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FIFTY YEARS OF THE ARCIIIVES OF MECHANICS 

The dependence of dynamic phase transitions 
on parameters 

K. PIECHOR (WARSZAWA) 

WE CONSIDF~R phase changes described by a second order ordinary differential equ-
ation. The equation depends parametrically on the stat es of rest and the speed of the 
wave. We prove that, under some addit ional conditions, the solution is differentia-
ble with respect to any of these parameters. As an application of the general theory 
we discuss the case when the data are close to the Maxwell line and obtain results 
generalising t hose of the previous authors. 

1. Introduction 

WE TREAT the phase boundary as a one-dimensional travelling wave connecting 
two different states of rest. The speed of the wave cannot be arbitrary but it is 
an unknown, determined totally by the value of just one of the states of rest. In 
other words, the question of existence of phase boundaries is a sor t of nonlinear 
eigenvalue problem. For a very limited number of cases we know exactly the 
structure of the phase boundary and its speed [1, 2]. In the general case, it is only 
proved that once one state of rest is given, there is a unique value of speed and 
uniquely determined other state of rest such that the travelling wave connecting 
them exists and moves at this speed [3 - 8]. 

The aim of this paper is to formulate sufficient conditions ensuring differen-
tiability of the phase boundary structure, the speed of the wave and the other 
state of rest as functions of one of the two states of rest. 

The paper is organised as follows. In the next section we present the equation 
of the phase boundary deduced from the capillarity equations which we have 
derived from a model kinetic theory of van der Waals fluids [9]. In Sec. 3 we 
generalise this problem and prove a theorem on the differentiability of its solution 
with respect to a group of parameters treated as "independent". In the final Sec. 4, 
we apply t his theory to our model equation of phase boundaries as well as to the 
case of isothermal phase transitions. We confine our interest to the case when 
the data are close to the so-called Maxwell line, in order to avoid complicated 
formulae. In the lat ter case our results not only agree with the previous authors' 
results but also generalise them. Moreover , we show that our model theory agrees 
qualitatively wi th the isothermal one. 
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2. The model equations of capillarity a n d the travelling wave 
problem 

T he model equations of capillari ty we are going to consider consist of the 
following system of two partial differeutial equations [9]: 

(2 .1) 

(2.2) 

2 EJ [ 5 ( EJ ) 2 2 EJ2 l + a:c EJx w6 EJx w - ws EJx2 w . 

In Eqs. (2.1) , (2 .2), the variable t > 0 is the t ime, x E R 1 is the Lagrangian 
coordinate, u is the velocity, w is the specific volwne, p is t he pressure, and ef t 
is the coefficient of viscosity. 

T he pressure formula reads 

(2.3) 
1 - tt2 a 

p - p(w,u) = 2('w- b)- w 2 ' 

where a and b are positive cons tants; a is the ratio of the mean value of the 
potential of the at t ractive intermolecular forces to t he mean kinet ic energy of 
molecules, and b characterises close packing. In the adopted dimensionless units 
b is equal to unity. 

Next , c > 0 characterises the order of magni tude of t he viscosity effect , aud 
J-L = J-L(w ,u) is given by [ 9] 

w2 ( I - u2 ) 1 2b2 p2(w) 
J-t(w, u) - 8w3p(w) ' (2.4) w 

p(w) ~ --b. 
w -

Finally, a:c2 , with a: = const > 0, characterises the intensity of the capillari ty 
effects which are represented by the space derivative of the term in the square 
brackets [ ]. 

We consider Eqs. (2.1), (2.2) in the domain 'D defined by [10] 

(2 .5) 'D = { (w ,u) : w > b, u2 < 1 - ; b' ;b < 1} . 

For (w,u ) E 'D, the mass density 1/w does not exceed the close-packi ng density 
1/ b, and the pressure p and the viscosity J-L are positive. 

A t ravelling wave solut ion to (2.1), (2.2) is a solution of the form 

(2.6) (w, u)(x, t) = (w, u)(~), c x - st R ' .., = -c- E ' 
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such t hat 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

lim (w, u)(~) = (wt , tLt ), 
~--= 

lim (w,u)(O = (wr ,Ur), 
~--l-00 

lim (w1 ,u1
) = (0, 0), 

~-±oo 

lim (w" ,u") = (0 , 0) , 
~-±oo 

1 cl 
where s = const is the wave speed, and () = -l (). 

( ~ 
The following procedure is routine. We subst itute (2.6) into Eqs. (2.1 ), (2.2) , 

perform one integration with respect to ~, aml use the limit conditions (2 . 7)-
(2.10). Having done that , we find that the left and right limit states are related 
by 

(2.11) SWr + Ur = SW£ + Ut, 

T hese relations are called the Rankine-Hugouiot couditions and were in detail 
analysed in [10]. 

Next, we find the velocity u . It is given by 

(2.12) u = Ut - s(w - Wt), 

where w = w(O is a solution of the following limit value problem: 

(2.13) 

where 

(2. 14) 

(2.15) 

[ 2 11 5 12] ( ) I 1· ( ) 0: W5W - W6W + S ~L W, S, Wt W -1- W,S,Wt = 0, 

~(w, s, Wt) = ~(w, Ut - s (w- w1) ) > 0, 

f(w , s , wt) = p (w, Ut- s(w- Wt)) - p(wt, ut) + s2 (w- Wt) , 

subject to the conditions 

(2. 16) lirn w(O = Wt, 
~--= 

(2.17) lim w(~) = Wr , 
~--1- oo 

(2. 18) li m w1 (~) = 0, lim w" (~) = 0. 
~~±oo ~~±oo 
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These conditions must be supplemeut,ed by Eqs.(2.11) which we write in the form 

(2.10) f (wt, s, wt) = 0, f (wn s, Wt ) -- 0. 
In this paper we assume that 

(2.20) 
Our problem contains a uumLer of parameters like W r , s, w1, ul , etc. These 

parameters are not independent , siuce some of them are related Ly the Rankiue-
Hugoniot conditions (2.11 ). However, our problem, under assumptions (2.10), 
(2.20) , has a solution if and only if the parameters satisfy an additional relation, 
unknown in advance. The total number of relations, including the implicit one, is 
less thar1 the total number of parameters. Therefore, we can split them into two 
groups: dependent and independent ones. Of course, this spli Lting is not dictaLed 
by the limit value problem itself, it is rather a result of our current interest . Also, 
it is not obligatory to consider the dependence of solutions on all parameters; 
simply, we can treat some of them as fixed. 

Altogether, there is a great variety of specific problems we can be interested 
in. Therefore, in order to avoid repeating similar arguments, each time we ask 
a question concerning the character of dependence of the solution on certain 
parameters we choose, we formulate an "aLstract" problem of dependence of the 
solution on the parameters and prove its solvability. In Sec. 4 we show how to 
reduce our specific problem to the "absLract" one. 

Let us explain that we cannot answer the posed question Lasing on the well 
known theorem on continuous dependence of solutions of ordinary differential 
equations ou the parameters, Lecause it is not clear in advance whether the 
implicit, unknown relation between the parameters is a differentiable function or 
not. 

3. The abstract problem 

The problem we consider consists in determining a function and a set of 
functions y(~ , ..\) : R1 x 11 ~ Y C R1 , and a set of functions r,(..\) = 
(r,I(A) , r,2(A), ... , r,k(A)) : J1 ~ K, where 11 is an open subset of R1, ]( is au 
open subset of Rk , wd the range Y of y(~, A) contains the closed interval [0,1]. 
The functions y(~ , A) and r,(..\) are such that: 

i) y( ~ , A) satisfies the differential equation 

(3.1) y" = g(y , y', r, , ..\) , 

and the limit conditions: for any A E 11 

(3.2) li m y(~, A) = 0, 
( ...... - 00 

lim y(~ , A) = 1, 
( ...... +eo 
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(3.3) 

(3 .4) 

lim (y' (~ , A ), y"(~ , A)) = (0, 0) , 
~~-oo 

li m (y' (~ , A),y" (~,A)) = (0, 0), 
f: ->+oo 

where the dash denotes different iation with respect to ~-
ii ) T he functions K:i (A) , i = J, 2, ... , k - 1, satisfy a system of k - l algebraic 

equations of the form 

(3.5) i - 1,2, .. . , k - 1. 

We take the following assumptions concerning the functions g and C (K:, A) = 
( G 1 (K., A) , G2 ("",A) , ... , G k- 1 (K:, A) ): 

Hl. g(y, z, K, A) E cm 1-T (Y X 11 X ]( X 11) for some integer m, > 0, T > 0. 
H2. For any (K, .-\) E J( X 11 

(3.6) 
(3.7) 
(3 .8) 
(3.9) 

Co:vr:vrENTS 

g(O, 0, '"• .-\) = 0, 
g( l ,O,"",A) = 0, 
g~(O , 0, K, A) > 0, 
g~(l , 0, K, A) > 0. 

i = l,2, ... , k - 1. 

i) Conditions (3 .6), (3.7) make Eq. (3 .1 ) and t he limit values (3.2)- (3.4) com-
patible. 

ii) Conditions (3.8) , (3.9) are crucial for our considerations. They mean that 
the rest p oints (0,0) and (1,0) in the (y , y') - plane are saddle points. 

Equation (3.1) is autonomous, i.e. if y(O is its solution so is y(~ + c), for any 
constant c. To get rid of this ambiguity we impose an additional condition: 

(3.10) 
1 1 

y(O , A) = "2[y( - oo, A) + y( l-oo , A)] = 2. 

Our aim is to prove that, roughly speaking, if y0(0, Ko E Rk , Ao E R1 is a solution 
to (3.1 )- (3.5) then, under some additional conditions to be specified, the problem 
has also a solution in a vicinity of /\ 0 . T he Implicit Function T heorem seems to be 
the proper tool to perform this task, but some difficulty arises from the fact that 
t he number of unknowns is greater than that of the equations. Elimination of this 
difficulty is possible owing to the fact that we are looking for special solutions, 
namely those which satisfy (3.2) , (3.3) for any A. It means that we have to be 
cautious and choose suitable functional spaces. 

Since our course of action follows the Implicit Function Theorem we star t, for 
t he reader's convenience, from its presentation (cf. [12]) 
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IMPLICIT FUNCTION THEOREM [12j. Let 
(i) X , Y, Z be rwrmed affine spaces and X , 11 , Z the corresponding vector· 

spaces; 
(ii) 'D(11 , Z,) be the set of linear continuous mappings of the space 11 onto Z ; 
(iii) W be an open subset of X x Y, and (xo, yo) E W, .l"o E X , Yo E Y; 
(iv) F : W-+ Z be a continuous mapping of W onto Z and F(xo, Yo) - zo, 

Zo E Z. 
If 
i) for every fixed x E X and ( x, y) E W, the mapping F has the F'rechet 

derivative Fy E £(11, Z ); 
ii) Fy : W -+ £(11, Z) is a linear continuous mapping of W onto £(11 , Z ); 
iii) the linear mapping Fy (Xo, yo) : 11 -+ Z has continuous inverse linear 

mapping. 
Then there are subsets U c X, V c Y open in X, Y, respectively, .l"o E U, 

Yo E V, such that for every x E U there is a unique element y E V, denoted by 
y = f( x ), satisfying f(x) E V, F(x, f(x)) = Zo, f (xo) = Yo; J(x) is a continuous 
mapping of U onto V . 

If additionally, the F'rechet der·ivative Fx(Xo , yo) exists and is a linear continu
ous mapping of X onto Z, then the mapping f is differentiable at the point xo and 
its F'rechet derivative is given by the formula 

f' (xo) - - Fy- 1 (xo, Yo ) o Fx(xo, Yo ), 

or implicitly 
Fx(xo, Yo) + l"Y(xo, Yo) o f'(xo) = 0 . 

• 
Now we define the spaces suitable for our problem. 

DEFINITION 1. The space X is defined as the Euclidean space R1 with elements 
denoted by). E A C R , the affine space X = A(R1), where A(Rn) denotes the 
affine space associated with Rn. • 
The definitions of the other spaces are more complicated. 

DEFINITION 2. The set of functions y(~) E Ci(R1 ), for i = 0, 1, 2, vanishing 
exponentially together with their first i derivatives as 1~1 -+ oo we denote by 'Bi; 
the norms are taken in the form 

llvlli = sup, (lv(~)l + ... -1 lv(i)(OI). 
~ER 

The subspace of 'Bi consisting of functions such that 
1 

y(O) = 2 [y( -oo) + y(+oo)l = 0 

is denoted by 'B?. • 
Of course, 'Bi and 'B? are Banach spaces. 
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D EFINIT ION 3. The affine space Bg associated with the normed vector space 
:sg is defined as the set of functions y(~) E C2 (R 1) satisfying exponentially (3.2) 
and such that lim y ( i)(~) = 0, i = 1, 2, also exponentially. • 

IEI-oo 
D EPINITION 4. T he norm ed vector space }J is defined by the equality Zf = 

:sg x Rk with the usual product norm; the affine space Y associated with }J is 
defined by Y = B~ x J\ (Rk). • 

DEFINITION 5. Th e normed vector space Z is defin ed by the equality Z = 
13a x Rk- l with the usual product norm ; the affin e space Z associated with Z is 
defined by Z = B0 x J\(Rk-l) . • 

As to the mapping F mentioned in the Implicit Function Theorem, we take 
the pair F = (A(y, K, >.), G(K, ,\)) :X x Y ~ Z, where A(y) is defined by 

A(y, K,A) = y" - g(y,y',K, A). 

Let (yo(~) , Ko, >-o ) be a solution to (3.1)-(3 .5) wi th Yo (O E :sg. T he Ftechet 
derivative of F with respect to (y, K) evaluated at this solution is equal to 

where h E :sg, 6.K E Rk, and the operator L[y0, Ko , >.0] is the Ftechet derivative 
of A(y, K , >. ). Explicitly, 

-g~(yo, yb , l'i{J , >-o)h - V ._g(yo, yb, Ko, >-a) · 6.K: Zf ~ Z. 

Let Lhom[Yo, l'i{J, >-o]h denote the "homogeneous part" of L[yo, l'i{J, >-a], i.e. 

