space of nonequilibrium states carries a structure of a finite-dimensional
manifold, the entropy maximum principle allows one to draw upon results from
the critical point theory, as formulated by Morse [4]. Using this theory, it is
possible to find a coordinate system for the manifold of nonequilibrium states
such that the specific entropy can exactly be written as a sum of two physically
different terms [5—7]: the first term represents the thermostatic entropy (which is
a function of conserved variables), while the second term is given by a quadratic
form depending only on nonequilibrium variables. Due to the existence of this
particularly simple representation of the specific entropy, one easily arrives at
the natural definitions of temperature, pressure, and thermodynamic potentials
for systems “not infinitesimally near to equilibrium.” However, there does not as
yet exist a kinetic-theory framework in which these and similar problems may be
addressed in a very satisfactory way. Thus, the underlying philosophy here is not
to formulate a completely systematic extension of the aforementioned results to
the general infinite-dimensional case, or even to propose some modification of
Morse’s lemma. Rather, the objective is to exploit the specific properties of a clas-
sical rarefied gas of massive particles and to obtain the required coordinatization
of the space of nonequilibrium states by direct guessing.

Another remark is also in order. For fixed values of v and ¢, h(v, ¢, ¢) denotes
a functional, that is, a function whose argument is (. Consequently, any deriva-
tion of the Gibbs relation for /4 is necessarily based on the technique of functional
differentiation. Tt can be most simply conceived of as a straightforward general-
ization of the concept of partial derivative. The foregoing functional justification
of the existence of thermodynamic potentials for gaseous systems beyond local
equilibrium is different from the method of moments [8]. Formally, this method
gives the same Gibbs relation for the Boltzmann entropy density & as in the tech-
nique of functional differentiation; but its precise definition and mathematical
status are complex, and lose direct physical meaning because the Hermite expan-
sions of G and In(1 + G) are applied at the outset of the analysis. Furthermore,
there are difficulties in proving the existence and convergence of various series in-
volved. Nevertheless, to understand the conceptual problems associated with this
method, we decide to present an explanation of how the moment representation
of entropy relates to our formalism.

The layout of this paper is as follows. In Secs.2 and 3, we describe the prop-
erties of nonequilibrium thermodynamic potentials. In Secs.4 and 5, the status
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794 Z. BANACH AND S. PIEKARSKI

of the method of moments is examined vis-a-vis the technique of functional dif-
ferentiation. Section 6 is for discussion and conclusion. Some auxiliary material
is included as Appendices A and B.

2. The relation between Boltzmann’s entropy and mass density
2.1. Preliminaries

The kinetic theory describes the state of a gas by the distribution function
f(z,c,t) defined, according to Boltzmann, in such a way that f(z,c,t) dVec is the
number density of molecules at the point z and at the time ¢ that have velocities
in the “volume” element d"e¢ around e; N is the dimension of the vector space
to which ¢ belongs. The distribution function obeys the kinetic equation of the
form

(2.1) Of +c-0.f = J(f),

where J(f) is the collision term.
In the kinetic theory of rarefied gases, local entropy S (per unit volume) is
sometimes required, and it is locally defined by the functional expression

(2.2) S() = —LrB/fln(Cf)(lNc,
where
(2.3) C:= @rlim )W

and where m is the molecular mass and Ly and 27/ are constants of Boltzmann
and Planck, respectively. Diflerentiating 5 with respect to time and using Eq. (2.1)
yield the entropy balance equation

(2.4) o= —l(a.«p) +o
0
in which
h:=5/o,
0= 111/f(l‘\.c.
b = —LrH/Ffln((Cf) Fa,
(2.5) |
o= —(1.:B/g)f./(f)1n((:f)d*"e.
C:=c¢—u,
= (m/g)j('f(lN(‘.
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THERMODYNAMIC POTENTIALS AND EXTRENMUM PRINCIPLES FOR A BOLTZMANN GAS 795

Here and henceforth, @ := 0, and an overdot indicates the substantial time
derivative defined by A= 0 A+ w0, A. Interpreting Eqgs. (2.5), h is the specific
entropy, o is the mass density, ¢ is the entropy {lux, o is the ncnnegative entropy
production, € is the peculiar velocity, and u is the macroscopic velocity.

2.2. The direct Legendre transform of Boltzmann’s entropy

In order to compare and contrast the predictions of various theories of ther-
modynamic potentials, we begin our discussion by introducing the standard Leg-
endre transform of Boltzmann’s entropy. Given a clear statement as to what this
transform is, one should be in a much better position to understand what the al-
ternative method of Sec. 3 really entails. Since Boltzmann’s entropy is a functional
of f, the variation of S(f) can be written as

(2.6) 55 = ],\bdec,
where
(2.7) Ae) 1= 65/6f(c) = —kg [1 + In(Cf)] .

In Eq.(2.7) the dependence of A on « and ¢ is not shown explicitly in order to
make the resulting formulas shorter. The relation (2.7) can be solved uniquely
for f in the form

1 A
(2.8) f= C &P (—1 - 5) :
We define the Legendre transform of S(f) as

(2.9) FOA) = S(f) - / A dVe.

In view of the kinetic-theory definition (2.2) of 5, we then find from Egs. (2.5),,
(2.7), and (2.9) that F' is proportional to the mass density o:

(2.10) F = (kg/m)o.

The variation of F'(\) as a functional of A is given by

2.11) §F = —/fo‘,\ Ve,
where
(2.12) f(c) = —8F/8A(c).
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796 Z. BANACH AND S. PIEKARSKI

The equivalence of F' = F'(A\) with 5 = S(f) is evident from the fact that the
latter can be regained from the former. The relation is dual in the sense that the
inverse and direct relations have the same form, except for a sign in the equation
of the Legendre transformation.

Following these lines, a formal theory of nonequilibrium potentials can easily
be founded parallel to the theory of equilibrium thermodynamics, but in such a
method of dealing with 5 there does not appear to be a way that the “nonequi-
librium inverse temperature” 1/7" and the “thermodynamic pressure” p could be
associated with the derivatives of h = 5/p with respect to the specific internal
energy ¢ (per unit mass) and the specific volume v = 1/p:

1 dh W Oh
7% P15

Thus another way of dealing with Boltzmann’s entropy must be proposed, and in
Sec.3 a calculation is made to prove that the generalized Gibbs formulas (2.13)
are valid only for a suitably chosen parametrization of the space of nonequilibrium
states.

The problem has to do with the freedom of choosing independent variables
in terms of which we could describe the nonequilibrium state of a Boltzmann
gas. If, instead of considering the “fundamental equation” S = S(f) with f as
independent “variable,” we had replaced f by (v,<,() and then considered v,
¢, and G as new independent variables('), we could have defined another set
of thermodynamic potentials by performing the Legendre transformations on
h = h(v,e,G) rather than on S = S(f). The corollary of this observation is
as follows: the kinetic theory in itself does not provide a precise definition of
what one means by the Legendre transform of Boltzmann’s entropy, and some
additional specifications are still necessary to make this definition precise. They
are formulated in the text below.

(2.13)

3. Further Legendre transformations
3.1. A Maxwellian molecular density

To carry on the intended analysis of the aforementioned questions, it is use‘ul
to define a few mathematical quantities. First, we define the specific interral
energy ¢ and the reduced peculiar velocity » by

(3.1) £ = (:71/29)/|E|2dec
and
(3.2) K := at,

(') See Scc.3.1 for the definition of v, € and G.
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where
(3.3) a = (N/2)Y2,

Inspection shows that « is dimensionless. With the specific internal energy and
the reduced peculiar velocity so defined, we now construct fyr as follows:

(3.4) far(z, k. t) := [o(z, 1)/ m][a(z, O] 2(x),

where p is the mass density of Eq.(2.5); and 2(x) is given by
1\N? 1 .

(3.5) ) = (z—r) xp (‘E"" )

Such an f) is called a Maxwellian molecular density.
As a measure of the deviation of f from fy; we suggest

1
Sai

The natural, independent variables of this function are z, , and ¢; thus G =
G(z,x,t). The same remark concerns fy;. However, for simplicity, the dependence
of fa and G on x and t will not be shown explicitly. Hence we have for f

(3.7) flxye,t) = far(n)[1 + G(x)].

Also, in virtue of the definitions of (o, u, <), we immediately see that

(36) Cr' = (f— f;\’).

(3.8) / QGG dVk =0,
where
(3.8) Go=1, 5 |&f5

To summarize, even though fy; does not satisfy the Boltzmann equation (2.1),
we can always write f in the form (3.7) and thus uniquely represent f in terms
of p, u, £, and (. This representation and the relations (3.8) are exact and are
eutomatically assured if the distribution function f obeys the following conditions:

3.9) /IC'”’fﬂ”V(.’ < 00, n=0,..3

The use of these conditions introduces a natural class of distribution functions
which are considered to prove the existence of the equations of balance of o, u
and e.
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798 Z. BANACH AND S. PIEKARSKI

3.2. A canonical form of Boltzmann’s entropy

If we substitute the decomposition (3.7) into Eq. (2.2), then by Eqgs. (3.4) and
(3.8) we obtain for h = S/p

(3.10) h(v,e,G) = hp(v,e) + A(G),

where v = 1/p and

N N2
hg(v,¢) := ]—;I—(kg/m) — (kg/m)In [C%; (4:5) } ;
(G.11)
A@G) = ~(k5/m)/f2(1 +G)In(1 + G) dVx.

The separation of & in Eq. (3.10) into i and A has a clear physical significance:
hg represents the thermostatic entropy (which is a function of v and &), while
A gives the functional contribution to & independent of (v,¢) and vanishing at
equilibrium. This result shows that the change of dynamical variables, namely,
the transition from f to (v,s,(), enables one to obtain a particularly useful
parametrization of the space of nonequilibrium states. Indeed, on applying such
a parametrization, one can easily prove that di/dv and 9h/0c are the same func-
tions of v and ¢ as in equilibrium. Precisely speaking, the infinitesimal variation
oh and the substantial time derivative of /& assume the form

1 .
oh = (p/T)o0 + be + j(—) 6G dVx,

(3.12) ]
L = (»/T)v + TE + /(—) & dVk,

where G (z,6,t) := (O + u-0,)G (2,1, 1), 6G is the infinitesimal variation of ¢
consistent with the constraints (3.8) and the obvious inequality &' > —1(?), and

p/T := g’—; = Qhg/dv = kg(e/m),
(3.13) % = %g = 0hg/0s = Nkg/2me,

O(r) := 6h/8G (k) = 6A/8G (k) = —(kp/m)2[1 + In(1 + G)].

We shall refer to Eqs. (3.12) as the generalized Gibbs relations (equations).
From Eqgs. (3.10) and (3.12), it follows that we can determine & and 8/ without

knowing the particular kinetic process occurring, and without regard to the time

(?) It is not difficult to prove the existence of such variations §G of G. In this context, we wish to note that
§G is a function of z, x, and t.
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anc the place. In other words, the values of the specific entropy and its variation
are ascertained from the information which is static and universal. This informa-
tior consists in the form of the dependence of & upon v, ¢, and G. Clearly, the
relction (3.12); is a direct consequence of Eq.(3.12);. However, this relation is
not “static” and “universal,” because it holds only for those distribution functions
whih are solutions of Boltzmann’s equation.

n the theory of Boltzmann, the temperature 7 is regarded as but another
nane for the expected kinetic energy of relative motion; thus

_ 2me
- J'VICB ’

(3.4)

Mcreover, if we let p = (2/N)pe denote the mean pressure, then from Eq. (3.14)
it follows that the “ideal gas law” holds for every condition of the gas:

(3.25) p = (o/m)kpT.

Amther way to define T and p is through Eqs. (3.13); and (3.13),; both methods
leal to the same result.

We are now in a position to discuss certain problems regarding the structure of
an :xpression for the entropy flux ¢. Examination of Egs. (2.5)3 and (3.7) makes
it rzadily apparent that ¢ can exactly be written as

(3.°6) ¢ = (q/T) - (/vae/”'“)/“f?(l + @) In(1 + G)dVx,
where « is defined by Eq.(3.3) and ¢ is the heat flux:
() qi= %/[FPU([“’(-.

Our analysis here shows how the quantity ¢/7" enters the general expression for ¢
naturally. By Eq. (3.16) we see, however, that not only net heating flux gives rise
to 4. The above calculations also show that if we are to define the entropy flux ¢
on the basis of kinetic theory, then it is necessary to identify the “nonequilibrium
tenperature” 7" with 2me /N k. Of course, for gas flows sufficiently near to local
equilibrium in the sense that f differs little from the corresponding far, we can
lincarize the integral part of Eq.(3.16) with respect to & and so conclude from
the constraints (3.8) that ¢ approximately equals ¢/7. No such approximations
are possible, however, in the nonlinear case.

One final word concerning the results just obtained. Given the natural condi-
tio1 (3.9) of Sec. 3.1, we have shown that use of the decomposition f = Fy(1+G)
in £gs. (2.5); and (2.5); yields the specific entropy £ in Eq. (3.10) and the entropy
fluz @ in Eq.(3.16) in terms of v, ¢, and . Consequently, within the framework
set up here, the formula (3.16) emerges in confirmation to the thermodynamic
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800 Z. BANAcH AND S. PIEKARSKI

principles, and an extended Gibbs-relation-like one-form (3.12); is consistent with
the entropy law as characterized by Eq. (2.4). The obvious reason for this con-
sistency is the fact that Eqs. (3.10), (3.12), and (3.16) are identities. Of course,
we can also test our results directly by substituting these identities and an appro-
priate expression for the entropy production o into Eq. (2.4). The details of this
somewhat elaborate programme will not be presented, however, because a hint
of what to expect may be obtained from considerations of Sec.S5.

3.3. The extremum principles
We easily conclude from Egs. (3.8), (3.10), (3.11), and the inequality
(3.18) A+G)In(1+6G)-G >0

that of all states (v,e,G) with given values of v and ¢, the equilibrium state
(v,e,0) has the greatest specific entropy h (the entropy maximum principle):

(3.19) h(v,e,G) < hg(v,¢).

Here h equals hg if and only if G = 0.
As a further systematic step, it is plausible to express ¢ in terms of v, h, and
G\ In fact, by solving Eq. (3.10) for the specific internal energy ¢ we find that

N / C\¥N 2m
. hiG)= —[— h—AG)]-1;.
{:20) e(uyh, @) 4r (nw) °Xp { Nkg I (@ }
Then, beginning from A < 0, we see that among all states (v, /2, ) having the
same values of v and h, the equilibrium state (v, 2,0) gives ¢ its smallest value
(the energy minimum principle). Moreover, we have

p= —()— Tr= 0—
(3.21) ‘1)" Gi
O(x) = —5lée/6G(x)].
Hence
(3.22) E=—pb+Th- '1‘/6)(7.' dV k.

Clearly, this result is consistent with Eq. (3.12),.
The specific free energy

(3.23) o(v,T,G) = e(T) — Th(v,e(T),G)
1 m B
= (kgT/m)In lC-— ( ) ] - TA(G)

mv \2rkgT
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is that partial Legendre transform of ¢ which replaces the entropy h by the
temperature 7' as independent variable. The substantial time derivative ¢ is

(3.24) o =—pb—hT - ']’]Oé’ dV k.

In addition, from Eq. (3.23) it follows that the equilibrium state (v, 7', 0) minimizes
the specific free energy ¢, not absolutely, but over the space of states (v, T,G)
with given values of v and T (the free-energy minimum principle).

Now, we define the specific enthalpy /' and the Gibbs function Q as H :=
e+ vpand Q := ¢ —Th + vp, respectively. The specific enthalpy / is that partial
Legendre transform of ¢ which replaces the specific volume v by the pressure p as
independent variable. The Gibbs function @ in turn is the Legendre transform of
¢ which simultaneously replaces the specific entropy & by the temperature 7" and
the specific volume v by the pressure p as independent variables. The physical
meaning of these nonequilibrium thermodynamic potentials is apparent from the
differential expressions obtained on using Eq. (3.22):

(3.25) f=0ep+Th —Tf@('; A,
(3.26) Q =vp-hT - T/@(;" dVk.

Moreover, from

N 2/(N+2)
G27)  H=Hphc) =212 (2—”@)

47

m

2m i N
- A@G)] -
Xe"p{(w S e G +2}

one can prove that among all states (p, k, ') having the same values of p and h,
the equilibrium state (p, h,0) gives /1 its smallest value (the enthalpy minimum
principle). Similarly, using

(3.28) Q=QpT,G)= (kgT/m)

m YN
+(kgT/m)In [C(p/kBT) (271'[»'BT) ] - TA(G),

one concludes that the equilibrium state (p,7',0) minimizes the Gibbs function
Q, not absolutely, but over the space of states (p, 7', ) with given values of p and
T (the Gibbs-function minimum principle).

The total Legendre transform of ¢ is defined by

(3.29) Ep, T,0):=Th—-vp-— T/OG ¥ —g

= —(kgT/m)In |C(p/ksT (—’"’—)Nﬁ +Tf@d”‘
= —(kgT/m)In |C(p/kpT) IrheT K.
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A glance at Eq.(3.13)3 shows that the equilibrium value O of @ is O =
—(kg/m)£2. Also, with Eq. (3.8) for G = 1 and the inequality In(1 + &) — G <0,
we find that

(3.30) / © - 0p)dVk > 0.
Hence
(3.31) £, T,0) > £, T, 0F),

the equality holding if and only if @ = @f. The substantial time derivative of £
assumes the form

(3.32) (€)Y = —vp +hT - / G(TOY dV.

Another set of functions (Massieu’s functions) can be defined by perform-
ing the Legendre transformations on h(v, e, ) rather than on (v, h, (). As the
theory of these functions is very much analogous to that already made familiar,
we will not discuss this theory further here; specifically, we will not derive the
maximum principles for the Massieu functions(®).

4. The method of moments

To study the consequences of using the method of moments, we introduce the
Hilbert space ‘H in which the scalar product (w;,ws) is defined by

4.1) (wr,wy) 1= /Q(H)ul(h'.).d'_)(h')dNN.

We can determine the exact moment representations of . and b if we assume
that 1 + G, In(1 + ), and G are elements of 7. Then by use of the complete set
of tensor Hermite polynomials B"(x), n = 0,1, ..., 00, it is possible to represent
1+ G, In(1 + G), and e by the expansions [9]

—
Tv___ ,’:= _n'Bn
1+G =) 7;”!1) :
4.2) In(1+G)=> X".pB"
= l.TI T
G =) —b"B",

(®) Of course, we can also derive the minimum principles, this being purcly a matter of convention in the
choice of the sign of the function.
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where b and X" are the expansion coeflicients and the symbol - denotes the
inner product of the tensors involved. Clearly, because of the constraints (3.8),
we have

(4.3) wW=1, =0 Tr*=0,

where Tr is the trace operator. The above series converge in the sense of the
norm in H. However, to express X" in terms of ", we must first assume that
the series Y converges both pointwise for each « and in the sense of H and then
substitute Eq. (4.2); into

no_ 1 n n N .
(4.4) X" == [ 02B8"In(1+G)d k.

n.

Here we remark that if the above conditions are not satisfied, then the moment

representations of h and b described below are not expected to exist. This gives us
necessary information about what is and is not possible. In the recent analysis [10]
presented by Eu [see, e.g., his equations (2.30) and (2.33)], an explicit assumption
was made that the expansion Y in Eq.(4.2); converges to 1 + (' in the sense
of means and that this rather weak condition is sufficient to see the method of
moments in action (i.e., to express X" in terms of b™). The pointwise convergence
of Y just deduced clearly suggests it to the contrary.

From Egs. (3.10)-(3.13) and (4.2) plus the orthogonality properties of Her-

mite polynomials [9], the moment representations of & and £ are as follows:

(4.5) h = hg—(kp/m) Z X",
"'L'_—D
(4.6) o= (»/T)v + la" — (kp/m) Z X" pbn,
1 n=2

Consistency(*) between Egs. (4.5) and (4.6) follows directly from the consider-
ations of Appendix B [cf. Egs. (B.2)s and (B.3)s]. We can similarly analyze the
kinetic-theory expression for the entropy flux @. In fact, putting the expansions
(4.2); and (4.2), into Eq. (3.16), we find that [cf. also Eq. (B.7) in Appendix BJ

4.7) ¢ = (¢/T) — (kpo/ma) Z (X" M X b""l) ;
n=1
where the heat flux ¢ is related to Trb3 by
2 (N\3*?
. e :
(4.8) Tr Q(k) g

(*) The series in Egs. (4.5)-(4.7) converge absolutely if 1 + G, w(1 + &), G, and In(1 + G) are clements
of H.

http://rcin.org.pl
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However, we have to worry about the convergence of the series in Eq. (4.7);
this may require consideration of the situation in which also «(1+ ) is an element
of H. From the viewpoint of the present paper, the method of moments is a
formal and sophisticated way of deriving the generalized Gibbs relation (3.12),
for the specific Boltzmann entropy A. In Secs.2 and 3, we have seen that there
are simpler and more natural ways of deriving this relation. One obvious reason
for this is that, with the technique of functional differentiation, we can draw
definite and exact conclusions about the existence of Eqs. (3.12) without making
any explicit or implicit reference to H. This is crucial because representative
and physically important cases are known [11] in which solutions of the kinetic
equation do not exist in the Hilbert space chosen: G ¢ H. This fact detracts much
from the usefulness of Hermite expansions (and of various ad hoc truncation and
projection procedures) at the level of the nonlinear Boltzmann or Boltzmann-like
equations.

We recall that the nonnegative entropy production o is given by Eq. (2.5); and
conclude from Egs. (3.7) and (4.2); that

4.9) o= —(kg/m) Z X% p7
n=0
where
(4.10) P (m/g)fu".f(f)d%
and where
(4.11) P=p P=0 TP=0

The exact and/or tractable moment representations of P’ are not expected to
exist, except in the case of Maxwellian molecules.

In Sec.5 we shall verify that if we use the formulas (4.5), (4.7), and (4.9) in
the balance equation (2.4) for /, then this balance equation will be automatically
satisfied, at least formally. Before doing so, however, it is necessary to derive the
evolution equations for g, u, ¢, and b™.

The equations of balance of o, u, and ¢ are easily obtained from the Boltzmann
equation under the natural assumption that f falls off sufficiently rapidly for large
values of ¢:

o = —o(0u),
: 1, -
(4.12) W= —E[()-(p[ +w),

e
|

= —1((')-(1) - l(p,’ +w)- L.
0 0
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The abbreviated symbol I stands for the unit tensor of a Euclidean vector space
E (dimE = N), L is the spatial gradient of v (L := Ju), and w is the stress
deviator defined by

1
(4.13) G = mf (z@ c— W|E|2!) fdVe.
This stress deviator is proportional to 0%
N
% ,
(4.14) b = 205“1.

By use of the notation introduced in Appendix A we obtain from

(4.15) =" / B fdNe
o
and the Boltzmann equation (under usual assumptions) the following result:
(4.16) b= 7"+ P
where

Z" = —Zi‘ (90" +mavimt) - - (

ap

o' 0"+ g’ v b"—l)
—na(i vty = n[LUb + (n = 1)LV 6"

—% [(n + D’ " 4 n(n - 1)’ v (,/f"_l] — %d’",
(4.16") o' := 9o, g 1= de,
Y= b+ (n— )T v b2,
b=3:=0, b%:=0, bli=0,

n=01,..,00.

This is the desired system of equations for the coefficients 4" in the expansion
(4.2); of 1 + G. Inspection shows that Eqs. (4.16) are automatically satisfied if n
equals 0 or 1, because of Egs. (4.12); moreover, (Tr12)" = Trb? = tr 22 = tr P2 =
0. Another remark is also in order. To obtain a manageable system of “extended”
differential equations, the infinite set of moments has to be truncated and some
procedures for expressing " in terms of 4" must be proposed. However, to the
best of our knowledge, it still remains an open question whether such a truncution
procedure is consistent with kinetic theory.

The manner in which these calculations form the first step in the formal deriva-

tion of h = —0~ 10+ @) + o from Egs. (4.5), (4.7), and (4.9), will become clear
in the text below.

http://rcin.org.pl



806 Z. BANACH AND S. PIEKARSKI

5. Consistency between the generalized Gibbs relation and the entropy law

First of all, there is no question that Egs. (3.12) and (4.6) are consistent with
the entropy law (2.4) because these equations are identities. Nevertheless, since
this point has been a subject of debate [12-14] in the past, here the internal
consistency of the formalism will be demonstrated from still another viewpoint.
To achieve the objective in mind, we first substitute Egs. (4.7) and (4.9) into the
entropy law (2.4) and then establish the following identity by using Egs. (3.3),
(4.8), (4.12), (4.14), (4.16), and the definitions of various quantities involved:

61 k=@ 4 i - (fes/noi.x'"- b7 + (ks /meT)Ch,
where
Chi=3 (1@ 0.) + oT(X" 2 2% + @ )]
n=1
By 1= ga”t [XP 0t 4 Xl
(5.2)

¥ = oTL, = %QT([V &,
N
X" =0 for n # 2,3.

The expansion in Eq. (5.2); starts from n = 1, because J3 = 0 and ¥,, # 0 when
n > 0. Combining Eqs. (4.6) and (5.1), we obtain

(5.3) Cy = 0.

We call this equation the consistency condition because its role in essence is that of
a guarantor of the generalized Gibbs relation (4.6) for entropy change. In order
to demonstrate the internal consistency of the formalism, it is thus stimulating to
show that Eq. (5.3) holds for all conditions of the Boltzmann gas.

Now, we shall prove that (', can indeed be set equal to zero without encoun-
tering any internal contradiction. This proof generalizes to N -dimensional systems
the conclusion(®) formulated directly before Eq. (4.18) in [12]. A straightforward
application of Egs. (3.3), (4.16), (5.2), (B.2),, and (B.3); yields

1 ; £ a 1
: —Ch=—0a(t +Dy)— =Dy — —(¢' - D3)— LDy + —Ds,
(5 4) QTCh a(u Dl) 25‘[)2 N 3) 4 = 5

(®) The notation in [12] slightly differs from ours as follows: ours = his; N = 1, kg = 1, m = 1
cMNEI NI Viem e A = did " = ap~ Yl X0 = T = Tw); X™ = =T-1X" for
n# 00, = T (X" y")x2 =0 x? = —x3. Similar comparisons of our consistency condition C, =0
(specialized to the case N = 1) with the corresponding equation (25) of [14] are not possible, however, because
in this equation the meaning of the symbol is not clearly explained.

n
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where the objects Dy, ..., Ds are defined by Eqgs. (B.2). However, from the consid-
erations of Appendix B it follows that D, = 0 when & = 1,...,5. This completes
the proof of Eq.(5.3). The validity of ', = 0 and hence of Eq.(4.6) is also
obvious on the intuitive ground.

Thus contrary to the suggestion made in the literature [14], there does appear
to be a way that the terms in Eq. (5.2); cancel each other so neatly that C), = 0
when Eqgs. (4.2) and (4.4) hold; in other words, when the complete set is taken for
B™(x). This implies the second conclusion: there is no kinetic-theory foundation
for including the compensation function (or the calortropy) in the thermodynamic
description of Boltzmann’s gas, as it is done in the so-called revised version of the
modified moment method [13] or in its possible further corrections (see especially
the discussion on p. 7177 after Eq. (3.30) in [10]). Such is indeed the case because
the generalized Gibbs relation (4.6) holds for the entropy density h itself, and not
for the compensation function which appears to be extraneous and redundant.
The same observation concerns the notion of calortropy. To be more precise,
substitution of the formula (4.2), into Eq. (3.1) in [10] yields the conclusion that
the calortropy does not differ from Boltzmann’s entropy.

The gist of the point made by the present analysis is that the information con-
tained in the generalized Gibbs relation formally does not contract as the level of
description is passed from the phase-space level (3.12) to that at the moment level
[cf. Eq. (4.6)], since the passage essentially involves a complete set of Hermite poly-
nomials. Moreover, after expressing X" in terms of 0", as is formally always
possible [cf,, e.g., our analysis directly after Eq. (4.3)], the Boltzmann entropy A
becomes a state function in a space spanned by the “thermodynamic” variables
& = {v,e,b" |n = 2,3,...,00}, and thus one can think of I as being an exact
differential in . On the basis of such results, it is possible to infer that, as was
already found in earlier work [12], a thermodynamic interpretation of kinetic the-
ory may be erected on Boltzmann’s entropy alone, i.e., without the necessity [10,
13] of referring to the “concepts” of compensation function and calortropy. How-
ever, the method of moments is surely not very useful in practice. This method
obscures the real situation: it suggests that there is something very special about
the way the theory of thermodynamic potentials is related to Hermite expansions,
whereas in reality this is not so. A deductive mathematical way for exhibiting the
generalized Gibbs relation has been proposed in Sec.3 and is clearly linked to
the technique of functional differentiation.

6. Discussion and conclusion

We have found a set of thermodynamic potentials for the description of a
Boltzmann gas. We have obtained the extremum principles for these potentials,
and examined their physical meaning in the simplest case (a one-component gas).

http://rcin.org.pl
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The basis for the initial analysis was Boltzmann’s entropy which is a functional
of the single particle distribution function, not of the fields. This entropy was
then divided into two parts, that associated with the local distribution (and hence
yielding a standard function of conserved variables) plus the remainder. Using
the technique of functional differentiation, we have proved that if the indepen-
dent gas-state variables are (v, ¢, ), the quantities Nkg/2ine and 2p¢/N, which
everybody would write down as the only natural concepts in the situation of a
classical rarefied gas, exactly correspond to the “nonequilibrium inverse tempera-
ture” 1/7 and the “thermodynamic pressure” p as defined by investigating the
partial derivatives of Boltzmann’s entropy h(v, ¢, () with respect to v and «.

Comparison with the usual approach shows that we can obtain the same results
as usual but in a much more transparent way, because in the standard approach
(the method of moments) the existence of thermodynamic potentials depends on
the convergence of the following series:

(6.1) Y(z,1) = Z X"z, 1) - b (x, ),

n=0

where (z,t) is an arbitrary space-time point. On the other hand, in order to
use the method of moments to draw valuable conclusions about the “thermody-
namic branch” [12] of solutions of Boltzmann’s equation, it would be necessary
to have not only the convergence of § for arbitrary space-time points but also
some information about uniformity (in space-time) of convergence; the existence
theorems for Boltzmann’s equation give no indication that there will be any such
uniformity. Furthermore, the divergence of Y [cf. Eq. (4.2),] in certain important
cases makes uniformity of convergence problematical. For a discussion of these
divergences, see, for example, [11].

The situation is different, however, with the formalism of Sec. 3, for its equa-
tions give rise to the exact theory of thermodynamic potentials independent of
any ad hoc assumptions and artificial constructions. To summarize, the technique
of functional differentiation is an adequate tool to study the mathematical and
physical status of the generalized Gibbs relation at the level of Boltzmann’s equa-
tion. The point of this discussion is that instead of concentrating on the formal

Hermite expansion (4.6) of i, with the ambiguities that implies, we can deal
directly with Eqgs. (3.12).

At first sight, it seems that while the questions/problems posed here apply for
general systems, their answers/resolutions must be limited to classical rarefied
gases. But this is not the case. In fact, we have already verified that our ideas are
quite universal and can be extended in a number of directions, one of them being
the analysis of mixtures and quantum Bose - Einstein or Fermi- Dirac nonequi-
librium ideal gases. However, since these extensions are not altogether trivial or
immediate, they will be treated in a separate paper.
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Appendix A. Some useful abbreviations

To make the resulting formulas shorter, in this paper we have introduced
essentially the same notation as in [15-17]. Let E be a Euclidean vector space
(dim[E = N). Choose an orthonormal basis {ey,...,enx} in E and set ¢, ., :=
€, ® - Bep,.

1. The action of the symmetrizer // on a tensor M“ of degree « is given by

N
(A1) OM®:= Y M{, ,.)€r.ra;

TiTa=1l

where the coefficients M, are components of M“ with respect to {e,, .}

and parentheses enclosing a set of o indices represent symmetrization of these
indices, i.e., the sum over a! permutations of the indices, divided by a!

2. Suppose that M and M7 are the tensors of degrees a and 3, respectively.
Then the equality
(A.2) MeV MP = 11 (M° @ MP)

defines the symmetric tensor product of M< and A7,

3. The action of U on M* and M” is characterized by

o o 1 s = A C'/‘?.‘ B
(A.3) M*U M ”(lfin( " @ M°),

where Tr (1 .41y is the trace operator with respect to the pair (1,a + 1).

4. Let us suppose that v := min(a, 3). Then in contracting M® with M# the
v-fold contraction is denoted by .. The tensor M« M? of degree a + 8 — 2v
is usually termed the inner tensor product of A/® and MP. However, if M and
MP? are not totally symmetric tensors, then some convention as to which of the
2v indices are to be contracted, must be followed when doing the contraction. In
this context, see the precise definition of //® « A/? in Appendix A of [17].