(3.11) 

-g~ (yo , Yb, Ko, >-o)h : :sg ~ 13a. 
The adjoint operator LhomlYo , Ko , >.a] : :sg ~ 13a is defined by: 

+oo +oo 
j g(O(Lhom[Yo, l'i{J , Ao ] h)(~)d~ = j (LhomlYo, l'i{J, >-o ] g)(~) h(~)d~ 

- 00 -00 

for any two functions g and h from :sg or , explicitly, 

(3.12) 
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We have 
Pn.oPOSTT TON 1. [11] The equation 

(3.13) 

has two linearly independent solutions of the class C2 : 

(3.14) 

where 

(3.15) 

with 

(3.16) q(l;) ~ q(i; , <, >.) ~ exp [ -l g; (yo( (), y~ ((), <, >.)d(() ] · 

P rtOPOSTTTON 2. In t he class C2, t he equation Li,orn [Yo]h = 0 has two linearly 
independent solut ions which are 

(3 .17) hi(~) = hi (~)q (~) , i = 1, 2, 

where hi(O are given by (3.14) , with h7 E '138. 
P r o o f. This result can be verified by a direct check. 
Pn.oPOSTT ION 3. T he rauge of LJ.orn [Yo , Ko, >-o] as an operator from :Bg into 

'Bo is 

:B.} ~ {hE :Bo 'I y~(()q(()h(()d( ~ 0}. 
P r o o f. The result follows immediately from the definition of the adjoiut 

operator Li,om [yo, KQ , >-o ] and P roposit ion 2. T he proof is complete. 
P n.o POSTT ION 4. T he equat ion 

(3.18) Lho m [yo, fi".o, Ao] h = f 

has a solution in Bg if and only if f E B{ The solution is unique and given by 
t oo 

(3.19) h(~) = J }( (~, () f (()d( , 
-00 

where 
}( (~ , () = q(() { [II ( - () - 11 (~ - ()]'!9(()yb (~) 

+ ~[H (~- () - if ((- ~)] ·O (~ )Y~J(()} , 
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1 f ( 1..') is the Heaviside step function 

JJ (:1..') { 
1 for x > 0, 
0 for 1..' < 0. 

P roof. The first part of the statemcut follows from Propositiou 3, whereas 
the second one is the result of the theory of linear differential equations [11 J. 

THEOREM 1. Let the fun ctions r;(v , z, t~, ;\) and G(~, ;\) satisfy Hypotheses I-11-
I-13 , and let Yo(~) E 132, t>{) E TI/', >-o E R1 be a solution to (3.1)- (3.5). If the 
deter·minant of the matrix 

(3.20) 

wher·e 
+oo 

V ,.;.G I(~>. ,;\) 

V" G 2 ( ~>. , ;\) 

V "Gk-1 (~, ;\) 
Q,.;.(~,, ;\) 

Q,.;.(t.: , ;\) = J y'((,;\)q((,t>.,A)V,.;.r;(y(( , ;\),y'((,;\),~, ;\)d( , 
-oo 

evaluated at y(~, ;\) = yo(~), ~ = ~>o , ;\ - ~\o , is different from zero, then 
1. Pmblem (3.1)- (3.5) has a tmiqtte solut·ion y = y(~ , ;\) , ~ K.(;\) f or· 

~ E R1 and ;\ contained in a vicinity of Ao, such that for an y fixed value of /\ 

y(~,;\) E 13~ . 
2. These fun ctions satisfy the eqttahlies 

y(~, >-o) - Yo(~) , 

3. T hese functions are continuously differentiable m times with respect to ;\, 
and the gmdients V >..Y(~ , ;\),V>..~(;\) ar·e given by (3.22) and (3.23) , (3.24), respec
tively. 

Out li ne of the pr oof 
According to t he Inverse Function Theorem it is sufficient to prove that 

the Frechet derivative D(y,K)F(y0 , K.o, >.0 ) has an inverse. Indeed, let us ta-
ke (J, cp) E 130 x Rk-l. We are looking for (h, 6~) E 13~ x n_k such that 
D(y,,.;.)F(yo, ~o, >-o)(h, D.~) = (f, cp) . Explicitly, this equation is equivalent to the 
fo llowing system of linear equations: 

(3.21) 
L[yo, ~o, >-o J(h, 6K.) = }', 

V "G(K{J, >-a) · 6~ = cp. 
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T he first equat ion is equivalent to 

Lt.om[Vo, t>o,>-olh \i',_g(yo,K.o, >-o) · f:> t"-1- f. 

According to Proposition 4, this equation has a unique solutiou in 138 if aud 
only if 

00 J y~(()q(( , K.o , >-o)\7 ,_g(vo((), v~ ((), /'l,o, >-o)rl(. i:>K. 
- <Xl 

<Xl 

= - j vb(()q((, K.o, >-o)f(()d(. 
-00 

T his equation together wi th (3.21)2 constitute a system of k linear algebraic equ-
ations for k unknowns i:> K. . It has a unique solution if and only if the determinant 
of the matrix (3.20) is different from zero. 

From the Implicit Function T heorem we obtaiu t he following expressions for 
the deriva tives \7 >.Y(~, ,\) and \7 ""·(.-\): 

+oo 

(3 .22) \1"y(~, .-\) - j f( (~,()\i',_g(y((, .-\ ), y' ((,.-\),ii(.-\),/\)d( · \7,\ii(.-\) 

and 

(3.23) 

(3.24) 

-oo 

t oo 

j J<: (~ ,()V ;~.g (y((, >-), v' ( (, >- ), "'(>-), >-)d(, 
-00 

\7 ,.G(t1.(.-\) , .-\) · \7 >."·(.-\) = - v\G(K.(.-\), .-\), 

Q,_(K.(.-\), /\) · \7 ""'(.-\) = -Q;~. (K.(.-\), .-\). 

T he proof is complete. • 

4. Applications to phase cha nge problems 

We consider the following limi t value problem : 
find a fun ction w = w((),~ E R 1

, satisfying the differential equation 

(4 .1) 
1 

A(w)w" + 2A~(w)w'2 1- SJt(w, s,w1)w' + f (w,s,wt) - 0 

and the conditions (2.16)- (2.18). 
Here, A(w) is assumed to be a strict ly p ositive and con tinuously differentiable 

function defined for all w > b, and f-L(w, s, wt), J (w, s, w1) are defined by (2.14), 
(2.15), respectively. Also s, Wr, W t , etc. are the same as in Sec. 2. 
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We introduce the transformation 
IU 

J {A(()d( 
(4.2) ( ) w, 

w---+ V w,w,.,W[ = _.:.W_r __ _ 

J {A(()d( 

Since 11(() > 0, then v~,(w, w,. , wL) > 0 for 1t'L :S w :S Wn or v~(w, Wn Wt) < 0 for 
'Wr :::; w:::; Wt . Hence, this transformation has the inverse V ---+ vV (v,w,.,wL) such 
that 
(4.3) W(O,wnwt) = Wt, \V(l ,w,. ,wt) = w,.. 

By applying transformation (4.2) to Eq. (4.1) we obtain for van equation of the 
type (3 .1) with 

(4.4) ( 1 ) _ _ Sf.t.( \ V(y, 111r·, v•L), s, 'lilt) 1 

g v,v ,s,w,.,Wt - A(W((v ,w,.,wt)) V 

f(W(v, w,., 7t'L), w, 71'1) 
1llr 

j,...-;A'"'(\,=V-;-(v-, w-,.-, w-t""")) j {A(()ct( 

We check easily that g(y, y1
, s, w,., Wt) as defined by (4.4) satisfies Hypotheses H1, 

H2 formulated in the previous section. Let us also notice that ( 4.2) transforms 
the limiL conditions (2.16)- (2.18) into (3.2)-(3.4), and (3.10) is a counterpart of 

(4.5) w(~ 
] 

0) = 2(11',. t- 1L't). 

We take Wt as the independent parameter A of Sec. 3, and as the dependent 
parameters r. we take (s,w,.); the funcLi ou G(K.,A) is assumed in the form: 

T hen the equa tion G(s, W7., Wt) - 0 expresses the llankine-Hugoniot condition 
(2.19). T he other parameters such as Ut, a, bare assumed to be fixed . 

We can apply now the theory developed in the previous section to the present 
case of g given by (4.4) , G defined by (4.6) , and k = 2, l = 1, assuming of 
course that we know a solution w0 (~), s0 , w~, wP of (4.1) and (2.16)-(2.19), 
or equivalently, vo(~), so, w~, wP of (3. 1)- (3 .5). Having done that we have to 
retransforrn the condition D;;. I= 0 back to w = W(v, w,., wt). However, we resign 
of doing that because we would obtain very complicated formulae. That is why 
we limit ourselves to the simpler but physically the most important case when 
the parameters s, w,. , Wt are near the Maxwell line. This is a particular phase 



http://rcin.org.pl

820 K. Pmcn6R 

T he first equat ion is equivalent to 

Lhou, [Yo, Ko, .\o]h - \1 "g(yo, l'l{J , .\o) · 6.11, +f. 
According to P roposition 4, this equation has a unique solution in 138 if and 
only if 

00 

j y~(()q (( , Ko , .\o)\l ,.g(yo((), y~1 (() , Ko , .\o)d( · 6. 11, 
-00 

00 

= - j vb( ()q( (, "·o, .\o)f( ()cl( . 
- oo 

T his equation together with (3.21)2 const itute a sys tem of k linear algebraic equ-
ations for k unknowns 6.11,. It has a unique solut ion if and only if the determinant 
of the mat rix (3. 20) is different from 7.ero. 

From t he Implicit FUnction Theorem we obtain the followiug expressions for 
the derivatives \1 >.Y(~ , .\) and \1,\ 11.(.\) : 

+oo 

(3.22) \l>.y(~ , .\) = j K(~,() \l"g(y((, .\) , y' ((, .\), 11,( .\), .\) d( · \1>.11,(.\) 

and 

(3.23) 

(3.24) 

-oo 

-1 00 

+ J !( (~, () \1 >.g(y((, .\), y'((, .\), 11.(.\), .\)d(, 
- oo 

\1 " G(1.:(.\), .\) · \1 >.n.(.\ ) - - \1 >.G(11,(.\), .\), 

Q" (K( A), .\) · \1 >. t>.(.\) = - Q>. (K(A), .\). 

The proof is complete. • 

4. Applications to phase change problems 

We consider the following limit value problem: 
find a /tmction w = w(~),~ E R 1

, satisfying the differ·ential equation 

(4.1) 
1 

A(w)w" + 2 A~(w)w'2 + SJt(w, s , w1)w' + f (w, s , wt) ;:_ 0 

and the conditions (2 .16)- (2. 18). 
Here, A(w) is assumed to be a strictly positive and continuously differentiable 

function defined for all w > b, and Jt(w, s, wt) , J (w , s, Wt) are defined by (2. 14), 
(2 .15) , respectively. Also s, Wr , Wt , etc. are the same as in Sec. 2. 
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We introduce the trausformation 
w 

j V A(()d( 

(4.2) ( ) 
WL W -t y W, Wr, Wt = ..,:.w,--r ___ _ 

J {A(0d( 

Since A(( ) > 0, then v:V(w, Wr, wt) > 0 for Wt :s: tu :s: Wr, or Y~u(w, Wr, 'U.'t) < 0 for 
Wr :S: w :S: Wt. Hence, this transformation has the inverse y -+ W (y, Wr, Wt) such 
that 
(4.3) W(O ,Wr ,wt) = Wt, \V(l ,Wr,Wt) = Wr· 

By applying t ransformation (4.2) to Eq. (4. 1) we obtain for y an equation of the 
type (3.1) with 

(4.4) ( 1 ) - -s~t. ( \ V(y,wr,wt) , s,wt) 1 
g y, Y, S, Wr, Wt - A( \·V( ( )) Y y,wr,Wt 

J(W (y, w,., 11•t), 11• , 11't) 
'ltJr 

J A(W(y, Wr , Wt)) J {A(0d( 
WL 

We check easily t hat g(y , y1
, s, Wr, Wt) as defined by ( 4.4) satisfies Hypotheses H1, 

I-12 formulated in the previous section. Let us also no tice that (4.2) transforms 
the limit conditions (2.16)-(2.18) into (3.2)-(3.4), and (3. 10) is a counterpart of 

(4 .G) I 
W ( ~ = 0) = 2 (V 'r + 1L't) · 

We Lake 'Wt as the independent pararneLer ,\ of Sec. 3, and as the dependent 
parameters K. we take (s , Wr ); t he function C(K., ,\) is assumed in the form: 

T hen the equation G(s, Wr, wt) = 0 expresses the Rankine-Hugoniot condition 
(2.19). T he other parameters such as U t, a, bare assumed to be flxed. 

We can apply now the t heory developed in the previous section to t he present 
case of g given by (4.4), G defined by (4.6), and k = 2, l = 1, assuming of 
course t hat we know a solution w0 (0, s0 , w~, w? of (4.1) and (2 .16)-(2.19), 
or equivalently, yo(~) , so, w~ , w? of (3.1)-(3.5) . Having done that we have to 
retra.11sform the condition DK f= 0 back tow = W(y , Wr , Wt). However, we resign 
of doing that because we would obtain very complicated formulae. That is why 
we limit ourselves to the simpler but physically the most impor tant case when 
t he paramet ers s, Wr, Wt are near the Maxwell line. T his is a particular phase 
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It is reasonable due to the physical reasons to introduce the characteristic 
speeds C±(W, -u) being an extension of the notion of the sound speed to general 
hyperbolic systems. In our case they are defined as the real solutions (if they do 
exist) of the quadratic equation [ 10 J 

We have 
(4.20) 

c2
- cp~(w, -u) -1 p~(w , -u) = 0. 

p~(w , -u) = c_ (w, -u)c.1. (w, -u). 

Using (4.17) and (4.20) in (4 .15), (4.16) we obtain 
i) if Wt = Wm: 

(4.21)1 

(4.22)1 

and 
ii) if Wt = WAJ, 

(4.21)2 [Z~((,ui) 

(4.22)2 

( 

-A~() J f(~, 0, Wm)d~cl( 
1Um 

( 

, ds -J ((- Wm)pJ(, -ut)d( -
1
-

'UJM l 
Wm 

c_ ( w m , Ut )c+ ( w," ut) . 
c_ ( w M , 'Ut) c+ ( w M , Ut) ' 

('Wt 
Wt = W ·m. 

-A~() J f(~, 0, Wm)cl~d( 
lUnL 

-TwM -or~(CuL)d(l ~~~ w,~wM 
= -(WM- Wm)c_ (wM, -ut) c.,.(wM , ut), 

ds / (wAr- Ww) -d . 
. 1/Jt Wt = W,n 
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Let us notice that, in general, the coefficient of rls j dwt in (4.21) can vanish for 
some value u; of Ut· Unfortunately it is d ifficu lt to determine all such critical 
values of this parameter due to the complexity of tl1e equation rcsultiug from 
equatiug this coefficie nt to zero. T hat is why we lilllit ourselves to two particular, 
but important, cases for which we eau explain this problem. 

EXAMPLE 1. In many papers ([1 - 4, 6]), so-called isothermal phase transitions 
were discussed . In this case 
( 4.23) p~(w, u) = 0. 

Due to that the problem of the critical values of Ut does not exist and we obtain 
from (4.21) 

ds I 
dwt wt = wm W~\1 J Jl((, Ut) 

Wm 

(!1.25)1 dwr I 
d'Wt Wt = W,n 

or 

(!1.2·1)2 

(!1 .25)2 

( ·) J - !1(() J(~, 0, W111 )d~d( 
11J,n 

c2 (·w"') 
c2(wAI)' 

2 ( 
- Jl(() j f(~, 0, w,,,)df;,d~ 

WM 

c2
(Wt.I) 

c2 (wm) · 

Here, we made use of the fact that in the isothermal case 

c+(w, u) = c(w) = -c_(w, u), 

where 
c(w) = J -p~(w). 

Formulae ( 4.24) , ( 4.25) generalise the corresponding expressions obtained by 
TRUSI<I NOVSI<Y [2], who assumed additionally tha t A(w) = const and p,(w, u) = 
const. 
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E XAMPLE 2. The model equations of hydrodynamics [10, 11]. In this case 
p(w, u) is given by Eq. (2.3). We have 

WJ /I.f I WJ /1£ ( - 11!m 
- ( ( - W111 )Pu ((, ut)d( - Ut ( _ b d( , 

W m W m 

We see that in both cases the coefficient of ds j dwt is p ositive for Ut 2: 0. Hen-
ce, it remains posit ive for negative (but sufficiently close to zero) values of this 
parameter. Unfortunately, we are unable to say whether t he discussed coefficient 
can vanish for some negative Ut. Consequently, we can claim onl y tha t , at least 
for small values of lud and for Wt close to Wm = wm(ut) or W/lf(1Lt ) (we re-
mind that the solutions of ( 4. 7) , ( 4.8) depend on Ut), the solution to the problem 
(2.13)- (2.19) exists, is unique and is differentiable with respect to Wt. 

Of course, we can take the right sta te of equilibrium Wr or the speed s as 
the indep endent parameter and (s ,wt) or, respectively, (Wt,Wr) as t he dep endent 
ones and obtain a similar theorem . But from our theory we can deduce m ore. 

Namely, we have ids I > 0 and dds I < 0, at least in the considered 
CWt W t = W m Wt Wt = W/I.f 

examples. Also we can use the Taylor formula , as we have proved the existence 
of a ll the necessary derivatives , to obtain 

ds I (Wt - Wm ) -
1
- I 0 ((wt - Wm) 2 ), 

( Wt Wt =-W m 

(4.26) s(wt) = 

ds I (wt - W Ar) d 
Wt W£ - WM 

This is the so-called "normal growth" approximation [2] introduced intuitively on 
physical grounds. 

In this way we obtain the following conclusions: 
The speed of the phase boundary is positive if either Wt < Wm. and Wt is close 

to Wm {condensation), or Wt > W!lf and Wt is close to WM {evaporation). 
The speed of the phase boundar·y is negative if either Wt > Wm and Wt is close 

to Wm {evaporation), or Wt < Wfl1 and Wt is close to wu {condensation). 
The above results constitute an extension of a theorem proved by SHEARER l6J . 
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On efficiency of identification of a stochastic crack 
propagation model based on Virkler experimental data 

Z. A. KOTULSKI (WARSZA'vVA) 

l N TH~: PAP~R we concentrate on one aspect of the experimental de8ign: how the in-
formation coming from an experiment can be ut ili8ed for identification of a specific 
mathematical model. To express the consi8tency of the data and the model we need 
some quality measure, allowing to transform our in tu ition to nu mbers. As the mathe-
matical tool we propose a ver8ion of the 8tati8t ical procedure of cross-validation of 
the data. Then we verify the efficiency of the sugge8 ted method on the example of the 
Virkler experi mental data of stochastic crack growth and the mathematical model of 
Paris-Erdogan of the fatigue crack growth. 

1. Introduction 

EXPERIMENTAL DATA constitute a basis of the mathematical modelling of phy-
sical phenomena. Trying to identify the model's parameters we always ask the 
ques tion if the data are sufficiently relialJle for the applied mathematical proce-
dure. Development of mathematical statistics achieved in recent years made it 
possi lJle to perform methodologically consistent reasoning to decide whether the 
olJtained ex perimental results are useful for the proposed model and inversely -
whether the model is adequate for th e experimental data. 

T he purpose of the paper is to propose a method of verification of the quality 
of experimental data coming from some physical phenomenon for identification 
of a certain mathematical model of this phenomenon. (The same purpose can lJe 
written iu an inverse way: what is the quality of a certain mathematical model for 
description of a physical phenomenon generating the observed set of numerical 
data). After general remarks on collecting the empirical data, we concentrate on 
a particular model of stochastic crack growth. We make an attempt to verify if 
the Virkler experimental curves of crack growth can be used for identification of 
the Paris-Erdogan model of the stochastic crack propagation [10]. T he method 
applied for this purpose is the cross-validation method of verificat ion of predic-
tabili ty of the measured data, widely applied in mathematical statistics (see [1, 
5 , 11, 12]) . At the beginning we present the general (non-linear) formul ation of 
the cross-validation technique. Next we formulate the problem in a linear case 
and present the formulae for estimation of the linear model parameters when 
some measurements are missing. Finally we apply the proposed procedure to ve-
rification of the Virkler data being the source of knowledge for the simplified 
Paris-Erdogan model of the stochastic crack growth . 
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2. Experiment's design and reliability of experimental data 

Researchers using experimental data for verification of the mathematical mo-
dels of physical phenomena have always a dilemma: to make their own experimeut 
or to apply experimental data available in the li terature. In both cases they en-
counter several methodological and technical problems. 

Constructing our own experiment, we can do this according to all the rule;:; 
known as the design of experiment in a way optimal for the specific mathematical 
model considered [6]. To plan the experiment, one should: 

• select the model variables that must be identified; 
• select the set of treatments (different factors whose effects are being corn-

pared) effecting on the measured quantities; 
• specify the experimental material to which the treatments are to be applied; 
• construct or select the rules according to which the measured data are 

connected with the model parameters; 
• manipulate the treatments (increase the number of samples, modify the 

range of controlled experiment parameters, etc.) in such a way that fiual ly, the 
identified model is possibly complete. 

We realise that, in spite of the fact tllat there is a temptation to manipu-
late the results of the experiment to improve the quality of ideutificat iou and 
validation of the mathematical model (interesting remarks on possible tricks and 
methods of detecting such manipulations can be found in [9]), one can also really 
modify the experiment to improve its results. However, sometimes the objecti-
ve reasons (high cost of experiment, difficulties in keeping constant experiment's 
conditions, unexpected noises during measurements, etc.) make that the collected 
data are not satisfactory and one feels to be obliged to verify their validity. 

Applying in the modelling procedure the experimental data taken from lite-
rature, researchers meet quite different problems. First of all, they never know all 
the conditions of the experiment. However, even if the description of the expe-
riment itself and of the presented data is sufficient for the modelling purpose, 
they reach a fundamental barrier : the number of data samples is fixed and eau-
not be increased by continuation of the experiment . Then they should always 
answer questions like: Is the set of the experimental data sufficiently large? What 
would be the effect of estimation if we had more data from the experiment? In 
other words, one must answer the question if the available experimental data 
set is sufficiently representative for identification of the proposed mathematical 
model. 

The heuristic idea of verification of experimental data as the basis of iden-
tification of the selected mathematical model (the estimation of its parameters) 
can be formulated in a mathematical way. An example of such a procedure is 
presented in the following sections. 
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3 . Cross-validation method and estimation 

The cross-validation is a method of verifying the consistency of experimental 
data. In this method we choose two different subsamples from the data sample. 
One subsarnple is applied for estimation of the system parameters, the other is 
used as a reference set to control the quali ty of estimation. This procedure lets 
us to test two facts: the integrity of the experimental data (the data sample is in 
some sense homogeneous if both subsamples of it give similar estimation results), 
and correctness of the estimation procedure (the algorithm gives similar results 
for two different subsa.mples of data taken from the same population). 

The standard cross-validation procedure can be modified for any particular 
problem and any expected purpose of it. Now we present a version of this method 
useful for verification of the measurements obtained from an experiment. 

Consider the following two-dimensional time series: 

(3.1) i = 1, 2 , . .. , n, 

where the elements of the sequence represent, respectively: :ri- the observed data 
points, Vi - the values of the process being estimated. 

Assume that we know some number of the data pairs (Vi, Xi), i - 1, 2, ... , n; we 
call them the observation history S. Assume also that for the given observation 
history we can construct the estimator y(x , ex, S) of the random variable V based 
on the observation x (the value of the process corresponding to the observation x). 
In this estimator, the parameter ex E A (ex is some scalar, vector or matrix 
parameter taking its values from a certain set of parameters A) describes the 
dependence of the values of the process Vi on the data points x·i , for i = 1, 2, . .. , n, 
and it depends on the history S. Parameter ex should be also estimated during (or 
before) the estimation of V· Using the constructed estimator we make an attempt 
to verify the quality of experimental data usiug the following cross-validation 
type procedure. 

Consider n observation data points. Assume that a subsample of n - 1 data 
points is used for the estimation of the parameter ex. We estimate this parameter 
n times, every time omitting another point. We are interested, how much the 
omitted data points influence the quality of estimation of ex and, consequently, of 
the process V· To answer this question we define the following scheme of reasoning. 

The cross-validatio n algorithm 

I. Estimate the parameter using n- 1 samples, minimising the following 
functional : 

(3.2) L(ex) = n~l . L _ L[vj,y(xj , ex,S;i)], 
J = l ,2, ... >-l,•+l , ... ,n 
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where L[, ] is some loss function and S; i is the observation history of n - 1 pairs, 
where t he pair (yi , :.r.·i) is omitted . 

11. Apply the procedure of poiut I n Limes for 'i - 1, 2, .. . , n . For each step , 
fix the estimated value of the parameter a as: 

(3 .3) a - a (S; ;) , i = 1, 2, ... , n. 

Ill. Estimate the states of the observed process y according to the assumed 
estimation formula, where the parameter is taken as a = a (S;d , that is calculate 
the values y(x; , a (S; i ), S;d, i = 1, 2, ... , n, minimising the expression: 

(3.4) 
1 n ~ -

C(S) = - 'L L [vi , y(xi , a (S; ;) , S; i) ] . 
n i = l 

T he value of C(S) calculated in (3.4) for the obtained values of the estima tors 
gives us the quali ty measure of the estimation procedure. 

IV. Estimate the reference values of the process using al l the history S. We 
obtain them by minimising the followiug functional: 

(3 .5) 

Let us remark that in some cases the procedure (3 .5) using the complete l1istory 
S, can give the exact estimated values of the process y , that is y(xi, a (S), S) = Yi 
and , consequently, C,.cr(S) - 0. However, for some specific estimators this can 
not be satisfied, and then we should compare the measures (3.4) aud (3.5). 

The cross-validation procedure enables us to verify t he integrity of t l1e expe-
rimental data. It detects, how much information about a siugle measurement is 
contained in the rest of the measurements of the observation history. If in the 
data populat ion there are some outstanding results, they will contribute a signifi-
cant income to the quality mea':lure (3.4). When the observation history contains 
a lot of such data points, the value of C(S) becomes much greater than C,.er(S) 
and we can expect that any increase of the number of data points in the identifi-
cation procedure can effect in a significant change of the model parameters being 
estimated. 

Let us remark that the procedure of cross-validation is performed for a finite 
number of data points n. The number n growing to infini ty in the validation 
procedure does not guarantee the convergence of the quali ty measure C(S) . 

In the above procedure we have assumed as a reference set , the one-point 
subsamples . In general one can do this by estimating the model parameter a E A 
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and omitting several data points, and then in the verification step using the en tire 
experiment history S . In Sec. 8 we apply such a method at a pract ical example. 

4. Linear estimation for non-complete set of experimental data 

In this section we consider the known linear estimation procedure. It proves 
to be very useful for the cross-validation technique in the case when the process 
is linearly dependent on the model pararneters. 

Assume that we have the following set of observations: 

(4.1) i = 1, 2, ... ,n. 

The process to estimate is denoted by: 

(4.2) i = 1, 2, ... , n, 

where a is the (vector) parameter to be fixed during the estimation procedure. 
Since the model is assumed to be linear, t he process y can be represented as: 

(4.3) 
p 

Yi = L Aij , CXj, 

j = l 

i = 1, 2, ... , n. 

The values of the observations x and the process y are connected by the following 
observation equation: 

( 4.4) 

or 

(4.5) 

x; = y; + e;, 

p 

X; = L A;jCXj + C;, 

j = l 

i = 1, 2, ... ,n, 

i = 1, 2, .. . , n , 

where A;1, i = 1, 2, ... , n, j = 1, .. . , p are the elements of the system matrix, and 
e;, i - 1, 2, ... , n are the elements of the random disturbance (noise) vector. 

The formulation of the estimation proble m 

We assume that our observation process (set of n observations) can be written 
down in the following matrix form [6] : 

(4.6) x = Aa + e, 

where 
(4.7) 
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is the observation vector, 

(4.8) 

is the system matrix, 
(4.9) 

A -

T a - (n1, ... , ap) 

is the vector of parameters to estimate, 

(4.10) 

is the noise (random disturbance or error) vector. 
For the efficiency of the model it is assumed that 

Z. A . KOTULSKI 

• Aij, the elements of the system matrix, are some known constants 
• Xi, the elements of the ol>servation vector , are normally dis tributed; 
• Xi are independent; 
• all the variables Xi have identical variance a 2 . 

From the above conditious we eau deduce that the elements ei of the no-
ise vector are Gaussian, indepeudeut random variables (we assume: with a zero 
mean) and with identical variance a 2 . 

To complete the vector formulation of the problem we rewrite equation ( 4.3) 
in the form 
(4.11) y - Aa. 

T hen the estimated value the process is 

(4 .12) r - Aa, 
where a is the estimated value of the control parameter a . 

If the rank of the coefficient (system) matrix A is p, then the matrix A T A is 
non-singular and the mean-square linear estimator a can be expressed as: 

(4.13) 

Having introduced the basic definitions and facts, we are ready to present the 
linear version of the scheme of cross-validation analogous to the one presented 
in the previous section. However, in the linear case we assume the reference 
subsample as a certain k-element subset of the observation history. 

Consider the observations x 1, x2, . . . , Xn· Assume that the observations x 1 , 

x2, ... , Xn-k are used for the estimation of t he model parameter a , and that 
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1'n-k 1 1 , ... , Xn are omitted in this procedure. Then the matrices and vectors iu 
the state equation ( 4.6) can be reduced to the following form: 

( 4.14) 

where 

(4.15) 
(4.16) 

x = [ :~ ] • A = [ 1~ ]• e = [ =~ ]• 

The other matrices and vectors are uniquely defined by this d ivision of the obse-
rvation vector. 