5. Suppose that M* and M are the tensors of degree a. Then the action of
O on M and M" is described by

(A4) MeOdM® := i [(e, . M") . (r_-‘s -Ha)] er®@e,.

r,s=1
6. The effect of J on a tensor field M“ is given by
N
(AS) IM™ = Z e, ® 0,-1‘[0

r=1

with d, := 9/da".

http://rcin.org.pl
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7. The action of @+ on a tensor field A7 is defined by

(A.6) 9. M= T (OM9).
(1,a+1)

8. The effect of 9V on a tensor field M “ is characterized by

(A7) Vv M® := II(OM®).

Appendix B. Auxiliary formal properties of 0™ and X"

The effect of & on a function A(x) or a tensor field M™(x) of degree n is
given by

N
OA 1= Z (Er‘l) er ,
(B.1) ";1
IM™ = e, ® I, M",
r=1

where 9, := 9/0K".
The objects Dy, k = 1,...,6, are defined by

D, := Z nX™. b

n=1

o0
Dy = Z nX" )",
n=2

ST 6 43 [ DXt (= DX g - X

Djy =
(B.2) oo“‘
D= —0*+ Y alb"OX" + (n— X"+ 472,
n=1

Dsi= 3 [@X") b +n(@- X" 0"
n=1

Dg:= Y X™.b",
n=0

where, of course, 9 = d,.
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It is only a matter of labor to prove that

D, = afﬁg / Faln( + G)dVx = 0,

D, = C;fifg /f{f;-?j[ln(l + )]}k =0,

D, = a’;’g /fh- [N +2- |5 + & D[ln(1 + G)]} ¥k = 0,
" Dy = a’j’\}gff{f ~ K@K+ K@ IIn(1 + G)]} dVk =0,

Ds = Q—T;E/f{h:-(?[ln(l + G} dVk = 0,

Dg = a—’,i,‘—g [+ )] @ =0,

where [In(1 + G)]" is the substantial time derivative of In(1 + &'). In these equa-
tions, f and G are functions of z, x, and t.

The proof that the series Dy, & = 1,...,6, can indeed be represented by the
above vanishing integrals, is based on Egs.(2.5)s, (3.2), (4.2)2, (4.15), and the
following identities [15, 16] for Hermite polynomials B"™(x) [9]:

N
k® B"(k) = B"*!(k) + n Z € ® [e,. v B"_l(rc)],
o

(B.4) JB™ = n im. ® (f‘r V B”‘l),
r=1

n(n+ D)[M" (1 v B Y] = 20 (M B 4 n(n - 1) (T M7) - B

where M™ is an arbitrary symmetric tensor of degree n.

The series in Egs. (B.2) exist and are absolutely convergent if 1+ G, [In(1+G)],
Idln(1+G), k®dIn(1+ G), k@I In(1 + &), and £ @ k@ I In(1 + &) are elements
of H. Clearly, as usual, we must also assume that we can exchange the integral
over ¢ or x with the derivative d,; these assumptions are necessary in order to
derive the evolution equations (4.16) for 0", If these postulates are not satisfied,
the method of moments fails to exist.

Using the identity

m

(B.5) gl = 20+6)

and integrating by parts, we easily conclude from the constraints (3.8) that the
integrals in Egs. (B.3) vanish; thus
(B.6) Dy =0

when k£ = 1, ...,6. This observation completes the proof of Eq. (5.3).

http://rcin.org.pl
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A one-dimensional version of these calculations is represented by Eqs. (4.14)
in [12]; see also the comments at the bottom of p.359 in that paper. All the
essential ingredients for the proof of the consistency condition (5.3) were thus given
seven years ago.

From D; = 0 it follows that Eq. (4.7) simplifies to

(B.7) ¢ = (q/T)— (kpo/ma)y_ X" o™,

n=1
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Magnetohydrodynamic boundary layer flow and heat transfer
on a continuous moving wavy surface

M. A. HOSSAIN (DHAKA) and 1. POP (CLU))

THE PROBLEM of the boundary layer flow and heat transfer on a continuous moving wavy surface
in a quiescent electrically conducting fluid with a constant transverse magnetic ficld is formulated.
The resulting parabolic differential equations are solved numerically using the Keller-box scheme.
Detailed results for the velocity and temperature fields are presented, and also the results for the
skin-friction coefficient and the local Nusselt number. These results are given for different values
of the amplitude of the wavy surface and magnetic paramcter when the Prandtl number equals
0.7. It is shown that the flow and heat transfer characteristics are substantially altered by both the
magnetic parameter and the amplitude of the wavy surface.

1. Introduction

THE INTERACTION between an electrically conducting fluid and an applied mag-
netic field is an important practical problem which has been studied very often
in relation to the magnetohydrodynamic (MHD) power generator and bound-
ary layer flow control. Hydrodynamic behaviour of boundary layers along a flat
plate in the presence of a constant transverse magnetic field was first analysed by
Rossow [1], who assumed that magnetic Reynolds number was so small that the
induced magnetic field could be ignored. This problem has been further investi-
gated by many researchers, including LEwis [2], KATAGIRI [3], LiRoN and WILHELM
[4], CHUANG [S], INGHAM [6], PATHAK and CHOUDHARY [7], SOUNDALGEKAR et al.
[8], WATANABE [9], and WaTaNABE and Por [10], among others.

The purpose of this paper is to study the MHD boundary layer flow and heat
transfer over a continuous moving wavy surface in an electrically conducting fluid
at rest, in the presence of a constant transverse magnetic field. The transformed
nonsimilar boundary layer equations were solved numerically using the Keller-box
method [11] for some values of the amplitude of the wavy surface «, and magnetic
parameter M with the Prandtl number Pr equal 0.7. We have studied the effect
of the parameters a« and M on the velocity and temperature fields, as well as
on the skin-friction coefficient and the local Nusselt number. We expect that the
physical insight gained in this paper will enable the understanding of the complex
situations where boundary layer approximation is not made.

It is worth pointing out that the MHD flow and heat transfer over a wavy
surface is of importance in several heat transfer collectors where the presence of
roughness elements disturbs the flow past surfaces and alters the heat transfer
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rate. On the other hand, a continuously moving surface in an electrically con-
ducting fluid permeated by a uniform transverse magnetic field has many practi-
cal applications in manufacturing metallurgical processes involving the cooling of
continuous strips or filaments by drawing them through a quiescent fluid. Men-
tion may be made of drawing, annealing and tinning of coper wires. In all these
cases the properties of the final product depend to a great extent on the rate
of cooling. By drawing such strips in an electrically conducting fluid subject to a
magnetic field, the rate of cooling can be controlled and final products of desired
characteristics might be achieved. Another interesting application of hydromag-
netics to metallurgy lies in the purification of molten metals from non-metallic
inclusions by the application of a magnetic field.

2. Basic equations

Consider a wavy surface at wall temperature T, moving tangentially from left
to right with a constant velocity U through a stagnant electrically conducting fluid
of temperature T, where T, > T.,. The wavy surface is electrically insulated
and a constant magnetic field By normal to the surface is imposed. The geometry
and the coordinate system, which is fixed in space, are illustrated in Fig.1. The
wavy surface is described by

(2.1) 7 = 5(7) = asin(z7/1),

where @ is the amplitude of the wavy surface and [ is the characteristic length scale
associated with the waves. In the present analysis the magnetic Reynolds number
is assumed to be small and therefore, the induced magnetic field will be very small
and can be neglected compared to the applied field. Under this approximation,

y

crest '2[

L

B I
12a u
0 T
\f\-l‘(rough

w

F1G. 1. Physical model and coordinate system.

the basic equations governing the steady flow of a viscous incompressible and
electrically conducting fluid in presence of a uniform transverse magnetic field
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are
du  Jv
=4+ ==0,
ot 0y
T 2 T 5 oy 2
AL S R L
22) Iz a7y 0 JT 0
' _3E+_Oﬁ_ 10p+ vn
UOT U(?y_ 0 07 Vo,

Ua—I'i' Uﬁ Pr

where @ and 7 are the components of velocity along the Z- and ¥y-directions,
respectively, 7" is the temperature, p is the pressure, p, v and oy are the density,
kinematic viscosity and electric conductivity of the fluid, and V? is the Laplacian
expressed in Cartesian coordinates.

The appropriate boundary conditions for the above equations are

7=8@): uty-vtz=0, Uz+vty=U, T=T, al 7>0,
(23) Fooo: uU=7=0, P=po, T =T,, al >0,
T=0: P=px, T =Ty, al F#0,
where tz and t; are the components of the unit vector tangent to the wavy surface
along (7, 7)-directions.

Equations (2.2) may now be nondimensionalized by using the following vari-
ables

z z/l, y=7/l, w=7/U, v=71/U,
(P - p,,o)/gUz, 6 = (T -TL)/AT, e=a/l, S(z)=S@E)/I,

where AT = T, — T. Using these variables and introducing the nondimensional
stream function 7 defined as

24

P

(2:5) u = i V= ——

Eq. (2.5) can then be written as

A L _gﬁ+ivz(0’f”) 9y

dy dxdy Oz dy*  Or Re

v 9 oY 9y . dp i 1 o2 ( UU?)

dy 0z dx dx0y dy Re '
agv o8 oy os 1 1 29,
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Also, the boundary conditions (2.3) become

0F 090 g 9 _o 00

y=S5(z): 5I0y+0;r " By 25y = O =1, all z>0,
(27) y—oo: a—lé=@=0, p=0, =0, al z>0,
dy Oz

z=0: p=0, 6=0, all y#0

here o is defined according to
1/2
(2.8) o= (1+52) /

with S, = dS/dz. Here Re = Ul/v is the Reynolds number and M = oqB3l/oU
is the magnetic field parameter. We notice that (¢,,t,) = (1/0, 5./0) were used
in (2.7). It should be noted that the value ¢ = 1, i.e. @ = 0, corresponds to the
case of a flat surface. In this case we take for [ a characteristic length L along
the flat surface.

The effect of the wavy undulations can be transferred from the boundary
conditions (2.7) to the governing equations by means of the transformation given
by (see REEs and Por [12, 13]),

(2.9) T=uz, y=1y—S().

Applying (2.9) to Eqgs. (2.6) and dropping the hat we get the following equations:

Y 9 o 0 ap L dp 1 R
S me— = B = = —Lth = M —,
Jy dzdy  Ox 0y* da dy Re dy
D%y 00 By o (000 v BY) o (00’
dy 0z Oz Jxdy T\ oz 0yt Oy dxdy “\ dy
(2.10) dp 1
= ek o il
By T Be 2,
0p 00 w00 11
dy dz E):L'By_PrRe}’
and the boundary conditions (2.7) become
0 0, 1o, 0=1, ali 20
= . e — e — O = 1. < T N
Y ( ' By
i oy
211)  y—oo: %;—;:0, p=0, §=0, al z>0,
z=0: p=0, =0, al y#0,
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where L, L, and L3 are the operators defined by
2 L P L P P

Ly = a3 N - 25 - Fea =54
L= dy3 (')Jc‘);t Yoz 0y? dy?

L= 5.2 3+ (1 +358)5 35, 2
? =2 dxdy? “Oyda?

(2.12) (-)2 02 0 5\3
()2 02 L O? ]

Ly = _—_ -2 o —— — Sy — .

aE=s g (‘h 4 drdy . “dy

Next, we introduce the boundary layer variables
(213) F=2z, j=vRey, ¥ =VRey, p=p, 6=04.

Substituting (2.13) into (2.10) and formally letting Re — oo, we obtain, after
dropping the tilde,
ap 9% O 0% dp o172 dp 2()3 i
By 9e0y 9z 07 T 0x TR gy YT Moy
Y 0*p oY 0* i (aw) 209 1/20p
2.14 o s S ife B, 0 (NG O o 22
(2.14) 5z (03: dy?  dy 20y Vs dy + 50 3 ahs dy’

oY 08 0 08 1 ,0%0

dy dr Oz OJ ()J
Equation (2.14); indicates that the pressure gradient in the y-direction must
be of O(Re~'/?). This implies that the lowest order pressure gradient in the
z-direction can be determined from the inviscid flow solution. In the present
problem, the inviscid flow field is at rest and hence dp/dz = 0. Now, elemination
of dp/dy between (2.14); and (2.14); results in the following boundary layer
equations for the problem under consideration:

¢ Py Qozw o, («)(/1) _ 02031:: M 9y

+ - e e
dy dz0y Ox Iyt o \Jy dy3 ot ay’
duon 9w oo _ 1 L0

dy dx dx Iy Pr’ -0_‘1/7’
subject to the corresponding boundary conditions

(2.15)

y=0 : 0 =0, (())—L—l/a 0=1, all z>0,
{
4P Dol
(2.16) gy Z=_0 §=0, &l a0,
dy  Ou
z=0: 6=0, al y#0.
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To solve Egs. (2.15) along with the boundary conditions (2.16), we introduce
the following group of transformations:

(2.17) Y=ol [ ),  0=g(&n),
where
(2.18) n= %{‘1/2, £=z.

Equations (2.15) then become

" 1 1" a¢ " 2 M /o /0.'” lla_f
I Lk i = (1% - 1"5)

1 " 1 i q 8f
oo+ 309+ Besy = € (1 - g5 )

subject to the boundary conditions
6,0 =0 f(§0)=1/0,  g(£0)=1,
f(€,00) = h(§,00) =0,  g(§,00) =0,

where primes denote partial differentiation with respect to 5. We notice that
Egs. (2.19) reduce to those derived by REES and Por [14] when there is no applied
magnetic field (M = 0) in the flow field.

The physical quantities of interest are the skin-friction coeflicient and the local
Nusselt number defined as

(2.20)

Tiw T4,

P 7Y

(2.21) Cs=

where the skin-friction 7, and the heat flux 7, at the wall are given by

(2.22) Fu = UL (Sj + %)_ . G, =—kn-VT.

Here u and k are the viscosity and thermal conductivity of the fluid, and
Sz 1

(2.23) n= (—;, ;)

is the unit vector normal to the wavy surface. Using (2.4), (2.9), (2.13) and (2.17),
we get the skin-friction coefficient and the local Nusselt number from the follow-
ing expressions:

1
(2.24) CyRe}? = ~f(6,0),  Nuy/Re}/? = —¢/(¢,0),

where Re, = UZ/v is the local Reynolds number.
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3. Results and discussion

An implicit finite-difference method together with the Keller-box elimination
technique [11] have been used to solve the parabolic differential equations (2.19)
along with the boundary condition (2.20). Since a good description of this method
is available in [15-17], it will not be repeated here. The accuracy of the predicted

a) 1.0

=

—

an

Ecl,rcst) —

0.6
f(&m)
0.4

0.2

0.0

b) 0 e, "—
= ] Etrough) — M
0.8 > 0.0
o: 0.5
0.6 [ o: 1.0+
g9(&.n)
0.4 =

0.0 R
00 20 40 60 80 100

F1c. 2. a) Velocity profiles against 5 for different M with « = 0.1; b) temperature profiles
against » for different M with ¢ = 0.1 and Pr = 0.7.
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results has been established by comparison with known results for the skin-friction
coefficient and the local Nusselt number of a continuously moving flat plate (a =
0) in a viscous electrically non-conducting fluid with A/ = 0. Thus, REgs and Pop
[14] found C/Rel/? = —0.4438 and Nu,/Rel/? = —0.3492 for Pr = 0.7, while
the present calculations give C;Rel/? = —0.4439 and Nu,./Rel/? = —0.3509. It is
seen that these results are in excellent agreement and therefore we are confident
that our present solution is very accurate.

1.0

a) £=0.5 (crest)  —
) = 1.5 (trough) —
0.8 | .
0.6 F W -
(&) \:QQ\ a
04 \3\ 0.4 .
N2
0.2 | R0 .
0.0 e LT

00 1.0 20 30 4.0 50

1.0
b) £ = 0.5 ((Il'(‘sl,) S
= 1.5 (trough) — a
0.8 F\\ e 0.0
\\\ o: .2
L W 5
0.6 \3\}\ 0: 0.5
glén) N

0.4 r \E‘l‘l:__\x\ .
y \\ \<
U -) = 9 \\_

U.U 1 1 1 1

0.0 2.0 4.0 6.0 8.0 10.0

Fic. 3. a) Velocity profiles against » for different « with A/ = 0.5; b) temperature profiles
against 5 for different a with A/ = 0.5 and Pr = 0.7.
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Representative velocity and temperature profiles are shown in Figs.2 and 3
exhibiting the effects of the wave amplitude @ and of the magnetic field parameter
M. Results are given for Pr = 0.7 only. Then, since behaviour of these profiles
at crest and trough positions is very similar, the case of £ = 0.5 (crest) and
& = 1.5 (trough) are only presented in this paper. Figures 2 and 3 show clearly
that both the velocity and temperature profiles increase with the increase of M.
However, Fig.2 indicates that for ¢« = 0.1 and M = 0 (non-magnetic field) at
both the through and crest positions, the velocity and temperature profiles are
almost identical due to which the differences between the thick and thin curves
are not observable. But, at a larger value of a (0.5, say), there is a considerable
difference at these two positions (trough and crest) in the velocity and tempera-
ture profiles for M = 0. On the other hand, the velocity profiles decrease, while
the temperature profiles increase owing to the increase of the amplitude of the
wavy surface.

a)
_C/ Relf"
e: 0.2
0.0 1 1 1
0.0 2.0 4.0 6.0 8.0
3
b) 0.4 T T T
0.3
N!l
R*ih
0.2
UJ 1 L | N
0.0 2.0 4.0 6.0 8.0
€
&

Fia. 4. a) Skin-friction cocfficient for different a with A/ = 0.5; b) local Nussclt number
for different @ with A = 0.5 and Pr = 0.7.
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In Figs.4 and 5 the variation with ¢, M and ¢ of the skin-friction coefficient
and the local Nusselt number is illustrated. It is observed that these quantities
vary periodically in the direction of £ when a # 0 (wavy surface), while they
vary smoothly for a = 0 (flat plate). Further, Fig.4 a shows that the skin-friction
coefficient is less than or equal to that corresponding to a flat surface (¢ = 0);
this is due to the effect of centrifugal forces, the third term of Eq. (2.19);.

a) 3.0 IY; T T T

: 0.0

2.0

<RV

00 | 1 .

0.0 2.0 4.0 6.0 8.0

e 0.0
o: U.2°
o: 0.5
o: 0.7°
0.0 p: 1.0 | 1
0.0 2.0 4.0 6.0 8.0

FiaG. S. a) Skin-friction coefficient for diffcrent A/ with « = 0.1; b) local Nusselt number
for different M with @ = 0.1 and Pr = 0.7.
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On the macroscopic parameters of brittle fracture

N.F. MOROZOV and Y.V.PETROV (ST. PETERSBURG)

TuE proBLEM of modeling of some of the specific cffects of brittle fracture in the high loading rate
conditions is discussed. An approach based on the system of fixed material constants describing
macro-strength properties of the material is considered. New principles of material testing are
analyzed. The corresponding incubation time criterion allows us to manage without the a priori given
rate dependences of dynamic strength and fracture toughness. New applications of the criterion to
the problems of disintegration and erosion are considered.

1. Basic structural characteristic of static fracture

ONE OF THE PRINCIPAL parameters of linear fracture mechanics is the material
structure size d describing the elementary cell of failure. The classical approaches
by GRIFFITH [3] and IrRwiIN [5] consider this characteristic as a latent quantity. It
may be presented as dimensional combination of surface energy, critical stress
intensity factor, static strength and elastic constants of the material:

v E
5 d~
a? (o

-9
(1.1) d~ = .
The elementary cell of fracture has no unique physical interpretation. It may be
interpreted in various ways, depending on the class of problems. The correspond-
ing Griffith - Irwin criterion is a universally recognized critical condition of brittle
and quasi-brittle fracture. This criterion is based on the square root singularity of
the stress field at the crack tip. Therefore its field of applicability is limited. For
instance, in the case of an angular notch in a plate, the general energy balance
equation cannot be satisfied for all methods of loading (Morozov [9]).

NEUBER [12] and NovozHiLov [14] suggested to consider the material structure
directly. The corresponding criterion requires that the mean normal stress in the
range of material structure size d must be equal to the static strength of the
material. In the plane deformation state case we have:

d
(1.2) llfn(r) dr £ @y
(
0

Assuming that in the simplest cases the criterion (1.2) gives the same results
as the Irwin’s critical stress intensity factor criterion, we obtain for the material
structure size d the expression:

(1.3) e

a?

bl 5}

C

2
Il
A0
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826 N.F. Morozov AND Y.V. PETROV

Criterion (1.2) may be used in various cases in which the square root singularity
and the appropriate energy balance do not work. Results obtained by means of
the criterion (1.2) under the condition (1.3) are well confirmed by experiments
in static cases (Morozov [9]).

The introduced material constant d is quite similar to the process zone size
parameter for the short crack fracture assessment occurring in ceramics (ANDO
et al. [1]).

2. Fast fracture processes

The constant progress observed in experimental mechanics during the last
years enables us to understand the fact that dynamic fracture in brittle solids is
remarkable for its specific nature. The corresponding experiments helped us to
discover some principal effects that have no interpretation within the framework
of the conventional models of brittle failure. Here are just some of them:

1) The dynamic branch of the time-dependence of strength and fracture delays
in spalling (ZLATIN et al. [23]).

2) The extensive zones of failure (cavitation) in spalling and their unpre-
dictable geometry (BROBERG [2], SEAMAN et al. [21], etc.).

3) The dependence of critical stress intensity factor of crack growth initiation
on the loading history (Ravi-CHANDAR and Knauss [20]).

4) The behaviour of the short pulse load threshold amplitudes leading to
failure at the crack tip (KALTHOFF and SHOCKEY [6], SHOCKEY et al. [22]).

Analysis of the experiments shows that the main contradictions of the tradi-
tional models appear when failure occurs during the short time intervals after the
start of the loading process. Morozov and Petrov [10, 11] proposed an approach
to the analysis of dynamic brittle failure based on the incubation time criterion:

d

t
1 1
- ' L0, )dr dt' < o,
(2.1) T](l]a(i,B,l)(lr dt' < o..

t 0

Here d and 7 are material structure size and structure time of failure, respec-
tively, o. is static strength of the material, (r,#) are polar coordinates, o(r,8,1t)
is tensile stress at the crack tip (r = 0). The material structure size d is to be
determined in accordance with the data of quasi-static tests of specimens con-
taining cracks, and in the case of plane strain it may be expressed by the simple
formula (1.3). The material structure time 7 is responsible for the dynamic pecu-
liarities of the macro-fracture process and for each material it should be found
from experiments. In accordance with this approach, o., K’y and 7 constitute
the system of fixed material constants describing macro-strength properties of
the material. PETROV [15] has shown that the criterion (2.1) reflects the discrete
nature of dynamic fracture of brittle solids.
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In the case of virgin materials, the criterion (2.1) reduces to the form:

t

(2.2) % / o(t')dl' < o, .

t—71

This form will now be used for the analysis of two particular problems.

The analysis of the particular problems of dynamic fracture mechanics is as-
sociated with the appropriate choice of the parameter 7. We shall mention two
basic cases:

1. The incubation time is defined by the material structure size of fracture:

2.3) d _d/o

= =

o
¢ k7

where ¢ is the maximum wave velocity, ¢ is the density of continuum, k is the
constant depending on the deformation material properties. According to this
definition, the incubation time has a physical meaning of the minimum time
period required for the interaction between two neighbouring material structure
cells. The incubation-time criterion with the parameter 7 selected according to the
formula (2.3) allows us to describe effectively the time-dependence of strength
and the fracture zone geometry in conditions of spalling (Morozov et al. [10,
11], PETROV and UTKIN [16]). Thus, the definition (2.3) provides a good analogy
between the incubation time criterion and the well-known experiments in the case
of “defectless” materials.

2. The incubation time does not directly depend on the material structure size
of failure. This takes place when a problem of initiation of the macro-crack growth
is considered. Nucleation, growth and coalescence of micro-defects in the special
process zone region at the crack tip precedes the growth of the macro-crack.
These processes are accompanied by a local stress relaxation and change the
effective material properties. The incubation time 7 is to be considered as the
principal integral characteristic of the processes in the corresponding process
zone region. PETROv and Morozov [18] proved that in the case of macro-cracks,
the material structure time 7 can be interpreted as an incubation time in the
well-known minimum time criterion proposed and explored by KALTHOFF and
SHOCKEY [6], HOMMA et al. [4], and SHOCKEY et al. [22]:

(2.4) = e

The aforementioned dependence of the fracture toughness on the loading history
and the specific behaviour of the short loading pulse threshold amplitudes can
be explained and effectively analyzed by means of the incubation time criterion
under the condition (2.4) (PETROV and Morozov [18]).
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3. Some basic principles of the material strength properties testing

In this section we outline some of the possible methods of description of the
material strength properties. Table 1 represents the basic parameters and criteria
to be used in testing of the materials. In Table 1 o, ;. are the material constants,
ogy"(v), Kp4(v) are the material functions that represent the dependences of
critical characteristics on the loading rate v.

Table 1.
No. Mecthod Material parameters Criteria
1 | Classical static ey Kipe o< o, K1 < Kye
2 | Classical dynamic o™ (), Kra(v) o(l) < o Ki(1) < K14
3 | SRI International af’"(u), Kia(v), tine | a(t) < P minimum time criterion
4 | Incubation time approach ey Niey T incubation time criterion

The classical dynamic approach, resulting directly from the static strength the-
ory and linear fracture mechanics, is based on two strength characteristics crélyn(v),
K 14(v), that are supposed to be material functions found from experiments.

The minimum time theory proposed by J.F. Kalthoff, D.A. Shockey and co-
workers is based on the incubation time notion. It allows us to explain some of
the principal dynamic fracture effects. On the other hand, the minimum time
technique turns out to be too sophisticated for practical engineering.

It is seen from the Table 1 and the aforementioned results that the incubation
time criterion combines the simplicity of the classical static method with the
effectiveness of the SRI International approach. Basing on the system of fixed
material constants, it enables us to predict the behaviour of dynamic strength
and dynamic fracture toughness from a unified viewpoint. Thus, the rate strength
dependences may be considered as calculated characteristics. The criterion may
be applied for both the “defectless” and macro-cracked specimens.

4. Application to the problem of disintegration

The great interest in connection with the technology of disintegration of solids
is presented by the issues concerning the speed of propagation of failure and the
fracture zone geometry. Even elementary experiments on spalling show that the
zone of destruction may have very diverse geometry. It can be either one spalling
section (like a crack), or several ones. In some experiments, the zone of fracture
has a form of a continuously damaged domain of finite extension. This domain was
named a zone of continuous crushing (NIKIFOROFsKY and SHEMJAKIN [13]). There
are also experiments, in which the zone of destruction represents the mixture

http://rcin.org.pl
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of damaged regions with intact parts of the material. Most of the experiments
show, that the geometry of the failure zones strongly depends on the parameters
of the applied loading, such as a speed of loading, its amplitude, duration, etc.
Eventually, it can be said that the whole history of loading is very important.

In this section we consider the particular problem of disintegration of a solid
ball caused by the instant discharge (unloading) of the external pressure (PETROV,
SemMeENov and UTkIN [17]). We shall demonstrate that the incubation time criterion
gives all the variety of the fracture zones just in the sonic approximation of the
problem.

Let a ball be loaded on its surface by a uniform pressure. At a certain mo-
ment, the pressure is instantaneously taken away. The corresponding boundary
value problem in the sonic approximation is described by the following system of
equations:

Jd Jod
= ul(r.? = — = ——
u = u(r,t), U 3y o TR
Pb 510 10@)
(4.1) W = C ﬁ '(-)—, (f r 5
P
|, =0=1@l-e

Here H(t) is the Heaviside step function; u and o are the displacement and
pressure inside the material, ¢ is the potential function, oy is the initial pressure,
c is the wave velocity.

The discharge of the pressure produces a spherical wave of unloading moving
to the center of the ball. This wave carries a tensile stress that produces fracture
of the material. The aforementioned incubation time criterion allows us to find
the extent and geometry of failure in this particular situation.

We assume that the material is homogencous, isotropic and composed of the
spherical layers of thickness b. All layers are assumed to have identical material
properties. We assume that the layer is destroyed at the certain moment, when
the critical condition in the center of the layer corresponding to the criterion (2.2
is fulfilled. The destroyed layer turns out to be, on the one hand, a shield for the
moving waves, and on the other hand, a source of an additional unloading wave.
The unloading waves running inside the ball are reflected from the destroyed
layers and interact with other stress waves. Thus the process is characterized by
a complicated picture of direct and reflected waves.

The scheme was realized in a complex of computer programs BALL. One of
the main results of the calculations was the graphically submitted zone of fracture.
It turned out that the region of failure strongly depends on the parameters of
the problem and on the material constants. Some of the possible variants of the
fracture zone for the hypothetical values o, = 900MPa, 7 = 1ps, b = 3mm,
¢ = 5000 m/s are presented in the Fig.1 (fracture zones are shown in black),
where a large variety of geometry is seen.
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Strength=900MPa; Inc.time=1mcs; b=3mm; c¢=5000m/s

R=100mm
Initial stress=2000MPa

R=100mm
Initial stress=3000MPa

R=100mm

Initial stress=700MPa

R=50mm

Initial stress=7000MPa

F1G. 1. Calculated fracture zones caused by instant unloading of the ball.

5. Application to the problem of erosion

The solid particle impact velocity at the beginning of target material loss in the
steady-state erosion process can be considered as a critical or threshold velocity.
It is a principal characteristic that bears an information about dynamic strength
properties of materials subjected to the impact loading. In this section, the rela-
tion between the threshold velocity W and the incubation time 7 is investigated.
The possibility of using the incubation time criterion in determining the threshold
erosion characteristics is established.

One of the principal features of the erosion process is that the target material
surface is subjected to extremely short impact actions. The evaluation of failure
in these conditions may be done only on the basis of special criteria reflecting the
specific nature of fast fracture phenomenon. The incubation time criterion (2.2
is an effective instrument for this analysis. Here we shall consider the simplest
way to obtain some of the basic threshold erosion characteristics.
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Let a spherical particle of radius R fall with velocity v on the surface of
an elastic half-space. Using the classical Hertz impact theory approximation
(KoLesnikov and Morozov [7]), we describe the motion of the particle by the
following equation:

d*h
(5.1) mm = -P,
where
4 E
= LORE3/2(1 {(R) = =/ B——x.
(52) P@O) = KRR, k(W) = VR G

At the beginning of the impact event we have dh/dt = v. The maximum pene-
tration hgy occurs when dh/dt = 0. Solving Eq. (5.1), we obtain

Smu? o 2hgy / ho
(53)  holv, R) = . tolv,R) = —] = 2,940

& [ 75

where ¢ is the duration of the impact event. The penetration function h(t) can
be approximated by the simple formula (KoLesnikov and Morozov [7]):

(5.4) h(t) = hgsin(rt/tg).

The maximum tensile stress occurring at the edge of the contact area is given by
the expression (LAwN and WiLsHAW [8]):

—-2v P(t,v, R)

2 7wa?(t,v,R)’

1
a(t,v,R) =

(5.5) s

R
a(t,v, R) = [3P(1, v, R)(1 — uz)ﬁ ,

where the contact force P(t, v, ?) can be found by means of Eqgs. (5.2) - (5.4).
Let v = W denote the threshold velocity corresponding to the beginning of
failure. We consider the function:

t
(5.6) f(ryv,R) = max ] o(s,v,R)ds — o.T.
t—T1
According to (2.2), we determine the threshold velocity v = W as the minimum
positive root of the equation:
(5.7 f(r,v,R) =0,

where 7 is the incubation time for the target material.
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The corresponding calculations were performed for the aluminum alloy B95
and the incubation time was determined according to formulae (1.3), (2.3): 0. =
460MPa, K. = 37MPam'/2, ¢ = 6500m/s, 7 = 2K7./(ro%c) =~ 0.6ps. The
calculated dependence of the threshold velocity IV on the value of radius R is
presented in the Fig.2 by the solid curve. The static branch shows a weak de-
pendence of the threshold velocity on the length of the radius. On the contrary,
the dynamic branch, corresponding to the small particles and very short load-
ing pulses, represents a strong dependence of the critical velocity on the radius
of particles. This behaviour of the threshold velocity is observed in numerous
experiments (POLEZHAEV [19]), but it can not be explained on the basis of the
traditional fracture mechanics. The dependence following from the conventional
critical stress theory is also presented in the Fig.2 by dashed line.

8 T T T T

— log(w(R))

— —— log(wc(R))
6 =
4 ]
2 -
0 1 1 | !