By assumption (last k observations are missing) we find the mean-square 
estimator of the parameter from the following state equation: 

( 4.17) 

that is a is the solution of the following normal equation: 

( 4.18) 

If a is the calculated value of the estimator, then we assume 

(4. 19) 

as a substitute for the missing observations. Since the normal equation for the 
complete system is 

( 4.20) 

we assu me the observed process in the form 

(4.21) 

and now a is a lso the solution of the normal equation. 
Let us remark that the quality measure used in calculation of a is: 

( 4.22) 

It is seen that the above formulae (after the appropriate permutation of the 
variables) can be used for calculations in the cross-validation method presented 
in Sec. 3 in the linear case. 
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Let us remark that the proced me of linear estimation of parameters is (under 
qu ite general assumptions) asymptotically convergent , that is, if in (4.13) we 
take into account a sufficienLly great number of observations, we obtain as a 
result the almost exact value of the expectation of the parameter a. However , in 
our considerations we deal with a finite number of observations and, moreover, 
apply this estimator at the algorithm of cross-validat ion which is not convergent 
itself (see previous Sec. 3). T herefore the cross-validation procedure gives us only 
qualitative information about the experimental data. 

5. Mathematical model of crack growth 

In the literature, various models of stochastic crack growth are used [10] . For 
the purpose of presentation of t he cross-validation method we adopt one of t he 
classical models. Consider the following randomised Paris-Erdogan equation for 
the fatigue crack growth under homogeneous cyclic stressing [2 , 3]: 

(G .1) 

with 
(5.2) 

(5.3) F (~) = 1 
b jcos n~' 

a 
for b < 0.7, 

where: a is the crack length, b is the specimen width, t::.a is the increment of crack 
length caused by a single stress cycle, 6. I< is the range of the stress intensity at 
the crack t ip, C, m are constants depending on the specimen material, 6.a- is 
the stress range, X is a random variable changing independently from one crack 
increment to another, and satisfying the following condit ions: 

(5.4) E{X} = 1, 

T he process of the stochastic crack growth modelled by the discrete randomised 
Paris-E rdogan equation (5.1)- (5.3) can be equivalently described by the following 
continuous stochas tic differential equation [2 , 3]: 

(5.5) 

Equation (5.5) has been obtained from (5.1) under the following essential as-
sumption on the random variable X: 

(5.6) X = 1 + ~(t), 
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where ~ (L ) is a white noise with a zero mean and the intensity 6. The time 
parameter L is considered to be the number of cycles of the externa l excitation of 
the material sample. 

Equa tion (5.5) can be integrated at time intervals [Ni, Ni 1 1] and the cor-
respond ing crack length intervals [ai , ai 1 1] for t he whole specimen life- time 
(i L, 2 ... , n) : 

aNi -H Nil-1 

(5.7) j [F ( ~) J7rirm dx = c(6a)m j [1 + ~ ( L ) ] dL . 
aN; N; 

Then we can write down the above equation iu the fo llowing form : 

where '7i ,i-t-l is a Gaussian random variable wi th 

(5.9) E {r/i,i-t-1} = 1. , 
0 

Var {rli,i t i} = , 
Ni+l- Ni 

a ud 

(5.10) 

Calcula ting the natural logarith m (logarithm to base e) of the integrated crack 
growth equation (5 .8) , we obtain the following: 

(5.11) ln(aN;+1 - aNJ - Ln(Ni 1 1 - Ni) 

= In [<l>(aNq 1 + aNJ6a] m, 1- In C --1 ( i ,i 1 I· 

Now, using the experimenta l measurements (aN" Ni) , i = I, 2, ... , n, we want 
to estima te t he model parameters 1n and In C. Since the model is linear with 
respect to these parameters , we must adopt the method of linear estimation 
presented in Sec. 4 for equation (5.11) . We identify t he terms in equation (5.11) as: 

(5. 12) 

(5.13) 

(5 .14) 

(5. 15) a 1 = 1n, 

(5. 16) 0'2 = ln C. 
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In the above we have assumed that random fluctuations of the crack leugth 
increments are small in comparison with the crack length, and the coefficients 
Aik can be considered as deterministic constants. Moreover, for simplicity, we 
assume that the random variables representing the growth disturbance (noise) 

(5. 17) Ci - (i,i-t-b 

are Gaussiau with a zero mean and with equal varia.uces a 2 . In the formulation 
of the model, in formula ( 5. 9), we have assumed that the variauces of the noises 
are of the form: 
(5.18) 

c5 
Yar {rJi ,i 1.!} ~ N N . 

it 1 - i 

\Ne know that, under realistic values of the numbers of cycles Ni, these variauces 
are small and the denominators Ni 1 1 -Ni, in (5.18) do not differ too much for all i. 
Therefore we can assume that the variances of random variables (i,i 1 1 = In 'li ,i 1 1 

are for all i (approximately) equal: 

(5 .19) Yar { (i,i 1 1} ~ a 2 

and, moreover, the distribution of (i,i 1-1 can be approximately considered to be 
Gaussian. 

6. Experimental data and estimation of the model parameters 

As it is seen from the previous section, the parameters to be es timated m 
our simplified stochastic crack propagation model are m and In C . Now we must 
construct the numerical procedure of the parameter identification . vVe know that 
m and In C are random variables and the algorithm must take this fact into acco-
unt. Therefore we apply the statistical method of conditioning [7] for this model. 
This means that our procedure of identification of the statistical distribution of 
the pair (m, In C ) will be performed in the following two steps. 

STEP 1. We consider the trajectory of the stochastic crack growth for the fi-
xed elementary event v.:' E fl. We assume, that this trajectory is governed by the 
Paris-Erdogan randomised equation (5.1) with the parameters (rn(v./), ln C(u . .:')). 
Using the crack growth model defined in Sec. 5 and the parameters estima-
tion schedule from Sec. 4, we calculate the numerical values of the parameters 
(m(u.:' ), In C(t..:') ). 

STEP 2. We repeat the procedure of Step 1 for all the trajectories collected 
at the experiment (observed elementary events u..·i E 0)) obtaining the set of 
pairs (rn(u..·i), In C(u..·i)), for u..·i E fl. Using the estimated values of the parameters 
(m(u..·i), ln C(u..·i)), we identify the probabilistic distribution of the two-dimensional 
random variable (m, In C). 
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REiv!ARK. Let us remark that if the above procedure is applied for estimatiou 
of the value of the parameter C(t.<-·) (or its mean value) , then the proposed 
algorithm introduces some additional error of estimation. It is connected with 
this fact that 

(5.20) E(ln C(t.<-·) I measurements) !- In E( C(t.<-')lmeasurements), 

what means that the distributions (and, what it follows, the moments) of two 
random variables: the estimated value of In C(t.<-·) and the random variable being 
the logarithm of the estimated value of C(t.<-·)- are not equal. The difference of the 
above distributions is quite small if the variance of the estimated parameter C(u.:) 
of the model is small. Finally let us remark that in our method of validation of the 
experimental data we use only one of the parameters (lnC(t.<-·), not C(t.<-·)), so we 
avoid a danger of inaccuracy caused by non-linear transformation of distributions. 

7 . Modelling stochastic crack growth using experimental data 

TllC experiment of measurement of the sLochas tic crack growth is very com-
plicated. It requires rigorous preparation of the material samples, exact repetition 
of excitations, environmental conc.litious, etc. Therefore in the literature one can 
find only a few papers where such data is presented. The examples of such results 
can IJe found in [4] and [13] . 

In our paper, as a material for t he practical illustration of the above the-
oretical considerations, we use the Virkler experimental data of stochastic crack 
growth under periodic loading [13]. The results of this experiment are shown in 
Fig. 1. T he authors performed the experimeut for 68 samples of material, obta-
iniug the trajectories of crack growth, each contaiuiug 164 measurement points. 
The ex periment has been performed for the 2024-T3 aluminium alloy. The dimen-
sious of all the samples were: length atot. - 5G8.8 (mm) , width b - 15:2.4 (rrun) 
and thickness d = 2.54 (mm). The leugth of the fatigue crack was observed in 
the interval 9.00 ::; a ::; 49.8 (mm); the stress inteusity during the experiment 
was D.(}" - 48.28, and the sinusoidal excitation frequency was 20 Hz. 

The experimental t rajectories are the fundamental basis for identificat ion of 
the model parameters. To perform the procedure, we apply the algori thm pro-
posed in Sec. 6, performed in two steps. In the first step we identify parameters 
(m, In C) for each of the 68 t rajectories of the stochastic crack growth. T he esti-
mated values of the parameter pairs are presented in Fig. 2. 

It is seen that the parameters 1ni and ln Ci are, with high accuracy, linearly 
dependent on each other. This means that in the second step of identification of 
the model, it is sufficient to consider only one parameter of the pair. Following 
the literature [3], we assume the normal distribution of t he random variables 
m(t.<-') and In C(t.<-'). T his means that, in order to know the distributions, it is 
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enough to calculate their mean values and Yarianccs. In the second step of the 
conditioning procetlure we estimate t he moments of the parameter m according 
to the maximum likelihood estimators: 

(7.1) E{1n} = 

(7.2) Var{m} = 

1 N 
- '\"' 1n(u...· ·) 
N L " 

i = l 
N l - L (m,(u...·i) - E {rn})2 . 

N i = I 

Since we have observed the linear dependence of the parameters m and In C : 

(7.3) ln C = Am + JJ , 

to complete the ident ification of the model we should calculate the coefficients 
A, JJ, using the formula ( 4 .13) for the linear estimator, and the experimental data 
presented in Fig. 2. T he obtained moments of the random variables m(u.: ) and 
In C(u...·) and the values of the parameters A and B are: 

(7.4) 

(7.5) 

(7.6) 

(7.7) 
(7.8) 

(7.9) 

E {m} = 2.874, 

Var{m} = 0.0273G, 

A = -5.847, 

n 
E {ln C} 

Var{ln C } 

- 9.35, 

A 11 {m} I 1J = - 26.155, 

A2 Var{m} - 0.939. 

8. Reliability of the experimental data and cross-validation 

The procedure used for the ideutification of t l1e model parameters needs the 
experimental data to obtain concrete numerical results. In our procedure we 
applied t he data in two steps. In every step we performed the identification under 
an implicit assumption that the collected data are appropriate for our purpose. 
However, there is always a danger that this assumption cannot be justified . The 
general ideas concerning this fact have been presented in Sec. 1. Now we will show 
how the concrete example of estimation of the Paris-Erdogan model parameters 
on the basis of Virkler data, demonstrates the general idea of the cross-validation. 

Let us discuss the results obtained in two steps of our conditioning procedure. 
STEP 1. In this step we identify the sample parameters (mi , In Ci) for all 68 

trajectories obtained in the experiment. For every trajectory we obtain a certain 
val ue of t he parameters (m, In C) . To verify the validity of the estimated values, 
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we try to reconstruct the Paris-Erdogan (deterministic or averaged) trajectories. 
The result of the calculation is presented in Fig. 3. During reconstruction of 
the trajectories we failed at g cases of 68 (9 times the sample paths with the 
identified parameters exploded before reaching t he considered number of cycles). 
To explain this fact let us remark that (as it is visible in F ig. 1) some experimental 
trajectories of stochastic cracks are of the shape which is non-similar to the 
exponential Paris-Erdogan curve. Moreover, the length iu t ime (number of cycles) 
is different for each experimental curve. Therefore the life-time of the modelled 
crack growing in the sample cannot be precisely determined. The discussion of 
analogous problems can be found in [8J. 

£ 30 
CJ) 
c 
~ 
~ u 
['! 
0 20 

0 100000 200000 300000 
Number of cycle s 

FIG. 3. Determinist ic trajectories with parameters (mi, In Ci) estimated from the Virkler 
experimental data. 

To study the effect of the trajectory length on the success of the procedure 
of the model parameters identification, we make the following calculations. We 
omit some number of the measurement points at the end of every curve in the 
procedure of Step 1. The results of such numerical experiment (the number of 
the identified pairs of the parameters for which the reconstruction of the Paris-
Erdogan trajectory was impossible) are presented in the follow ing table (the 
length of the trajectory is 164). 

STEP 2. We estimate the model parameters (identify their distributions) ba-
sing on the data partially identified in Step 1. Now we try to verify the validity 
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of the data for the complete identification procedure. We examine the reliability 
of the experimental data using the linear interdependence of two parameters in 
the Paris-Erdogan model of the stochast ic crack growth. To do this, we compare 
the resu lts of model identification obtained by two different methods. 

Number of omitted data Number of unsuccessful 
points on traject ory identifications 

0 9 

10 10 

20 12 

30 16 

40 20 

50 25 

60 37 

70 43 

80 51 

Assume that the value of the parameter mi for fixed i is known (it is ident ified 
iu the procedure of Step 1). Now we eau calculate the values of the parameters 
; \ aud l J in the linear dependence (7.3). 

:VIET110D 1. In this method the coefficients /\ and B are identifi ed according 
to the formulae of Sec. 4 with the use of a ll the pairs of the estimated values 
(mi , In G\). 

METTIOD 2. In this method the coefficients J\ and B are identified with t he 
use of all the pairs of (m1, ln C1) except for the i-th pair . 

Now, having the values of J\ and JJ estimated, we are able to calculate ( accor-
ding to (7.3)) the approximate value of the model parameter In Ci for every mi. 

T he firs t performed test shows, what is the influence of the i-th measured 
trajectory on the approximation quality of In Ci . Figure 4 shows the result of 
classical (one-point) cross-validation of the experimental data. The poiuts on 
the plot marked with crosses represent the value of mean-square error of the 
approximation of the value of In Ci estimated from the trajectory by In Ci = 
J\nLi + JJ, where the parameters A and B were calculated by the Method 1. 
Points marked with circles represent the analogous error but for parameters A 
and B calculated according to the Method 2. It is seen that the differences in 
the approximation errors are significant for 9 measurements. This means that 9 
measurements are not appropriate for the identification of the parameters of the 
Paris-Erdogan model. They contain a lot of information specific for themselves 
but useless for approximation of the general properties of the model. 
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F IG. 4. The mean square error fo r approximation of the parameter In C'i. 

The following identification method treats the cross-validation problem more 
generally. 

METHOD 3. In this method, t he coefficients A and B are identified with the 
use of all the pairs of the estimated values (m1, ln C1) except the k randomly 
selected pairs. 

The results of the Method 3 are presented in Fig. 5. There are 3 lines in the 
plot. The dashed line shows the value of the mean square error of the approxi-
mation of the parameter In Ci, with the value mi and formula (7.3), where the 
constants A and B were calculated according to the Method 2 (this is t he sum of 
the errors for all 68 experimental trajectories). The solid lines show the analogous 
error but when the coefficieuts A and D are calculated according to the Method 
3. The functions depend on k, the number of the omitted points (for two different 
random selections) . 

It is seen that, in general , omission in the approximation procedure of ln ci , a t 
a given point just the measurement made at this point, gives the effect comparable 
to neglecting more than 30 rar1domly selected points (that is about 50% of the 
points considered in the estimation procedure). This means that each curve of 
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the Virkler data is strongly informative for the estimation of the value of the 
parameters calculated for this curve. 

0 .80 

0.75 

e 
Qi 

0 .70 

Ql 
ro 
~ 
er 

0.65 
V) 

c 
ro 
Ql 0.60 :2 

0.55 

0.45 l__ __ L_ __ L_ __ L_ _ ___J __ ____! __ ____J, __ ___J 

0 10 20 30 40 50 60 70 
Number of omitted points 

FIG. 5. The averaged mean square error of estimation of the parameter In C.;. 

9. Closing remarks 

One of Lhe most important tasks of the experiment 's design is the verification 
of the consistency of the measured experimental data. To analyse the data, we ha-
ve applied the method analogous to the statistical procedure of cross-validation. 
Since the results of measurement had to be applied for identification of the para-
meters of a certain mathematical model, we applied this model (or, more precisely 
its parameters) as the quality measure of the set of experimental data. Such a 
methodology is very intuitive: the collected data can be more appropriate for one 
model, less appropriate or useless for another. The reasons for this fact can be ve-
ry different. It can happen that some model is not adequate for description of the 
observed physical phenomenon and this fact must be always taken into account 
in the identification process. However , this is not the only reason of failure of the 
procedure. Sometimes the algorithms of the model parameters estimation require 
a specific structure of data. Therefore one must carefully design the experiment 
planning its duration, sampling in time, location of sensors over the sample, etc., 
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taking into account the final destination of the obtained data . Summing up, vali-
dation of the experimental data must be always connected with the model where 
the data are utilised. 

Iu this paper we have considered the following practical prol>lem: for a given 
set of experimental data (Virkler data ou the fatigue-crack length) and the ma-
thematical model of a physical phenomeuon (Paris-Erdogau raudomised model 
of fatigue-crack growth), verify the validaLion of the data for identification of 
the model parameters. The conclusions regarding possibility of application of the 
Virkler data in the Paris-Erdogau model are the following: 

• Virkler data applied in ideutification of the Paris-Erdogan randomised mo-
del are sensitive to the length in time (duration) of the sample trajectories. They 
are also very sensitive to omitting the results of certain sample measurements in 
the identification procedure. 

• After the cross-validation procedure applied to the Paris-Erdogau equation, 
we must say that while the model gi,·es a good qualitative description of the 
stochastic crack growth, there is a small possibility of prediction of the behaviour 
of the crack in a certain sample of a material. To estimate the parameters of 
certain trajectory with good accuracy, we should include into our calculations 
the experimental results obtained just for this trajectory. 

• In the experiments of a kind analogous to the Virkler one, the number of the 
measured samples and the length of the observed trajectory is essential for the 
quality of identification of any mathematical model of the tested phenomenon. 

To conclude our considerations we must say that while every experiment, be-
fore it is made, must be carefully designed, then the followiug cross-validation 
procedure eau strongly coufirm Llw applicability of the obtained data for mathe-
matical modelling. This procedure indicates in particular the coherence of the 
obtained experimental data and the applied theoretical model of the phenome-
non. 
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On elastic energy of structures under proportional 
loading 

A. GAWF,;CKI (POZNAN) 

TH E PAPER CONCERNS the proportional loading of structu res made of t ime-
independent materials. It has been shown that the elastic energy can be a decre-
asing function of the load multiplier if unilateral constraints are introduced into an 
elastic-plastic structure. Results obtained in the work seem to be of importance for 
the theory of structures and may have !iOme theoretical implication!i. An ex.hau!itive 
example illu!itra tes the t heory. 

1. Introduction 

TnE PRESENT PAPER CONCERNS the problems of energy in structural systems. The 
energy, b eing a scalar quantity, is a diagnostic measure of the current mechanical 
state of the system and is of importance for theoretical considerations. 

The elastic energy of structures made of the elastic-perfectly p lastic materials 
will be evaluated. The load is assumed to be proportional and the problem is to 
establish whether the elastic energy is a monotone function of the load multiplier 
or not. It seems that the answer is "yes", but there is no theorem concerning 
this ques tion known to the author. However , the problem is not trivial in general 
cases of time-independent systems. A case will be shown when the elastic energy 
can decrease whi le the proportional load increases. 

The distortion approach has been applied in our considerations. The essence 
of this approach consists in the observation that all deformations due to nonli-
neariLy of the material and/or boundary conditions are caused by the presence 
of distortions imposed on the linear elastic structure. Distor tions are defined as 
enforced deformations which are not kinematically admissible, in genera l. T he 
concept of distortions was introduced in t he last years of the 19th century and, 
among others, was used in the papers of V. VoLTERRA [1] and G. CoLOl'I~ETTI [2]. 
The distortion approach allowed us to obtain many valuable resul ts, particularly 
in the thermoelasticity and shakedown theory of elastic-plastic structures. Some 
information concerning this topic can be found in the monographs of W. NowACI<I 
[3] and J . A. KONIG [4]. 

All considerations presented herein are carried ou t in the framework of the 
kinematical ly linear theory. T he FEM-oriented matrix description, worked out 
by G. MATER [5] and his eo-workers, is used. 

The elastic energy will be estimated for elastic (E), elast ic-p erfectly pla-
stic (EpP) , slackened-elas tic (SE) and slackened-elastic-perfectly plastic (SEpP) 
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structures. "Slackening" is a structural property, consisting in the presence of gaps 
(clearances) at structural joints. Thus, ou the macro scale, the slackened structure 
behaviour exhibits the locking eiiects. Deformations of slackened systems are due 
to elastic c J;, plastic c p and also concentrated clearance strains e r_ (i.e. relative 
displacements of members and connection elements). The plastic and clearance 
strains can be treated as distortions imposed on the linear elastic structure. H 
should be pointed out however that clearance strains are "load-dependent" di-
stortions, because they can vary during the deformation processes. More details 
concerning the slackened systems eau be found in [7, 8] . 

2. Mathematical description of elastic systems with distortions 

Consider an linear elastic system subjected to external loads p and distortions 
en. The elasticity coefficients are assumed to be constant and independent of 
distortions . A current mechanical state, independently of the deformation history, 
can then be described by the following system of matrix relations: 

(2.1) 
Cu - t: - cEJ I t:n , 

e Ta - p , 

u - Et:e. 

In Eqs. (2.1) p, u , u and £ denote the vectors of loads (or generalized loads), 
displacements (or generalized displacements), stresses (or generalized stresses) 
and strains (or generalized strains), respectively. All these state variables are 
consistent in the sense of the virtual work equation: 

(2.2) 

where T denotes the transpose. C is the geometric compatibili ty matrix , which 
depends only on the geometry and boundary conditions of the system . E denotes 
the strictly positive definite, square and symmetric matrix of elasticity. Since the 
kinematically linear approach is used, t he strain vector £ eau be split into elastic 
£ E and distortion £R parts. 

From (2.1) the following matrix relations can be derived, [8] : 

p Ku - c TE£R, lle = K - 1 p , Ur = K - Jc TE£u, 
(2.3) u Ue + Ur, U e = ECK- 1p , Ur = Zt:n, 

a U e + U r, K = c r E c , z = ECK - 1 CTE - E. 

where K is the square, symmetric and strictly positive definite stiffness matrix. 
In Eqs. (2.3) subscript e relates to the linear elastic structure without distor-
tions, subjected to load p , and subscript r indicates all the quantities due to the 
presence of distortions. 
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The distortion influence matrix Z is square and symmetric. It is well-known 
that the same stress state can be induced by various distortions, but any difference 
between these distortions is kinematically admissible. T hus, the matrix Z has to 
be singular. It is easy to show that 

(2.4) ZC ::= 0 and C'l' z ::= 0. 

From (2.4) we can formulate the following properties of distortions, namely: 
• any kinematically admissible distortion field (i.e. £n = Cur) does not induce 

self-stresses (J r: 
(2.5) <Yr - Z £n - ZCur = 0; 

• the self-stresses due to the presence of distortions ( <Yr - Z En) are in equ-
ilibrium with zero-valued external loads: 

(2 .6) Pr 
T T _ C <Yr - C Z £n = 0 . 

Compute now the total elastic energy I \'B of a load-free (p - 0) elastic stru-
cture subjected to steady distortions £u: 

(2.7) 1 T 1. T 
WE - - <J £E = - <J (Cu - £n) 

2 2 
1 T 1 T 1 T - p u- - u £n = --a £n. 2 2 2 

The elastic energy is positive definite unless the distortions £n are kinematically 
admissible. Hence 

(2.7) 1 

From (2.7)' it is clearly seen that matrix Z is negative semi-definite. 
In order to avoid a possible confusion, it should be mentioned that the di-

stortion description used herein corresponds to the standard approach which is 
slightly different from the Colonnetti's one where the total strain vector is divided 
into three parts (for details see l9J), namely 

(2 .8) £ - f.~p) + (E~R) I £n). 

In Eq. (2.8) £~) denotes the compatible strain vector due to the load vector p 
in bvarepe pure elastic structure, while £~R) is the elastic strain vector induced 
by the distortions £n in the absence of the load p . T hus, the sum £~) -1 £ n is 
kiuematically admissible. Consequently, the relations between the standard ar1d 
Colonnetti's descriptions take the form: 

£E = f. (p) + f.(R) ' e e , 

(2.9) <re = E£~) = ECue = E£L:J- <Yn 
<Yr = E£~R) = E (Cur- £n) - E £E - <Ye = Z en. 
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3. Bounds on the e lastic energy 

Assume that an elas tic structure is subjected to two load and distortion sys-
tems p1 , t:.m and p 2 , t:.m, respectively. The difference of the elastic energies of 
both the systems can be expressed as 

(3 .1) 

Thrning now to the general case of deformable systems we use the positive 
definiteness of the elasticity matrix E in order to formulate the following inequ-
ality: 
(3.2) 

where the equality sign occurs if both the elastic strain vectors are equal to each 
other. Inequality (3.2), using Eqs. (2.1), can be rewritten in the form 

(3.2)' (p2 - P 1f( u2 - u J) - (cr2- crlf( t:.R2- t:.m );::: 0. 

On the other hand, inequali ty (3.2) leads to 

(3.2)" 

It can be easily shown that if a ::; b then a ::; (a + b) /2 ::; b. Using this result in 
inequali ty (3 .2)" we obtain 

(3.3) T 1 T T (cr2 - cri) £E l ::; 
2

(cr2- cr1) ( t:. e2 + E.£1)::; (cr2- cr1 ) E.£2 . 

Since cri E. E2 = err £m, we can conclude that the intermediate term of (3 .3) 
represents the difference between the elas tic energies of two systems of loads and 
distortions, namely: 

(3.4) 1 T 1 T 1 T 
2(0"2- O" J) (f.EJ + £E2) = 2 0"2 E- E2 - 2 0"1 t:. e1 

= WE2 - W1::1 = ll WE. 

T hus, Ineq. (3.3) takes the form 

(3.4 )' 

The left-hand side of (3.4)' can be modified as follows: 

T T T T (0"2 - 0"1) E- E l = (cr2 - O"J) (Cu1- £RI )= (p 2 - p 1) UJ + (cr i - 0"2) f.RJ , 

or, using the reciprocal principle (cf. [8 J) 
T T T (cr2- cr1) t:.m = (u2- u i) P1 + 0"1 (t:.m - £R2) . 
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Similar transformations of the right-hand side of (3.4)' allow us to construct 
the following inequalities, [8]: 

(3 .5) 

where 

L J 

(3.6) 
R1 

£2 

R2 

L 1 $ 6 w1:: $ n 1 , 

£ 2 $ 6\Ve $ R2, 

(P2 - P J)r u2 + ( <T1 - u 2f t.R2, 
T (u2 - UJ) p 1 ( t.m - t.mfuJ , 

( f. RI - f.R2f 0"2. 

6\ VE - (L1 -1 Rl) / 2; 6WE = ( L2 I R2) / 2; £1 = £2 and R1 = R2 . 

The equality signs relate to the par ticular cases of kinematically admissible di-
stortions which do not induce any additional stresses. 

It should be pointed out that inequali ties (3.5) hold true for any unspecified 
loading paths. T hese inequalities will be used to evaluate the elastic energy for 
various types of structures under proportional loads. 

4. E lastic energy changes during proportional loading 

4.1. D efinitions and assumptions 

The proportional loading can be defined as follows: 

(4.1) 

where l£o is a positive definite scalar multiplier , and p 0 denotes a reference load 
vector. Consider two levels of proportional loads p 1 and p 2 , which are associated 
with two load multipliers f.L.l and f.L.2, respectively. If p 1 = J.l.J Po and p 2 = f.L.2 Po 
then for f.L.2 > J.l.I > 0 we obtain: 

(4.2) 

where !£ - ~£2/ f.L.J > 1. 
Since the problem is considered in the frame of kinematically linear theory, 

the total s train in general cases of SEpP structures is a sum of individual par-
tia l strains . In particular, the distortion vector consists of clearance and plastic 
strains: 
(4.3) f.R = £L + f.p . 
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Usually, during proport ional loading of structures no local plastic unlo<tding 
occurs. Such a behaviour correspouds to the path-independent (!J olonolilic) mo-
del. Further considerations are restricted to this model. 

If a SEpP structure is subjected to proportional load p , which induces cle-
arance and plastic distortions, then the following inequality holds : 

(4.4) T T T T T T p u = <r £ = U ( t.r, I £ r:; I £p) = U £r, -1- <T £ E 1- U £ p > 0. 

T he inequality sign results from the following. The product of s tress and 
elastic strains u T £ E is positive due to the definition of elasticity matrix. T he 
clearance work u T £L in slackened structures is always positive semi-definite (cf. 
[6]) . T he product of stresses and plastic strains u T £ J> represeuts the positive 
semi-definite plastic dissipation in Bp!' sysytems. Relation ( 4.4) is also valid for 
the remaining kinds of structures (i. e. /~', SE, EpP) because they are particular 
cases of the SEpP structure. 

The yield condi tion arrd contact condition are assumed to be convex. For the 
holonomic model, these assumptions can be expressed in the fo llowing mathema-
tical form: 

(4.5) 

In (4 .5) u 1 , £ p 1 and £ L 1 denote true vectors of stress and s trains, whereas U 2 
arrd £1-2 are arbitrary statical ly admissible stress and kiuematically admissiole 
clearance strain vectors, respectively. Moreover , using inequali ties (4.5) and assu-
ming that U 2, £p2 and £L2 represent true associated stress arrd distortion states, 
we obtain 

(4.6) 

hence 
(4.7) (ul - u 2f[( £.L1 + £p1 + t. n) - ( £ L2 1- £p2 1- £ n)] 2: 0, 

where £n denotes a steady distortion vector. All the possible distor tious which 
carr occur in the class of time-independent structural systems considered herein 
carr be presented as 

(4.8) i = 1, 2. 