1 L5 2 25 3 3.5
log(2-R-10)

FiG. 2. Dependence of the threshold velocity W (m/s) on the radius /2 (m) of erodent patticles
calculated for aluminium alloy B95. The dependence corresponding to the classical fraciure
criterion: o < o, is plotted by dashed line.
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Stability of Couette flow in the wide gap
of two circular concentric cylinders
with rotating inner cylinder and finite growth rate

H.S. TAKHAR (MANCHESTER), M.A. ALI (BAHRAIN)
and V.M. SOUNDALGEKAR (THANE)

A FINITE-DIFFERENCE SOLUTION for the stability of flow of a viscous fluid in an annular wide-gap
space is carricd out by taking into account the cffccts of finite growth rate of the amplification
factor ¢. The numerical values of the minimum Tayler number Ta,, and the critical Taylor number
Ta. for different values of n and for 020 and ¢ = 0, respectively, are derived and tabulated. The
effects of n and o on the radial component of disturbance and on the cell patterns are shown. It
is observed that for increasing o(> 0), the cell patterns are reduced in size, while for decreasing
o(< 0) they are enlarged.

1. Introduction

STABILITY OF AXISYMMETRIC FLOW of a viscous incompressible fluid between two
concentric rotating cylinders has been investigated by TAYLOR [6], CHANDRASEK-
HAR [1], HarRrIs and REID [2], WaLowIT, Tsa0 and D1 PrRIMA [7], SOUNDALGEKAR
et al. [4], who used different methods and different boundary conditions. The
usual mathematical procedure of the stability analysis is to assume that small
disturbances are superimposed on the steady motion. These disturbances are
assumed to be periodic in the z-direction and proportional to €*, where o is
the amplification parameter or growth rate factor. Then the parameter which
governs the stability of the motion is the exponential time factor o, the motion
being stable or unstable according to whether the real part of o is less than or
greater than zero, and when o = 0, it is known as the marginal state. Almost all
the papers in this field applying the linear stability analysis dealt with o = 0, i.e.
the marginal state of stability. RoBERTS [3] was the first to study the effects of
non-zero values of the growth rate on the Taylor number in the wide-gap Couette
flow, and computed the smallest characteristic values of the Taylor number for a
given wave number a and the growth rate factor o, by employing the numerical
method given by Harris and Reid. However, the effects of ¢ on the radial velocity
perturbation and on the cell pattern have not been studied or shown graphically.
Hence it is now proposed to solve the eigen-value problem of RoBERTS [3] by
using a finite-difference technique and to derive the minimum values of the Taylor
number, Ta,,, for different values of +o of the radial velocity perturbations and
the cell-patterns. In the next section, a short account of the finite-difference
method is given and numerical values of Ta,, are tabulated for different values of
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+o and wave number «. In order to verify our results, we have also computed the
numerical values of Ta,, the critical Taylor number for ¢ = 0 and critical wave
number a..

2. Solution to the axisymmetric problem at finite growth rate

The axisymmetric linear stability of Couette flow at finite growth rate, wher the
outer cylinder is at rest and the two cylinders are separated by a wide gap, caa be
shown to be governed by the following system of sixth order (e.g. SOUNDALGEKAR
et al. [5]).

(2.1) (DD* = a> = a)(DD* — a¥)u = —a’Ta - g(z)v,
(2.2) (DD* = a® — o)v = u,
(2.3) u=v=Du=0 at z=0,1.

Here u, v are the radial and azimuthal components of the disturbances, a is the
axial wave number, o is the growth rate and Ta is the Taylor number. They are
defined as follows:

—
d= Ry— Ry, r= - [?I. g(x) =1-2,
d
d . d . 1-7 B
(2'4) D = E ’ - dz + 5 a= /\(l,
dntd* [ 02)\?
n = Ry/Ry, E=n+ (1 -y, Ta = s (7> ;

where Ry and R?; are the radii of the inner and outer cylinders, respectively, and
2, is the rate of rotation of the inner cylinder. Our Ta is equivalent to 2Tag
where Tap is the Taylor number defined by Roberts or Chandrasekhar, as

22dY 20\ 2
Tap = — ] .
'R 1-— 1]2 ( v )

3. Method of solution

By solving the above eigenvalue problem defined by Eqs. (2.1)-(2.3), we de-
termine the smallest characteristic value of the Taylor number, denoted by Ta,,,
for given wave number a and o. To solve Egs. (2.1) - (2.2) by the finite-differ:nce
technique, we first expand these as follows:

@3.1) (D' +2kD3 - (3k7 + 2% + o) D? + (3K - 2ak — k) D
+(2uzk2 -3+t 4+ a(l;z + (1.2)] u=—a>Ta. g(x)v,

(3.2) {Dz + kD — (K +d* + (T)] v = u, k= 1 ; 1
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We write the derivatives in terms of central differences and rearrange the terms.
Then Eqgs. (3.1) and (3.2) reduce to

(3.3) mUjsa + maUyy + maU; + mglU;_y + msU;_p = ~had* T g9(z)- Vi,

(3.4) C1Vig1 + CoVi + C3Viy = W*U;,
where
my = 1+ hk,
m2=—4—mm—h%ﬂﬁ+zﬁ+o)+%M@P—zﬁk—a@,
m3 = 6 + 2h2(3k% + 2d + o) + h*(2d%k* - 3k* + ot + ok? + 0d?),
(3.5) m4=~4+mm—h%y¥+z£+o)—%MQH—sz-am,
ms = 1— hk,
Ci=1+ %hk,
Cy = =2 —h*(k?* + a* + o),
C3=1—%M.

The suffix ¢ stands for the pivotal point under consideration. The step length
h = 1/N, where N is the number of intervals into which the range [0,1] is
divided. The boundary conditions (2.3) imply that

Up=Vo=Un=Vn=0,

(3.6)
Uy = Uy, Uni1=Un-ae

Equations (3.3) and (3.4) with conditions (3.6) can be written in matrix notation
as

All.—[ = Ta Bl V,
(3.7)

AV =7,

where A;, A; and B, are the coeflicient matrices of order n x n, and n = N — 1.
Equations (3.7) can be combined into an eigenvalue equation of the form

(3.8) (C —TaD)V = 0.

The eigenvalues are computed by using the QR algorithm for ¢ = 0, £0.5, %1,
+1.5, £2.0 and are listed in Table 1 for n = 0.85, 0.5, 0.1 which corresponds to
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the wide gap case. For o = 0, the marginal state, the eigenvalues Ta. are known
as critical values of the Taylor number which corresponds to lowest values of the
wave number a and are denoted by a., the critical wave number.

We observe from Table 1 that for the marginal state of stability (¢ = 0), the
critical values of the Taylor number and wave number increase by increasing the
width of the gap between two concentric cylinders. However, when the amplifica-
tion factor o(> 0) is increasing, there is also an increase in the minimum values
of Taylor number, and opposite is the case when the amplification factor o(< 0)
is decreasing; then the minimum values of Ta viz. Ta,, also decrease.

Table 1. Values of a., Ta. (¢ = 0) and a,, Ta,, (¢ # 0).

n Qe Ta. Tﬂc(R)
0.85 3.130 3802 3805
0.5 3.162 6194 6199
n/o -2.0 —-1.0 -0.5 —-0.1 0.5 1.0 1.5 2.0
0.85 Gm 3.00 3.068 3.100 3.124 3.159 3.188 3.215 3.241
Tam 3233 3515 3658 3773 3947 4097 4243 4393
0.5 am 3.033 3.100 3.132 3.156 3.191 3.219 3.247 3.273
Ta, 5289 5737 5964 6148 6425 6659 6895 7134
0.1 Gm 3217 3.280 3.310 3(333 3.367 3.395 3.422 3.449
Tam 56216 60318 62394 64065 66592 68716 70855 73011
1.0+
0.8
0.5
U(x)
0.6+
0.4
//. (/,
0.24 i ‘/
va
0.0 — T

0.0 0.2

0.4

Fia. 1. Radial velocity U(z).
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The radial component of velocity disturbance U(z) is shown in Fig.1 for n =
0.5, 0.1 and for ¢ = 0, £2.0. It is observed that U(z) increases near the inner
cylinder and decreases near the outer cylinder when o = 2.0 as compared to that
at the onset of instability (¢ = 0.0), and opposite is the case when o = —2.0. The
cell patterns are shown for n = 0.5 and 0.1 for ¢ = 0, £2.0 in Figs.2-7. It is
observed from these figures that the cells get reduced in size for ¢ = 2.0 and get
enlarged in size for ¢ = —2.0 as compared to those at the onset of instability.

0.497

0.3 -

0.15 A

0.0 -

-0.15 A

—0.497 T T
0.2 0.4

FiG. 2. Cell patterns at the onsct of instability for = 0.5 and o = 0.0, ¥ = U(z)cosaZ.

0.48

0.0

-0.15 A

-0.48 T T

0.2 0.4 1.0

FiG. 3. Cell pattern instability for = 0.5 and o = 2.0.



0.518

0.45 1

0.3 -
0.15 - ’

Z

0.0 -

-0.15

-0.3 4

~0.45 -

-

-0.518 r T T v
0.2 0.4 06 X 08 1.0
F1G. 4. Cell pattern instability for = 0.5 and o = -2.0.

0.47

0.3 4

0.15 A

0.0 A

=0.15 A

-0.3 4

—0.47
1.0

0.455 ——
== o 0.05
—\h‘_\
T~ 0.2
03 1 0.4
0.6
0.15 1 0.8
Z
0.0 1 .
-0.15 -
-0.3 —
~0.455 . = .
0.2 0.4 0.6 x 08 1.0

Fia. 6. Cell patterns for » = 0.1 and o = 2.0.
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0.488

0.3 4

0.15 4

—0.15 A

—0.488 T T
0.2 0.4

FiG. 7. Cell pattern for n = 0.1 and o = 2.0
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Singularities of aerodynamic transfer functions
calculated on the basis of an unsteady lifting surface model
in subsonic flow

M. NOWAK (WARSZAWA)

A DIRECT METHOD to calculate the Laplace transformed pressure distribution on subsonic lift-
ing surfaces is considered. The kernel function is analytically continucd in the entire p-plane (of
the non-dimensional Laplace variable), and the discretizing procedure follows the lifting lines (or
doublet-lattice) method developed for simple harmonic motion. The acrodynamic influence coef-
ficient matrix is a function of Mach number M and the complex variable p. In the first part of
the paper, some analytical properties of this matrix were investigated on the basis of numerical
calculations performed for an aspect-ratio-3 rectangular wing. The main conclusion of this paper
is that for M # 0, there exist a large (probably infinite) set of latent roots of the matrix in the
left half of the p-plane which (usually) reflect in poles of the transfer functions. For M — 1, all
latent roots tend to the origin (p = 0). For M — 0, all latent roots move to infinity and probably,
for M = 0 there are no roots in the finite part of the p-plane. The distribution of latent roots
in the p-plane does not depend on the number of acrodynamic elements introduced by the dis-
cretization (within the limits of accuracy of the calculation method). The algebraic equations are
well-conditioned in the right half of the p-planc and in a strip parallel to the imaginary axis in left
half of the p-plane. The width of this strip depends on the Mach number. In the second part of
the paper, an approximation to the acrodynamic transfer functions based on the identified singu-
larities and calculated left and right-hand latent vectors of the acrodynamic influence coefficients
matrix is developed. It avoids the ill-posed analytical continuation from the imaginary axis in the
whole p-plane. The results clarify also some uncxpected phenomena observed in Laplace-domain
calculations, and described in the literature.

1. Introduction

THE KNOWLEDGE of unsteady aerodynamic forces acting on a flexible aeroplane
undergoing small perturbations from a steady equilibrium state of trimmed, recti-
linear flight, is essential for stability analyses of the motion of the structure.
The prediction of the unsteady aerodynamic loads is complicated by the fact
that the unsteady flowfield surrounding the body is not determined solely by the
instantaneous state variables of the structure, but it depends also on the past
history of the motion of the body. The aerodynamic forces exhibit heredity due
to the influence of vorticity shed into the wake at earlier instants of time.

The input data in a lifting surface aerodynamic model is the upwash distribu-
tion w(z,y, t) on the wing surface 5 (Fig. 1). Assuming that all linear coordinates
(z,y, z) are nondimensionalized by a reference length & (usual root semichord),
and introducing nondimensional time ¢

__U'trcul
(1.1) =2
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z
y.n 2b,(y)
U
§
wixy,t) &
.1
lifting surface vortex wake
Fig. 1.

where U is the flight velocity, the expression for the upwash distribution can be
put in the form

w(z,y,t) Jh  0Oh
(1-2) 7R PR T
where h(z,y,t) denotes the normal (nondimensionalized) displacements of the
wing surface.

The lifting surface integral equation relates upwash and lifting pressure coef-
ficient ¢,(x, y,t) (i.e. pressure difference Ap(x,y, 1) between the upper and lower
surface, nondimensionalized by the dynamic pressure ol/?/2) on the wing. The
original form of the lifting surface equation, given in 1940 by KUssNER [1] applies
to harmonic motion, when

w(z,y,t) = 0(z,y,ik)e’™  and ¢ (e,y,1) = E(x, y, ik)e™

The lifting surface equation relates in this case the amplitudes of upwash and
pressure coefficient

D , ok 1 . - ;
(1.3) w(I’U—yz) =g fl'\ (M, 29, yo, ik)c, (€, n, ik) dédn,
S
where z¢g = z — &, yo = y — n, M stands for the Mach number and
wbh
(1.4) k= i

is the nondimensional frequency coefficient (called also reduced frequency).
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The kernel of this equation is singular and the solution is sought in the class
of functions vanishing on the trailing edge — this is a necessary condition for the
uniqueness of the solution, and physically it expresses the Kutta condition.

There were developed many different methods for discretization of the lift-
ing surface equation in the frequency domain. One of the most useful is the
doublet-lattice technique of ALBano and RoDDEN [2]. The calculations in this
paper were made mainly by the lifting-lines method [3, 4], with algorithms very
similar to the doublet-lattice method, but usually with better convergence prop-
erties (with respect to the number of introduced aerodynamic elements).

For many years, the unsteady aerodynamic theories and its applications have
focused primarily on the frequency domain, since the knowledge of aerodynamic
forces at harmonic disturbances is sufficient for the determination of flutter
boundaries. The advent of active control technology for flexible aircraft has re-
newed interest in unsteady aerodynamic forces given in the time and Laplace
domains.

The displacements of the structure are usually described by means of a finite
set of generalized coordinates ¢ (¢), ¢2(¢), ..., ¢.(t) defined on the basis of a set
of assumed modes

7
(1.5) h(z,y,t) = Z hy (e, y) - g (1),
k=1
where the functions hy(x,y) (k = 1,2,...,n) correspond in the most cases to
natural vibration modes of the structure. The upwash distribution on the lifting
surface may be expressed in terms of the generalized coordinates and generalized
velocities

(1.6) 2@l o 5 ED iy + 3 ) ).
i=1 ax k=1

The generalized aerodynamic forces (related to the dynamic pressure and b%)
are defined by integrals taken over the surface

(1.7) fr(t) = /f hi(z, y)ep(x, y, 1) dS for k=1,2,...,n.
s

The problem consist in determination of the generalized force vector { f(1)}
(with n elements (1.7)) for a given motion, described by the function {q(7)}
for —oo < 7 < t. Independently of the details of the aerodynamic model, the
aerodynamic operator which relates {¢(¢)} to {f(!)} possesses always some ba-
sic properties, such as single-valuedness, linearity, time-invariance and continuity.
According to a theorem of SCHWARTZ [6], these four properties can be replaced
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by the entirely equivalent condition that states that this operator has a (distribu-
tional) convolution representation.

(1.8) {70} = [AM D] * {g(D)},

where [A(M, )] is the unit impulse response matrix function (called also heredi-
tary matrix [5]), the (J, k) element of which is the generalized indicial response in
the j-th mode due to the pressure ¢,(z,y,t) generated by the motion in the k-th
mode with gx(¢) = 6(t). The elements of this matrix depend also on the Mach
number M. The aerodynamic forces can depend only on the history and not on
the future of the motion. That means that the aerodynamic system is causal, and
therefore
[AM, )] =0 for t<O.

Direct calculation of the elements of [A(AM,t)] for arbitrary time may be
difficult and in practice, these functions are usually determined only by means of
the inversion of Fourier or Laplace transform. Taking the Laplace transformation
of the convolution (1.8) it follows that

(1.9) {Fm} = [A0rp)] Ge)} ,

where p is the Laplace variable, and the circumflex accents (7) denote transforms
1.10) {J®} = O}, {aw)}) = L{a} and  [AOMLp)] = LIAOL,D).

The aerodynamic transfer functions matrix [‘/T()\I,p)] is a Laplace transform of a
real distribution and is real whenever p is real. Hence

(1.11) (A, )| = [Ar,p)]

where the star (*) denotes complex conjugate values.

The convolution (1.8) and the Laplace transformation should be interpreted
on the basis of the theory of distributions [6]. The aerodynamic transfer func-
tions grow with increasing |p| like O(|p|) in the case of compressible flow, and
like O(|p|?) in the incompressible case. Additionally, the distributional Laplace
transform does not contain explicitly the initial values and this simplifies the
analysis.

If the Laplace variable is pure imaginary p = ik, then (1.9) determines the
steady-state frequency response function, which relates the amplitudes of gener-
alized coordinates to the amplitudes of generalized forces in harmonic motion.

(1.12) {70y} = [Aa )] {ai)
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where k is the frequency coefficient defined in (1.4), and
(A, i)| = lim, [A(m, p)]

is the matrix of harmonic transfer functions.

The elements of the matrix [A(AM, :k)] can be calculated numerically for given
values M and k on the basis of the lifting surface equation (1.3), and the relations
(1.6) and (1.7).

The aerodynamic transfer matrix [A(M, p)] is the final product of aerodynamic
calculations and it is usually determined by means of the analytic continuation of
the elements of matrix [A(AZ, ik)] from the i 1ma,g,umry axis into the whole complex
plane. Two types of approximation have been used in practice for this purpose.

1. The first approach begins with calculating the values of harmonic transfer
functions over a specified range of the frequency coefficients k = ky, ko, ..., kp.
Next, the harmonic transfer functions are approximated by rational function which
fit best the calculated values. The last step is the analytic continuation of the
resulting rational functions into the whole p-plane.

2. In the second (direct) approach, the kernel function of the lifting surface
equation (1.3) is extended from the imaginary axis to the entire complex plane
K(M,zg,yo,tk) — K(M,z9,50,p) by means of an exact analytic continuation.
The elements of the aerodynamic transfer functions are calculated directly for
a given value of the Laplace variable p on the basis of this generalized lifting
surface equation.

Both approaches have their own advantages and disadvantages. The elements
of [A(M, p)] are holomorphic functions with branch points p = 0 and p = —c0
(for M < 1) which are neglected in the approximation by rational functions. When
the transfer functions are approximated by polynomials or rational functions, it
is possible to cast the aeroelastic (and aeroservoelastic) equations of motion in
a linear time-invariant state-space form (instead of integro - diflerential form),
although the size of the state vector increases due to the approximation. Currently
there are three basic formulations used in approximating the aerodynamic transfer
functions by means of rational functions: least-squares [7], modified matrix-Padé
[8] and minimume-state [9]. The common disadvantage of these methods is the
necessity of numerical realisation of an ill-posed analytic continuation.

The direct analytic continuation of functions which appear in the expression
for harmonic aerodynamic forces gave rise in the past to arguments on the valid-
ity of the results in the left-hand half-plane of the Laplace variable and was
rejected in a series of articles [10, 11, 12, 13]. This problem was later resolved by
MILNE [14], EDWARDS [15] and others, but nowadays some doubts arose about the
possibility of a practical utilisation of this approach [16]. It was stated, that the
application of numerical solution techniques to the integral equation in the left
half of the p-plane may result in a highly ill-conditioned set of linear equations
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[17]. An unexpected phenomenon was observed in [18]. Some of the generalized
forces for strongly decaying motions in high subsonic flow reveal a looping be-
haviour in the complex plane. Testing a new method for solving the lifting surface
equation, UEDA [19] stated that “it looks probable that an aerodynamic singularity
exists in the left half of the p plane when the flow becomes high subsonic”.

Another interesting approach to the approximation of transfer functions was
given by STARK [20]. He proposed an expression for the lift deficiency function in
the time domain and assumed that this function is independent of the deflection
mode of the wing. Laplace transform of his deficiency function possesses branch
points p = 0 and p = —oo, which are the only singularities of the transfer
functions in the entire p plane. This approach leads to a good approximation in
the incompressible case, but for non-zero Mach numbers the results were less
satisfactory.

The knowledge of analytic properties of aecrodynamic transfer functions in the
p plane is until now only fragmentary. It is known that the matrix [A(M, p)] can-
not have any poles in the right half of the p plane, since the transient aerodynamic
response is always stable. It is also known, that for a subsonic flow, the aerody-
namic transfer functions have logarithmic branch points p = 0 and p = —oo,
as a result of the unlimited length of the wake. It is usually expected, that the
aerodynamic transfer functions have no poles also in the left half of the p plane
[5]- This is true for the exact solution of two-dimensional airfoil in incompressible
flow but was newer proved for the compressible case. The problem is addition-
ally complicated by the fact, that the solution of the singular integral equation is
ill-posed, but the numerical methods used in the chordwise integration introduce
a self-regularization and, after discretization, the resulting set of algebraic linear
equations is usually well-conditioned. In the two-dimensional case (of an airfoil)
the proof of this statement was given by Liranov [21].

The aim of this paper is to investigate the numerical problems which occur
in solving the lifting surface equation in the Laplace domain and the analytical
properties of the transfer functions in the left half of the p plane (for decaying
motion). Particular attention will be paid to the conditioning of the linear alge-
braic equations obtained by the discretization of the lifting surface equation, and
to the identification of singularities of the transfer functions.

2. Lifting surface equation in the Laplace domain

The lifting surface equation in the Laplace domain is the result of an analytic
continuation of the kernel of (1.3). Formally, the variable ¢k should be replaced
by the Laplace variable

w(z,y,p 1 . -
(2.1) % ok / K (M, zo, yo, )ep(€, n, p) dEdn).

S
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The singular kernel (in the case of a flat surface) may be expressed in the form
[4, 18]

1 .
@) KMeowp) = (14 F) e - Forw] e,
2
where
rg = a — &,
Yo=Y—1,
r= IUO]’

R = \/.z:g + 322,

B =v1-M2

MR - 2
32r

The function F'(z,u) is defined by means of following integrals

; o0 n B
2 1—- ——— e ?d for Re(z) > 0,
] ( 1+1;2) e (=) 2

(2.3) F(z,u) = U

zu 7 —z1 . (1)
2e*" + = f 14+ ——— | e *dn—irzll; " (z
Fd ( Tt 2 ’]2) ] 1 ()

L for Re(z) < 0.

u =

The second expression (for Re (=) < 0) may be obtained from the first integral
in (2.3), by an appropriate contour deformation.

Only a few papers (e.g. [18, 19, 22]) are known which are devoted to the
numerical problems which occur in lifting surface calculations in the Laplace
domain.

For small values of |pru| it is convenient to split I'(pr, u) into two parts [18]

(2.4) F(z,u) = IN(2) — Ih(z,u),

where

- —~OO 7]_ > 27 = 7_£~ ~ 7 (>
2.5) Fl(a)uaof(l—m)c dy =14 2= Z2(IL() - Vi),

and the integral F5(z,u) defines an entire analytic function of the z variable,
which may be expanded into a convergent series

u . N - 1 .
(2.6) I(z,u) = z/ (1 - _#’]2) e~ dy = z o ])!gk(u)z““,

0 k=0
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with a recursive relationship for the coefficients

gk(uw) = (u (m~ u) = %) (—u)t-! -

k-1

gr—2(u) for k>2

and initial terms
go(uw) = 1- (Vl + u? - u) ;
gi1(u) = In (V] + u? — u) + u (Vl + u? — u) .

The Hankel function H{l)(:), Struve function //,(z) and Bessel function of the
second kind Y)(z) may be calculated with high accuracy on the basis of the series
given e.g. in [23]. The accuracy of the series (2.6) is limited by the numerical
instability due to the round-off error in actual computation. For calculations per-
formed with double precision, this limit depends on the values of parameters
and sufficient accuracy can be achieved only if |pru| < 6. For larger values of
parameters it is necessary to provide other approximations.

For very large values of |pr| satisfactory results may be obtained from the
asymptotic expansion derived by means of integrating by parts the integrals
in (2.3)

(2.7) F(z,u) = (1 — f(u) - Zf(“(u)%) g
k=1 -

0 for Re(z) >0,
irzlI{"(z)  for Re(z) <0,

where - i et} T
u) = f(u) = ———, e u?
O = f) = s, f) = VT
and
1 ' .
FE) =~ [k + Das®) + ( + 1k - 174 Dw)

The asymptotic series (2.7) is usually divergent and only a limited number of
terms can be employed in the calculations.
Very useful in practice is an exponential approximation for the integrands of
(2.3)
. 12
1l —/7/ —— = n.ex,——zkbr,
VT Z:l k exp( o7)
proposed by Desmarais. The values of coefficients by and ay are given in [18].
The resulting rational approximation of /'(pr, u) may be used in the range r/4 <
larg (p)| < 37/4 and —o0 < u < o¢.
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3. Discretization of the lifting surface equation

It is possible, independently of the used discretization procedure, to distinguish
three steps of calculations of the values of transfer functions for a structure with
n degrees of freedom (for a given Mach number A/ and value of the Laplace
variable p):

a. Calculation of the substantial derivative to obtain a N-dimensional approxi-
mation of the upwash distribution

3.1) (@)} = ([P + p[D2]f7)};

Nx1 Nxn Nxn Nx1

b. Solution of a linear system of algebraic equations

(3.2) {o(p)} = [K(M, p)l{e,()}s
= Nx1 NxN  Nxl
c¢. Determination of the transforms of the generalized coordinates
(3.3) {f(l’)} = [5] {e ()}
Nx1 nxN Nxl

N is the size of the aerodynamic influence coefficients matrix which approximates
the integral operator. The vectors {@(p)} and {¢,(p)} describe the upwash and
pressure distributions on the wing surface. In practice, typical values are: n =
20+30and N ~ some hundreds (but always N > n). The differentiation matrices
[D1], [D2] are determined by the formula (1.6), and the integration matrix [5]
by the definition of the generalized forces (1.7). These constant matrices depend
only on the used discretization method. Matrix [A'(M, p)] depends also on the
Mach number and on the assumed value of p. The evaluation of this matrix is
the most time-consuming part of the computation.
Equations (3.2), (3.3) and (3.4) may be put together in the form

{7} = 151 KOLPI ([ + p[D2]){a)}-

nxl1 nxN NxN N xn Nxn Nx1

Hence, the aerodynamic transfer functions matrix is given by the formula

(3.4) {,T(M, p)} = [S] [K(M,p)] ™" ([D1]+ ])[Dg])‘

nxn nx N NxN Nxn Nxn

If the discretization procedure in the Laplace domain is the same as in the
frequency domain (when p = ik), then the matrix (3.4) is the result of an exact
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852 M. Nowak

analytical continuation of the harmonic transfer matrix [A-Al(M, tk)]. On the other
hand, if the calculations for a harmonic motion are based on the discretized
equation (1.3), then the values of analytic functions determined in the entire
complex plane p are in fact calculated on the imaginary axis. Therefore, the
knowledge of analytic properties of the transfer functions may be useful also in
the case, when the calculations are restricted to the imaginary axis only.

In the case of subsonic flow (M < 1), the elements of [A'(M,p)] have a
branch-point in the origin (p = 0) and from the expression for the kernel function,
it follows that

[K(M,p)] = [N(M,0)] + 0@(p*In(p))  for p— 0.

The transfer functions are holomorphic functions in the complex plane cut along
the negative real axis. -

Poles of the transfer matrix [A(A/, p)] may exist only in those points of the p
plane, where the matrix [A'(M, p)] is singular

(3.5) det ([N (M, p)]) = 0.

The number of latent roots of the equation (3.5) may be large or infinite, because
the elements of the matrix [A" (M, p)] are transcendental functions of p.

4. Condition number and latent roots of the acrodynamic influence coeflicients
matrix

Most of the calculations in the following analysis were performed for a rect-
angular wing with an aspect ratio A = 3 in symmetric motion. This wing was
also investigated in [20] and [22]. For the discretization, the lifting lines method
[4] was used, but some of the calculations were repeated with the doublet-lattice
method [2] (with the same or almost the same results).

The sensitivity of the solution of (3.2) to the perturbation of the data

1A, (Ml 3@
llex @l le@)l

may be measured by the condition number of [A°(M, p)] defined as the product
of two matrix norms

< cond [N (M, p)]

@.1)  cond[K(M,p)] = [N, p)]| - H[/;(A],p)]-iﬂ (1 < cond € ).

Logarithm to the base 10 of the condition number can be used to estimate
the number of significant digits of the result which can be lost, independently
of the accuracy of the method used to solve the linear equations. Hence, if the
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calculations are performed with double precision, then the matrix is numerical
singular when log, (cond[I\'(M, p)]) > 16.

The conditions numbers of the matrix [A"(A/, p)] were calculated for different
Mach numbers and for a large set of p-values by means of the SVD algorithms
[24] for complex matrices.

Figure 2 shows the results of calculations made for Mach number M = (.8
in a large region —1.75 < Re(p) < 0, 0 < Im(p) < 3.5 of the complex p-plane.
The size of the aerodynamic model was N = 10 x 20 = 200 elements (10 lifting
lines and 20 strips uniformly distributed on the half-span of the wing). It is seen,
that the matrix in this region is well-conditioned, although for Re (p) < —1.0 the
condition number grows very fast. There are also many local “spikes” which may
indicate, that in its neighbourhood exist singular points of the matrix [A' (M, p)].

Figure 3 shows the same results in the form of a contour map. The latent roots
were also calculated on the basis of Eq. (3.5) by means of the Muller method [25].
The results of these calculations are posted on the contour map in the form of
black dots. In each of this calculated points log,,(cond [N (A1, p)]) > 16, hence
the matrix is numerically singular. The initial values for the Muller iteration pro-
cedure were determined on the basis of the shape of contour lines. The condition
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number grows rapidly only in the vicinity of each root. In a very small region
(|Ap| < 107%), the determinant of the matrix decreases usually by a factor about
10~19, although its value may be still very large. This is shown in the Fig. 4, where
the contour lines correspond to constant values of log,, | det[ A (A, p)]|.

The singular points exist for each Mach number in the range 0 < M < 1.
The root distributions at Mach numbers A = 0.5, 0.7, 0.9 and 0.95 are shown
in Fig.5. It is seen that, as the Mach number increases, the width of the strip
in the left half of the p plane where the matrix [A (M, p)] is well-conditioned,
decreases. At the same time, all latent roots move in the direction to the origin.
This phenomenon is shown in Fig.6 where the loci of about 20 selected roots
are depicted. The outer ends of these curves correspond to the Mach number
M = 0.5, and the inner ends to M = 0.9.

On the basis of Fig.5 and Fig. 6 it is possible to formulate a hypothesis that
for M — 0, all roots move to infinity and in the incompressible case M = 0,
there are no roots in the finite part of the plane |p| < oco. On the other side, for
M — 1, all roots move to the origin and may significantly influence the behaviour
of transfer functions at high subsonic Mach numbers.
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Im(p)

Root loci
M=05+09

f t t t 0.0

It has been found in the example of a rectangular wing, but also for other
surface configurations, that the calculated roots of Eq.(3.5) were always simple
roots only.

5. The influence of the discretization on the distribution of latent roots

It is not clear if the roots have a physical meaning and are related to the lifting
surface equation or if they occur only in numerical calculations and are related
to the discretized problem.

Figure 7 shows the influence of the size (N = 48--437) of the matrix [/ (M, p)]
on the distribution of latent roots in the p plane. The calculations were made
by means of the lifting lines method, for a rectangular wing, at Mach number
M = 0.8. It is seen that the differences may be related to the accuracy which
may be achieved with the different models. For large values of the frequency
coefficient, the pressure distribution is oscillating along the chord (Kutta waves)
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and a large number of aerodynamic elements is required at the discretization. It
follows, that the number and distribution of latent roots do not depend on the
size of matrix [N (A1, p)] within the limits of accuracy of the used method.

The most time-consuming part of the procedure to calculate latent roots is the
search for a good initial approximation. The results presented in Fig. 7 suggest a
practical approach, which may be applied for an arbitrary large N. The process
should be divided into a sequence of steps, in which the number of aerodynamic
elements increases Ny < N < ... < N. The results obtained in each step are
used as the initial values for the next step. The choice of the initial approximations
for the first step may be not strenuous if N is small enough.