Substituting (4.7) to inequali ty (3.2)' yields 

(4.9) 
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Using ( 4.2) in Ineq. ( 4.9) we obtain 

For proportional loading (p, - I) > 0 and ( 1 - ~L -I) > 0. Thus, we can staLe that 

(4.10) 

Relations ( 4.10) will be used in further considerations. 

4.2. Linear elastic systems 

In clastic structures£; = £Ei and e:.u; = 0 (i = 1, 2) . From (3.5)2 we have 

7' 7' P 1 ( U2 - U1 ) :S 6.1\' E :S P2 ( U2 - U I) for {t > 1. 

According to (4.10)1 p f( u2 - u i) > 0, hence 6.\VE = WE2- \VE l > 0. It 
corresponds to the obvious conclusion that the elastic energy in linear elastic 
systems is an increasing function of the load multiplier. 

It will be shown that the same conclusion is also valid for elastic systems 
with any initial, load-independent distortions. Consider an elastic structure that 
exhibits s teady distortions t. o. Denote by subscripts 1 and 2 the elastic ener-
gies of the self-stresses and load p , acting on the structure without distortions, 
respectively. Then 

l: Pi = 0 , 

2: P2 p , £R2 = 0 , 

The total elastic energy WE including the distortion and load effects reads 

1 T 1 T ] T 
WE = 2(0'1 + 0'2) (t.El I £E2) = 2 0'1 f.E1 I 20'1 £F;2 

1 T l T · T 
I 2 0' 1 £ E2 + 2 0' 2 £ E 1 = WE J + W E2 -1- 0' 1 £. E2 . 

The last term in the above expression vanishes due to the virtual work principle 
(pl - 0): 

T T T T 0'1 £E2 = 0'1 Cu2 = C 0'1u 2 = p 1 u2 = 0. 

So, the elastic energy can be decomposed into the energy of steady distortions 
and the energy of external loads; the mutual, load-distortion energy is equal 
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to zero. T he same result has been obtained in [10]. However, this interesting 
observation is valid only for linear elastic systems. Since the external load energy 
is distortion-independent, the elastic energy is an increasing function of t he load 
multiplier. 

Finally, let us determine the explicit form of expression for the elastic encr6'J' 
of self-stresss: 

(4.11) 

1 'J',., 1 T -1 l T - 1 = - 2t:0 Z(Cu l- t:eJ) = 2t: 0 ZE 0"1 = 2t:0 (ZE Z )t:o. 

From (4.11) we conclude that zE- 1Z = - Z . Indeed, using the definition of 
matrix Z and taking into account that ZC = 0 , we find 

(4.12) 

4.3. Elastic-pe rfectly plastic systems 

For both levels of loads p 1 and p 2 , the total strains consist of elastic and 
plastic (distortion) parts: 

(a) i = ] , 2, 

so, from (3 .5)1 and (a) we obtain 

Since (tt - 1) > 0, and according Lo (4.4), pfu1 > 0, the first right-hand side 
term is positive. If the yield condition is convex, the second right-hand side term 
is non-negative (cf. (4.5)) . T hus, 6WE' > 0 and the elastic energy is an increasing 
monotone function of load multiplier f-.L· 

4.4. Slackened-elastic syste ms 

In slackened systems the strain vector eau be divided into elastic and clearance 
parts 

(a) i = 1, 2. 

The elastic energy is an increasing function of the load multiplier if £ 2 is positive 
definite. Using inequality (3 .5)2 we obtain: 

(b) 
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T he p ositive definiteness of L2 results from (4 .10)2 and from the convexity of 
the contact condition (cf. ( 4.5 )2). In view of (b) we eau state that this conclusion 
hokls also true in the case where steady d istortions e: o are addi t ionally imposed 
on the slackened-elastic structure. 

4 .5. Slack e ned-e lastic- p e rfe ct ly plastic s y s t e m s 

Simila rly to the p revious case, the s train vector is the sum of elas tic and 
distortion parts. However , distortion strains in slackened-elastic-plastic systems 
consist of clearance and plastic strains: 

(a) 

Such systems demonstrate a lot of interesting effects and their behaviour is very 
complicated , particularly when plastic and clearance strains are simultaneously 
present. A complexity of this problem comes from the fact t ha t clearance distor-
t ions, contra ry to plastic ones, are ahvays load-dependent. T herefore the signs of 
L , , /.-2, /?1 and fl.2 in Ineqs . (3 .5) cannot be evaluated. It is interesting to not ice 
t hat even posit ive definiteness of right-hand sides of (3.5) does not have to be 
always guaranteed. 

Let us consider, for example, the expression for R2: 

(b) 

According to (4.10)2 , the first term in (b) is positive. On the other hand, the 
remaining t erms consists of the non-positive defi.nite part ( t: L 1 - £ L2 )T a 2 (cf. 
( 4.5)2) and the part due to plastic s trains ( t:p1 - t:p2)T a 2, its sign being un-
determina te, in general; however, for proport ional loading the negative sign can 
be expected. Similar results can be obtained for L1 , L2 and R 1. A numerical 
example of Sec. 5 will explain this problem. 

5 . Numerical Example 

Consider a simple beam shown in F ig. 1. 

"' "' 

v 1.5m k 3.0m 

F IG. 1. Slackened beam with clearance hinges. 
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The beam is composed of two elements of ideal !-cross-sections. T he moments 
of inertia and depths for both the elements are equal to J 1 = 4500 cm·1, h -
10000 cm4 and h1 = 30 ern, h2 = 40 cm, respectively. 'I\vo kinds of the material of 
the beam are assumed: the linear elast ic of infinite strength, and the linear elastic-
perfectly plastic with the yield stress a~· = 300 MPa. The corresponding full 
plastic bending moments of the cross-section for the beam-elements are AI)· 1 -

90 kNm and !v[Y2 = J 50 kNm . The Young's modulus for both the materials is 
assumed to be the same: E = 200 GPa. In addition, at points 2 and 3 the so-
called clearance hinges are introduced. In other words , the angle of free relative 
rotations of adjacent beam-elements cp;('i = 2, 3) at these points can vary between 
the limits: - c/Ji :=::; </J; :=::; c/Jt. Angles c/Ji play here the role of clearance strains. The 
cases where clearance hinges are introduced correspond to the systems which are 
slackened. If the clearance moduli (i.e. limit free rotations at clearance hinges) 
are equal to zero <Pi = c/Jt = 0, the beam becomes a common structure with 
bilateral constraints. Then the beam is fully fixed at both the supports (point 1 
and point 3). So, we can consider the following four kinds of the system: 

• elastic (E) (ay ~ oo, c/Ji = c/Jt = 0) , 

• elastic-perfectly plastic (!;;pi )) (ay = 300 MPa, c/Ji = 0, cpi1 = 0) , 

• slackened-elastic (SE) (ay ~cc, <Pi J cp, 9;' 1- 0), 

• slackened-elastic-perfectly plastic (SEp P) (ay - 300 MPa, <Pi ! </J, c/J;1 / O) . 

FUrther considerations will be carried out for identical and symmetrically distri-
buted rotation gaps, i.e. </J2 = cpJ~ - <P3 = <Pi = </Jo. Variations of these gaps 
within the limits < 0, 0.009 rad > allow us to analyse the elastic energy as a fun-
ction of slackening intensity, including also the beam with bilateral constraints . 

The beam is subjected to concentrated load F acting at point 2. The load 
increases proportionally up to /\, = :ZOO kN (i.e. to the liwit load for tllC clastic-
perfectly plas tic beam) and then the bcarn is proportionally unloaded. 

Particular cases of the types specified above of the structure car1 be examined 
with respect to the elastic energy at given levels of the proportional loading. 
Additionally, the energy variations during unloading will be also presented. 

The beam with rotation clearances belongs to a particular class of skeletal 
SEpP structures where distortions are concentrated at the clearance, plastic 
or clearance-plastic hinges. The loading and unloading of the structure induce 
opening or closing of these hinges. As a consequence, the boundary conditions of 
elements (i .e. structure types) ar·e changeable. 

The current elastic energy IV E for particular kinds of the beam is calculated 
as a function of "deflection leugth" Se, or "load length" S p . The current deflec-
tion of the beam t:., deflection length S t::.. and load length S p are defined as 
follows: 
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6 = L:6(j); 
j = l 

m 

56. = I: l6 u>l; 
j = l 

m. 

Sp = L lp(j)l) 
j = ] 

859 

where 6 (j) and pU) denote the deflection rate of point 2 and the external load 
rate in the j-Lh step of the calculations, respectively. Symbol rn denotes a current 
calculation step. 

P - 6 diagrams for E, EpP, SE and S l~pJ> beams for r/>o = 0.009 rad are 
presented in Fig. 2a, while in Fig. 2b the elastic energy WE versus the deflection 

P[kN) a) 
WE(kNm) b) 

200 A 1.0 

150 0.8 

£-beam 0.6 
100 A 

0.4 

50 
0.2 

0 
O=B .1[m] SLl [m] 

0.000 0.025 0.050 0.025 0.0!>0 

P(kN) WE(kNm] 
200 A 1.0 

b 
a 0.8 150 

EpP- beam A 
0 .6 

100 

\ 0.4 

50 
0 .2 \.a 

0 0 B .1[m] SLl (m] 
0.000 0 .025 0 .050 0.025 0.050 

P(kN] 
200 A 

~~(kNm) 

150 0 .8 

j\, SE- beam 0 .6 
100 

0 .4 

0 .2 

.1[m] 
0 .0 0 ·-.8 SLl(m] 

0.025 0 .050 0 .000 0.025 0.050 

P(kN) 
200 . A 
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WE(kNm) 
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0.6 

! A 
0.6 

I 
SEpP- beam f g \ 0.4 \ 

e \ 
hi 0.2 d h\.a 
al .1(m] 0.0 SLl (m) 

0.025 0.050 0 .000 0 .025 0.050 

FIG. 2 . Elastic energy for proportional loading of the beam; a) P - 6. diagrams, 
b) Elastic energy \V r-; versus deflection length S 6 . 
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length St:. is plotted. Segments 0 A. and segments AJJ correspond to proportional 
loading (solid lines) and unloading (dashed lines) of the beam, respectively. All 
the intermediate points imlicate the structure type changes. 

P - 6. relations for the E-beam and 8 pP- beam take a well-known form of 
concave functions. On the other hand, the presence of clearances induces locking 
effects which lead to convexity of P (6.) functions. It is clearly seen for the S 0'-
beam. T he behaviour of S~'p f)-bearn is much more complex ; both the convexity 
(e.g. segment 0 - d - c) and concavity of P(6.) fuuct ion are noted. T he P (6.) 
convexity concerns also the unloading curve (segment Jl- h- JJ). ~Ioreover , t here 
exists the horizontal segmeut which corresponds to a "clearance-plas tic mecha-
nism" (cf. segment J- g). Ob\'iously, the rates of elastic euergy ou this scgmeut 
are equal to zero. 

In the range of proport ional loading, the elastic energy appears to be a mo-
notone increasing function with respect to the beam deflection, except the case 
of the S'f,'pP- beam (cf. Fig. 2b) . It confirms the theoretical resul ts of Sec. 4. 
Indeed, we can state that the elastic energy in the SEpP-beam can be a par-
tially decreasing function of the load multiplier. Note that the energy of residual 
stresses does not have to coincide with that of the f,'pP- beam. 

From Fig. 2 it fo llows that the elastic energy variations during the deformation 
processes must depend on the values of clearance moduli . In order to examine 
this problem we calculate I \11~ as a function of Sp duriug proportiona l loading 
for increasing values of rotation gaps, dJo. F igure 3 shows I \1 E(S p) diagram s for 
particular kinds of the beam. 

According to the results of Sec. 4, the elastic energy in the E- beam and 
SE- beam is an increasing function of the load multiplier (see Fig. 3a) . From 
Fig. 3b it follows that for a sufficiently large values of cp0 , the elastic energy in 
the SEpP- bearn can decrease while the load multiplier increases. 

a) 
WE [kNm] 

1.0 

0 .8 
-- <t>o= 0 .00 9 rod 
-----·--- <l>o = 0.00 6 rod 
------ <~'o =O.OOJ rod 

0 .6 
--- <l>o= O rod 

0.4 

0.2 

0.0 
0 50 100 150 200 

0.8 

0.6 

0. 4 

0 .2 

0.0 
0 

b ) 

-- <l'o= 0.009 rod 
- ----· <1>0 =0.006 rod 
- - - - - - <t>o = O.OOJ rod 
-- - <l>o= O rod 

.... 

Sp [kN] 
50 100 15 0 200 

Frc . 3. Elastic energy variations for increasing gaps; a) Slackened-elast ic beam , 
b) Slackened-elastic-perfectly plastic beam. 
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Now, the question arises: what is the physical and structural interpretat ion 
of the decreasing energy function? 

Analysing the problem from the physical point of view we conclude tha t a 
part of the elast ic energy can be converted into the plastic dissipation. Then the 
decrease in current elastic energy is observed. Obviously, such a phenomenon can 
occur only for structures whose material exhibits both the elastic and plastic 
deformations. To make the problem more clear, the current elastic energy WE 
and the current total dissipation D in the SEpl'- beam (c/Yo = 0.009 rad) versus 
deflection length 56 are plotted in Fig. 4. It is seen that the elastic energy starts 
to drop down just as the plastic dissipation begins (cf. points c and g in Fig. 4). 

6.0 WE, D [kNm] 

5 .0 

4.0 --WE 
-------.. - D 

3.0 

2 .0 

1.0 

FIG. 4. Elast ic energy \VE and total plastic dissipation D in S f"'pP- beam during 
proportional loading. 

Next additional question is: "why eau it occur only for the S E pP-beam?" An 
explanation of this problem can be found in Fig. 5 where changes of the structu-
re type and the corresponding generalized s tress (bending moment) distribu tions 
are presented. Figure 5a relates to 1 - Fe - GG kN (point c in Fig. 4) and 
Pet:;. = Fe 1- D.P = 65 + 5 = 70 kN. For P = Pe the beam is fully flxed at the left-
hand support and pin-ended at the right-hand support. The load increasing up to 
Pet:;. induces the s tructure type change; the beam becomes pin-ended at both the 
supports. Similar situation arises for P = P9 = 150 kN (point g in F ig. 4) and 
P,9 t:;. = P9 + D.P = 150 + 5 = 155 k . For P = P9 at point 2 the new plastic 
hinge forms whereas a t point 3 the clearance hinge closes and the beam becomes 
statically determinate. The structure-type changes give modilications of bending 
moment distributions. It can be easily checked that the elastic energy rates star-
t ing from P = 65 kN and P = 150 kN are negative. So, we can conclude that 
the elastic energy decrease is induced by deformation-dependent boundary condi-
t ion changes. Such untypical changes can appear only for slackened-elastic-plastic 
s tructures where clearance and plastic strains simultaneously appear. 
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a) b) I Pg= 150 kN 

2 3~ 
I
Pe= 65 kN 

~el--1 __ ..._2 -----3~ 
1 

-90~ a- [kNm] -9o~ a- [kNm] 

~ 
I Pet.=- 70 kN 

~1 2 3~ 
I Pgt, =- 155 kN 
1

2 3~ 
-90~ a- [kNm] 

'!!ill !Ill 

10 

-9o~ a- [kNm] _;;J,S 

~ 
FIG. 5. Structure type and bending moment changes during proportional loading of 

SEpP-beam; a) load level c (!> = G:i kN), b) load level g (LJ = 150 kf\) . 

6. Final remarks 

The present paper concems the proportional loading of structures made of 
time-independent materials. It appears that this particular and simplest case of 
loading is not yet sufficiently recognized. It has been shown that the elastic enerb'Y 
can be a decreasing function of the load multiplier if unilateral constraints (i.e. 
gaps at structural connections) are introduced into an elastic-plastic structure. 
The results obtained in the paper seem to be of importance for the theory of 
structures and may have many theoretical implications. 'Ne have in mind, for 
instance, the damage mechanics where the elastic energy is usually assumed as 
an increasing function of the load multiplier. The problem appears to be much 
more significant due to the fact that damaged bodies contain internal gaps and 
therefore, tlils assumption seems to be not quite jus tified. 

In spite the fact that the present work concerns discretized systems, the author 
believes that the results obtained herein can be generalized to continuous bodies 
made of time-independent materials. 
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On two motions of a particle driven by equivalent 
ergodic and chaotic reflection laws 

J. SZCZEPANSKI, Z. A. KOTULSKI (WAR.SZAWA) 

IN T H E: PAPEil we analyse dynamical systems describing the motion of a free particle 
in a domain on a plane (a square). We show that topologically equivalent r eflection 
laws (each of them ergod ic and chaotic) govern ing particle's motion at the moment 
of reflection can lead to two dynam ical systems with entirely different qualitative 
properties. We a lso indicate a general problem of transferring such properties like 
chaos and ergodicity from a subsystem to the extended one. 

1. Introduction 

THE MOTION OF A FREE PARTICLE in a bounded domain is inherently determined by 
the shape of the boundary and the reflection law at this boundary. T he reflection 
law is responsible for the global behaviour of the velocity of the particle during 
its contact with the boundary of the domain. In such dynamical systems (in the 
idealised theoretical model), the fundamental physical laws like the conservation 
of li near momentum and the conservation of energy are assumed to be satisfied 
what leads to extensively studied classical billiards. This means that the incidence 
angle is equal to the reflection one. In general , analysing the transformation of 
the angles of the moving particle at the moment of reflection one eau observe that 
the reflection law itself is a dynamical system. This has created a temptation to 
consider the reflection law as an independent dynamical system. 

The theory of the non-classical reflection laws found its place in the literature 
[1- 5]. Up to now there are only hypotheses on what happens when the partic-
le reaches the boundary, more or less confirmed by experiment. Reflect ion law 
models are an intermediate case between tl1e deterministic systems first conside-
red by SCITNUTE and SHJNBROT [2] and systems with random reflection laws [6]. 
Namely, we admit a system with a strictly deterministic reflection laws that are 
not one-to-one maps. T hus, in this case it can happen that two different initial 
configurations in the phase space lead to the same final configuration what is im-
possible in the Schnute and Shinbrot model. T here is a number of maps playing 
the role of t he reflection law. The authors investigate the properties of the reflec-
tion laws finding that they can lead to such phenomena like: non-slip reflection 
on the boundary, non-increasing entropy, chaos, ergodicity (mixing property) of 
systems describing behaviour of the particle . 

The reflection laws describe the global behaviour of the velocity of a freely 
moving particle during its contact with the boundary of the domain. From this 
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point of view, non-classical reflection laws do not satisfy such a fundamental 
physical law as the conservation of linear momentum. However , one eau find some 
situations where such laws can describe realistic physical phenomena. Consider 
for example the container, the wall of which has some microstructure (Fig. 1). 
We assume that the mass of the refiected particle is negligible in comparison to 
the mass of the container. T hen the re flection process, observed as non-classical, 
can in fact be the effect of few classical elastic reflections where, for every micro-
reflection, the conservation of linear momentum is satisfied. In this model, due 
to the small scale of the microreflection, we identify the outgoing posit ions with 
the incoming point . 

FIG . 1. Effect of the boundary microstructure on t he reflection law. 

After the reflection law was extracted from the extended dynamical system 
describing the motion of freely rnoviug particle and then independently conside-
red , one eau ask the following questions: What are the properties of the extended 
system if we use non-classical reflection law? Wha t is the effect of the specific 
properties of the reflection law (like chaos or ergodicity) on the behaviour of the 
particle? Is the particle motion chaotic or ergodic? Let us remark that this is a 
different problem than the chaotic or ergodic motion of the particle observed in 
classical billiard systems (connected wi th a specific shape of the domain's bo-
undary). In this paper we just try to answer the question of transferring the 
specific properties from a non-classical reflection law to the dynamical system 
of a moving particle. We perform our considerations in two dimensions, where 
qualitative results we are interested in can be observed. Extensions of the results 
to more-dimensional spaces lead to some technical problems, what can be also 
observed in the case of the widely studied classical billiards theory. However, the 
results in two dimensions can give some suggestions concerning the behaviour of 
more-dimensional systems. 

Problems of transferring of imposed properties from a dynamical system to 
its extension appear in various situations [4, 5, 7, 8] and seem to be interesting 
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both from the theoretical and practical point of view. They naturally arise from 
the problems of physics, engineering dynamics, mathematical economy and many 
others. In geueral, by an extended dynamical system we understand a system with 
sLate space of dimension greater than the original one and functionally dependent 
ou it. Such a system can be a simple exLeusion of the given dynamical system 
obtained by adding more co-ordinates without chaugiug the form of the primary 
oues, or it eau be some higher-dimensional dynamical system driveu by the lower-
dimeusional one. In this paper we cousider the trausfer problems in Lhe case of 
a free particle motion inside a bounded plane domain. We assume the reflection 
law as a primary dyuamical system and the motion of the reflecting particle as 
an extended system. 

To establish a reflection law model one must select a domain with a certain 
shape of the boundary and define the reflection law. Usually, the boundary is 
assumed to be a closed, sufficiently smooth curve. The reflection law can be quite 
general; iu our cousiderations we assume that the particle moves with a constant 
veloci Ly, chauging the direction at the moment of reflection. In the particular 
case of the reflection law conserving the angle of incidence (the augle of incidence 
is equal Lo the angle of reflection), one obLaius the class of dynamical systems 
called billiards. This conservative reflectiou law (as a map) is neither ergodic 
nor chaotic (see formula (*) in the next Section). However, it is well known that 
in appropriate domains it eau lead to ergodic or chaotic motion of a particle. 
Thus, to obtain ergodic [9] and chaotic properties [8, 10- 11] of a reflection law, 
oue must assume another map relatiug the incident and outcoming angles. Such 
models have been studied in [1-5]. 

Applying various reflection laws, we face some natural questions when descri-
bing the motion of particles: 

• Fix a reflection law. Do the ergodic and chaotic properties of the law transfer 
Lo the same properties of particles' motion for some typically used shapes of the 
domaiu? 

• Fix a shape of the domain. Do topologically conjugate ergodic aud chaotic 
reflection laws generate equivalent motion of the particle? 

Some insight into the first problem was given iu [5]. It was shown that for 
two simple domains, the ergodic and chaotic properties of the same reflection law 
can transfer in a quite different manner. In this paper we deal with the second 
question. 

2. Formulation 

Now we specify the model. We assume that the domain of a moving particle 
is a square. In the domain, the particle moves along straight lines with a constant 
velocity; when it encounters a wall it "reflects", that is, its velocity instantaneously 
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changes (according to some reflection law) to another "reflected" value to make 
the particle remain inside the domain. The motion of the particle is described by 
two co-ordinates (Fig. 2): 

FIG. 2. The co-ordinate system used t o describe the motion of a particle in a square. 

• the position X n at the square's boundary at the moment of the n-th reflection 
(measured counterclockwise from the flxed vertex of the square); 

• the angle !In measured from the tangent to the boundary to the velocity 
vector of the point after reflection (clockwise) . 

To complete the definition of the system we assume some reflection law 1' : 
(0, 1r) --+ (0, 1r), T (11;11c ) = llrcf (Fig. 3) . For example, in this formalism, t he 
conservative reflection law is gi veu by the map 

vref = T(v. ) 
lflC 

X 

FIG. 3. The reflect ion law in local co-ordinates. 

Thus, the motion is described by the two-dimensional map 

(2.1) 
Fr : [0, L) x (0, 1r) --+ [0, L) x (0, 1r) , 
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where the subscript in Fr denotes the dependence of the function on the reflection 
law T, and L is the length of the boundary of the square. 

We consider the following two reflection laws: 

(2.2) 
T1 : (0, n) --4 (0, n), 

and 

(2.3) 
T2: (O,n) --4 (O,n), 

{ 
2llinc for llinc E (0, 11" /2), 

llref = T2(llinc) = 
2(n- llinc) for llinc E [n/2,n). 

71 is a unimodal map which is ergodic and chaotic [12]. T2 is the so-called tent 
map, also ergodic and chaotic [13]. 

These maps are topologically conjugate [14]; the equivalence is given by the 
lwmeomorphism 
(2.4) . (V 

g(v) = 2 arcsm y :;;> 
i.e. the following diagram is commutative: 

(2.5) 

(O,n) 

l g 

(0, 11") 

(0, 11") 

lg 
(0, 11") 

T his diagram yields the following implications: 
I. If J/k --4 iJ (so 1](vk) --4 T1( il )) then the g-corresponding sequeuces satisfy: 

g(vk) --4 g(il) and T2 (g(vk)) --4 g(T1 (il)). 
II. If the orbit {Tj(v0 ) , n = 0, 1, 2, .. . } has some properties like periodi-

city, asymptotic periodicity or density, then the g-corresponding {T2 (g(vo)), 
n = 0, 1, 2, ... } orbit has the same properties. 

3 . Results 

Consider the motion of the particle in a square. In the models presented, the 
velocity of the particle inside the square is constant and the reflection law at the 
boundary is given by either T1 or T2 . It was proved in [5] that if the reflection law 
is defined by T1 then the motion Fr 1 of the particle is asymptotically periodic, 
i.e. for almost all initial points (xo, vo ), after sufficiently many reflections, the 
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particle moves closer and closer to the edges of the square. More precisely, the 
angle v,. tends to 1r and so the motion of the particle converges to the periodic 
changes of the positions x .. from vertex to vertex. 

Now ¥Surne that the reflection law is defined by 12. We show that the motion 
F12 differs qualitatively from h·1 • To study the behaviour of the system we 
observe the second co-ordinate v of motion of the particle. F irst notice that due 
to the geometry of the square (see Fig. 4), the velocity Vn changes in the followiug 
way: 

Frc. 4. Types of reflec tions in a square. 

a) Vn ll - T2(1111 ) = if the particle mo-
{ 

'211" for v,.E(7r / 4, tr/ "2 ) 
2 (tr - 11,.) for 11,. E [ 1r / 2, 3i<f 1) 

ves from one side to the opposite one. Notice that this is possible ouly when 
7r/4 < Vn < 37r/!J, which restricts the domain of the velocity in (2.3). 

b) IJn 1 1 '2 ( ~ - v,.) if the particle goes from one side to the clockwise 

adjacent side; this is possible only when 0 < V11 < 1r / 2. 
c) Vn 1 1 - 2 (vn - ~) if the particle goes from one side to the countercloc-

kwise adjacent side; this is possible only when 1r /2 < V 11 < 1r. 

From the above we see that our two-dimensional system F'-j ~ is not a simple 
extension of the one-dimensional law 12: due to the geometry of the square, 
the second co-ordinate is modified in comparison to the simple reflection law. 
Moreover, as we shall see below, the function describing the evolution of the 
second co-ordinate is multi-valued over the interval (7r/4, 37r/ 4)- see F ig. 5 (the 
choice of the value from two possibilities depends of the first co-ordinate, i .e. the 
position of the particle). 



http://rcin.org.pl

O N TWO MOT ION Of' PART ICLE DRIVE~ 13Y EQ t; IVA L8;-;T ERGODIC 

' ' 

0 1( 

4 
:r 

1 
3JT 
4 

I' l( 

FIG. 5. The plot of the multi-valued map governed by the reflection law 12. 

871 

Le t us introduce a new function, based on the properties b) and c) of the 
reflection law: 

(3.1) y, (v) = { 2(7r/ 2 - v) for 0 < v < 1r j 2, 
2

" 2(v - 7r/ 2) for 7r j 2 ::; v < 7r. 

This function will be used for the study of the evolution of the second co-ordinate 
of Fti. 

Observe that 
(3.2) 72" - 72 0 h, 

where h is a universal function, inhcreutly connected with the shape of the square: 

(3.3) h(v) - { v +Jr/2 for O < v < Jr/ 2, 
v - 1r / 2 for 1r / 2 ::; v < 1r. 

One can see that after n reflections, the velocity of the particle, in the system of 
co-ordinates, is of the following form : 

(3.4) 

where the subscripts are O:i = 2 or 2h for i - 1, 2, ... , n. The sequence ( ai)i~1 is 
determined by the initial point (xo , v0 ) . 

Notice that the reflection law 72 has the following property: 

(3.5) 
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Moreover, the function T2" satisfies the condition: 

(3.6) 

Both the above properties are satisfied for every v E ( 0, 11). 
From (3.5) and (3 .6) we have 

(3 .7) T:j" (vo) = T2h(T2h(vo)) = T21t(11- T2 (vo) ) = 11- T2(11- T2(1;o)) 

' t '2 ( ) =- 11 - 12 vo, 

and generally, by induction, 

(3.8) 

We come to the conclusion tl1at after the n- th reflection, the second co-ordinate 
of F-J.\ (xo , vo) is either T2'(vo) or the point symmetrical to T:2'(vo) with respect 
to 11/2. Now, because 12 is ergodic (with an invariant measure equivalent to the 
Lebesgue measure) , [13], we conclude that for almost all initia l points IJo the set 
{iin = 12(vo), n = 0, 1, 2, ... } is dense in (0, 11) [9]. Thus, for almost a ll ini t ial 
points (xo, vo) , the set of velocities {vn, n = 1, 2, ... } corresponding to each of 
them is dense in a set of Lebesgue measure of at least 11j'2. We see that the 
motion Fr2 is completely different from the motion F'r1 , where the sequence 
of velocities Vn converged to the constant value 11, independently of the initial 
position xo and the starting velocity v0 . 