6. Approximation to the transfer matrix in the vicinity of its poles

The resolvent [26] of the matrix [/A'(M, p)] for a given p has the form

N ‘ /4
: -1 {w; ()} ()}

6.1 KN (M, )] = A[ = 1 Z s

(6.1) (LK (1.1 - ALTY) VIR

where the scalar parameter A is distinct from the eigenvalues A;(p), j = 1,2,...,, N
of [A'(M, p)], while {u;(p)} and {v;(p)} are the right and left eigenvectors asso-
ciated with A;(p), and normalised in such a way, that {v;(»)}" {u;(p)} = 1. The
relation (6.1) is true also for A = 0, because the matrix [A'(A/,0)] is not singular.
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The derivative of an eigenvalue of ['(M, p)] is given by the expression
(62 N0) = LN (3olE L) (0,0}
b dpj)-vj) apx-,p u;(p)g-

If the value p = p; is a latent root of (3.5), then at least one of the eigenvalues
Aj(pk), 7 = 1,2,..., N is equal to zero and in the vicinity of pi

«(p — pr)-

P=Pk

(6.3) Ai(p) = )\ i

On the basis of (6.1), (6.2) and (6.3) it is possible to obtain an approximation
to the matrix inverse [K'(M,p)]~! in the proximity of the root p = p;

_ {’ll,’c}{‘vk}T
P — Pk

(6.4) [K(M,p)]? + [2(p)],

where [#(p)] is a regular function in the vicinity of py, while the latent vectors
{ux} and {vx} are non-trivial solutions of the sets of homogeneous equations

(6.5) {0} T[K(M,pt)] =0 and [N (M,py)){ur} =0,

normalised in such a way, that

(6.6) {(A}f [I\(Wp)] {up} = 1.

=px

It follows from (6.4) that the latent roots of (3.5) usually reflect in poles of
the transfer functions (3.4). However, there are two obvious exceptions to this
rule.

If {s;}7 is the i-th row of the integration matrix [S] which was defined in
(3.3) and {s;}7{ux} = 0, then the latent root px is not a pole of the functions
(elements) in the i-th row of the transfer matrix [A(M, p)]. Similarly, if {dy;} and
{d2,} are the j-th columns of the differentiation matrices [D,] and [D;] and at
the same time {vL}T{d,]} = 0 and {v;}7{dy,;} = 0, then the latent root p; is not
a pole of the functions in the j-th column of the transfer matrix.

The right latent vector which is a solution of the second homogeneous equa-
tion (6.5) determines a pressure distribution. In Fig.8 and Fig.9 two examples of
such pressure distributions are shown which are associated with two latent roots.
It has been numerically proved, that the shapes of these functions do not depend
on the number of aerodynamic elements used to the discretization of the integral
equation.
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7. Approximation to the transfer functions based on their singularities

The knowledge of the singularities: branch points (p = 0 and p = —o0) and
poles (latent roots of (3.5)) makes possible an approximate reconstruction of
the transfer functions in the entire complex p plane, without any use of analytic
continuation (from the imaginary axis).

The solution of the equation may be put in the form

(7.1) (@) = [ (20))

where [Ae(p)| denotes the matrix [A'(M, p)] ™.

To simplify the notation, in (7.1) and later in this section, the dependence of
the matrices which define the aerodynamic system on the Mach number was not
marked explicitly.

It should be emphasised that the relation (7.1) concerns the aerodynamic
model only and does not depend on the definition of generalized coordinates
used to describe the motion of the structure.

The inverse Laplace transform £~! applied to (7.1) gives the relation between
upwash and pressure distributions in the time domain in the form of a convolution

(72) {ep(0)} = [Ae()] + {w(®)},

where the elements of [Ae(t)] are the responses {c, (1)} which result from a unit
impulse é(¢) in the elements of the discretized upwash distribution {w(t)}. In
practice, it is usually more convenient to use inditial functions [//(¢)], which are
responses to a unit step change in the (discretized) upwash distribution. From
(7.2) it follows that

(7.3) {ep(0} = [ O]+ { @ (D)},

where { w (1)} is the derivative with respect to time ¢ of the upwash vector {w(t)}.
The inditial functions [//(1)] are related to the hereditary functions [Ae(t)],

(7.4) i) = ;—) [Ae)]  and (@] = £71 ()] = [Ae(®)] 14 (),

where 1,(2) is the unit step function (Heaviside function).
From the final value theorem [6] it follows

(7.5) [ (e0)) = Jim [71(1)] = lim, [Ae)] = [4e@)] = (K10

This limit corresponds to the steady solution (for constant boundary conditions
on the surface). In compressible flow (A # 0), there exists also the limit given
by the initial value theorem

(7.6) [D] = lim [11(1)] = lim [Ae)] = [Ae(0)] ,
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which can be calculated directly on the basis of the piston theory [27]

4 w(z,y,0+
(1.7) y(o,0,04) = 5 L0
M U
(discretization of this relation in the method of the lifting lines is given in the
Appendix).
In the incompressible flow (A = 0) the limiting values (7.6) do not exist, but

; : 1~
(7.8) [Ma] = lim ([(0)] #14()) = lim (; [Ac(p)])
is the apparent mass matrix, which can be determined on the basis of a simplified
model (without wake).
Taking into account the properties of the elements of the matrix [A'(M, p)], it
is possible to obtain (e.g. [5, 8, 14]) an asymptotic representation

(7.9) [,Tc(p)] - [Ae@)] = 0G*Inp)  for p—o.
It follows, that in the time domain

(7.10) [H()] - [H(x)] =0@t?) for t— .
The general form of the inditial matrix may be put in the form

(7.11) [ ()] = [ ()] — [C()] + [MAl5(0),

where the function [C'(¢)] is usually called the deficiency function, and its asymp-
totic behaviour is determined by (7.10). The constant matrix [/ (o0)] determines
the steady-state limit and may be calculated on the basis of (7.5). The apparent
mass matrix [AM 4] is involved only for incompressible flow.

This paper is focused on the poles of the transfer functions and their influence
on the aerodynamic forces. It was shown that the latent roots of (3.5) appear
only when M > 0, and therefore, the following analysis will be restricted to the
compressible flow when [M 4] = 0 and the relations (7.6) and (7.7) may be used.

It is convenient to make a decomposition

(7.12) [T((p)] = [:Al(:‘l(p)] + [.»Trrz(p)] ,

where the first term represents the influence of poles, and on the basis of (6.4)
it may be put in the form

(7.13) [;{C(I))] = Z ({?lA.}{'i‘k}T N {u:_}{'bz_}]‘) ,
k

P — Pk P PL
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where the summation concerns all the (calculated) roots, which exist alwiys as
conjugate pairs. It may be assumed, that the second term [,Tr,.‘z(p)] does not
possess any poles and represents the influence of the branch-points p = 0 and
p = oo.

Similar decomposition of the indicial matrix has the form

(7.14) [1(1)) = [H1(0)] + [Ha(1)],
where on the basis of (7.13) it follows that

(7.15) (O] = lim [11:()] = lim |dei(p)] =0,
(7.16) (0] = Jim [H,(0)] = lim [Ae1)] = [Ae1 0)]

and for t — o

(717)  [L(O] - [Hi(ee)] = O(*)  where o = max(Re (px)) < 0

Hence, the asymptotic behaviour of [/7(1)] is determined by [/[5(t)] — [{2(x). =

o=,
From (7.6) and (7.15) follows also the limiting value
(7.18) Jim [115(0)] = lim [27(1)] = [D)

The deficiency function matrix may be also represented in the form of a sum
of two components

(7.19) [Ch(1)] = [H (o] = [11(1)]
and
(7.20) [C2(1)] = [H2(c0] = [H2(1)]-

The first component is determined by (7.13), but for the second component, caly
the limiting value is known

(7.21) [C2(0)] = [Ha(o0)] - [D] = [W(M,0)] " - [chx(O)] - [D]
and the asymptotic behaviour
(7.22) [Ca)] = 0@  for t— co.

Finally, the problem of approximating the response matrix with the use of
identified singularities is reduced to the determination of deficiency functiyns
which fulfils the conditions (7.21) and (7.22).
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For this purpose it is possible to use a method proposed by Stark [20] in a
similar problem. If the deficiency matrix function can be approximated by a scalar
function

(7.23)  [Ca(0)] = [C2(0)] - 9(1),  where g(0) =1,
and g(t) = 0(™?) for t— oo,

then
(7.24) [H (D] = [H:1(O] + [H2(0)] = [C2(0)] - g(1).
Taking the Laplace transform of (7.24) and multiplying the result by p we obtain
(7.25)  [K(M,p)]™" = [Ae()]

~ [Aa()] - [Ae(O)] + [KOLOT™ - [C20)] - (),
where the matrix [C(0)] is given by (7.21), and g(p) = Ly (1).

STARK proposed [20, 28] some forms of the function g¢(t). The best results
were obtained with the set

a+ 1

(7.26) gm(t)=( - )m (m=1,2,3,.),

where a is a positive real number which can be chosen in numerical experiments.
Laplace transforms of functions (7.26) may be expressed by the exponential in-
tegral functions. The conditions (7.23) fulfil the function g,(?).

8. Conclusions

The numerically calculated aerodynamic forces in the frequency domain are
always the values of analytic functions determined in the entire complex plane of
the Laplace variable. These functions have poles in the left half of the complex
plane, which determine the limits for the approximation by means of rational
functions (with analytic continuation from the imaginary axis into the complex
plane) and which may significantly influence the aerodynamic forces in the time
domain.

1. In the case when the discretizing procedure of the lifting surface equation
follows the lifting lines or doublet-lattice methods, the resulting algebraic equa-
tions are well-conditioned in the right half of the p-plane and in a strip parallel to
the imaginary axis in the left half of the p-plane. The width of this strip decreases
with increasing Mach number, but is wide enough for almost all applications.
Only for high subsonic flow the problem of conditioning may be severe.
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2. In the compressible case (M # 0), there exist a large (probably infinite) set
of latent roots of the aerodynamic coeflicients matrix in the left half of the p-plane
which reflects (usually) in poles of the transfer functions. The distribution of
these latent roots in the p-plane does not depend on the number of aerodynamic
elements introduced in the discretization procedure (only small differences were
observed which may be related to the accuracy of the results).

3. Also the pressure distributions which correspond to latent vectors of the
aerodynamic influence coefficients matrix do not depend on the number of aero-
dynamic elements introduced in the discretization procedure.

4. For decreasing Mach number A — 0, all latent roots move away from
the origin to infinity and probably, for A/ = 0 there are no roots in the finite
part of the p-plane. It seems to agree with the results of the StTark method [20]
which takes into account only one singularity — the branch-point in the origin.
The remarkable accuracy of this method in the incompressible case and less
satisfactory results for M > 0 may be caused by the influence of the poles of
transfer functions.

5. In subsonic flow for A — 1, all latent roots tend to the origin (p = 0).
The proximity of many poles may cause significant difficulties in the calculation
of transfer functions in the range of high subsonic flow.

6. The decomposition of the deficiency function into a part which expresses
the influence of latent roots (7.19) and a part influenced by the branch point
(7.20) enables the extraction of the part which is responsible for the starting
pulse. This agrees with the results of Epwarps [15] who stated, that the step
response function obtained by integrating along the branch cut does not contain
the starting pulse.

7. The looping behaviour of some of the generalized forces for strongly decay-
ing motion observed in [18] may be explained as the result of influence of poles
of the transfer functions. It may be regarded as an indirect confirmation of the
existence of latent roots in the kernel-function results.

The calculations and all considerations presented in this paper concern the
aerodynamic model and the results are independent of the choice of generalized
coordinates used to describe the motion of the structure.

The approximation to the aerodynamic transfer functions based on the iden-
tified singularities and the calculated left and right-hand latent vectors of the
influence coeflicients matrix avoids the ill-posed analytical continuation from the
imaginary axis into the whole p-plane. It may be applied also in regions which
contain poles of the transfer functions.

Appendix. Discretization of the piston theory in the lifting lines method

In the lifting lines method of discretization (similarly to many other methods),
the pressure distribution on a profile (cross-section of the wing) is approximated
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by means of a truncated series of functions with appropriate singularities on
the leading and trailing edges. The pressure distribution in the piston theory
follows the upwash distribution and is a regular, continuos function. Therefore it
is not possible to cast the piston theory in the lifting lines discretization scheme
exactly. Nevertheless, the approximation can assure the exact values of moments
of aerodynamic forces in the case if the upwash distribution is a polynomial of
degree less than the number of lifting lines on the cross-section.

The procedure of calculating the (approximate) pressure distribution on the
profile ¢,(x) on the basis of a known upwash distribution w(z)/U in the lifting
lines method [4] consists of the following steps

w(z)
U

The vectors {f} and {w}, as well as {¢,} and {«} describe in the cross-section
the approximate distributions of the upwash and pressure coefficient, respectively.
The sizes of these vectors are equal to the number of lifting lines (denoted later
by m). The vectors {w} and {¢,} for all cross-sections of the wing create the
vectors in (3.2) and N =3 m.

The pressure distribution on a cross-section is, in the lifting lines method,
approximated by a truncated series of Jacobi polynomials

(A1) = {f} = {w} = {e,} = 1a} = ¢,(2).

om—1

1 /1-2a
(AZ) (.'p(ll') = b_l m LZ::D llkljk(.l'),

where 20; is the local chord, the coordinate x is normalised to the interval
—1 <z < 1 and Py(2) are polynomials which fulfil the orthogonality condition

1
1 —
(A3) / V 1+ j Pi(x)Py(x) da = §jm.
-1

The vector {a} of the coefficients ;. is determined for a given pressure dis-
tribution by the expression

1
(A4) {a} = %/{P(L)} cp(x)de.
|

The elements of the vector {P(x)} are the polynomials Pi(z). The quantities
calculated in the lifting lines method from the set of algebraic equations are the
strengths of lifting lines (pressure doublets). They are related to the ;. coefficients
directly

(A.5) {ep) = [WI[PT"{a},
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where [W] is a diagonal matrix with weight coefficients of the Gauss-Jacobi
quadrature, and the elements of the matrix [#] are the values of the polynomials
Pi(z) in the nodes of this quadrature.

The upwash distribution is approximated by means of the polynomials Qy(z) =
Py(-2)

(A6) ) o 1zmu )= L@ (),

™

where the coefficients fj are determined by the expression

w(z)

(A7) U= [ 1)
=

They are next transformed to the form

(A.8) {w} = —[1’] {1} = PV

The discretized model of the piston theory may be constructed on the basis of
the following scheme

(A.9) {w} = {f} = ”( ):> ep(@) = {a} = {c,},

with the use of the relations (A.S), (A.6), (7.7), (A4) and (A.S).

1

A e _/{1’(.f-)}{()(.;;)}TdI [PI[WV]{w},

=1

(A.10) {eo} = =7

where
-4 (—-1)“’" = (_I)n—k

1 - for n#k
k+n+1 n—k 4
Al fP.- ()i =
(A.11) k(2)Qn(2) da g
-1 St 1 for n=%

The matrix [D] defined in (7.6) has, in the case of lifting lines method, a quasi-
diagonal form and each diagonal block corresponds to a cross-section of the wing
and has the form determined by (A.10).
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Travelling waves in laser sustained plasma
Constant coefficient case

B. KAZMIERCZAK (WARSZAWA)

WE UsE the Conley index theory to prove existence of travelling waves to a system of partial
differential equations describing a two-temperature model of plasma sustained by a laser beam.
These waves connect two asymptotic state of gas: a cold one and a hot partially ionized one.

1. Introduction

THE AIM OF THIS PAPER is to prove the existence of travelling wave solution to
the equations of a two-temperature model describing the laser-sustained plasma
(see system (0)). The problem was positively solved by means of the implicit
function theorem in [5] under the condition of sufficiently large values of the
coupling parameter. This time we use the technique of Conley connection index
theory (see [1, 2, 3, 4]). It seems interesting to compare these two methods. For
simplicity, we consider the case of constant transport coeflicients. The case of
variable transport coefficients will be considered in the subsequent paper.

The evolution of temperatures 77 and 73 of electrons and heavy particles
(i.e.atoms and ions) in plasma sustained by a laser beam under a constant pressure
p are described by the following equations (see [5] and references therein):

0
(EE +v -grad) cl

d ad) ¢
(m + v-gra ) €3
Here k; are effective heat conductivity coefficients, ¢; their effective heat capac-
ities per unit volume. Fy, F3 are nonlinear source functions. The term (77 —T2)W
describes collisional energy exchange betweeen electrons and heavy particles. WV is
proportional to the frequency of electron-heavy particle collisions. This frequency
tends to infinity as p — oo. So, we can write W(p; 11,12) = A(p)W (11, T2), where
A is a real parameter, A\(p) — oo as p — oc. The functions k; > 0, ¢; > 0, F},
i€ {1,2},and W > 0 depend in general on 7} and 75. However, for simplicity
of presentation we will assume that k;, ¢;, and 1V are constant. The dependence
on 77 and 7T, will be retained only in nonlinear source terms F} and F5.
By looking for solutions in the form of a travelling wave, that is by making a
substitution:

div (/\'1 gl’ild T]) + 1"1 = (‘TI - 712)}\}’

©)
div (ky grad T3) + I — (T — TO)W.

Ti(x,t) = uy(x-n + xt), To(x,1) = uz(x +n + xt),

http://rcin.org.pl



870 B. KAZMIERCZAK

where n € R? can be interpreted as the direction of propagation and x as a speed
of the wave, we are led to a system of ordinary differential equations of the form:

kruf — efuy + Fy(u) + AW (u; — up) = 0,
kouy — e20us + Fo(u) + MV (uy — up) = 0,
where / := d/d€, € ;= x-n+xt, 0 := (x +v-n) and u := (u1, u2). It is obvious that

by changing the scale of the independent variable and redefining the constants
¢1, ¢z and A we may obtain a simpler (but less symmetric) form of this system:

uf — ejfu) + Fy(u) — AMuy —up) = 0,
kuy — eful + Fyp(u) + AMuy —up) = 0.

(1.1)

The roots of the corresponding algebraic system

Fi(u) — AM(ug — up) = 0,
F(u) + AMuy — up) = 0,

are called constant states for (1.1). So, we are interested in solutions defined for
all ¢ € R whose derivatives vanish at +o0o and such that (uy(€), u2(€)) tends to
different constant states as & + oo. Such solutions are called heteroclinics. For a
given A such solutions can exist only for certain values of the parameter 0. (The
problem considered is a sort of a nonlinear eigenvalue problem). Thus it makes
sense to speak of heteroclinic triples (0, uy, u3) satisfying Eqgs. (1.1). Our aim is
to prove existence of a heteroclinic connecting appropriate constant states of
Eqgs. (1.1). These constant states can be interpreted as the two states of gas: the
cold incoming one (at —oo) and the partially ionized hot one (at o). The existence
theorem is stated in Theorem at the end of Sec. 7.
To analyze heteroclinic connections for Eqs. (1.1) we will consider the follow-
ing family of systems:
uf = c1fu} + Fi1, — A(wg — ug) = 0,

(L.m) o 2 o b
kuy — ez,0us + Fopy + AM(uy — up) = 0,
where 7 € [0, 1] and

e, = c1k(1 —n) + nea,

Fip = Fy, + 9(F - Fo)i Fop = Fs + n(Fp - F,);

Fs(uy,ug) := (I + %) ((1 + k)Y Ny + kug), (1+ k)" Huy + kuz)) .

When we denote w := (1 + k)~ '(u; + kuy), d := u; — uz, add and subtract the
both sides of Egs. (1.7), we obtain the system:

w"” — e10w’ +2(1 + k)L (w, w)
() + (1 + k) + Iy = 2F, — (ca — c1k)8uh) = 0,
d" = c10d — (1 + k™D + pk™V (kFy = Fy + (c3 — e1k)8ub) = 0.
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Sections 2-5 have a preparatory character. Section 2 contains the assumptions
imposed on the coeflicients of system (1.1). In Sec.3 we examine properties of
constant states of system (1.7), and especially their behaviour for large A. In Sec. 4
we prove a priori estimates for first derivatives of the solutions to (1.7) provided
they are contained in a certain bounded region of (up, uz)-space and prove that
the set of 6, for which a heteroclinic orbit can exist is comprised in some bounded
open interval (8, 6;), where 0 < 6y < ¢;. Such estimations are necessary, because
we want an isolating neighbourhood to be a compact subset of the phase space.
In Sec.5 we examine the eigenvalues and eigenvectors of the system linearized at
its singular points. In Sec. 6 we construct an i-family of compact subsets of the
phase space such that:

1) they are continuously varying with 7,

2) each of them is an isolating neighbourhood with respect to the flow gener-
ated by Egs. (1.7).

For 1 = 0 the system (1.7) has almost a “classical” structure and is relatively
easy to analyze. Then, using the invariance of the connection index under con-
tinuation relation we can analyze existence of heteroclinics for the system (1.1).
We did it in Sec.7. For reader’s convenience we have collected the necessary
statements of the connection index theory taken from [1] in the Appendix A.

2. Assumptions

AssumpTION 1. All the considered functions are of C'? class. -

AssumpTION 2. The constants %, ¢; and ¢ are positive. 0

AssumpTION 3. In the interval [-27,1 + 27], 7 > 0, the equation
(3) F(y,y) = Fi(y,9) + I2(y,9) =0

has exactly three solutions 0, 1 and yp € (0, 1) such that #,(0,0) < 0, F,(1,1) < 0
and Fy(yo, ) > 0. 5

1
ASSUMPTION 4. /F(y,y) dy:=1>0. 4
0

3. Constant states during continuation

First of all, we will examine the behaviour of constant states for (1.5) i.e.
solutions to the algebraic system:

fll}(”l-, '“2) s /\(Ul — [[2) — O'
}-21}(”15“2) + /\(Ul — UZ) = 0’

while the parameter 7 changes in the interval [0, 1].

“)
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REMARK. Let us note that the functions F,,, F,, satisfy the relation
(F1y + F2)(y, v) = F(u,v)v (),

where y(n) =2-1n. 4

To begin with, we will characterize the properties of the solutions to the system
(4) with respect to the solutions of Eq. (3). First, it is easy to note, by means of
the implicit function theorem, that for sufficiently large A and u; € [-27,1 + 27]
the equations Fy,(uy,uz) — A(uy — up) = 0 and Fy, (uy,uz) + A(ug —u) = 0
are uniquely solvable with respect to up. The solutions to these equations will be
denoted below respectively by uy = p,,(u;) and up = 9, (uy).

Below, F;,, ; will denote the partial derivative of F;, with respect to u;.

LEMMA 1.

a. For all n € [0,1] and sufficiently large A > 0, the system (4) has exactly
three solution pairs (uy, u2)(A, n7) such that both u; and u; belong to the interval
[=7,1+ 7] and such that for A — oc they tend to appropriate solutions of Eq. (3).

b. Let V' belong to the set {0, yp, 1} of solutions to Eq.(3) and let £ (V) =
[(F1 + F2)(y,9)] 4jy=v > 0 (< 0) in some open neighbourhood of V' in R'.

Let (u1,u2)(A, n) be this branch of solutions to (4) which tends to (V, V) as
A — oo. Then, in some open (in /2*) neighbourhood of this solution we have

[(-7:11] + -7:21))(“1- “2)].1 + [(flr) + f2q)(“l- “2)].2 >0 (< 0)

Below U,(A,5) := (U,1 (A, 1), Usa(A, ), v € {,0, +}, will denote the solution
branch such that U_(A, ) — (0,0), Ug(A, )(vo, v0) and Ui(A,n) — (1,1) for
A — oo.

c. For all sufficiently large A and all v; € [U_i(\,n),Us1(A,n)], we have
fy(u1) > 0, 5 (uy) > 0. Moreover in all sufficiently small neighbourhoods of the
points U_(A,7) and U+ (A, ) we have the inequalities, u), > 7). 4

P ro o f. Adding and subtracting both sides of Egs. (4) we obtain:

Fi, + Fay = 0,

(#) |
{(Fiy — Fay) — 2(ug — uz) = 0,

where ¢ = AL If ¢ = 0 and u; ang u, satisfying the second equation are
bounded, then they must satisfy the equality u; = wu;. Putting it into the first
equation we infer, according to the definition of #;,, that it is equivalent to
the equation F(uy,u;) = 0 ie. to Eq.(3). Thus, for £ = 0, in the rectangle
[-27,1 + 27] x [-27,1 + 27] there are exactly three solutions equal to (V, V),
V € {0,y0,1}. The determinant of the Jacobian of the mapping (R* — R?)
determined by the left-hand sides of (4') for ¢ = 0 is equal to 2v()) F ,(y. ¥)|y=v,
V € {0, 49, 1}. So, according to Assumption 3 it is nonzero. Hence point a follows
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from the implicit function theorem. The proof of point b follows immediately from
the continuity of the partial derivatives of F,,.

Now, differentiating both sides of Egs.(4) with respect to u; we obtain the
equalities:

"‘17 = (_}-1?),1 + )‘)(flu,z + ’\)—1’ l)’:) = (-7:2,;,1 + ’\)("'FZU,Z + /\)—l'
All the terms in the expression for y; are taken at a point (uy, s, (u;)), and
in the expression for 77 at a point (u;,v,(u;1)). Suppose that ¥ > s in some

neighbourhood of U_(A, n) or U4 (XA, 7). Then, for A sufficiently large, all brackets
in the expressions above are positive and we would have

[—Fig1 + A(wr, gy (u))[Foy 2 + A(ur, 05 (uy))
—[Fap1 + Al(ur, Oy (ui))[Fry 2 + A(u, py(ur)) < 0.

Sufficiently close to U, (A, ) (v = — or v = +) the difference (V,(u1) — p,(u1))
can be made arbitrarily small. Consequently, for sufficiently large A, this would
imply the inequality

_’\[(}—ln + fZ:J).l + (f],l + fg,l)ﬁg](l/'u(/\. 1)) < 0.
However, according to Assumption 3 and point b of this lemma, this would imply,

that the left-hand side of the last inequality would be positive, which could not
be true. This proves point ¢.

LemMma 2. Let the assumptions of Lemma 1 be fulfilled. Then for A sufficiently
large determinant of the matrix

(Fipa(w) — Nk (Fryae) + Ak -

3 M, n,u):=
©) (A1) (Fani() + ) (Faya(u) = A)

has the sign opposite to the sign of the expression
[(Fiy + Fap)(ur, u2)] oy + [(Fry + F2p) (w1, w2)] 2
P roof. The determinant of M is equal to
(FiaaFag2 = Fig2F29,1) = MFrga + Faga + Frga + Faga)-

Thus, for A sufficiently large, we obtain the claim of this lemma.
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4. A priori estimates

Global properties of heteroclinic solutions.

According to Lemma 1, especially to the proof of point a of that lemma, for
sufficiently large ), the solutions U, (A, n), v € {—,0, +} are isolated. To be more
precise, there exists a number 7 > 0 such that in the rectangle

Ry = {(u1,u2): w; € [U—i(A,p)—7", Uxi(A\,p) +77], i=1,2}

there are no other solutions to the system (4).

LemMA 3. For suffciently large A there exists a constant L* < oo independent
of the values of 6, n € [0,1] and A, such that for all bounded solutions to (1.7),
for which u; and w; stay in the rectangle R, for all £ we have the estimate:

lur — uzllco < ().)_11,'_ a

P r o o f. First, suppose that the function d(£) = u;(£) — u2(€) achieves
a positive maximum (negative minimum) for some £ = ¢ € (—o0,o0) and that
(u1(€), u2(¢)) lies in R,. Then at this point ¢’ = 0 and ¢” < 0 (> 0). Hence, due
to (2),

(6) ld| < nk~Y(|kFy = Fa| + |(c2 — e k)Oub))(1 + k1)~ IA-L

As we assume that the solution is bounded (for all times) and u5(§) = 0 for
|€] = oo, then fus must attain the global maximum somewhere. As d’ = 0 implies
u}y = vy = w' at the point of extremum, then by means of the first equation in
(2), we can find an upper bound for [(cz — ¢;k)0ub|. Tt is not greater than

|(e2 — e1k)((2 = 20) Fs + nFy + nI2)(eq + ey + ek — ('17)A7)_l|.

After some computations one can prove that the right-hand side of (6) is not
greater than max{n, (1 + ¢;c5'y~1)""} InéL\{(Zlif'l(u)f + 2|y (w)| + 2| Fy(u))AY,
where the maximum is taken over [¢,. This expression has a common bound
independent of 7.

By means of Lemma 3 we can prove:

LemMA 4. For sufficiently large A there exists a number L < oc independent
of n € [0,1], 8 € (—o0,¢0) and A, such that for all solutions to (1.n) which (for
all ) stay in the rectangle R, the estimates |u}| < L, |uj| < L hold. 4

Proof. Letus consider an arbitrary solution satisfying the above conditions.
Then there is M such that | F;, 4+ (=1)'A(uy — uz)| < M fori = 1,2 and (uy,up) €
R,. Let us note, that due to Lemma 3, [A(u; — u2)| < L*, so M can also be
treated as independent of A. First, let us examine the case: (¢;0) > 1. Suppose
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that for some solution |u}| attains a value larger than M. Then uj and u} have
the same sign and this property is retained for all positive times. Consequently,
this solution will grow exponentially, contrary to the boundedness of the solution.
Hence, |uj| < M. If ¢;0 < —1, then changing the direction of “time” we arrive at
the equation of the form: u{ = ¢,0u} —[F}, — A(uy —uz)], thus for all positive times
u} and u} have the same sign (as before) and the solution will grow exponentially.
So, |uj| £ M. In the same way we can prove that |u5| < M, if |c,0| > 1. Now,
let us analyze the case |c;6| < 1. Then for sufficiently large |u}l, |uf] < |u}| + M
(Remember that |7, + (=1)'A(u; — up)| < M). Thus, if «j(0) = Ly > 0, then
for £ > 0, we would have u}(£) > exp(—&)[L; — M (exp(§) — 1)] independently
of the sign of (¢;#). Integrating this inequality with respect to £ over the interval
(0,1) we obtain that |ui(1) — u1(0)] > Ly(1 — e™') — M. For Ly sufficiently
large, the right-hand side of this inequality is strictly larger than (Us1(\,n) —
U_1(A,n) + 27*), which is impossible due to the fact that the solution must lie in
R,. If L; < 0, the proof is carried out in the same way. Likewise the inequality
le2,8| < 1 implies the inequality |u}| < L,. Consequently |u}| < L, |uy| < L,
where L = max{M, Ly, Lp}.

Let I' = (k™' —¢), I, = 9|[|.IE T > 0, let m = 2, x(n) = ¢, and
s=k(1+k)"L.U I <0, thenlet m =1, \(17) = ¢,k and s = (1 + k)~1. Now,
the first equation in (2) can be written as:

(7 w" = x,0w' — 00, su,, + (1 + ky~! {(Fin + Fap} = 0.

m

The next lemma estimates the “possible” values of 6.

LEMMA 5. There exists \g € (0,00) such that for all A > Ag, € [0,1]
the value of 6, for which a heteroclinic solution (with nonnegative derivatives) to
system (1.77) connecting the points U_(A, ) and U4 (A, ) can exist, is positive and
bounded uniformly from above and below i.e # € (#y,6;) with 0 < by < 0;. 4

P ro o f. Suppose that, for some 8 = 6(y)), (u;(£), u2(€)) satisfies (1.n). Then
there is no open interval (comprised in (—oo, o)) such fori = 1ori = 2, u}(§) =
0 for ¢ from this interval. For, then «/ = 0, u; = const and F;;, — A(u; —uz)(—1)""!
would be equal to 0 in this interval. Due to Lemma 1.c (for A sufficiently large)
the slope of the curve (i, — Mup — w2)(—=1)'"') = 0 is positive and finite, so
this would imply that u; = const also, where j is the index complementary to i.
Consequently this would be a singular point. But this cannot happen for [{| < occ.

Multiplying Eq. (7) by w’ and integrating with respect to £ from (—o0) to (oc)
we obtain:

o0

(o + 1)8(7) / W E)dE — (1 + k)™ / (Fry + Fao)(w,d€ + kuldt) > 0.

—00

We claim that for A sufficiently large, the second term at the left-hand side is,
independently of 1 € [0, 1], positive, say, larger than 87!/ (Assumption 4). To
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o0
prove this, let us consider for example the integral f (Fiy + ]:2,])(1,1(15. It is equal

to [{F1,(u1,uz(uy)) + Fo, (w1, ua(uy))}duy, where ua(uy) = ua(€(uy)), £(uy) is
the inverse of the function u(§) and the integration is made over the interval
[U_1(A, 1), Us1(A, n)]- Now, using point a of Lemma 1 (and its proof) and Lemma
3 we infer, by means of Taylor expansion with respect to (uz(u;) — up), that

1
this integral is larger than (7*(:])]1?(1(1)([(11 — A7), where C is a constant

0
independent of A and 7. The second integral can be estimated in the same way,

oo

2

so, we infer that the claim is true. The integral f w'“(€) d€ can be written as the

integral [ w'(w)dw over the interval, which is bounded for every 7. As, due to
Lemma 4, |w'(§)| < L independently of £ € (—o0,oc) and 7 € [0,1], and (x,, +
I;) > 0, then (for all 5 € [0, 1]) we infer that 6(y)) > 0. Hence inf(6(7)) > 65 > 0.
7

To find an upper bound for 8(1)) let us integrate Eq. (7) from (—oc) to £ using

the fact that w’ > 0. We obtain:
3 ¢

2_1w‘2(§) > x8(y) f w'z(f) dé — (1 + /|')_1 '/‘(]:1,', + F,)(u) d€ + kuj dE).

-0

Now, as before, one can easily prove that for A sufficiently large and all 5 € [0, 1]

there exists ( € (—o0, o0) such that for £ = ¢ the last term of the above inequality
Y

(respecting the sign) is positive, say, larger than (—8~1.J), where J = min [ F'(s) ds,
P g g

0
where minimum is taken over the interval [0, 1]. J is negative due to Assumption

3. Consequently, there is a point on the trajectory, where 2~ 1w > —8~1J. Thus,
at the point of maximum of w’ it follows from (7) that 6(s) < sup(F1,(u1, uz)+
Fon(uy, ug))2[xn(k + 1)VJ 17!, where the supremum is taken over u € R,. The
right-hand side of this inequality is bounded from above by a number independent
of 7, let us denote it by #;. Thus, we obtain the claim of the lemma. O

5. Eigenvalues of the linearized system

Below zy and z will be variables standing for v\ and u5 and z := (z1,z).
Equations (1.7) may be written as the first order system:

! { 4 !
(uy,us, 21, 23) = (31,22,(‘1021 — Fip + A(ug — uy),

k™Y e, 020 = Fapy — Muy — Hz)})-
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It is seen that the zeros of the right-hand side have the following form:

(uy,uz, 21,22) = (U(A,1),0,0),

where U(A,7) is a solution to system (4). Thus, for (u;,u;) in the rectangle
[-7,1 + 7] x [-7,1 + 7] and sufficiently large A we have exactly three zeros:
U, (A, 1),0,0), v € {—,0,+}. Linearizing (1.n) around (U,(A,7),0,0),
v € {—,0,+}, we obtain the system:

u} 0 0 1 0 ) uy
u; 0 0 0 1 uz u2
® |[,]= o B = |
} _MU(A"’}) : =1 h :
22 0 C2r,(),‘: 29 22

where M, (A,7) = M((A, 9, Uu(\, ) and M(A\,n,u) is defined in Lemma 2
by (5).

LemmMa 6. Let Assumptions 2 and 3 be fulfilled. Then, for all sufficiently large
A 8 € (0,) and all n € [0,1], the matrix M, (\,n), v € {—, +}, has four real
eigenvalues. Two of them are positive and two of them are negative. 5

The proof of this lemma will be sketched in Appendix B. It is easy to note
that the eigenvector corresponding to the eigenvalue ¢ of the matrix M, (A, 7n),
v € {—,0, +} has the form (&, &, (1, (2), where (; = ¢&;, i = 1,2. (See [1] p.335.)

Lemma 7. Let Assumptions 2 and 3 be fulfilled. Then, for all sufficiently large
A, 8 € (0,00) and all 5 € [0, 1], the matrix Ay(A, 1) has one negative, one positive
eigenvalue and two complex conjugate eigenvalues with positive real parts. The
components &, & of the eigenvector corresponding to the negative eigenvalue
satisfy the condition 525[' <0. 4

The proof of this Lemma 7 will be given in Appendix B.
6. Isolating neighbourhood during continuation

In this section we construct an 7-family of compact subsets N3(7), such that for
each n € [0,1]N3(7) is an isolating neighbourhood for the flow generated by the
first order system corresponding to (1.7). Every N3(y) consists of a parallelepiped

Ny = {(ur,u2, 21, 22) 0 UsiQun) S wi S Ui(Aym), 0< 5 < L, i = 1,2,
plus “small” neighbourhoods of the singular points, which we want to connect

(N (1)), minus a small neighbourhood of the remaining singular point N3(0, «, 7).
This point can be excised according to Lemma 7 and the Lemma in 4.D in [1].
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Let us denote:

Fig(uy, uz) — Auy — up) := Hi(A, 1, uy, uz),
Fop(ur, uz) + Muy — uz) := Ha(A, n, uy, up).

As the proofs carried out below are the same for all € [0, 1] and all sufficiently
large A, then, to simplify notation, when there will be no danger of confusion, we
will write H;(€) instead of Hi(A, 1, u (), ua(§)).

According to Lemma 1 for fixed n and A (sufficiently large), the zero sets
of H; and H; near the points U_(A\,7n) := (U_1,U_2)(\,n) and Us(A,7n) =
(Us1,U+2)(A, 1) have the graph like that in Fig. 1.

Jaty=0
Té

xl >0 ,/
/
=0
.;\’2 <0 / // x)'
.»//
//’/’
////
il
Pl
///
/
/
/'/.
/
/
Fia. 1.

LemMA 8. There exist smooth functions ¢4,(7), such that for 5 € [0,1], » €
{-,+}, 6 € (0,1] and all sufficiently small 2; > 0, the set

N(69 171V7A1) = {(u’z) : |“1'—Uul(’\"'/)l < (S-L\la ]'UZ—UVZ(/\»T?N S 6A2u(7])v
|5l < L, i =1,2},

where A3,(77) = Aie2,(n) is an isolating neighbourhood.

By means of Lemma 9 it may be proved that (U, 0, 0) is the maximal invariant
set in N (6, n,v,A;), but we do not use this fact explicitly belowe.

Proof of Lemma 8. According to point ¢ of Lemma 1 we have p},(u;) >
0 (uy) for ug € {U_1(A, 1), Us1(A,7)}. Thus, for all sufficiently small Ay > 0, we
can find a smooth function ¢;,(7) such that, if 25,(7) = <2,(1)A;, then the curve
H, = 0 intersects the upper and lower side of the rectangle |uy — U,j| < 64y,
|ug—U,z| < §A,,(n) and the curve H, = 0 intersects the right and left side of this
rectangle. H, < 0 (> 0) at the upper (lower) side and H; < 0 (> 0) at its right
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(left) side. Bounded solutions of the considered family of equations (according
to Lemma 4) cannot touch the sets |z;| = L. They can only touch the boundary
of this neighbourhood at points whose projection onto the (uy,u;)-plane are
contained in the sides of the considered rectangle (for fixed ¢). However, this is
impossible. Suppose for example, that u; has a maximum at the upper side of this
rectangle. Then 23(¢) = 0 and z3(¢) < 0 for some ( € (—o0, ). Simultaneously
25(¢) = —H2(¢). This contradicts the fact that H, < 0 at that side. The remaining
cases may be analyzed similarly.
Let

Ni(n) := {(ul,u;, z1,22) U_i(Ap) < w; L U4i(Ny), 0<% <L, i= 1,2},
where L is the number appearing in Lemma 4. Then, let:
N(@,n):= N(6,n,—, A1) U N(b,n,+,4y),

where A, is fived and so small that N(¢é,7,v, 4), v € {—,+}, is an isolating
neighbourhood of the point (U, (A, 7),0,0) and

N3(0,k,7) := {(U],‘llz,:{l,:z) : oy = Un (A, 9)| + |21] < &,

lu2 = U\, m)] + |2l < &},

where « is a sufficiently small positive number. Finally, let

Ni(n) U N (8, n), Nao(n) := Na(1, ),
NG NNk, Na() i= V(1.

Na(8,7) :
N3(8,7) :

For any compact set Z comprised in the phase space S(Z) will denote the maximal
invariant set comprised in Z.

LemMA 9. Suppose that Assumptions 1-4 are fulfilled. Then, for sufficiently
small x > 0 and all n € [0, 1], the set N3(7) is an isolating neighbourhood for the
flow determined by (1.7). Furthermore, we have:

1. S(N2(m)) = S(N1(n))-
2. For any 0 € [0y, 6,]

S(N3(n)) = {singular points U (perhaps) connecting trajectories}.

P roof. First, let us note that the following lemma is valid:
Lemma 10. S(N1(n))NdN1(n7) consists only of singular points belonging to Ny.
The proof of this lemma is given in Appendix C.
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Let N2(0,7) := N{Ny(é,n) : 6 € (0,1]}. Arguing as in the proof of Lemma
Sec.4. in [1] let us note that

N2 (0, D\ Ni(n) = {(ul, u,21,22) ¢ (ug,u2) = U(A,n),
ve{-,+}, |2l |2l <L, 21<0 or 2 <0}

Trajectories through the points belonging to this set leave the set N3(0) in ap-
propriate direction. So, if S(N2(6%,7)) # S(N1(n)) for some 6* € (0,1], then
there must exist 6 € (0,6%] such that S(N,(4, 7)) N IN,(6,7) comprises a point
not belonging to S(Ni(7n)). The set dN,(é, ) may be divided into three parts:
IN (6, )\ N1(n), IN1(m)\N(é,n) and ON(y) N IN(é,7). In Lemma 8 and the
first part of proof of Lemma 10 (Appendix C) we showed that the intersection
of S(Na(6, 7)) with AN (6, )\ N1(y) and ON(y)\ N (6, 1) is eiter empty or belongs
to Ny. Thus, it suffices to show the following statement:

Lemma 11. S(N2(8, 7)) NIN(n) N IN(é,m) = 0 for all 6 € (0,1]. 4

The proof of this lemma is given in Appendix C.

In view of this lemma, point 1 of Lemma 9 is proved.

Now, due to Assumption 3, Lemma 2 and Lemma 7 we infer that the set
of points on trajectories comprised in S(N2(6,7)) = S(Ni(n)) tending to the
point Up(A,7n) as £ — oo is empty. Thus, according to Lemma in Sec.4.D, for x
sufficiently smalil N3(0, s, 7) can be excised from Ny(é, 1), 6 € (0,1], 5 € [0,1]. Tt
follows that N3(7) is a good isolating neighbourhood. Point 2 of Lemma 9 follows
straightforwardly from the definition of Ny(y).

7. Connection index for » = 0 and existence proof

Now, for 7 € [0, 1], let
St = (U-(A,0),0,0) x [65,61), 57 := (U+(\,1),0,0) x [0, 61]-

Let 5, denote the maximal invariant set in the set N3(y) x [0g, 0;] with respect
to the flow generated by (1.77) together with the equation ¢ = 0. Due to the
results of the above sections, the connection triples (57, 53, So) and (57, 57, 51)
are related by continuation. By Theorem in Sec.2.D of [1] these triples have the
same (homotopic) connection indices. According to the definition (see [1] and the
Appendix A), the connection index of the triple (5, 5, S¢) is the Conley index
of N3(0) x [0y, 0;] with respect to the flow generated by Egs. (1.0) (by which we
mean (1.7) with n = 0) written as a first order system, i.e. the system:

-

"—-
up = 21,

/!
Uy Z2,
21— ez + Fy — Mup — up) = 0,

kzy — e kfzy + Fs + Muy — ug) = 0,

http://rcin.org.pl



TRAVELLING WAVES IN LASER SUSTAINED PLASMA. CONSTANT COEFFICIENT CASE 881

together with the equation
0" = Bpu,u' )0 - 2716y + 6,)),

where £ is a sufficiently small positive parameter. Let U’ and U” denote open
neighbourhoods in R* x (6y — ¢,0; + ¢) of S'(6y) U S5'(61) and S"(8y) U S"(61),
respectively, having disjoint closures. The real-valued continuous function ¢ is
arbitrary except for the fact that it is positive in U’ and negative in U” (see
Definition A.4 of the Appendix A).

To analyze the connection index for the above system it is convenient to change
the dependent variables, namely to consider the system:

(9.a) w =z, 2 — bz, + 2(1 + k)T (w) = 0;
(9.b) Al =gy, 2y —e1fza — (1 + k7H)AA = 0;
(9. 0 = Bos (0-27"(0 +61)) ,

where

(w, A, z2y,24) = [(1 + k) Yy + kuy), uyp — ua, (1+ /.')_l(:l + kz), 21 — ::2]

and
da(w, A, w', A = ¢(u(w, A), ' (2w, 24))-

The transformation (uy, up, z1, 22,0) — (w, A, z,,24,60) is a linear homeo-
morphism which transforms N3(0) x [fp, 6] to a compact set; let us write it as
Nya X [60,61]. The set of exit points are transformed into the set of exit points,
so the invariant set comprised in N, x [0, #;] has the same Conley index as the
invariant set contained in N3(0) x [0y, ¢1]. Let us denote:

Pi={(w,A,zy,24): A=0, za=0}.

Lemma 12. For A > 0 the set S(N,a x [0g,61]) is comprised in the set
P x [0o,61] 4

P r oo f. For any finite values of  all nonconstant trajectories of solutions

to system (9.b) lie either on stable or unstable manifold of the singular point
(0,0,0,0), so it leaves N, in positive or negative “time” direction. 5
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So, in variables (w, A, 2, z4,0) the sets Sj and S§ are contained in P x
[fo, 81]. Moreover, without losing generality we may assume that the function
da(w, A, z,, 24) is constant with respect to (4, z4) in some open neighbourhood
of the plane P. Itis clear thattheset[( U  Z,.)NN,a]x[0o, 0], where Z,. is

2€Nwanp
the set of points of a plane perpendicular to P at z (in (w, 4, z,, 24)-space) and
whose distance from P is not greater than ¢, is a good isolating neighbourhood of
the considered invariant set. Moreover, according to the robustness of the Conley
index theory for sufficiently small (positive) ¢, the set

(rlgj Zye) X [0, 61],

where 7 is the subset of N, 4 N P, such that Z,.. is completely comprised in N,
for z € 7, retains this property only if ¢ is taken sufficiently small.
Obviously this set can be written as a Cartesian product

N*:= Ny X Naex[0p,601] := Ny x {(Q,z4) ¢ dist[(AQ,z4),(0,0)] < e} x[by, 0],

where N, is equivalent to 7 (defined in terms of w and z,). Note, that the
system consisting of (9.a) and (9.c) does not depend, for sufficiently small &,
on A. According to this fact the trajectories belonging to the invariant set do
not change, if the second equation in (9.b) is replaced by any of the family of
equations z/y —ac10za— (1+k~1)AA = 0, where a € [0,1]. Thus, for all « € [0, 1],
the set N~ is a good isolating neighbourhood and we can replace (9.b) by

(10) AN =za, 2y~ (1 +EkHaa=0.

In this way the system for (4, z,) is completely decoupled from the rest of the
system as the equations of (9.a) and (9.c) do not depend on (A, z4). Due to the
known properties, the Conley index of N* is homotopic to ha A hyg, where hy
is the Conley index of N . with respect to (10) and h,, is the Conley index of
Ny x [0, 6,] with respect to the flow generated by (9.a), (9.c).

Now, according to Assumptions 2—4 there exists 6° € (6, 6;) such that (9.a)
has a heteroclinic solution connecting the points (w, z,,) = (0,0) and (w, z,) =
(1,0). Let 7} denote the trajectory of (9.a) for # = #°, crossing the z, axis at
a point, say (0,1). Let 6. € (0,0y) be so small that for § = 6. the eigenvalues
of the linearization matrix of the sytem (9.a) at (wg,0) are complex conjugate
(and have positive real part). Let 75 denote a (connected) segment of the spiral
trajectory of (9.a) with § = 6. which lies in the halfplane =z > 0 sufficiently close
to (wp, 0). One can see that (without changing the Conley index) N,, x [0y, ;] can
be deformed to the region bounded by 71, 13, the lines w = —w, w = 1+w,w > 0
small, the boundaries of small diamonds consisting of the points (1,0) and (0, 0)
and the line z,, = 0 as it is done in [1]. (During the deformation the invariant
trajectory, if it exists, does not touch the boundary of the deformed region). Thus
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the Conley index of N, x [0y, 6] with respect to the flow generated by (9.a), (9.c)
can be computed to be homotopic to 0. Consequently, the connection index of
N*ie. ha A0 = Z' A0 = 0. On the other hand, according to the results of
Sec.§, for any n € [0, 1], the singular points (U+(A,7),0,0) and (U-(A,7),0,0)
are isolated invariant sets and the Conley index of them is homotopic to X2, As
(E'A X% v X% = 33 v 2% s not in the homotopy class of 0, then according to
Theorem in Ses.2.F of [1], it follows that S{US] # S;. Consequently in view of
Lemma 9 point 2 we infer (by letting 4 — 0) that the following theorem is true:

THEOREM. Let Assumptions 1-4 be satisfied. Then there exists 0 € [0, 0] such
that for 8 = 6* and all sufficiently large \ > 0, there exists a heteroclinic solution to
system (1.1) connecting the constant states U_(A\,1) and U+ (A, 1). 4

8. Discussion

It is possible to estimate the minimal value of A which is sufficient to prove
existence of a heteroclinic solution to the system (1.1), which was rather imposs-
ible in the method chosen in [5]. An example of such an estimation will be given
below. It is worthwhile to note, that this value of A depends only on the functions
F; and their first derivatives. Especially, as one could foresee, this value does not
depend on the other coefficients i.e. k, ¢;, ¢2. Finally, let us stress that from the
mathematical point of view Assumption 4 is not necessary. This condition, which
reflects the physical situation described by the system (0), was assumed only for
definiteness.

To see, how the minimal value of A can be estimated, let us take for example
a quite realistic situation, when / = 0 and Iy = F(u;) (which corresponds to
the assumption that the energy is gained and radiated out only by the electron
component).

Lemma 13. For F; = 0 the solutions to system (4) are independent of .

P r o o f. The system (4) takes the form:

—AA+ F(uy) + (1 =) Fs(w) = 0,
AA+ (1 -n)Fs(w) =0,

where A = (u; — up) and w = (u; + kup)(1 + k)~1. We have F(u;) = Fi(w) +
F'(w*)k(k + 1)~14, where w* € [u), w]. Suppose that, for a fixed 5 € [0, 1], this
system has a solution (up, uz), for which A # 0. Multiplying the second equation
by (1—=nF'(w*)k(k+1)~'A~1) and adding it to the first one we obtain an equation
[1+@1-=n)A-=nF'(w)k(k + 1)"'A"1F, = 0. Consequently, for A sufficiently
large Fy = 0, and from the second equation we infer that A = 0.

To find the estimation we will verify in turn all the conditions imposed on A
in the text above.
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First, the positiveness of the determinant at U, v € {, —, +}, its negativeness
at Uy and the conditions (=A(uy — wp) + k' + (1 — )Fy)2 > 0, (AM(ug — uz) +
k(1 — n)F,)1 > 0 (which were necessary in the proof of Lemmas 7 and 10) are
guaranteed by A > P ulgl‘%)gl | F' ().

Now, according to the proof of Lemma 3, |u; — u3| is a priori smaller than
d = 6A"(max |F(u)]) := 6A71E,.
(uE[O.i]| (w)])

Let | . ;
/F(u) du=1>0, m(i)n1 /1"(ez)du =J= /1"’(¢¢)du < 0.
0 welotly 0
We have =
I:=01+ k)'l /(fl,, + Fa,)(u) d€ + kuj dE)
= (1 +k)! / [F () + 21 = ) Fs(w)] () d€ + kady dE)

1 1
=2(1-1) / Flw)dw + (1 + l;)—lv)/ F(uy) duy
0 0

+(1 + /;)—11]{ / F(up)kub d€ + j F(u*)dku) tlf} ¥
—00 -00

where u*(€) € [u1(6). wa(6)].

The sum of the first three terms is equal to [2 — »]/ and the module of last
term is estimated by the number Fdk = 6A~11'[,,. Thus, for A > 6F'F,, [~ the
integral 7 is larger than 0. Likewise, we can a priori estimate the minimum over
& of the integral

&
T = (1 + k)~ ] (Fin + Fo )0, dE + bl dE).

So, acting as before we can write 7 as:

w(¢) ui(€)
2(1 - 7)) / F(w)dw + (1 +k)71y ] I'(s) ds
0 0
u(£) u(€)
+(1+ &)Yy /F(llz)A:zfg(/5+ / Fiu™) [ugl€) — wi(€)] kb dE 5,
0 0

where u*(§) € [u1(£), ua(8)].
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Let us choose ¢ in such a way that «(£) = j. Then, J can be estimated from

above by:
20=0) T+ +k) " (A +k)T +2(1 =) d Fyy + (1 +E) "k {Fmd + Fd( + d)}
=[2-q)J + 200 = u) + n(1 + k)" K] Fud + Fdky( + k)71 + d).

As the trajectory must stay in the rectangle [0,1] x [0,1], then (j + d) < 1and J
is smaller than zero if

~1—1
6A" Fr < d < 2= m)lJ| [2(1 = ) Fp + (1 + 1) kFy + k(1 + k)“F] .
This condition is satisfied for

N> 6Fn [200 = n)Fy + (1 + k) (B + 1")] R

The right-hand side of this inequality is smaller than 6 £, (F,, + F)|J|~!, inde-
pendently of » and k. Putting everything together we can say that the heteroclinic
trajectory for some finite # = ¢* > 0 exists if only

A > max { ', 65, (Fy + F)J|7 65, P17}
As |J| < Fip, I < Fyp, then
A > 6F,(F, + F)(min {|J][,1})".

In a general case the evaluation can be carried out in principle in the same way,
though it would be a little bit more laborious.

Appendix A

Let us recall the basic facts of the connection triple theory taken from [1]
(see also [2, 3]), which are used to prove existence of heteroclinic orbits. Suppose
that we are given a system of n first order ordinary differential equations (in ™)
parametrized (continuously) by a parameter 6 belonging to some nonempty closed
interval [0y, 0;]. Let X = R"™ x [0y, 6;]. Let 57, 5" and § be isolated invariant sets
for the flow on X determined by this family of equations and let S'(6), S”(0),
5(6) be the set of points in 5/, 5", S with parameter value 6.

DEeFINITION A.1. The triple S', 8", S is called a connection triple if the following
conditions are satisfied:

a.sS'us’cs,

b.S'NnS" =40,

c.for § =06y and 0 =6,, S()=5"()uS"(l). 4
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Now, suppose that we are given a family of local flows on a space X parametr-
ized in a continuous way by a parameter 7 € [0, 1]. Suppose that Sy and S; are
isolated invariant sets for the flows on X corresponding to = 0 and 5 = 1.

DEFINITION A.2. We say that Sy and Sy are related by continuation, if there exists
a compact set N in the space X x [0,1] such that N, (i.e. the set of points in N
with parameter value 1) is an isolating neighbourhood and such that Ny and N are
isolating neighbourhoods for Sy and S\, respectively.

DEerFINITON A3. Suppose that for each 1 € [0,1] there exist compact sets N,
N", N such that N}, N, N, are isolating neighbourhoods for the isolated invariant
sets S 57 qnd S,,, re.f{)ectivebz. Suppose then,. that f(fr e:(,z/ch‘ n € [0, 17']’ (.5:,:,’, S',’”, Sn)
is a connection triple. Then, we say that the triples (5;, S, So) and (51, 5}, 51) are
related by continuation.

With a connection triple an index A(S5’, 5", S') may be connected. Its definition
may be found for instance in [1] (see Lemma, p.325).

DEFINITION A.4. Let (5, 5", 5) be a connection triple for a family of differential
equations on R" parametrized by 6 in the interval |6y, 6,]. Assume the equations are
defined for 0 € (0y — ¢€,0, + ¢) for some ¢ > 0 (this is no real restriction — they
can be extended to such an interval). Let U’ and U" be open neighbourhoods in
R™ x (6p — €,0y +¢) of S"(6p) U S'(0)) and S"(6y) U S"(8)) (respectively); choose
these to have disjoint closures. Let ¢ be a continuous real-valued function on R™
which is positive on U’ and negative U". Append to the given family of equations the
equation 8' = pu¢(x)[0 — 210y + 6,)], where p is a small positive parameter. Let N
be a compact neighbourhood in R™ x (6y — ¢, 0y + <) such that N(0) is an isolating
neighbourhood of S(6) for each 9. Then, there is a py > 0 such that if p € (0, jg)
then N is an isolating neighbourhood for the “enlarged system”. Let h, be the index
of S(N), nn € (0, 110). Then hy, is independent of i, and in fact depends only on the
triple (5',5",5). o

Now, let us assume (as it is in our case) that for every 6 € [0, 1] 5'(6), 5"(9)
are fixed hyperbolic singular points and their indices are constant. Let us denote
them by &' and h”, respectively. Now, if there was no connection between S’ and
S”, then due to point b of Definition A.1, and Definition A.4 we would have
h(5',5",8) = (Y A R') Vv 1", where k' and h” are the Conley indices of S'(6)
and 5"(8), 6 € [8g,6,]. So, if A(S",5",5) # (X' AR) VL, then S # S'U §".

The final theorem necessary for our proof is stated in [1] Section D p.326.

ProrposiTioN. The index of a connection triple is constant on equivalence
classes under the continuation relation.

Appendix B

In this appendix we prove Lemmas 6 and 7 concerning the eigenvalues of the
linearized system.

http://rcin.org.pl



TRAVELLING WAVES IN LASER SUSTAINED PLASMA. CONSTANT COEFFICIENT CASE 887

Let us fix A, # and v and denote for simplicity:

a b
M= M,(\, )= [

cd], M= M,(\ 1), t:=cf, TL:=epk 0.

Let (&,£2,(1,(2) be the eigenvector of M corresponding to an eigenvalue ¢ of
M. As we mentioned in Sec.S, it follows from the structure of M(A,7) and
considerations in [1] p.335 that (£, &, (;,(2) and ¢ are coupled simultaneously
by the following three relations:

G = ¢k, i=1727
(B.1) g = 27N 4\ 412 — (0 + 0667V,

g = 2771+ \ 41 (T1) — (d + c€7'61).

The eigenvalues of M (A, 7) are the roots of the equation:
(B2)  det(M) + q(—dt — atT) + ¢*(a + d + *T) + P (—t —tT) + ¢* = 0.

Using this fact we can prove the following lemma.

LemmaA B.1. Suppose that det M # 0, a < 0,d < 0,¢t > 0, tT > 0. Then the
real part of the eigenvalues of A/ is different from 0.

P roof. As we have noticed, these eigenvalues are given by the roots of
Eq. (B.2). It is obvious that 0 is not a solution of it. So, suppose that there is a
pair of eigenvalues ¢, ¢2 such that ¢, = L, ¢ = —ilL, L # 0. Substituting in
(B.2) first ¢ = iL and next ¢ = —iL and subtracting the obtained equations, we
arrive at the equation 2iL{(—aT — d + (1 + T)L*) = 0. However, according to
the assumptions of the lemma we infer that the expression in the bracket is not
equal to zero.

Now, let us note that according to Lemma 2 and Assumption 3 for sufficiently
large A the following conditions are fulfilled (independently of 5 € [0, 1]):

(B.3) det(M) # 0, t >0, it > 0, a <0, d < 0, be > 0.

Proof of Lemma 6. Let us note that, if we put v € {—, +} in the definition
of M, then, due to Assumption 3, Lemma 1 and Lemma 2, det(M) > 0 for suf-
ficiently large A (independently of 5 € [0, 1]). Lemma 6 follows straightforwardly
from the following more general lemma.

LeEMMA B.2 Assume (B.3) and that det(M) > 0. Then the matrix A (), n) has
four real eigenvalues. Two of them are positive and two are negative. Moreover,
5251‘1 > 0 only for one of the positive and one of the negative eigenvalues. 4
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Proof. The condition det(M) > 0 implies that either >~ > 0 or d®~¢? >
0 (or both). However, as one can easily see by renumbering the components of
u, we may always assume that the first one is satisfied, i.e. (a2 — %) > 0.

As a starting point of our analysis we will take the situation characterized by
the equalities: 7' =1, a = d, b = c. In this case (B.2) takes the form:

(—a—b—¢*+ g)(—a + b — ¢ +qt) = 0.
As (a? - b®) > 0, then this equation has four real solutions:

e =27 (1 V-4 -0+ 2), =27 (12 Vet a4 2).

Two of them are positive and two are negative.
For p € [0,1] let us make the following deformation:

a(g) =a, d(g)=a+(d-a)e, ble)=0,

(B c(o) = b+ (c—b)o, T()=14+ (T - 1o.

Then we have:
(B.5) det(M(0)) = (1 — o) det(M(0)) + pdet(M(1)).

Thus, it follows that the deformed coeflicients retain assumptions (B.3). For sim-
plicity we will omit the explicit dependence of ¢, d and T on p, if it does not
cause confusion.

Now, as b and ¢ (= ¢(»)) are both nonzero, then, according to relations (B.1)
and to the structure of eigenvectors, we can assume that £; is nonzero (the ratio
267" must stay finite). Thus without losing generality we can assume for definite-
ness that £ = 1 and the eigenvector corresponding to an eigenvalue ¢ has the
form (1, &, q, g&2). So (B.1) can be written as:

¢ = 27412 — (0 + b6),
(B.6)

g = 270 £\ 4T - (d+ 5.

Now, it can be easily proved that during the above deformation (with respect
to o) the eigenvalues of M stay real (and according to Lemma 8 two of them
are positive). For ¢ = 0 the eigenvectors of A/ take the form {1,1,q14,q14},
{1,-1,¢24, 2+ }, where g1z = 271(t £ V-4a—4b+2) and ¢y = 271t £
V/—4a + 4b + 1?). (Remind that we have set £; = 1 for definiteness).

As & never becomes 0, then its sign will not change during the deformation.

The proof of Lemmat B.2 is thus completed.

Proof of Lemma 7. Let us note, that, if we put » = 0 in the definition
of M, then, due to Assumption 3, Lemma 1 and Lemma 2, det(M) < 0 for
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sufficiently large A (independently of » € [0,1]). In this proof we will also use
the fact that for sufficiently large A both b and ¢ are positive. Note, that during
the deformation (13.4), the condition det(M (o)) < O retains its validity according
to (B.5). Using arguments as in the proof of Lemma 6 we may assume without
losing generality that (a® — %) < 0. According to Lemma B.1, the eigenvalues of
M cannnot cross the imaginary axis. The number of eigenvalues with positive or
negative real parts is constant during the deformation. As (¢ + b)(a — b) < 0, then
one of these factors is positive and the other is negative. Thus for p = 0 there
exists only one eigenvalue with negative real part and three ones with Re¢ > 0.
As b and ¢ are positive, then the sign of & for negative eigenvalue is the same
as its sign for o = 0, as it cannot become 0 (see the proof of Lemma 6). As
(a—1b) < (a+b)and (a —b) < 0, then, for o = 0 the negative eigenvalue is equal
to ¢ = 27Y(t — V4a + 4b + 2). Comparing it with (B.6); we obtain the claim of
the lemma. -

Appendix C

Proof of Lemma 10. To prove Lemma 10 we will show that a trajectory
in the closure of Ny cannot touch &N, and then return to its interior unless at
singular points. As, according to Lemma 4, all bounded solutions of our system
have its derivatives estimated in their absolute value by a common finite constant,
then it suffices to examine the following cases:

1 u;({) = U_;(\,n) or u;(¢) = Us;(\, 1) for some ¢ € (-0, 00).

a. Let z;(¢) # 0. Then the trajectory leaves N immediately.

b. Let z;(¢) = 0. Due to Lemma 1, x, and v; cannot achieve nonpositive
values, so the lines H; = 0, H, = 0 cannot intersect the sides Ny(n) N {(u,uz)}
except at the singular points. Moreover, at the upper (lower) side of this rectangle
we have H, < 0 (> 0) and at the right (left) side H; < 0 (> 0), except for the
singular points. The proof that such a trajectory leaves N,(») if it does not reach
singular points is carried out as in Lemma 8.

2. zi(¢) = 0 for some ¢ € (00, o).

a. Let z/(¢) # 0. Then the trajectory leaves N immediately.

b. Let z/(¢) = 0. Then also [~F;,; + A(u; — uz)(=1)""1](¢) = 0. Let j denote
the index complementary to . Then one obtains by differentiation:

7 () = {=(Fin)(Q) = A}z()-

Thus, if A > 0 is sufficiently large (larger than nondiagonal entries of the matrix
Fin,;) and z;(¢) > 0, then z/(¢) < 0, so that near this point z; < 0 and the
trajectory lies outside Ny. Now, let us assume that z;(¢) = 0. The trajectory
leaves Ny (in appropriate direction), unless =7((C) = 0. Then, however, we would
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have also [—Fj, + A(u1 — u2)(=1)7'](¢) = 0, so this point would be a singular
point. 4

Proof of Lemma 11. First, let us note that 9 N (1) consists of the following
sets:

{Z,' = 0} n Nl(’i)v o= L} N Arl(”)»
{wi = U, N, {w = Ui\, )0 Ni(m),

+ € {1,2}. The second pair of sets cannot comprise points lying on bounded
trajectories. The first one intersecting N (6, 1) gives us eight sets, namely:

{z:=0, uy —U_1(\,n) = 84y, 0< z; < L},
{z: =0, ug —U_2(\,n) = 84_7(y), 0< z; < L}
{z:=0, uy = Us1(A,n) = 84y, 0< 25 < L},
{z: =0, ug — Uya(A\,n) = 8A442(n), 0L zj < L}’

where ¢ € {1,2} and j is the index complementary to i and v € {—, +}. Below,
we will show that a trajectory touching one of the above sets cannot belong to
S(N2(8,7n)), i.e. it leaves N(6,7) when continued in appropriate direction. Let
us consider particular cases.

L ui(¢)— U4y = =64 for some ¢ € (—o0,00). If z;(¢) = 0, then we arrive at
the case analyzed in Lemma 8. So, let us suppose that z;(¢) > 0 and z(¢) = 0.
We can distinguish the three possibilities:

a. H2(¢) < 0, 25(¢) = —H2(¢) > 0. Then, for decreasing “times” the trajectory
leaves N (4,n) (as u; decreases) and Ny(y) (as z; becomes negative).

b. Ha2(¢) > 0, 25(¢) = —Ha2(C) < 0, so uy achieves a maximum. Consider
increasing “times”. Then z; becomes negative and never achieves the value 0
again while staying in N (é,7). For, suppose to the contrary, that there exists
¢1 € (¢, o], such that z3(¢;) = 0 and z,(§) < 0 for £ € (¢,¢1). Then 25(¢) > 0.
But, simultaneously z5(¢;) = —H2(¢1) < 0, as the curve H, = 0 lies above the
starting point P, (see Fig.2) and it has positive slope in N (é,7). The trajectory
can reach the curve H, = 0 only outside N (6, 7). But leaving N (6, 17) would imply
leaving also N(n), as z2(£) < 0 for & < (.

¢. H2(¢) = 0. Then 25(C) = —H2,1(¢)=1 < 0. Thus, for increasing “times” this
case is the same as case b.

2. u1(() = U_y = éA, for some { € (—o0, o). If 21(¢) = 0, then we arrive at
the case considered in Lemma 8. So, let us suppose that z;(¢) > 0 and z2(¢) = 0.
As before, some particular cases are to be distinguished:

a. H2(¢) > 0, z5(¢) = —H2(¢) < 0. Then for increasing “times” z; becomes
negative and the trajectory “immediately” leaves N (6,7) (u; grows) and N(n)
(22 decreases).
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b. H, < 0, 2 = —H,(¢) > 0, so uy achieves a minimum. Consider
2

decreasing “times”. Then z; becomes negative and never achieves the value 0
again while staying in N(é,7). For, suppose to the contrary, that there exists
1 € [—o0, (), such that z3((;) = 0 and z3(€) < 0 for € € (¢1,¢). Then 25(¢;) < 0.
But, simultaneously 25(¢;) = —H2(¢1) > 0, as the curve Hy = 0 lies below the
starting point P, (see Fig.2) and it has positive slope in N (6, 7). The trajectory
can reach the curve H, = 0 only outside N (&, 7). But leaving N (6, ) would imply
leaving also Ni(7), as z2(€) < 0 for & < (.

c. H2(¢) = 0, 25(¢) = —Hz,121 < 0. Thus for increasing “times” this case is
the same as case a.

3. The remaining cases are considered similarly.

Now, the intersection of the sets: {u; = U_;(\, 7))} N N1(), {ui = Usi(A,m)}N
Ni(n) with 0N (6, n) gives us the following sets:

{ur = U_1(\n) = 641, up =U_o(\, ), 0< 2 < L, k =1,2},
{ug = U_a(\,n) = 84, uy = U_1(\,n), 0< 2z < L, k=1,2},
{uy = Us1(\n) = =641, up = Us2(N\,), 0< 2. < L, k =1,2},
{ug — Usa(\,n) = =6A42, up = Us1(\,), 0< 2. < L, k =1,2}.

Let us take, for example, the first set. Let us look at the projection of the
trajectory onto the (u, uz)-space. This projection starts at the point

X, = (U—l(/\a 77) + 6-—‘1» U—Z()‘a 7])) = (Ul(fs), “2(55))'

As Hi(€5) > 0, then, 21(€) > 0 for all £ < & sufficiently close to &;. (If z1(&,) = 0,
then z{(&) < 0.) So that the backward trajectory could stay in the set N_(é,7)U
Ni(n), for sufficiently small £ < £, we should have z{(£) < 0 ie. (%) = 0 and
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z1(€*) = —H,(¢7) > O for some &* < &,. Such a situation could happen only
below the curve H; = 0 (or just on it). However, the trajectory arriving at the
curve H; = 0 must come below the curve H, = 0, first. But, below that curve we
would have z; > 0, due to the fact that z; = 0 implies 25 = —H, < 0 (we consider
the backward trajectory). Consequently, the projection of the backward trajectory
must cross the boundary of N_(¢, ) at the point not belonging to dN{(7). Thus
this trajectory does not stay in N(6, 7)) (see Fig.1).

The proof that the trajectory (in appropriate time direction) starting at a point
belonging to the other three of the sets written down below does not stay in the
set Np(8,7), is carried out almost verbatim in the same way as above. So, the
proof of Lemma 11 is completed. 4
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Constitutive relations and internal equilibrium condition
for fluid-saturated porous solids
Nonlinear theory

M. CIESZKO and J. KUBIK (POZNAN)

NONLINEAR CONSTITUTIVE relations for the fluid-saturated porous clastic solid with isotropic pore
structure undergoing pure mechanical large deformations are developed. The fluid-solid com-
position is considered as the immiscible mixture consisting of physically identifiable constituents
preserving its own individual, physical propertics during dcformation process. Considerations are
based on the balance equation for the internal energy of the whole composition which is required
to be satisficd identically by the internal encrgy constitutive functions postulated for particular
components independently. Constitutive relations for partial stresses of particular constituents are
obtained, and the internal equilibrium condition for the whole composition is established. These
relations for the media with incompressible matrix material and for nonsaturated porous skeleton
are discussed.

1. Introduction

MACRO-CONTINUUM constitutive modelling of fluid-saturated porous solids has
been a subject of wide discussion through the last decades. Nonlinear models of
such materials are based mostly upon the fundamental notions of the Classical
Mixture Theory, [5, 23], and its reformulated form — the Theory of Interacting
Continua, [9, 10]. Classical mixtures are considered to be composed of misci-
ble consiituents (miscible mixture) and within that theory, a fluid-filled porous
medium is treated as the superposition of two continua (solid and fluid) charac-
terized by two independent velocity fields. In such approach, the microstructure
of solid-fluid composition is not taken into account in formulation of the balance
equations and constitutive relations. At the same time, constitutive theories of
classical mixtures quickly become complex and unwieldy, even for the simplest
constitutive assumptions, when they are based on the principle of equipresence
[23], which assumes that each constitutive quantity of a particular component
depends on a set of independent variables for the whole solid-fluid composition
(see eg. [1, 2, 7, 11, 12]).

It is evident, however, that such materials as saturated sands, soils, porous
rocks, sintered metals, sponges etc. consist of physically identifiable solid matrix
and a fluid filling its pores that retain their material integrity, and thus their
individual physical properties, during a deformation process. Therefore, porous
materials filled with fluid, contrary to the classical mixtures, have internal geo-
metrical structure reflecting the fact of immiscibility of constituents and charac-
teristics of this structure play important role in both transport phenomena and
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constitutive modelling of such materials. This also proves that in the local sense,
each constituent will obey the constitutive relations for that constituent alcne.

Among many works developing the macro-continuum constitutive modzlling
of solid-fluid mixture there are papers that regard the immiscibility effect by
incorporating in the description the parameter of volume porosity characterizing
the volume fractions of the constituents (see for example [4, 6, 8, 13, 19-22]).
Most of these papers have in common the fact that they apply the principle of
equipresence in formulation of constitutive relations for partial quantities of the
individual components of the solid-fluid mixture ([6, 8, 19 -22]), or for the energy
constitutive functions concerning the whole aggregate ([4, 13]). Such approach
does not prove to be self-consistent in treating the immiscibility effect as the
immanent feature of the porous solid-fluid composition.

The extensive literature concerning the different descriptions of immiscible
and structured mixtures can be found in the review paper [3].

The purpose of this study is to develop, within the macro-continuum descrip-
tion, the nonlinear constitutive relations for fluid-saturated porous solids under-
going pure mechanical deformations where the main consequences of the immis-
cibility, i.e. the skeleton pore structure characteristics and mutual independence
of mechanical properties of individual constituents are taken into account. The
components are assumed to be elastic and the pore structure has isotropic and
homogeneous properties in the macroscopic (averaged) sense.

Considerations are based on the balance equation for the internal energy of
the whole composition, which is required to be satisfied identically by the internal
energy constitutive functions postulated for particular components, the functional
forms of which reflect their individual features.

This enables one to obtain two nonlinear constitutive relations for stresses
(one for porous skeleton and the other for pore fluid), and the relation for
interface interaction force. Moreover, the additional relation is derived which is
the condition of internal equilibrium for the solid-fluid composition. Tt relates the
pore fluid pressure with independent variables describing the deformation state
of porous skeleton.

In the paper three particular cases of constitutive relations are also consid-
ered. They concern the porous solids with isotropic mechanical properties. with
incompressible material of the skeleton and the case when porous solid is not
saturated with fluid.

2. Balance equations for mass, linear momentum and internal energy
In our considerations we use the macroscopic continuum description of fluid-
saturated porous solid, the pore structure of which is isotropic and characterized

by. two parameters: the volume porosity f, and the structural permeability A (or
equivalently k = A/ f, < 1). The quantity f, represents the {luid volume fraction
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and A is the measure of inhomogeneity of the fluid micro-velocity field in its flow
relative to the skeleton, caused by the pore structure [14-16]. The characteristic
feature of this theory is that the description of kinematics and dynamics of the
porous solid-fluid mixture is referred to the so-called virtual components while the
description of constitutive properties of the mixture is formulated for its physical
constituents.

The physical constituents are: the fluid (|/) and the porous skeleton (|*), which
are chemicaly inert and their mass is conserved. Therefore the appropriate con-
tinuity equations have the classical form used within the mixture theory [5]

05

W‘*‘le(QV):O,
%! | vy =
T +div(a’v’') = 0,

where p° and g/ are the partial densities of porous solid and fluid, respectively,
and v* and v/ stand for the mass average velocities of the constituents.
The virtual constituents are formed by the porous skeleton and {luid associated

I : . . .1
with it — the first virtual constituent (|') moving at the skeleton velocity v, and
A . . i ) . 2
the free fluid — the second virtual constituent (|*) moving at its own velocity V.
These velocities are related to velocities of the physical constituents as follows,
[14, 15]:

= vS‘

<ty <

1
=v' + ;(vf - v*).

The virtual constituents in the macroscopic description result from the require-
ment that the whole linear momentum and kinetic energy of the particular con-
stituents considered within the Elementary Volume Element and described by
the quantities defined at the micro-level (pore, grain level) should be fully rep-
resented by the macroscopic (averaged) quantities at the macro-level.

Since during a deformation process the amount of associated {luid can change,
the virtual constituents form systems interchanging their masses and the core-
sponding continuity equations have the following form, [15],

0}) 1
SpHdiv(ey) = g,

By 2
5[5’ +div(5V) = —g.

(2.1)

The function ¢ is the mass exchange intensity between the free and associated
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fluid and is given explicitly by the expression

1
_s.D o/
9=2"p; {(1 —*»)33] ;

The motion equations of the virtual constituents are, [14-16],

11
D . 1
é—dt—v- = divT+ob+ +5g(3_$),
(2.2) :
2
D .2 2 1
é—v = dIVT+,(2)b + T +—g(\2f—%');
dt 2
D) _ 90 Lo =
Tt —W+v-gmd(), a=1,2
where T and x ('!]t =T = - 12t) stand for the internal interaction forces between

constituents and b is the external body force per unit mass. The last terms on the
RHS of Egs. (2.2) represent the coupling between virtual constituents caused by
the linear momentum exchange accompanying their mass exchange.

. oo I 3 , 12 :
The partial densities p, ¢ and partial Cauchy stresses T, T of the virtual con-
stituents are related to the partial densities 5°, / and partial Cauchy stresses
T, T/ of the physical constituents through the following equations, [14]

(2.3) E) =7°+ (1-x)a’, f):l{/)f.,
! 2

(2.4) Tt -0, T=&1,

where

3l =f0f,  wP=(1-f)ef

and o/, o° stand for the effective density of fluid and porous skeleton, respectively.
1 2
Stress tensors T and T/ are assumed to be symmetric, so that stresses T and T

are also symmetric.

The local form of the internal energy balance equation can be formulated
both for the individual components or for the whole solid-fluid composition. In
our case we use the second one that allows us to avoid the specification of the
terms describing the interchange of energy between constituents.

Accounting for the immiscibility of the physical constituents, the internal en-
ergy of the porous solid-fluid composition is considered as the sum of the internal
energies of these constituents. When thermal efects are disregarded, its fcrm is
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as follows, [16, 17],

1 1 2
8 D et of
2.5) ES%‘Z +(1- a2 4 g 1;;[

] o 1 2.2
=T (3—\11) +tr(TTL) + tr(TTL),

where e/ and ¢° are the internal energies per unit mass for the fluid and the solid
skeleton, respectively, and the tensors

1 1 2 2

L = grad v, L=grad v
are the velocity gradients of the virtual constituents. The subscript 7" stands for
the transposition of the tensor.

The particular terms of the LHS of (2.5) describe the rate of changes of the
internal energy in the matrix material, associated fluid and free fluid, respectively,
which are balanced by the rate of work of volume and surface forces represented
by the RHS terms of (2.5). Equation (2.5) will be used in further part of this
work to derive the necessary constitutive relations.

3. Constitutive relations for the elastic porous solid filled with barotropic fluid.
The internal equilibrium of the system

In this section we formulate constitutive relations for porous solid filled with
fluid undergoing large elastic deformations. It is assumed that both, porous skele-
ton and fluid filling pores have elastic properties, and mutual solid-fluid interac-
tion on the interface is that of mechanical type only. We disregard the viscous
effects of the fluid confining our considerations to the pure elastic interactions.

Under the above assumptions, the f{luid-saturated porous solid forms the
non-dissipative system of two immiscible constituents, each of which preserves its
own physical properties during a deformation process. The mechanical behaviour
of such system is entirely described by the mass and linear momentum balance
equations of virtual constituents (2.1) and (2.2), respectively, and appropriate
constitutive relations which have to be formulated for the physical components.
At the same time, the balance equation (2.5) for the internal energy of the system
must be identically satisfied by constitutive relations for an arbitrary mechanical
process.

We apply the internal energy balance equation (2.5) to obtain nonlinear con-
stitutive equations for the elastic porous solid filled with fluid. Their forms will be
derived from Eq. (2.5) which has to be identically satisfied by the postulated func-
tions for the internal energies of individual physical constituents of the solid-fluid
system.

Such method of derivation of the constitutive relations is analogous to the
clasical approach used for the hyperelastic medium.
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3.1. Constitutive postulates for the fluid and porous skeleton internal energies

The essence of the immiscibility is the fact that the physical constituents of
porous solid-fluid mixture remain separated during a deformation process and
then, in the local sense, each constituent shall obey the constitutive relations for
that constituent alone. Therefore it is reasonable to define the internal energy
for each physical constituent independently by the field quantities describing its
own state of deformation.

In the case of the elastic (barotropic) fluid filling pores of the skeleton, its
local state is defined by the effective fluid mass density o/. Thus, the constitutive
function for the fluid internal energy can be written as follows:

(3.1) el =el(o).

The local deformation state of the elastic porous skeleton filled with fluid,
contrary to a non-porous material, is characterized by two kinds of independent
variables describing, say, the internal and external skeleton deformations. The
internal deformation of the skeleton is connected with a change of its geometrical
pore structure and is measured by variations of the pore structure parameters:
fv and X (or equivalently «). Both the pore structure parameters will be used in
the description as the internal state variables.

The external skeleton deformation (bulk deformation of a porous sample) is
defined by the deformation gradient

Jx ()

(3.2) F=-%= o X 0,

where '
x =X, (X, 1) = X(k ' (X), 1)

is the deformation function of the porous body 8 which relates the position X of
the skeleton particle (macroscopic particle) X" € 5 in the reference configuration

X =Kk(\)
to its position x in the current configuration
x = x(X,1).
The derivative in (3.2) is defined by the identity, [18],

LTI N

where D is an arbitrary vector quantity.
The deformation process in which the pore structure parameters of porous
skeleton changes while the deformation gradient F is constant and equal to the
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identity tensor is called the pure internal deformation, whereas the case when the
pore parameters are constant during the deformation measured by the gradient
F is called the pure external deformation.

Taking the above into account, the constitutive relation for the internal energy
of porous elastic solid can be proposed in the following form

(3.3) e’ = el(F, fu, k).

Because of dependence of the deformation gradient F on the choice of reference
configuration, the function e must also depend on the reference configuration
to ensure the value of internal energy e® to be insensitive to changes of this
configuration.

It is commonly accepted that each constitutive relation should satisfy the prin-
ciple of material objectivity, that is to be independent of the choice of reference
frame.

The relation (3.1) as the scalar-valued scalar function satisfies this principle
automatically whereas the objectivity condition for the relation (3.3) takes the
form of the following identity, [18],

(3.4) e;.(QF, fu, k) = ei(F, fu, k),

that has to be satisfied for every orthogonal transformation Q (Q” = Q1) and
for arbitrary values of independent variables F, f, and «.
The condition (3.4) when applied to (3.3) yields

(3.5) e* = el(C, fu,K),
where
(3.6) C=F'F

is the right Cauchy-Green deformation tensor.

Accounting for the fact that the independent variables C, f, and « are objective
quantities, the scalar-valued function (3.5) satisfies the objectivity principle for
arbitrary form of €;.

The representation (3.5) is the general (nonlinear) constitutive relation for the
internal energy of porous solid of anisotropic elastic properties and the isotropic
pore structure.

The relation (3.5) is not the only form that represents the internal energy
of porous skeleton. We can derive two other, equivalent forms replacing the cur-
rent volume porosity f, with the porosity f (say Lagrangean porosity) defined

by
(3.7) = fud,
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where
(3.8) J = det(F) = [det(C)]'/?,

or with the skeleton density ¢® related to the porosity f, by the skeleton continuity
equation

(3.9) o*(1 = f,)J = oj(1 - fO) = 3§ -

In (3.9) 0§ and f? stand for the values of o° and f,, respectively, in the reference
configuration.

The porosity fL is the ratio of the pore volume contained in the Elemen:ary
Volume Element (macro-particle) of the porous body in the current configura:ion
to the total volume of the same Volume Element in the reference configuraton.
Variation of this quantity, contrary to variation of f,, is the local absolute measure
of the change of a pore volume during a deformation process.

Similarly, the skeleton mass density variation may be considered as the local
absolute measure of the change of a skeleton volume. In such a case the dersity
¢°, similarly to the porosity f,, plays the role of internal state variable.

These are good points in application of f* and o¢® to the skeleton intenal
energy formulation. We obtain

(3.10) e* = 8(C, fL, ),
(341) e’ = €.°(C,0°,r),

where the constitutive functions ¢/ and ¢.¢ are defined by the following identties

(3.12) e, 1h ) = B, R4,
(3.13) €.°(C,0°, k) = €5(C,1-735/0° ], K).

The constitutive functions for the fluid (3.1), and for the porous skeleton (3.5)
or its alternative forms (3.10) and (3.11) entirely describe the energetic stat: of
elastic porous solid filled with fluid and undergoing finite deformations.

3.2, Constitutive relations for stresses. The condition of mechanical internal equilibrium

To establish constitutive stress-strain relations for each constituent of the
fluid-porous solid immiscible mixture, and relations describing mutual solid-fuid
interaction, we apply the approach characteristic for the hyperelastic mediim.
We introduce the relations (3.1) and (3.5) to the energy balance equation (.5)
for the whole porous solid-fluid mixture which has to be identically satisfied for
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an arbitrary mechanical process. Using, moreover, the continuity equation (2.1),,
Eq. (2.5) can be written as follows

s 2f 2 1|1
(3.14) tr{[zgsp-‘ﬂﬂ_"i(@f) fl,(l-:;)I—T} L}

aC do!
1
2 _,0¢p  ded 2| DS,
i+ o ik - 5 )] 5

de! 2 2
e d |28 (1
tr{[dgf (g ) KL+ T

1
1 2 de Dr
-(V—V)+8RE—O.

def 7]
- [@7 (¢/) grad(\) + =

Equation (3.14) is the linear function of the independent quantities

1 1
Df, Dk

Dt ' Dt’

for an arbitrary mechanical process in the body. Since these quantities can assume
arbitrary values, equation (3.14) will be identically satisfied if the corresponding
coefficients are equal to zero. Defining the quantity

1 2
L’ L7 (‘1’ - 3)5

I)2 de’

ol =
(3.15) = (o =

which is considered as the effective pore pressure, from (3.14) we have

1 95 .,

(3.16) T+(1 = x)fop'T = 25 FLL§T
JC
2
(3.17) T = —xf,p’1,
(3.18) ¥ =55k
dég _

(3.19) == =0,
(3.20) w = —plgrad (V).

Condition (3.20) describes the force exerted on the solid skeleton by fluid filling
its pores. From (3.20) it is seen that, despite the lack of fluid viscosity eflects in
the considerations, the solid-fluid interface interaction force does exist due to the
nonhomogeneity of the skeleton pore structure.

The expression (3.19) is the necessary condition for minimum of the skeleton
internal energy function at constant strain tensor C and volume porosity f,. If,
additionally, the sufficient condition is satisfied, i.e.

nN2zs
7€}

Or?

> 0,
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then Eq. (3.19) indicates that the saturated porous body undergoes a deformaton
process in such a way that the parameter « takes values for which the skeleion
internal energy has a minimum, (Fig.1). Therefore, the condition (3.19) may
be treated as the implicit equation of variation of the s-parameter during a
deformation process.

K = k(C,f,)

Fic. 1. Illustration of the changes of the pore structure parameter x during the deformation
process.

Assuming that (3.19) is the smooth function of &, it can be rewritten (at least
locally) in the explicit form

(3.21) k= R(C, f,),

that has to satisfy the condition

oe :
5(C, fos h)|h_ 0.

=x(C,fv)

Equation (3.21) offers the possibility of exclusion of the x-parameter from theset
of independent variables defining the skeleton internal energy function. In sich
a case, the constitutive functions (3.5), (3.10) and (3.11) take the form

(3.22) &3(C, f,) = §(C, £, R(C, .)),
(3.23) &l by = g (c, fE RN, £Ey),
(3.24) E22(C, 0°) = €°(C, 0", R4(C, 0%)),
where

(3.25) RE(C, fh) = R(C, TE1D),

(3.26) Re(C,0%) = R(C,1-T3/0")).
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From the condition (3.19), due to identities (3.12) and (3.13), we obtain

£ 2 sf s ':SQ
df" _ df*‘ -0,

Jr Ik
and consequently (3.12) and (3.13) reduce to the following identities, respectively

(3:27) 222 (C, ITYy = BC, FL 10,
(3.28) £29(C, 0%) = €4(C,1-p3/0°J).

From the above consideration it is seen that the condition (3.19) should be treated
not only as the condition of independence of the skeleton internal energy of
the parameter «, but also as the equation of changes of this parameter. Such
interpretation of the condition (3.19) is supported by the analysis given in Sec. 4.3
where the skeleton mass density changes of non-saturated porous material is
obtained as a particular case of the internal equilibrium condition (for p/ = 0)
in the same form as the condition (3.19).

Now, taking into account relations (3.22), (3.19) and (2.4), Eqgs. (3.16) - (3.18)
can be written in the following form

S . =S8 ﬁ T
(3.29) T = 25"FLF7,
(3.30) T = —f,p’I,
(331) o = 53}‘ .

Equations (3.29) and (3.30) (together with (3.15)) are the constitutive relations
for the partial stresses of an elastic porous skeleton and of a barotropic fluid
filling its pores, respectively. Equation (3.31) relates the pore fluid pressure p/
with the deformation tensor C and the volume porosity f,; quantities which define
the state of deformation of the porous skeleton. It is the condition for internal
mechanical equilibrium between porous skeleton and fluid filling its pores. As
will be shown in Sec. 4.2, this equation does not appear in the description in the
case when the skeleton material is incompressible.

The condition (3.31) and the skeleton continuity equation (3.9) define (op-
tionally) changes of the two internal parameters: the volume porosity f, and the
skeleton mass density o°.

From the above considerations it is seen that the constitutive functions

a~s I~ s
deg dep

oC’ ar,

in relations (3.29) and (3.31) are defined by the mechanical properties of porous
skeleton and do not depend on the properties of the fluid filling its pores. In
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such constitutive formulation the mechanical coupling between fluid and porous
skeleton appears only in the internal equilibrium condition (3.31) where the fluid
pore pressure p/ is present.

It is worth to note that relation similar to (3.31) was considered by KENYON in
his paper [13] on the equilibrium theory of the solid-fluid mixture. He introduced
constitutive postulate relating the volume porosity f, to the fluid bulk density 57/
and J = det(F), without any physical motivation. Such relation can be consid-
ered as a particular case of the equation (3.31) that has the resonable physical
interpretation.

The form of the constitutive equation (3.29) and the internal equilibrium
condition (3.31) will change if the Lagrangean porosity f or the skeleton mass
density p°, instead of the current volume porosity f,, is used in the expression
for skeleton internal energy. In the first case, after differentiation of (3.27) with
respect to C and fL, we obtain

a0 B

aCc I_Ef‘dﬂ :
OE:j _ 1 9ep

aftk g a5’

The above relations, when applied to (3.29) and (3.31) yield

a~sf
(3.32) T — fp'l = 25 F O FT
- UC ?
a~sf
_ e
(333) Vo= wgr

Taking Eq. (3.30) into account, we can conclude that Eq. (3.32) is the constitutive
relation for the total stress

T=T +T

in the solid-fluid composition.

Equations (3.32) and (3.33) coincide with the equations derived in another
way by Biot [4].

In the second case, after differentiation of (3.28) with respect to C and »* we
have

50 oms
det _ oeg

- _ A 1"
ac TS ( f‘)dfuc
0e o3 ()c,;.

do* (05)2] Of,
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These relations, when applied to (3.29) and (3.31), give

zs0
(3.34) T = —(1- f)p/1+25° Fd(‘: Fr,
f d~’9
P _
(3.35) 7ol e

From (3.34) it is seen that the stress in the skeleton is composed of two parts;
the first part
—(1 - fu)/)fl
is due to the presence of the pore fluid in the skeleton pores, and the second
part
de° r
25°F—A-F'
- 0C
is due to the deformation of porous solid.
Introducing the effective stress tensor in the skeleton by the definition

(3.36) T =T/(1- [),

from (3.34) we obtain the constitutive equation for the effective stresses in the
following form

)g se

(3.37) T = _,,f1+7nr éF'

It should be noted that the constitutive relation (3.37) as well as the internal
equilibrium condition (3.35) and the constitutive equation (3.15) for the effective
pore fluid pressure, do not depend explicitly on the volume porosity f,. It limits
the number of the quantities appearing in these equations thus simplifying their
forms.

In such a case the condition (3.35) can be considered as the equation de-
scribing variations of the skeleton mass density o® (particularly in the case of
non-saturated pores (p/ = 0); see Sec.4.3). Then the skeleton continuity equa-
tion (3.12) plays the role of equation for the volume porosity changes.

The constitutive relations (3.15) and (3.37), the condition (3.35) and Eq. (3.21)
form a complete set of the constitutive equations for the fluid-saturated porous
solid of elastic mechanical properties (in general anisotropic) and of the isotropic,
initially homogeneous pore structure. This set of equations is supplemented by
the relation (3.20) describing the solid-fluid interface interaction force.

4. Constitutive relations. Special cases

In this section the nonlinear constitutive relations for the practically important
fluid-saturated porous media of simplified mechanical properties are analysed. We
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consider three particular cases that concern porous solids: of isotropic mechanical
properties, of an incompressible skeleton material and the case when porous solid
is not saturated with fluid.

4.1. Saturated porous solid with isotropic properties of skeleton

The constitutive relations (3.29), (3.31) and (3.21) will describe elastic prop-
erties of the isotropic porous skeleton filled with fluid if all of them are isotropic
relations. This can be achieved by imposing the isotropy condition on the relation
(3.4) for the skeleton internal energy.

This condition takes the following form, [18],

(4.1) e (QCQ7, fu, %) = 8C, fu, k),

which has to be fulfilled for all orthogonal transformations Q (Q” = Q') and
all values of independent variables C, f,, «. Such requirement imposed on the
fluid internal energy (3.1) is satisfied identically.

The condition (4.1) shows that the skeleton internal energy is an invariant
of the deformation tensor C and thus, it can be considered as a function of the
invariants of C.

In such case Eq.(3.5) becomes

(4.2) e® = 8M(C, fo, k) = eIF, 5, 1L, f,y5),
where
F=ir(C), K= %(trz(C) —tr (C?), I = det(C),

are the principal invariants of the tensor C.

Relation (4.2) is a general form of the constitutive equation for the irternal
energy of the skeleton with isotropic mechanical properties.

Isotropy of (4.2), due to the relation (3.19), results in isotropy of Eq. (3.21) and
consequently, due to the identity (3.22), leads to the isotropy of the stress-strain
relation (3.29) and of the internal equilibrium condition (3.31).

We obtain

(43) k= RUP PP L),

(4.4) T = 2p° {If Ef 1+ (B + 1P EP)B - EfB?},

(45) Vo=

where

(4.6) &l 12,13, £ =P 17 17, £, ®UL L 15,15 1))
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and the right Cauchy-Green deformation tensor C is replaced with the left de-
formation tensor -
B=FF",

the invariants of which are identical
B=1° a=1,223.
The quantity £2 stands for

3
-f:%?, a=1,23.
Relations (3.15), (4.3)-(4.5) form the set of the constitutive equations describing
the mechanical behaviour of the isotropic, elastic porous solid-fluid composition.

Using the relations (3.7) and (3.9) we can derive two other, equivalent sets of
constitutive relations in which, instead of the volume porosity f,, the mass density
0* or Lagrangean porosity f are used as idependent constitutive variable.

4.2. Saturated porous medium with incompressible skeleton material

Incompressibility of the porous skeleton material is defined by the condition
4.7) 0" = 0p.

It is a kinematic constraint confining the skeleton motion during its deformation.
This condition, at the same time, is the special (trivial) case of the equation
describing changes of the skeleton mass density and replaces in this role the
condition of internal equilibrium for the solid-fluid composition.

Taking (4.7) into account, the skeleton continuity equation (3.9) reduces to
the relation

(4.8) fo=1-Q-=f)/J

that uniquely defines the volume porosity changes by means of the skeleton de-
formation gradient F.

The assumption (4.7) and relation (4.8) eliminate the density p* and porosity
f, or f¥ from the set of independent variables describing the internal energy of
the skeleton. We have

(4.9) e’ = ei(C,R).

Now, requiring the balance equation of the internal energy (2.5) to be identically
satisfied by relations (3.1) and (4.9), one can find the constitutive equations for
the interface interaction force and the effective fluid stresses identical with the
relations (3.20) and (3.15), respectively. At the same time, the function of the

http://rcin.org.pl



908 M. Cieszko AND J. KUBIK

s-parameter variation and the constitutive relation for the skeleton effective stress
take forms similar to (3.19) and (3.37), respectively, i.e.

0es _
(4.10) e = 0, -
(4.11) T = —p/I+ ZnSF%FT,
- ocC
where - -
£0(C) = £1(C.7(C))
and

& = R(C)
is the explicit form of the relation (4.10) defined by the identity

= 0.

Pled oo
Ok (Cs) k=r(C)
The term in (4.11), related to the fluid pressure p/ represents the stresses in the
skeleton caused by the presence of the fluid in pores. These stresses contribute to
the pore fluid energy during the skeleton deformation. However, due to incom-
pressibility of the skeleton material, they do not influence the skeleton internal
energy.

It should be pointed out that the set of constitutive relations mentioned above
does not contain the condition of internal, mechanical equilibrium for the con-
sidered solid-fluid composition. This results from the fact that the skeleton mass
density has been excluded from the set of independent variables.

4.3. The non-saturated porous solid

Constitutive description of non-saturated, elastic porous solids can be obtained
from the constitutive relation (3.37) and the internal equilibrium condition (3.35)
through the assumption that the effective fluid pressure is equal to zero (p/ = 0).
In such case, we have

gese
4,12 T = 2p°F—&F!
(4.12) OF—&F,
9ee
(4.13) Jor

The form of Eq.(4.13) is similar to that of (3.19). Therefore, we conclude that
during a deformation process of elastic, non-saturated porous solid, the skele-
ton mass density o° takes values for which the skeleton internal energy has a
minimum. This additionally justifies our interpretation of (3.31) as the internal
equilibrium condition between the pore fluid and skeleton.
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If £.¢ is a smooth function, equation (4.13) can be rewritten in the form
(4.14) 0* = 0°(C)

that explicitly describes the skeleton mass density changes. Then the identity

is satisfied.
Introducing (4.14) into the skeleton the mass continuity equation (3.9) we
obtain the equation for the changes of volume porosity

(4.15) fo=1-33/75°(C).

Moreover, the equation (4.14) eliminates the skeleton mass density from the set
of independent variables describing the internal energy of the skeleton. We have

(4.16) et = F(C)

I

7(C,3°(0))

Thus, the constitutive relation (4.12), when (4.13) is taken into account, reduces
to the form

(4.17) T = 2£>5FQJ—(§F'1',

similar to that for a non-porous solid.

5. Final remarks

Nonlinear constitutive relations for the fluid-saturated porous solid immiscible
mixture undergoing pure mechanical large deformations have been developed.

Considerations have been based on the balance equation for the internal en-
ergy of the whole composition which was required to be satisfied identically by
the internal energy constitutive functions postulated independently for individual
components.

General constitutive relations for partial stresses in an anisotropic, elastic
skeleton and barotropic fluid have been formulated and the internal equilib-
rium condition for the composition has been established. This condition relates
the pore fluid pressure to independent variables describing the state of porous
skeleton and it does not appear in the constitutive description when the skeleton
material is incompressible. Also the constitutive relations for the medium with
simplified physical properties have been discussed.
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Constitutive relations and internal equilibrium condition
for fluid-saturated porous solids
Linear description

M. CIESZKO and J. KUBIK (POZNAN)

USING THE NONLINEAR THEORY established in the paper [5], the constitutive relations for small de-
formations of the fluid-saturated porous solid are derived. It is assumed that the elastic propertics
of porous skeleton are non-isotropic while the skeleton pore structure is isotropic. Fluid filling
pores is assumed to be barotropic. Such approach made it possible to construct the consistent lin-
ear description of elastic behaviour of porous medium in which all material constants are precisely
defined and represent mechanical properties of individual constituents. It is shown that the pure
elastic properties of fluid-filled anisotropic skeleton are characterized by 36 material constants and
reduces to 7 constants for the isotropic case, and to 4 constants when the skeleton is isotropic and
its material is incompressible. In each considered case, the only one material constant character-
izes mechanical propertics of the pore fluid whercas the remaining constants characterize elastic
properties of porous skelcton.

1. Introduction

The purpose of this paper is to formulate the linear constitutive theory for
fluid-saturated porous elastic solid using as a starting point the results of nonlinear
theory established in [5], where the special attention was paid to the consequences
of the constituent immiscibility in such a medium.

The elastic properties of porous skeleton are assumed to be anisotropic while
its pore structure is isotropic and is described by two scalar parameters: volume
porosity f, and the structural permeability A (or, equivalently, by parameter x =
A/ J), [10].

The comprehensive constitutive macro-description of mechanical behaviour
of fluid-saturated porous solids during a deformation process — also within the
linear theory — should include all characteristic features resulting from the fact
of immiscibility of physical constituents. Therefore, in the case of a solid-fluid
elastic system, apart from the constitutive relations for the skeleton stresses and
the pore fluid pressure, the additional relations for pore structure parameters and
effective skeleton mass density changes must be established. The formulation of
such relations should provide clear physically motivated interpretation of inter-
actions between the porous skeleton and pore fluid and to give precisely defined
material constants with clear physical interpretation.

In the commonly used linear theory of fluid-saturated porous solids devel-
oped by Biot [1-3], the problem of changes of pore structure parameters and
skeleton mass density do not appear. The Biot constitutive relations derived from
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the internal energy function postulated for the whole aggregate does not provide
simple interpretation of mechanical couplings between constituents, and the cor-
responding material constants characterizing these couplings are complex [3, 7,
8]. The above difficulties are unfortunately not overcome in works in which the
linear constitutive relations are obtained from their nonlinear form formulated
with the use of the principle of equipresence (see e.g. [4, 6, 9, 12]).

In our analysis of the porous solid deformation process the notions of the
external (bulk) deformation defined by the right Cauchy-Green deformation
tensor C (the infinitesimal strain tensor E in the linear case) and of the internal
deformation measured by the change of the effective skeleton mass density o* (or,
equivalently, volume porosity f,) are used. Such approach enables one to obtain
the linear constitutive description of elastic solid-fluid composition in which the
mechanical coupling between the deformable skeleton and pore {luid appearing in
constitutive relations, and the corresponding material constants are well defined
and have clear physical meaning.

In the paper, it is shown that the elastic properties of fluid-filled anisotropic
skeleton with isotropic pore structure are characterized by 36 material constants
and reduces to 7 constants for the isotropic case and to 4 constants when the
skeleton is isotropic and its material is incompressible. It should be pointed out
that in each considered case, only one material constant characterizes the me-
chanical properties of the pore fluid whereas the remaining constants characterize
elastic properties of the porous skeleton.

2. Initial set of constitutive relations for an elastic porous skeleton filled with
barotropic fluid

The starting point for our considerations is the macroscopic nonlinear consti-
tutive description of an elastic porous skeleton filled with barotropic fluid, for-
mulated in the former paper [5]. It is assumed that the skeleton pore structure is
isotropic and characterized by two scalar parameters: the volume porosity f, and
structural permeability A (or, equivalently, parameter x = A/ f,). From different
forms of the constitutive relations derived for the elastic porous skeleton in this
discussion we use that one in which the independent variables are the efTective
mass density ¢° and the right Cauchy-Green deformation tensor

C =F'F,

where F is the porous solid deformation gradient and the superscript 7' stands
for transposition of the tensor.

In such a case the complete set of constitutive equations comprises:

¢ the constitutive stress-strain relation for the porous skeleton

9
2.1 T* = —p/1 4+ 20°F—F7;
(2.1) p o°Fo5
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o the internal, mechanical equilibrium condition for the porous solid-fluid
aggregate

s e s
2.2) p e

(@) do*°

o the equation for the x-parameter variation
(2.3) k= R(C, p*);
o the constitutive relation for the barotropic fluid

f get
P O
(2.4) @R~ 9ol

In the above equations, the constitutive relations
e =&%(C,0%), e =&/

represent the internal energies of the porous skeleton and fluid, respectively, and
T is the effective Cauchy stress tensor related to the partial stress tensor T* by
expression

T =(1- f)T.

The quantities p/ and o/ stand for the fluid pore pressure and its mass density,
respectively.
The derivative in (2.1) is defined by the identity, [11]
oS ‘)
9 b= Lec+ D, 0%

2.3) ac oh

2

h=0

where D is an arbitrary second order symmetric tensor.

Equations (2.1)-(2.4) have been derived from the internal energy balance
equation of porous solid-fluid aggregate which was required to be identically sat-
isfied by the independent internal energy functions postulated for the physical
constituents and an arbitrary nondissipative mechanical process. Such approach
takes into account the fact of immiscibility of the physical components that pro-
vides preservation of their individual physical properties during a deformation
process.

The constitutive functions in Egs. (2.1)-(2.3) are related to the elastic prop-
erties of the porous skeleton and do not depend explicitly on the volume porosity
fv. It reduces the number of quantities appearing in these equations simplifying
their forms. Therefore the internal equilibrium condition (2.2), that relates the
quantities p/, C and p°, may be considered as the equation describing variations
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of the skeleton mass density ¢° during a deformation process. Consequently, vari-
ations of the volume porosity parameter f, are defined by the continuity equation
for the skeleton

(2.6) (1 - f)o* dew(F) = (1 - f)af,

where quantities ff,’ and pf are the values of f, and p°, respectively, in the refer-
ence configuration.

All the three quantities: p*, f, and x can not be controlled directly by the
boundary conditions and in this sense they play the role of internal parameters.

3. Linear constitutive relations for elastic fluid-filled porous medium

We are interested in the linear constitutive description of elastic porous solid
filled with barotropic fluid undergoing small deformations. We consider defor-
mations around the equilibrium state of the medium that is assumed to be its
reference configuration. The linear constitutive relations are derived by lineariza-
tion of the general nonlinear equations (2.1)-(2.4).

Since the fluid does not have the natural stress-free states, both physical con-
stituents (fluid and porous solid) are in some initial stress state (in any arbitrary
reference configuration). Assuming that the medium in the reference configura-
tion is homogeneous, its initial state will be characterized by the following set of

quantities:

* . 0 )
T()sa Qaa fv’ KOs ]’57 Qéa

the values of which, due to (2.1)—(2.4), are related to each other by

— ,Jes |0
(3.1) 'IO = —])ljj'l + zf_)[,ﬁ
f a~s q
py _ 0e’)o
o @2 ~ o0l
(3.3) k= 7|,
f o= f
Ph oed 0
(3.4) = —,
(o} 90
where - g3t
0 — s de- |0 _ de” . 1
Ctl - O(CO, 00)7 ()Qf - 0@](90)
for L L
e g
“TaC e’
and
Co=F) Fy=1L
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For further discussion we introduce the solid displacement gradient H
(3.5) H=F-1I
and the Lagrange strain tensor E
2E=C-1
that are linked by the geometrical relation
(3.6) 2E=H+H+H'H.
Then, at small values of the displacement gradient H, from (3.6) we obtain
E~(H+H)/2=E
and the right Cauchy- Green deformation tensor C can be expressed as follows
(3.7) C~1+2E,

where E is the infinitesimal strain tensor of the skeleton. The quantity 2E is the
linear increment of the deformation tensor C.

To obtain linear constitutive relations from (2.1)-(2.4) we introduce the in-
cremental form of quantities T**, p’, 0°, o/, and x

T = Ty® + AT, pf = pg + Apf,
(3.8) 0° = gf + Ag?, of = o} + Ao/,
K= Ko + AR.
Then, using expressions (3.5), (3.7) and (3.8) in the constitutive relation (2.1),

after expansion of the internal energy function we can write the effective stresses
in the skeleton as follows

(39) Ty + AT = —(pf + Ap))I

e |0, 0%
aC aC?

0

0 _ 0253 Ags N

T
E+0930C H+I)".

+2(0) + Ap°)H + 1)

The above relation, when the condition (3.1) is taken into account and all the
nonlinear terms are neglected, assumes the form
Ap®

S

)
Ag® .
+(T5" + p(‘;l)-g—f- +2plE + HTy + T;°HT,
0

(3.10) AT+ Ap/1=C-E+K"
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where quantities

c 02 s ()2"-

are the effective material constants of the porous skeleton which have tensorial
character; C* is the fourth order tensor and K™ is the second order tensor.

In a similar way we can obtain the linear form of Eqs.(2.2) and (2.3). They
are

(3.12) Apf = K- E+ (K +2p)
)
(3.13) Ak = ] ;\g + P . E,
2o
where
02;5 0
x 52
(3'14) I\C - (00) (-)(.{)_q)') ]
. . OR s
(3.15) Ve = 0055 7C

In derivation of (3.12) the commutative law of differentiation

0 L)"~s 0

(3.16) K" = 2(o} = 2o 5550

do3dC

was used.

Equations (3.10), (3.12) and (3.13) are the set of linear constitutive rela-
tions for fluid-saturated porous solid of an anisotropic elastic properties and the
isotropic pore structure. From the definitions (3.11), (3.14) and (3.15) it is seen
that the material constants C*, K*, A'Z, v7 and P” characterize the mechanical
properties of porous skeleton only and depend on the chosen initial state of the
porous solid. The fourth order tensor C™ in (3.10) is the tensor of elastic con-
stants for the porous skeleton undergoing small external deformations at constant
effective skeleton mass density p°. The material constant A7* in (3.12) represents
the volumetric modulus of elasticity of the skeleton material corresponding to
the pure internal deformation caused by the change of the pore pressure p/ at
constant deformation tensor C (E = 0, external deformation does not exist).

The second order tensor K*, as it is seen from the definition (3.16) and re-
lations (3.10) and (3.12), is the tensor characterizing the coupling between two
independent kinds of deformations measured by tensor C and the increment of
o®. Due to the symmetry of tensor C, the tensor K" is also symmetric.
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Combination of the tensor K* with the constant A’} in the form
(3.17) V, = K*/(K7 + 2p))

characterizes the volume changes of the skeleton material caused by external

deformation of the porous solid at constant pore pressure (p/ = ])6). In such a
case from (3.12) we have

(3.18) =-V,E.

On the other hand, in the case when the external deformation does not exist
(E = 0), from equations (3.10) and (3.12) we obtain the relation

(3.19) AT = —Ap 1+ Ve Ap/,

where the tensor Vg is expressed by tensor K"and quantities A7, Tj® in the
following way

(3.20) Vi =V, + (T3’ + p{1)/(KF + 2p).

It characterizes the change of the skeleton stresses resulting from the internal
solid deformation caused by the change of the fluid pore pressure.

Coeflicients appearing in equation (3.13) describe the changes of the pore
structure parameter « during the deformation process. The scalar coefficient v*
defined by (3.15); characterizes the change of x as a result of the change of
the effective skeleton density at the constant deformation tensor C, whereas the
coefficient " is the symmetric second order tensor characterizing the changes of
x caused by the external skeleton deformation defined by E at constant effective
density o®.

The changes of the second pore parameter, i.e. the volume porosity, are char-
acterized by the skeleton mass continuity equation (2.6). Its linear form is

Af, _ Ag®
1-/9° g

(3.21) + tr (E).

To complete the linear constitutive description of an elastic porous solid-fluid
composition it is necessery to linearize the constitutive relation (2.4) for fluid.
We have

(3.22) Apl =k Ag,
where

de’ |0 d2e P\ 2
(323) ag = (206@] (06)2 3

is the velocity of the wave-front propagation in a bulk fluid.
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Constitutive stress-strain relations of the porous solid (3.10), the internal equi-
librium equation (3.12), the constitutive relation for the barotropic fluid (3.22)
and the equation of changes of the pore parameter « (3.13) form the complete
set of the linear constitutive equations for the elastic fluid-saturated porous solid
of an anisotropic mechanical properties and isotropic pore structure.

These equations contain six material constants. Three of them are scalar coef-
ficients (K'*, ag, v¥) and three other are tensorial coeflicients of the fourth order
(C*) and second order (K~,IP").

It should be mentiond that in the above description the velocity «; or, equiv-
alently, the fluid volume compressibility i/

(3.24) k' = poad

is the only material constant characterizing the fluid properties while the remain-
ing parameters characterize the skeleton properties.
Regarding the symmetry of tensorial coeflicients we have, in general, 3 +21 +
6 + 6 = 36 scalar quantities that have to be determined experimentally. More-
over, in solving any mathematical problem it is necessary to know the quantities
0% 03 K, f9 and p(f, characterizing the state of saturated solid in its reference
configuration.

4. Linear constitutive relations. Special cases

The obtained constitutive equations of an anisotropic fluid-saturated porous
solid are a good basis for derivation of constitutive relations for elastic porous
solids with high symmetry of mechanical properties or reduced physical proper-
ties. In this section we consider elastic behaviour of the fluid-porous solid compo-
sition with skeleton of isotropic mechanical properties, the case when the skeleton
material is incompressible and the case when the porous medium is unsaturated.
Constitutive relations for porous materials of such reduced properties have simple
form and are important in practical applications.

4.1. Porous medium with isotropic skeleton

The constitutive relations (3.10), (3.12), (3.13) and (3.22) will describe the
isotropic properties of a porous body if their form is invariant under any orthog-
onal transformation of the dependent and independent variables

{Apf, Aof, Ao, Ak, AT, E, H}.
Taking the orthogonal transformations of these variables, i.e.
‘apf = apf, a0 = A0, A0 =40, Ak = Ak,

4.1) = B
PAT* = QAT*QT, 'E=QEQ?, 'H=QH(,
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the constitutive relations (3.10), (3.12) and (3.13) assume the form

42 QAT*Q" +4p'1=C+(QEQ") + K‘i)_f
0

Ap? ~ .
+(T3 + ] I)—Qf + 25} (QEQT) + (QHQT)T + T (QHQT)T,
0

@3) =K. (QEQ")+ k2L 42,022
I &y

@4y Ax= u;i—f +P - (QEQT),
0

where Q (Q Q7 =) is the orthogonal tensor.

Equations (4.2) - (4.4) will be identical with the corresponding equations (3.10),
(3.12) and (3.13) for arbitrary values of variables Ap/, Ap®, Ak, AT, E, H and
any orthogonal tensor Q if the following conditions are satisfied

Q+C" =C",
(4.5) OK'QT =K, QPQ'=P,
QTBSQT = TaS!

where Q= is a linear operator defined by the equation
Q+(MOV20v3i®OV)=Qvi@Qv;8Qv3;0Qvy

and ® denotes the tensorial product of vectors.

It follows from (4.5) that the isotropy conditions for the constitutive relations
are equivalent to the requirement of isotropy of tensorial material constants C~,
K* and IP* and, additionally, the isotropy of the skeleton stress state T;® in the
reference configuration.

The isotropy conditions (4.5) reduce the quantities C*, K™ and " and Tj® to
the following form

C" = NIol+2u],
(4.6) K* = K*1, P =1,
TZ* = —pil,

where J is the fourth order unit tensor defined as the identity operator for the sec-
ond order tensors A (J -:A = A). The quantities A} and y; are the effective Lamé
constants of porous skeleton measured at the constant effective mass density of
the skeleton material, and pj is the initial stress in the skeleton.
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Using (4.6) in Egs. (3.10), (3.12) and (3.13) we obtain

(4.7) AT* + Ap'T = 205 + pf - p)E
(,\ tr(E) + (K + pf = p3) ‘)1
2
(4.8) Apf = K™ tr (E) + (I
- Ao®
(4.9) Ak = vt (E) + 07 09
0

In the case when the initial stress in the porous skeleton is equal to the intial
pore fluid pressure

o =15
Eq. (4.7) takes the reduced form
/ * S f - _}ns
(4.10) AT™ + Ap'I =) E+ | Ajtr (E) + K~ ~ L.
2o

Equations (3.22), (4.7) (or (4.10)), (4.8) and (4.9) form the complete se of
the linear constitutive relations for fully isotropic porous solid filled with flud.
Seven material constants

Bos e By Mgy 5, b5, g

0
are involved in the description, where the first six constants characterize el:stic
properties of the porous skeleton and one constant describes the mechanical {uid
property.

Methods of determination of these material constants will be discussed n a
seperate paper.

4.2. Saturated porous medium with incompressible matrix material

In the analysis of deformation processes of fluid-saturated porous media tlere
are many physical situations in which the skeleton material can be considerec as
incompressible. The incompressibility condition takes the form

(4.11) 0° = 0j

and is the kinematic constraint that confines the skeleton motion during itsde-

formation.

In such a case the macroscopic volume deformations of porous skeleton aise
at the cost of the change of pore volume. This is evidently seen in the skeleon
continuity equation (3.21) that has the form

Afy
-5

(4.12) = tr (E).
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The incompressibility condition (4.11) is, at the same time, a particular case of
the equation defining changes of the effective skeleton mass density and, as it was
shown in [5], it replaces the internal equilibrium condition (in our case, Egs. (3.12)
and (4.8)).

The skeleton material incompressibility has no influence on the form of con-
stitutive relation (3.22) for the fluid pressure, however, it substantially simplifies
the form of two other relations (3.10) and (3.13) reducing the number of material
constants. We have

(4.13) AT + Ap'1 = (C” + 2p§J) - E+ HT;® + T°HY,

(4.14) Axk = v tr (E).

In this case the increment of fluid pressure Ap/ is the part of the skeleton stresses
that during the skeleton deformation does the work over the pore fluid but does
not change the energetic state of the skeleton due to its material incompressibility.

Equations (4.13) and (4.14) for the fully isotropic porous solid, according to the
analysis done in Sec.4.1 assume the form

(4.15) AT + Apl1
(4.16) Ax

205 + pf — p{E + N3 t(E)L,
vytr (E).

The above equations form, together with (3.22), the set of three constitutive
relations defining the mechanical behaviour of fluid-saturated, isotropic porous
solid with incompressible skeleton material. Such porous medium is characterized
by four material constants:

Koy Ans Vg L.
The first three constants describe mechanical properties of porous skeleton and
the last one describes the pore fluid.

4.3. Non-saturated porous solid

To obtain the constitutive relations describing the elastic behaviour of an
anisotropic porous solid not saturated with fluid, one can assume in the equa-
tions (3.10) and (3.12) that the pore fluid pressure p/ is equal to zero (p/ = 0).
Therefore, these equations get the form

% Ap® "
(4.17) AT* = C-E+ (K" + T3)== + HT;* + T;*H7,
4]
~ Ap®
(4.18) 0=K.E+n=2,
20

while the equation (3.13) is not changed.
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Equation (4.17) will be simplified, if the skeleton reference configuration is
its natural configuration, i.e. Tg® = 0.
We have

Ap?®
=~

20

(4.19) AT =C*-E+ K"

From the internal equilibrium equation (4.18) it follows that for fluid-free porous
skeleton, the density change of the skeleton material is uniquely defined by the
porous solid strain tensor E. Therefore the constitutive relation (4.19) can be
written in the form

(4.20) T =C:-E

which is analogous to that of non-porous elastic solid.
Tensor

(4.21) C.=C-KeK)/K]

is the equivalent elasticity tensor of the effective elastic constants of a porous
skeleton.
In the isotropic case relation (4.20) is

(4.22) T** = 24 E + A te (E)I,

where
pr =g A=A - ()R

If, additionally, the incompressibility of the skeleton material is assumed, the
stress in the skeleton can be written as

(4.23) T = 25E + A tr (E)L

The material coefficients appearing in relations (4.20), (4.22) and (4.23) play an
analogous role as those in the classical linear elasticity of solids, and their mea-
surement can be done in the classical way. These material constants completely
assure the determination of stress and strain state in the porous skeleton. For de-
scription of the change of the skeleton mass density ¢, or the change of the pore
structure parameter « it is necessary to evaluate additional coefficients appearing
in Egs. (4.18) and (3.13) or in their reduced forms (4.9) and (4.8). Measurement
of these coeflicients requires some new methods to be proposed.
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5. Final remarks

The complete set of constitutive relations for a fluid-saturated porous solid
with anisotropic properties of elastic skeleton and isotropic pore structure char-
acterized by two parameters have been formulated in the paper. It comprises: the
constitutive relations for the effective skeleton stresses and the pore fluid pres-
sure, the internal mechanical equilibrium condition and the equation of changes
of the pore structure parameter x. These relations are supplemented with the
skeleton continuity equation which describe the changes of porosity f,.

Considerations have been based on the nonlinear constitutive relations of such
medium obtained in the paper [5], where the consequences of the constituent
immiscibility for these relations have been analysed.

Such approach made it possible to construct the consistent linear description
of elastic behaviour of porous skeleton filled with barotropic fluid in which all
material constants are precisely defined and have clear physical meaning. Also
the character of couplings appearing in the constitutive relations and their inter-
pretation are simpler.
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On existence theorems of periodic traveling wave solution
to the generalized forced Kadomtsev-Petviashvili equation

Y. CHEN (FAYETTEVILLE)

THIS PAPER is concerned with periodic traveling wave solutions of the generalized forced Kadomtsev-
Petviashvili equation in the form (ue +[f(u)]z + auzzz)r + Buyy = hg. The basic approach to this
problem is to establish an equivalence relationship between a periodic boundary value problem and
nonlinear integral equations with symmetric kernels by using the Green’s function method. The
integral representations generate compact operators in a Banach space of real-valued continuous
periodic functions with a given period 27". Schauder’s fixed point theorem is then used to prove
the existence of nonconstant periodic traveling wave solutions.

1. Introduction

THE KORTEWEG - DE VRIES EQUATION (KdV equation for short) is a nonlinear evol-
ution equation governing long one-dimensional, small amplitude, surface gravity
waves propagating in a shallow channel of water [1]. It has many applications
in the study of other physical problems, such as plasma waves, lattice waves,
and waves in elastic rods, etc. A two-dimensional generalization of the KdV
equation is the Kadomtsev - Petviashvili equation (referred to as KP equation
henceforth), which was obtained in 1970 in the study of plasma [2]. The evolution
described by the KP equation is weakly nonlinear, weakly dispersive, and weakly
two-dimensional, with all the three effects being of the same order. The KP
equation has also been proposed as a model for the surface waves and internal
waves in channels of varying depth and width [3].

Twenty years ago, in an impressive survey on the KdV equation, Miura listed
seven open problems of the KdV equation [2]. The seventh open problem con-
cerns the forced KdV equation. At that time the physical basis for the forced
KdV equation was not clear. PATOINE and WARN were the first two who used
the forced KdV equation as a physical model equation in 1982 [5]. However, it
was not until 1984 that AxyLas first systematically derived the forced KdV equa-
tion from the model of long nonlinear water wave forced by a moving pressure
[6]. After that, Wu [7] and SHEN [8] also derived the forced KdV equation in
the study of long water waves in a two-dimensional channel forced by a bot-
tom topography and/or an external pressure applied on the free surface. In a
recent paper [9], SHEN derived the one-dimensional stationary forced KdV equa-
tion of the form Au; + auu, + Suz,, = h, for the long nonlinear water waves
flowing over long bumps, and proved the existence of positive solitary wave solu-
tions to the stationary forced KdV equation with the boundary value conditions
u(+oo) = v'(+x) = 0.
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In this paper the author considers the generalized forced KP equation of the
form

(1.1) (ue + [f(w)]e + Quzgs)s + Buy, = hg,

where o and f# are positive numbers, and f is a C? function of its argument.
When f(u) = u2/2, « = 1, and 8 = 3, Eq.(1.1) reduces to the two-dimensional
forced KP equation of the form

(1.2) (u¢ + uuy + Uppy)s + 3uy, = ho,

which is a two-dimensional generalization of the equation obtained by Akylas, Wu,
and Shen. The author will prove an existence theorem of nonconstant periodic
traveling wave solution to the generalized forced KP equation following the idea
of Liu and Pao [10].

The author applies the Green’s function method to derive nonlinear integral
equations which are equivalent to the generalized forced KP equation with peri-
odic boundary conditions. Imposing suitable conditions, the author establishes the
existence of solutions to the integral equations, and hence proves the existence
of periodic traveling wave solutions to Eq. (1.1). Furthermore, we note that the
nonconstant periodic traveling wave solutions are infinitely differentiable.

The content of the paper is arranged as follows. In Sec. 2, the author converts
the generalized forced KP equation into nonlinear integral equations using the
Green’s function method. Section 3 contains the proof of the existence theorem
for these integral equations.

2. Formulation of the problem
We start from the generalized forced KP equation

(2.1) (ue + [f(W)]s + auzey)s + Buyy = ho,

where f is a C? function of its argument and kg is a nonconstant function of
z, y and t.. We are interested in the periodic traveling wave solutions of the
form U(z) = u(z,y,t), where z = az + by — wt with a, b, and w being real
constants. Without any loss of generality we assume a > 0. Consider the case
that hg(z,y,t) = a®h(z) is a 2T-periodic continuous function of z, where T is a
preassigned positive number. Substitution of the U(z) into Eq.(2.1) leads then
to the fourth-order nonlinear ordinary differential equation

Q1) UOE) = U"C) - — [T

a?
+JWENU"(E)] + —h(z),

http://rcin.org.pl



ON EXISTENCE THEOREMS OF PERIODIC TRAVELING WAVE SOLUTION 927

where C = (wa — #b%)/a%. We impose the following periodic boundary conditions
(2.3) ™) =v™@ry, a=0,1,2,3.

In addition, in order to rule out non-zero constant solutions, another condition
is introduced

2T
(2.4) U(z)dz = 0.
/

Thus, any solution of the boundary value problem consisting of Egs. (2.2) - (2.4)
can be extended to a 27-periodic traveling wave solution to Eq. (2.1).

Integrating both sides of Eq. (2.2) with respect to z twice and using Egs. (2.3),
(2.4), we obtain

n C l
(2.5) Uz) = —3U() = E - —3[J(U(2)) - H(=)),
(2.6) u™) = v"@r), =01,

where

1 1

2T
E=sne— Oj UWE) - HE sz,

and H(z) is a 2T-periodic function of = such that 11”(z) = h(z). Conversely,
integrating both sides of Eq.(2.5) from 0 to 27" and using Eqgs. (2.6) we are led
to Eq.(2.4), and direct differentiations of Eq. (2.5) will give us Eqgs. (2.2), (2.3).
Therefore, we have proved the following theorem by noting from Eq. (2.5) that
U € C?0,27] implies U € C*[0,27T] since f is a C'? function of its argument.

THEOREM 1. Suppose that C' # 0; a function U(z) is a solution of the boundary
value problem Eqs. (2.2)—-(2.4) if and only if it is a solution of the boundary value
problem Eqs. (2.5) and (2.6).

From now on we consider only the two cases: 1. C' > 0, and 2. C < 0 but
—C/(aa?) # (km/T)?* with k being any integer.

Denote the function f(U/(z)) — H(z) on the right-hand side of Eq.(2.5) by
F(U(z)). Treating the right-hand side of Eq. (2.5) as a forcing term and using the
Green’s function method [11], the boundary value problem Egs. (2.5), (2.6) can
be converted to an integral equation

2r
(2.7) U(z) = é/]\'i(z,s)l“(U(s)) ds,
0
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where the kernels K, i = 1,2, are defined as follows:

1. When C > 0, let A} = /C'/(aa?); then

) cosh A\{(T — |z — s|) 1
2 Kq(z = = z 21
2.8) Vi(, 9) 2\ sinh A\ T 2227 V2,4 €[0,27]

2. When C < 0 but —C/(ae?) # (kr/T)?* with k being any integer, let \; =

\/ —C/(aa?); then

2.9) Ky(z,9) = cos A\ (T — |z — s]) 1

: " Vz,s . 277
27z sin AT 2027 s € [0,21]

Lemma 1. The kernels A’y and A have the following properties:

K;(0,s) = K;(2T,s), Vs € [0,2T1], 1=1,2,
Ki(2,2T — s) = K;(2T — =z, s), Vs € [0,277], 1=1,2.

P r o o f. Straightforward computations follow from the definitions of the
kernels K;, : = 1,2, given in Egs.(2.8), (29). 4

THEOREM 2. A function U(z) is a solution of the boundary value problem
Eqgs. (2.5), (2.6) if and only if it is a solution of the integral equation (2.7).

Proof. The “if” part can be proved by direct differentiations of Eq. (2.7)
and the “only if” part is based on the Green’s function method by treating the
right-hand side of Eq. (2.5) as a nonhomogeneous term. 5

3. Existence theorem

To show the existence of 27-periodic traveling wave solutions to Eq. (2.1) it is
suffucient to show that solutions to the Eq. (2.7) exist.

To this end we define C'p as a collection of real-valued continuous functions,
v(z), on [0,27] such that v(0) = ©(27). Equip Cyy with the sup norm ||+|| as
[[v]] = sup [|v(z)|, for each v € Cyp. Then (Cap, ||+||) is @ Banach space.

0<=<2T

We now define operators A;, i = 1,2, on Cyp as
. 27
3.1) Aiv(z) = — / Ki(z, P ds, Yo & Cap,
0

where the kernels K7, : = 1,2, are given in Eqs. (2.8), (2.9). We shall demonstrate
that there exist functions v in (' such that v = A;v, ¢ = 1,2, and hence, prove
that there exist solutions to Eq. (2.7).
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Let
( % 1 ~y ) = 9 &y
(3.2) Qix m <2r/|1\( dlds, =12
(33) T = 1, ™= |s1n /‘\2T|

A consequence of Lemma 1 can now be stated.

LEmMMA 2. Let v be an element of Cyr. If v(2) = v(2T — 2) for z € [0,27],
then A;v(2) = A;v(2T - 2), i =1,2.

We now define B(0,7) to be a closed ball in Cyp and let M = sup[||F(v)|] :
v € B(0,7)]. We then have the following existence theorem.

THEOREM 3. A;, 1 = 1,2,is a compact operator from Cyp into Cyr. In particular,
if Q:M/(aa?) < v, i = 1,2, then A; maps B(0,r) into itself. Hence, the integral
equation (2.7) has at least one solution in B(0,r).

Proof. First we show A; : Cyr — Chp, t = 1,2. Since it is obvious from

Lemma 1 that A;v(0) = A;v(2T) for each v € Cp, + = 1,2, it suffices to show
that A;v, ¢« = 1,2, is continuous on [0, 277].

Let v be an arbitrary function in C',7; we have then

dAw(z) _ / o |
3.4) e 2(1(12 smh T sinh A\{(T = z + s)F'(v(s)) ds
1 2T
* ZaaZsioh AT f Sinh Ay(T' + 2 = $)F(v(s)) ds,
dAyv(z) _ / )
(3.5) d: 20“2 sm ,\2[ Sln /\2(_[ _— + Q)] (1)( )) ([5

-1
E O z — $)F(v(s)) ds.
ad?sn T sin A\ (T + s)F(v(s)) ds
The existence of d.Ayv/dz and dAyv/d= implies that both A,v and Ayv are con-
tinuous on [0,277], and hence, A; : Cor — Cop, i =1,2.
Let S be any bounded subset of Cy7p, i.e., there exists an Ly > 0 such that
lv|| < Lo for all v € S. Then there must be an Ay > 0 such that

| F(v)|| = sup |F(v(z))] < sup- | F(w)| < My, Yo e 8.
0<2<2 —Lo<w<iy
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Thus from Egs. (3.1), (3.4), (3.5) we shall have

1
[ A;v]] < WQ,‘M'Q, YveS, i=1,2,

T

Mo, Vees, i=12.

|[dAiv/dz|| <

Therefore, A;S, 1 = 1,2, is uniformly bounded and equi-continuous, and by the
Ascoli- Arzela Theorem both A; and .A; are compact.

To show that A;, i = 1,2, has a fixed point in B(0,7) when Q;M/(ad?) < r,
i = 1,2, we write

2T
lAiv(2)| = ﬁ / K (2, §)F(v(s)) ds
0

1 2T
< —5 [ |Ki(z,8)| |[F(v(s
< — [ING I F@E)ds
0
M
< Q 7 5T Yo € B(0,r).
aa

This implies that [|A;v|| < r for all v € B(0,r), i = 1,2, and hence, A;, i = 1,2,

maps B(0,r) into itself. Therefore, by the Schauder’s fixed point theorem we

proved that A; has a fixed point in B(0, r) for each : = 1,2. And hence, Eq. (2.7)

has a solution for each case of €' > 0 and C' < 0 with —C/(aa?) # (kr/T)%. .
2T

It is worth noting that as long as flx',-(:,s)]l (s)ds # 0,7 = 1,2,by Theorem 3,

0
there exists a nonconstant function v(z) on [0,27"] such that v = A;v, 7 = 1,2,
which implies that v(z) is infinitely differentiable on [0,27] since A;v is differ-
entiable on [0,27]. The extension of the v(z) to a 27 -periodic function V (z)
provides an infinitely differentiable 27-periodic traveling wave solution to the
generalized forced KP equation.
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The stationary transverse Euler and Stokes gas flows
through a cylindrical region with large variations
of density and viscosity coeflicient

Z. PLOCHOCKI and B. KAZMIERCZAK (WARSZAWA)

THE FLOW of a gas in space, which encounters a cylindrical region, where the density of the gas
(and its viscosity coefficient) changes abruptly, is considered both in the Euler and the Stokes
approximations. The flow is homogencous at infinity. Density and viscosity cocfficients of the gas
are assumed to be constants, which are different outside and inside the cylinder. The analytical
solutions of the problem are found in both cases. These solutions may be useful for building the
models of flow in flames or laser-sustained (or generated) plasmas.

1. Introduction

MobEL EXAMPLES of a stationary gas flow through a region with large variation of
density (and viscosity coefficient) may be useful for constructing the simple hy-
draulic models of gas flow in systems with large heat perturbation, as for example
—in flames or laser-generated or sustained plasmas. The idea of such models de-
pends on the assumption, that the constant density of a gas inside the region is
small as compared to (also constant) density outside the region. Such a density
distribution is thought to be generated by a suitable temperature field, therefore
in fact the viscosity coefficient of the gas should also be assumed to vary in a
similar way.

The first such a hydraulic model was proposed in [1] for a spherical region in
the Euler approximation. Numerical solution of the Navier - Stokes equations for
such a flow was presented in [2]. The Stokes approximation of a gas flow through
a spherical region was analyzed in [3]. The stationary transverse gas flow through
a cylindrical region both in the Euler and the Stokes approximations is examined
in the present paper.

2. General assumptions

Let us consider a stationary and homogeneous at infinity, transverse gas flow
through a cylinder of radius 2. The z-axis of the Cartesian coordinate system is
the symmetry axis of the cylinder. At infinity the gas flows along the z-axis toward
the cylinder. The flow is assumed to be plane in the sense, that the z-coordinate
of the velocity is identically equal to zero. The gas density and the shear viscosity
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934 7. PLocHOCKI AND B. KAZMIERCZAK

coefficient are assumed in the form:

0
D= 9; =g, + (1 —€,)H({FT - 1),
2.1) -
1 1-g¢
Fom b= — = g 1),
Nes B En
Oint
Ep T g— N
o0
(220 _ Mo
&y = —,
Tint

where 0.0, Oints 700> Nine Stand for constant density and shear viscosity coefficient
outside and inside the cylinder, respectively, H(z — z¢) stands for the Heaviside
function, ¥ = r/R is dimensionless r-coordinate, and cylindrical coordinate sys-
tem r, ¢, z is used. Let us note that because the assumed distributions of ¢ and
n may be thought to be generated by a suitable temperature field 7, therefore
the quantities ¢, and ¢, are interrelated. In the case of an ideal gas (o « 1/T,

n o /T) this relationship has the form:
(23) £y = 5T«

The solution of the governing equations, which describe the velocity and press-
ure fields, will be looked for separately outside and inside the cylinder, and next
these external and internal solutions will be matched using the continuity condi-
tions for the mass and momentum flux densities at the surface of the cylinder.

3. The Euler approximation
3.1. Formulation of the problem

According to the assumptions adopted, the governing equations in the cylin-
drical coordinate system both outside (¥ > 1) and inside the cylinder (7 < 1) can
be written in the following dimensionless form:

10, _ 1 0_ _
Fpr o) ¥ o i 0,

_ 07, | T, 00, U5 1
] e
(.1) “GF FOp T I OF

Bﬁw+ﬁ_¢86w+m'ﬁw+ 1 104p _

ol
=

= 0,

- 2 1o4p o
or T F Dy T 207 Oy '
where ; P
[ —_— — Foo
Ty 1= —, a =T, Ap:=2 ,
o Yoo w ! Qoovgo
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where, in turn, v, and p., stand for the velocity modulus and pressure at 7 = oo,
respectively.
The boundary and matching conditions are:

T, = COS ¢,
at T = v, = —SIngp,
ap =0
(32) at  F=0:[5l (5], 35 < o
[ev ] =0,
a  T=1:{[iTG+eR] =0,
[27,7,] =0

where
[v]:=¢F=1+0)—yF=1-0)=yp*F=1)-y"F=1).

Because all the considerations will run in terms of the dimensionless variables
introduced only, therefore from now on, all the bars will be ignored.

3.2. The solution

The velocity field is looked for in the form:

I

S(r)cos o,

—g(r)sin .

Uy

(3.3)

I

)
Uy

Substituting Egs. (3.3) into Eq.(3.1); one may obtain the following relationship
between the functions f and g:

(3-4) g=@fy =r/"+/,

where prime denotes the derivative with respect to r. Substituting Eqgs. (3.3) into
Egs. (3.1)2 3 and using Eq. (3.4) one may obtain:

1 94

3 o = TP IS = {1V + 2 oot
(3.5) o

2—9 % = {7'2ff” + i'ff’ - 7_2(]/)2} Siﬂ £ €OS .

Integrating Eq. (3.5); one may obtain:

Vo o o Lo 3
e GEENGLS

(3.6)
X() = 2 =
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Comparison of Eqs. (3.6) and (3.5), gives, after some algebra:

(3.7) ¢ = %(\—fz)’. {f7”+%f7’},=0.
From Eq. (3.7); one has immediately:
() 42 =,
where [ stands for an integration constant. If 3 = 0, then Eq. (3.8) gives
(39) fo=Ci+ 2,

where C and C stand for integration constants.
If 3 = —c? < 0, then after substituting:

-

r

f_:

£ =£T,
Eq. (3.8) is transformed to the Bessel equation of the first order, therefore:

(3.10) f-=;{€ﬂ(m)+Cﬂ]@ﬂy

where ('3 and (4 stand for integration constants, .J; — for the Bessel function of
the first kind and the first order, and Y, — for the Bessel function of the second
kind (the Neumann or the Weber function) and of the first order.

If 3 = ¢% > 0, then in the same way one may obtain:

(3.11) f+=%Ugh@Q+CUQGﬂL

where Cs and C are integration constants, /; is the modified Bessel function of
the first kind and the first order, and A’y is the modified Beessel function of the
first kind (the MacDonald function) and the first order.

The boundary condition at infinity can be fulfilled only by the function given
by Eq. (3.9) with Cy = 1. The boundary condition at » = 0 can be satisfied only
by the functions given by Eqs. (3.10) and (3.11) with 'y = 0 = (. The matching
conditions at r = 1 can be satisfied only by the pair: fp as an external solution
(outside the cylinder) and f_ as an internal one (inside the cylinder). Thus, we
obtain:

a
r_z ’

le(C")

P

=1=2 r 3 1
(3.12)
; r1;

fint —
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where the superscripts ext and int refer to the external and to the internal region
of the cylinder, respectively, and a, b, ¢ stand for constants (which have to be
determined from the matching conditions at » = 1).

Thus, the velocity and pressure fields outside and inside the cylinder, which
satisfy the boundary conditions, may be written in the form:

2
r>1: v = (1——;)c05a,9,

r
vt = — (1 + %) sin o,
Ap™ = —j:—; (1 :—‘2) + %coszp,
313 r<is vt = pL cos g,
vg" = - ((:JO - ?) sin ¢,
Ap™ = d — g b { ((:JO - ﬂ) + ]lzcz}

+ g ,b? {(J& + JH)e? - ZZQTJ—lc} cos® ¢,

where the abbreviation J, = J,(cr), n = 0,1 was used.

The constants: a, b, ¢, d have to be determined from the matching conditions
at the cylinder surface (Eqs.(3.2)s—7). In fact, using these conditions one may
obtain, after some algebra, the following set for these constants:

1
a = goricho—hi—ephu},
2
b= —,
M
(3.14) (hg + W)z ,e? = M2,

d = —4a(l + a) + ¢, b*{(hoc — I1)* + 213}
=2—-4a(l +a)- 69[)2/1%,

where
M = chy— hy + ¢,hy;

the second formula for ¢ may be obtained, after some algebra, from the first
one using properties of Egs. (3.14);_3; and, for distinguishing, the abbreviation
hn = Jy(c), n = 0,1 was used.

The scheme of calculations is as follows. First, the third equation is solved
with respect to €,(¢), and next the inverse function ¢(s,) is numerically calculated.
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Then from the first and the second equations the quantities a(e,) and b(c,) are
obtained. Finally, from the fourth equation the quantity d(¢,) is calculated. In this
way all the constants considered are obtained (in numerical way) as the functions
of e,:

a = a(g,) = ap — a1,/E,, ag = 0.5, ay = 0.4773,
1
b=b(,) = b+ a \ by = 0.3276, ay = 1.6405,
(3.15) (g0) = bo 2 e 0 2
c = C(Eg) = ¢ — a:;ﬁ, cog = 1.8412, az = 1.6141,

d=de,) = dy— as /5y,  do = 0.0888, a4 = 03639,

where the approximate relationships represent the asymptotical behaviour of
these constants as ¢, — 0. Substituting the constants calculated into Egs. (3.13)
we obtain the final solution of the problem examined.

The asymptotical behaviour of the flow functions outside and inside the cylin-
der at small ¢, is, according to the structure of the solution, completely deter-
mined by the asymptotical behaviour of the functions f*' and f™, which are
given by the formulae:

o1
fUE - 5 (1-2a1y6),

—a Jo((‘o?‘) + M ((-'6 + = ) s

R

fim

as = 2.6480, ag = 1.7658, a7 = 1.6405,

24

i@

where «; is given by Eq. (3.15)/3, and ¢ - by Eq. (3.15)3/2.
3.3. Results

From the results given in the previous subsection one may obtain all the infor-
mation about the flow examined. Examples of two types of such an information
will be present.

The information of the first type concerns the flow fields at a given ¢,. The
example value ¢, = 2.5 x 1072 is assumed. Thus, the lower half of Fig. 1. presents
the streamlines picture. Figure 2 presents the dimensionless z-coordinate of vel-
ocity:

Uz = ¥, COS  — Uy, SiN ¢

at the flow symmetry plane (¢ = 0,n, respectively) as a function of dimen-
sionless z-coordinate (as referred to the cylinder radius). Figure 3 presents the
dependence of the dimensionless pressure difference Ap on the dimensionless
z-coordinate at the flow symmetry plane.



F1G. 1. Streamline pictures for the flow through the sphere in the Euler (the lower half) and
Stokes (the upper half) approximations under the assumptions: e, = /g, €, = 2.5 X 02,

-3 -2 -1 1 2 3

F1G. 2. Dimensionless velocity (as referred to v..) at the flow symmetry axis as a function of the
dimensionless z-coordinate (as referred to R) under the same assumptions about e, and ¢,
as in the case of Fig. 1, in the Euler (solid line) and Stokes (dashed line) approximations.

[939]
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-0s | AN

Fia. 3. Scaled relative pressure at the flow symmetry axis for e, = /6, g, = 2.5 x 0%

solid line — the Euler approximation: 2(p — peo)/(000 v,
dashed line — the Stokes approximation: 2(p — pes) /(000 v )(Re)/(20).

The information of the second type concerns the characteristics of the flow
considered as functions of ¢,, as for example: velocity and pressure at the sym-
metry plane at the center and the boundary of the cylinder (Fig.4 a, Fig.5a) (}):

v (1) = 1-2a = 201 /5y,
_ sy ag = 0.1906,
int = b, = ag +

vz (1) Ji(e) “s N ag = 0.9546,
| 10 = 1.0224,

0(0) = jbe 2o+ L, ;

\/q aqq =]5102,
[ve]=1-2a-0bJy(c) = —vM(),
(3.16) Ap™(1) = 4a(1 — a) 1 - ape,, app = 0.9112,

ays = 0.8223,
—ixy3 — 014\/EE$ Qg = 0.7278,

1R

12

Ap(1) = d - e b2(c)

ars = 2.1920,

i 1 2.2 o~
Ap™(0) = d - Zggb ¢ = —ajs + age, /g, age = 27242,

[Ap] = 4a(1-a)—d
+ €,0%J%(c)

14

ay7 + a14./€,, ay7 = 1.8223,
(*) Note, that the part of the gas flux flowing through the cylinder (per unit of its length) as referred to
g

the flux incoming from infinity is given by v (1) (if follows from an immediate calculation and application of
Egs. (3.4), (3.2)s and (3.16);).
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a)

b)

[

|

1
1
\

05

~

= " " .

0.2 0.4 06 0.8 1

F1G. 4. Dependence of 7£4(1) (solid line), 71(1) (dashed line) and 7."(0) (bold line) on &,
for the flow through the cylinder in the Euler (2) and Stokes (b) approximation

under the assumption: €,) = | /€,.

where the first column represents the exact formulae, the second one — the asymp-
totic formulae for small ¢,; a; is given by Eq. (3.15),/3;

P(1) :
$(0) := Yl = 7,7 = 0),

Plep=m,r=1),

and [[ # ]| is defined by the equation following Egs. (3.2).
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o8

b)

ey

~
02 \

S~
—

S —
I:I.J o4 0.5 OJ.I 1
F1G. 5. Dependence of Ap (1) (solid line), Zp ™ (1) (dashed line) and Ap'"™(0) (bold line) on
e, for the flow through the cylinder in the Euler approximation (a) and %A_pm‘(l) in the Stokes
approximation (b) under the same assumptions as in the case of Fig.3.

4. The Stokes approximation

4.1. The problem

The governing equations in this case may be written in the form (in terms of
the same dimensionless variables as previously):

10 100, _
Fore Y g, =0
/ 920 :

Bl) R lmlo (va—‘) Eta -1 . X
2" or rdr \ Or r2 0p? 12 Jp r?
1_1104p 19 3::¢) 1 9%, 20dv, w,
ZRen; Bc,o_ri)r(rr - 0(,92+7‘2[')Lp_7‘2’
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where the Reynolds number
_ QooVco R
Too
plays the role of the scale factor only, and 7 stands for the dimensionless shear
viscosity coefficient (dimension coefficient as referred to 7).
The boundary conditions at r = oo and r = 0 are the same, as in the Euler
approximation (Egs. (3.2);-4), the matching conditions are:

Re

at »=1s [ ov- ] =0,

1 dv,
(4.2) HE Re Ap — 27 5 ]] "

g _ % la'vr)ﬂ
[["(a;-"fﬁ&,: ’

Applying the same procedure as in the previous case, one may find the gen-
eral solution of the problem outside and inside the cylinder, which satisfies the
boundary conditions, namely:

4.2. The solution

2
. ext _
r=1 ¢ v, —(l—-r—z—)cos%
2a\ .
et = — (1 + T—g) sin ¢,
Re Ap™ = 0,
(4.3) . .
r<il o™ = (b+er¥)cose,
vl = —(b + 3¢rY)sin g,

~ 16¢
d + —rcosp.
€n

Re Api"t

The constants @, b, ¢, d have to be determined from the matching conditions
at the cylider surface. In fact, substituting Eqgs. (4.3) into Eqs. (4.2) we obtain the
following set of equations for the constants considered:

1-2a = ¢,(b +?),
(4.4) 2ag, = —c,
d = 0.
It is seen that we have two equations for three constants: a, band Z.

Thus, in order to obtain a unique solution we should adopt an additional
condition, and the continuity condition for the tangent component of velocity at
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the cylinder surface is assumed (%):

(4.5) [v.D=0.
which leads to the following additional equation:
(4.6) 1+2d =0+ 3z

Now, solving Egs. (4.4) and Eq. (4.6) we obtain:

_ 1 1-¢, .|

a= z Z - —¢,
21+&g{1 +24) 2

~ 24 3e,—€,8q .

— = + €
14,01 +2¢,) 2+ 35,
4.7)

N (5 SRR

) 146,01+ 2,) oo

d=0,

where the first equation in a given line represents the exact relationship, and
the second one — the asymptotical expression as ¢, — 0 (under the assumption
€7 = /Eo)-

Thus, Eqs. (4.3) with Egs. (4.7) represent the solution of the problem as ex-
pressed by Eqs. (4.1), Egs.(3.2),-4 and Egs. (4.2), which is unique in the class
of functions specified by Eqs.(3.3) (and under the assumption expressed by
Eq.(4.5)).

4.3. Results

Similarly to the case of the Euler approximation, two types of information,
which is contained in the formulae given in the previous subsection, will be pre-
sented.

The information of the first type concerns the flow fields at a given ¢,. The
example value ¢, = 2.5 x 10~% is adopted, and ¢, as given by Eq.(2.3) is as-
sumed. Thus, the upper half of Fig.1 presents the streamlines picture. Figure 2
presents the dimensionless z-coordinate of velocity (see the formula given at the
beginning of Subsec.3.3.) at the {low symmetry plane (p = =,0, respectively).
Figure 3 presents the dependence of the dimensionless pressure difference on
the dimensionless z-coordinate at the symmetry plane.

The information of the second type concerns, as previously, the characteristics
of the flow considered as functions of ¢, (under the same assumption about ¢,

(*) For comments on this assumption - sce [3].
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as above), namely — velocity and pressure at the symmetry plane at the center
and at the boundary of the cylinder, in the same convention as in the case of the
Euler approximation (Egs. (3.16)) (Fig.4b, Fig.5b) (*):

ve(1) =1-23 ™ 2,

vint(1) =b+¢ > 2+2./5,

vint(0) =0 = 2+43./5,

vz =1-2a-b-¢= —pin(1),

4.8) [ o1 09

Re Ape(1) = 0,

Re Apint(1) = -168i = 16 - 32¢,,

n
Re Api™(0) = 0,
Re[[ Ap] = — Re Apin(1).

5. Conclusions

Comparing the results obtained for the cylindrical case (in particular - the
asymptotic relationships) with those for the spherical case (see [1] and [3]) one
may conclude, that:

1. The velocity and the pressure fields and their dependence on ¢, in the
Euler approximation are very similar in both flow geometries; there occur only
relatively small quantitative differences; the influence of low density region on
the flow fields is, in general, greater in the case of cylinder as compared to that
in the case of a sphere;

2. The same concerns the flow through the cylinder as compared to that
through the sphere in the Stokes approximation;

3. The similarities and differences between the flow through the cylinder in
the Euler and in the Stokes approximations are, generally, the same as in the
case of flow through the sphere (see discussion in [3]).
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BRIEF NOTES

A note on the hyperelastic constitutive equation
for rotated Biot stress

K. WISNIEWSKI and E. TURSKA (WARSZAWA)

THE FORWARD-ROTATED BIOT STRESS and the right stretch strain are defined, and the virtual work of
the rotated stress is found. It is shown that it involves a corotational variation of the Green-McInnis-
Naghdi type. For the strain energy assumed in terms of principal invariants of the right stretching
tensor, a constitutive equation and a constitutive (4th rank) operator for the Biot stress is derived.
Subsequently, they are subjected to the rotate-forward operation, and it is demonstrated how their
structure is carried over to the rotated measures.

1. Introduction

THE CO-ROTATIONAL FORMULATIONS are applied to many problems of mechanics,
ranging from finite strain plasticity to large rotation shells, mostly due to relative
simplicity of manipulating on orthogonal rotation tensors.

In finite strain plasticity, see e.g. DIENES [3] and JOHNSON, BAMMANN [4], the
so-called rotated description is based on a back-rotated Kirchhoff stress ¥ =
Q77Q and a back-rotated spatial rate of deformation D = QTdQ, where d =

sym (F F~1). The rotated measures are exploited to define a constitutive equa-

tion, which later is converted to T and d, where T is the Green - McInnis - Naghdi
objective stress rate.

It was noticed by several authors, e.g. see the introduction to CRISFIELD [2],
that nonlinearities resulting from large rotations of beams or shells can be elimi-
nated if corotational local frames are introduced. Among recent works using the
corotational frames, we would like to mention contributions of RANKIN, BROGAN
[6], StMo [7], Stmo, Vu-Quoc [9], and CrisrieLbd [2]. In RANKIN, BROGAN [6]
a general framework to handle large rotations has been constructed, in which
already existing linear finite elements can be embedded. In [7] and [9] a fi-
nite strain/rotation beam model for dynamics has been consistently derived from
three-dimensional equations. In [2] an issue of symmetry of the tangent operator
for the finite rotation beam has been undertaken. In all these papers separation
of frame rotations simplified the equations.

In the present note we extend the concept of the corotational frame used
for beams and shells and introduce a forward-rotated description: the rotated
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stress and strain measures, and the corotational variation. We address in detail
an issue of a hyperelastic constitutive equation and a constitutive operator for the
rotated measures as derived from the constitutive relations for the Biot stress.
The forward-rotated description, as a general concept, can be found convenient
in problems involving independent rotation fields, not only in beam or shell the-
ories but also in three-dimensional elasticity formulated as e.g. in Simo, Fox,
HuGHEs [8].

Notation

Small letters — vectors, capital letters — 2nd rank tensors, capital letters with
a superscribed digit 4 — 4th rank tensors, dots - — scalar products, colons : —
contractions of a 4th and a 2nd rank tensors yielding a 2nd rank tensor, ® —
tensorial products.

2. Rotated stress and strain

In this section the rotated strain and stress measures are introduced and a
corresponding form of the virtual work of stress is given.

The Cauchy (true) stress, T, can be expressed in terms of other stress measures
as follows, see e.g. OGDEN [5],

(2.1) T = V= J7IpF = 7RSS H,

where T is the Kirchhoff stress, P is the 1st Piola - Kirchhoff stress, (its transpose
is a nominal stress), S is the 2nd Piola-Kirchhoff stress. Besides, F denotes the
gradient of deformation, and J = detF.

Let us introduce a symmetric Biot stress tensor, T? = sym (Q”P). The rotation
tensor Q € SO(3) is obtained from the polar decomposition of the deformation
gradient. The Biot stress T? and the right stretch strain E are work conjugates
because the virtual work of stress can be expressed as follows

(2.2) P.sF = TP . ¢E,

where E = U — I is the right stretch strain, and U = (F'F)"/? is the right
stretching tensor. This tensor appears also in the (right) polar decomposition of
the deformation gradient, F = QU. On the basis of Eq.(2.1), the Biot stress is
related to other stress measures in the following way

(2.3) T8 = sym (Q"P) = sym (QTTF 1) = sym (US).

The Biot stress tensor T? and the right stretch strain E can be used to intro-
duce a set of rotated measures defined as follows

(2.4) T =QT?QT, E =QEQ’,
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for which the virtual work of stress (2.2) yields

(2.5) TP 6E=T*: 6 E,

where
JE* = QIEQT = Q5(Q"EQ)Q".
The above corotational variation corresponds with the Green - McInnis - Naghdi

objective time derivative, and consists of the rotate-back, take a variation and
rotate-forward operations. The definition (2.4) yields

(2.6) E=V-1I,

where V = QU QY is a left stretching tensor defined as V = (FFT)!/2. Hence, E*
is the left stretch strain. The rotated Biot stress is related to other stress measures
as follows

(2.7) T* = sym (PQY) = sym(TV™!) = sym (FSVY).

We can see that T~ is different than other spatial stress measures, such as Cauchy
stress T or Kirchhoff stress T.

3. Constitutive equation for rotated measures

In this section a constitutive equation and a constitutive operator for T? and
U are introduced for an isotropic hyperelastic (Green) material. Next, the same
constitutive equation and the constitutive operator are expressed in terms of the
rotated tensors, T* and V.

Let us assume the existence of a strain energy function W (U). On arguments
discussed e.g. in OGDEN [5], a strain energy given in terms of U is objective, and
provides a response function, which is invariant under an observer transformation.
On the basis of the representation theorem for isotropic functions, we can write

(3.1) W(U) = W, (U), I(U), 13(U)),
where the principal invariants of U are defined as follows
(2 LU =trU, LU)= % (U - V?, (V) = detU.

A constitutive equation for the Biot stress tensor is defined as

oW (U) _ oW (1, (U), I(U), I3(U))

B
(3.3) T oU ouU

1l
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From the chain rule of differentiation we obtain
oW _OW oL OW L, W 9L
ou ol oU 0[2 ou dl; U "
Taking into account that

on al 0l

(3.4)

(35) E—I, %=[1I—U, OU_IU
the constitutive equation can be rewritten as a polynomial of U
(3.6) TP = ol + AU + 5,U7,

where [y, 81 and [3; are scalar coefficients depending on the invariants and deriva-
tives of W with respect to the invariants. Note that using the Cayley - Hamilton
theorem, the above equation can be converted to a second order polynomial of
U. A variation of stress with respect to the strain can be written as

aTE . 2
3.7 §TP = — : U= C : U,
37 ou
where the constitutive operator (elasticity tensor) can be defined as a 4-th rank
tensor

(3.8) & 0T8O _ PW(L(U), h(U), (V)
] =9U - ouou duUou

Hence, from the formula for the derivative of the product of a scalar and a second
rank tensor we have

4 JTP dPy 1)
G =% =950 gy
C),CH : O_U =1 Oﬂz U_l
TV g Hhigg vV @ gp YA
where
ap; 0B 01y .
(3.10) R T for i=0,1,2 and 1,2.3

due to the chain rule of differentiation. We can say that in Eq. (3.9) the 1st, 3rd
and 5th components are expressed in terms of nine tensorial products, provided
by all combinations of I, U and U~!. Furthermore, for the 2nd, 4th and 6th
components (and a symmetric U), we have

A _4 U 14
ou -~ au 2

ou-! 1
) {U'l(e,- ® ej)U_l} ®{e; Qe +e¢; ®e},



A NOTE ON THE HYPERELASTIC CONSTITUTIVE EQUATION 951

where e; are vectors of an orthonormal frame. The 4th rank invariants used here
4 4
arel, =e;®e;®e;®e; and I, = e; ® ¢; ® ¢; @ ¢;, and operate on an arbitrary

4 4
2nd rank A as follows: [ ,A = A and I A = A7, see [1].

The derivation of 9U~1/dU, being more complicated, is described below. Con-
sider I = UU™! as a tensor-valued function of a tensor argument. As U is sym-
metric, it may be replaced by %[U + UT], and thus U~! can also be considered as
a function of J[U + UT]. A directional derivative of I at U in direction A yields

ol d

12 — A= |[—L(U+cA =0
(3.12) 55 ¢ A= [Fwe] =0
where A is an arbitrary 2nd rank tensor. After straightforward calculations, from
(3.12) we obtain
-1
L P

ou 2
To introduce a constitutive operator, we have to rewrite the above equation as a
contraction of a fourth rank tensor and a second rank tensor A. Introducing the
4th rank invariants we have

(3.13) U 'A+ATu L

4 4
(3.14) A+AT)=(I,+1.) : A=e;@¢;{[e;De; + e De] A},

where the identity (T® S) : Q = T(S-Q) is used. Note that the product in the
parentheses is a scalar. Substituting Eq. (3.14) into Eq. (3.13), and recovering the
4th rank tensor, we obtain

ou-1 1 .- R _
G15) S A= [ﬁi{U '(e; @ €;)U 1}(‘9 {e.®@e; +e;@e}|: A,
where the 4th rank tensor given by Eq. (3.11) can be easily identified. a

Having derived the constitutive equation (3.6) and the elasticity tensor (3.7)
for the Biot stress T?, we can find the respective equations for the rotated stress
T*. For T? given by Eq.(3.6) we obtain

(3.16) T =QT?Q" = Q (Al + AU+ AU™') Q.
On the basis of identities

(3.17) QIQT =1, QUQT=V, QuUIlQl=vy"!
we have

(3.18) T* = Bol + 51V + V7L,

which is a polynomial of the left stretching tensor V.
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Next, we find the elasticity tensor for the rotated stress T*,

{()TB

(3.19) §T* = QéTPQT = Q [64: : —AUJQ - Q : AU} Q7.

where the expression for 9T?/0U is given by Eq. (3.9). Consider the 1st, 3rd and
5th component of this equation contracted with 6U. As mentioned earlier, these
components contain nine tensorial products, and the contraction can be wrilten
as (A; ® A;) : 6U, where A;, A; € {I,U,U"!}. Furthermore, (A; ® A;) : =
A;(A; « 6U), where in the parenthebcs we have a scalar. Hence,

(3.20) Q[(ai @A) : U] Q" = [QAQ"] (A;-8U) = Bi(A; -6V)

where QA,;Q7 = B; and B, € {I,V,V~!} in accordance with Eq.(3.17). Besides,
for the scalar product we have

(321) AU = (a00) = r (Q1(QAQN(QIUQQ)
= tr(Bj;v) = B; -SV,
where QAJ'QT = B;. Hence

(3.22) Q[A:®A) : 6UJQ" =B, @B)) : &V

4
For the 2nd component of Eq. (3.9) we have JI/0U = 0 and the respective term
does not need to be considered. For the 4th and 6th component we have

( 4 4 ”
3—8 : $U = %(1,1+1t.) : §U = %((sumuf),
(3.23) Wheer =
A SR - Pryy=1
oG- ¢ 00 = —3U7' (U + sUTHU,

where Eq. (3.13) was used to derive the second equation. Applying the rotation
operations to both of these equations we obtain

v r_1 1
Q(m : 6U)Q Q(bU+<SU Q! (z»v+5v 5

au' i 1% =L
(3.24) Q( o .6U>Q ——EQU (6U + sUTYU1Q

= u%v-‘(3v+ SVIW1,
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Note that as a result of the rotate-forward operation in the above formulas,
o
U is replaced by V, U~! by V7!, and 6U by 6 V. Hence, we may introduce an

elasticity tensor C relating T with 5 Y,

o o

4 . 4
(3.25) §T*=Q|C : sU|Q'=C" : 6V

4
of the same structure as C.

For an infinitesimal deformation, when F = I, we have
ou-1 ov-1

(326 U=V=L — (I +1 e); oV

LA+
__i( a C)

4 4
and therefore the linearized elasticity tensors C and C* are identical.

4. Conclusion

We have shown that under the rotate-forward operation, the structure of a
general hyper-elastic constitutive equation and the respective constitutive opera-
tor for the Biot stress is carried over to the respective relations for the rotated

Biot stress, with U replaced by V, and éU by gV, where the corotational variation
is of the Green - McInnis-Naghdi type.
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