Observe that an analogous result can be obtained for rectangles. 
To end this section, we point out an interesting property of the relation (3.2). 

Consider the following chaotic and mixing reflection law: 

(3.9) T3(JJ) = 2JJ (mod 11). 

For this law applied to the motion of the particle in the square, the formula (3.2) 
becomes 
(3.10) 

This is an example of a law invariant with respect to the function h. This class 
of reflection laws has an unusual property that the evolution of the second co-
ordinate v of particle's motion F13 is independent of the position x (the first 
co-ordinate of Fr3 ) . 

4. Final remarks and conclusions 

The problems studied in this paper were inspired by previous investigations 
connected with description of a single particle motion. The particle's motion with 
a non-classical reflection law arises in a number of practical physical phenomena. 
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The models of this kind can be observed in very rarefied gases, t he so-called 
Knudseu gases [1 , 4]. T he investigation of the reflection law models a llows us to 
predict, under some additional mathematical assumptions, the qualitative pro-
perties of the one-particle distribution function of the gas (e.g. the analytici ty) . 

Another problem, directly related to the reflection law models, is the motion of 
a particle in accelerators [15]. Moreover, in this case the particle's motion eau be 
described by the so-called "standard maps" which turned out to be the P oincare 
maps generated by the moving particle [11, 16- 17] . These maps are topologically 
conj ugate to some dynamical systems obtained in the study of reflection law 
models l S] . 

The transfer of properties from smaller to extended dynamical systems can 
also be analysed in the motion of the particle in a viscous medium under the 
infiuence of a kick force. This phenomenon was modelled and investigated in [18]. 

Among many applications of chaos oue eau find also the recent uti li sation of 
chaotic dynamical systems to construct secure communication (see e.g. [19- 20]) . 
Iu [21- 22] we proposed the method of extending dynamical systems to construct 
safe cryptosystems. The results obtained in the above give some suggestions how 
such extens ions eau be performed. In the case of the block cryptosystems, the 
encryption and decryption is based ou multiple inverse itera tions and forward 
iterations . The secret key is introduced into the reflection law (the velocity of the 
particle) a nd the message is considered as the posit ion of the particle [23]. Under 
the appropriate way of transferring the properties of the reflection law, the initia l 
posi Lion of the particle cannot be recons tructed from the final position without 
the knowledge of the initial particle velocity (our secret key) . 

T he considerations of this paper poiut out the interesting problem of con-
structing a chaotic and ergodic reflection law which would guarantee the transfer 
of these properties to certain extended dynamical systems, like the motion of a 
particle in a wide class of typical containers or some secure cryptosystems. 

Our models show that there are uo s imple relations between the properties 
of a reflection law and the properties of the motion of the particle. Even for the 
same class of the reflection laws (in topological sense) with very strong properties 
like ergodicity and chaos, the qualitative properties of the motion of the particle 
(in commonly used containers) can be essentially d ifferent. It is an interesting 
open problem to find additional assumptions on the reflection law which would 
ensure the transfer of the above properties. It seems that such type of r eflections 
could be interesting from t he physical point of view. 
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On the cyclic yield surface of some engineering materials 
under complex stress conditions 

L. DIETRICH and Z. L. KOWALEWSKI (WARSZAWA) 

THE PAPER PRESENTS a new method of mechanical parameters analysis. It deals with 
determination of a "cyclic yield surface" for selected engineering materials on the 
basis of cyclic curves experimentally obtained under a complex stress state. Location 
of the cyclic y ield surface with respect to that of the initial yield locus may constitute 
the basis for evaluation of the material sensitivity to the cyclic deformation. Tests 
have been carried out with the use of PA6 aluminium alloy and 18G2A low-alloy 
steel, both in the as-received state. The experimental programme was the same for 
both considered materials. Firstly, an initial y ield surface was determined using a 
number of specimens which were loaded up to the plastic range along different loading 
paths. Secondly, cyclic predeformations due to various loading paths in the plane 
st ress state were induced by cyclic loading at ambient temperature under constant 
(~c: = ±0.65%) and gradually decreasing st rain amplitude (from ~c: = ±0.65% 
to 0%). Finally, subsequent yield surfaces were determined using the single specimen 
method. It is shown that depending on the material , a cyclic loading induces softening 
(low-al loy steel) or hardening (aluminium a lloy) effect in the strain range considered. 
All differences in material responses to cyclic prestraining for the tested materials are 
discussed in detail. 

1. Introduction 

SOLVTI\G TilE PROBLEMS associated with a variation of material properties due to 
cyclic loading inducing permanent deformation of the construction is regarded as 
ouc of the most important tasks of the plasticity theory ll- 19]. A rapid progress 
observed nowadays in this area deals directly with the quali tative changes in 
the experimental technique, i.e. with development of both the computer systems 
enabling us to control the multiaxial testing machines working in the closed loop 
of feedback, and ctigital registration of experimental results together with their 
fur ther conversion, using more powerful computers and novel software. 

The steady-state cyclic deformation resistance of a material is usually descri-
b ed on the basis of the cyclic stress-strain curve [2]. According to the definition of 
the cyclic stress-strain curve, it is the locus of tips of the stable hysteresis loops 
from several companion tests at different, completely reversed constant strain 
amplitudes. Such a steady-state "stress ampli tude - strain amplitude" curve is 
often compared with the monotonic stress-strain curve, Fig. 1. Depending on the 
mutual location of these curves, the cyclically induced changes in deformation 
resis tance can be identified, i.e. softening if the cyclic curve is below the mono-
tonic curve, and hardening if the cyclic curve lies above the monotonic curve. 
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Some materials are insensitive to the cyclic deformation and, as a consequence, 
in these cases the cyclic curve does not differ from the monotonic one. 

stress 

strain 
~ 

2) monotonic curve 

F IG. 1. Comparison of a typical cyclic and monotonic curves. 

According to the definition given above, the cyclic stress-strain curve is ob-
tained by connecting the t ips of the stable hysteresis loops from several separate 
tests carried out at different, completely reversed strain ranges. Each test is per-
formed at a constant strain ampli tude. The loop can be achieved for some mate-
rials after several cycles. For the others, however , approximately half their fatigue 
life is required. Since this method requ ires a number of testpieces and relati vely 
long testing t ime, it is rarely used in practice. To overcome these inconveniences, 
alternative procedures for determining the cyclic curves using only a single speci-
men are applied. T he most known tests, described in detail by MoRROW ll j, are 
as follows: 

(A) Multiple step tests, 
(B) Incremental step tests, 
(C) Monotonic tension after cyclic straining, 
(D) Individual hysteresis loop, 
(E) Decremental test . 

T he last method is regarded as the fastest and the most effective. It requires 
to load a specimen to a stable hysteresis loop under cycling loads at selected 
constant strain amplitudes, followed by cycling with a gradually decreasing strain 
amplitude up to the zero level. A number of cycles with a gradually decreasing 
strain amplitude should be suffic ient to determine the cyclic curve with desi red 
accuracy. Such a method was successfully used by LAMBA and SIDEBO'ITOM [8] to 
obtain cyclic curves under nonproportional loading. T he method was also applied 
to determine cyclic curves for different proportional cyclic loading paths in the 
s train space considered. 

The main aims of the experimental project , the results of which are presented 
in the paper , were threefold. F irstly, it had to give an answer to the quest ion: how 
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a plastic prestrain induced in metals during manufacturing processes of semifini-
shed elements may change their mechanical properties. Secondly, the programme 
of tests had to determine up to what degree the known deformation history under 
cyclic loading may change the original anisotropy of the tested materials, aud the 
third aim of the project was to determine a "cyclic yield surface" for the selected 
ranges of plastic deformation, on the l>asis of cyclic curves experimental ly obta-
ined UJH.ler a complex stress state . The cyclic yield surface reflects the material 
ability to hardening or softening due to cyclic loading in different directions of 
the (O'.rx• T.1:y) stress plane. Although the cyclic yield surface does not describe the 
mechanical properties of a material subject to cyclic straining in an arbitrarily 
chosen direction, it may be treated as an envelope of the yield surfaces for a ma-
terial sul>ject to prior cyclic deformation in various directions. Its location with 
respect to that of the initial yield locus may constitute the basis for evaluation 
of the material sensitivity to the cyclic deformation . 

2 . Experimental details 

Tests have been carried out with the use of low-alloy steel and aluminium 
alloy, both in t he as-received state. ~otations of these materials according to 
Polish Standards as well as their chemical composition are given in Table 1 and 
Table 2. Accord ing to ISO Standards 4950/ 2-1981, the chemical composition of 
the steel in question corresponds to that of the high yield strength steel with 
grade E355. 

Table 1. Chemical com position of t he 18G2A low-alloy 
s teel manufactured according to Polis h Sta ndard s. 

c Mn Si P rna.x S rnax 

[%1 1%1 ['XI [%] 1%1 

18G2A ma.x 0.2 1.0 - 1.5 ma.x 0.55 0.04 0.04 

Table 2 . Che mical compositio n o f the PA6 a luminium 
alloy manufactured according to Polish Standards. 

Cu Mg Mn 

1%1 [%] [%1 
PA6 alu minium alloy 3.8- 4.8 0.4 - 1.1 0.4 - 1.0 

All tests were carried out on tubular thin-walled specimens, manufactured 
from rods of 45 [mm] diameter. In the case of steel, the rods were manufactured 
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by rolling, whereas those for aluminium alloy - by extrusion. An engineering 
drawing of the specimen is shown in Fig. 2 . 

..r-=r=T 0. 02. 

1/45° ~40 3~ ~ 
o///7///~~/// / _//////////~ / 

1/45° . ~~23H_6_ - ~-- ----- -- . - -- - -

' [~/////,/ /////,0/// 1_E / ////////'// 'l // // 

77.24 5.2Ej 60 

245 

F IG. 2. Dimension of the specimen. 

All experiments reported in this paper were carried out with the use of the 
I.NSTRON electrohydraulic, closed-loop, servo-controlled, biaxial testing machine 
enabling combined loading in tension - compression - torsion - reverse torsion. 

The strains were measured by means of strain gauge rosettes bonded to the 
outer surface of the specimen on its gauge length. More details concerning the 
experimental procedure are given in l17j . 

3. Experimental programme 

The experimental programme for both materials comprised t hree steps. 
Firstly, an initial yield surface was determined for each material. In order to 

determine the initial yield surface, eight specimens were selected, each of them 
was loaded with different ratios of stress components in the two-dimensional stress 
space (a-xx, Txy)· In the next step of the experimental programme, prior deforma-
tion of specimens by means of proportional cyclic loading in selected directions 
of the (a-xx, Txy) stress plane was carried out. The prestraining programme com-
prised two stages: 

(1) cyclic loading for constant amplitude of total effective strain D.c = 
±0.65%, 

(2) cyclic loading with gradually decreasing total effective strain amplitude 
from D.c = ±0.65% to D.c = ± 0.0%. 

The programme of constant strain amplitude cycles included 81 quarter-
cycles. It was used to achieve the saturation cycle. 
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The programme of cyclic loading with decreasing strain amplitude comprised 
30 full cycles. It followed just after the co11stant amplitude cycles were carried 
out, and was applied in order to determine cyclic curves. 

For both materials eight different strain paths were considered, Fig. 3. T hese 

6&; ~ 0.65 % 

FIG. 3. Proportional cyclic loading paths for prestraining the materials. 

paths were obtained by cyclic loading under strain control mode. Denotation of 
the vertical axis in Fig. 3 contains Poisson 's ratio IJ which for both materials was 
not equal to 0.5 in the strain range considered in the programme. The experimen-
tally determined Poisson's ratios for the steel and aluminium alloy were equal to 
0.34 and 0.30, respectively. 

When the cyclic prestraining process of each specimen was completed, deter-
mination of the subsequent yield surface was performed on the INSTRON testing 
machine with the use of the single-specimen method, Fig. 4. In this technique a 

J3'-r "Y 

6 5 4 

8 <0=22.5 
0 

9 crxx 
10 

12 13 14 E.,,=0.005 % 

FIG . 4. Loading sequence for yield locus determination using single-specimen method. 
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specimen was loaded along various loading paths , each time until some meas u-
rable and limited plastic strain was ol.Jserved (in our case tl1e of!"set strain cqnal 
to c0 ff = 5 x 10-5 was selected as the yield point). At each yield point the spe-
cimen was unloaded and again loaded in another direction until the entire yield 
locus was obtained. These directions varied from each other by a chosen angular 
increment assumed to be 22.5°. The experimental procedure comprised 16 points 
determined from the selected proportional loading paths. In Fig. 4 the increasing 
numbers at the yield points indicate the loading sequence. 

4. Yield condition 

SzczEPINSKI [21] has proposed , on the basis of the ::\.1ises anisotropic yield 
condition [20] , more general form of the yield condit ion for materials displayiug 
the Bauschinger effect and rotation of the yield locus axes with respect to the co-
ordinate system. That yield condition has been adopted in numerical calculatious 
presented in the paper. 

Generally, the Mises anisotropic yield condition in the form derived by Szcze-
piflski can be expressed by the following relationship [21]: 

-l 2Txy [kJG (O"zz- ax.c) I k2G(azz- O"yy)] 

I 2Tyz [k2t(axx- ayy) + k3 t (O":r.r- azz)J 

I 2Tzx [kas(O"yy- O"zz) I kts(O"yy - O"n·)] 

-2k,t5 · Tyz · Tzx- 2ks6 · Tzx · Txy- 2kG4 · Txy · Tyz 

I k ,H · T;z + kss · T'fx + kGG · T}!l 

+b44 · Tyz I bss · Tzx -1 bGG · T:ry - 1. 

In our experimental project , the tests have been performed under plaue stress 
conditions for which only O"xx and Txy were not equal to zero. When this is 
substituted into the relation ( 4.1) , the yield condition simplifies as follows: 

+(b31 - b12kxx + bG6 · Txy = 1, 

where coefficients kij , biJ are functions of the yield limits determined from expe-
riments at tension, compression, torsion, and reverse torsion tests. 
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Expression ( 4. 2) represents the equation of a curve of second order, usually 
wri Lten in the form: 

(4.3) 

where coefficients A and D denote functions of the yield limits at tension and 
compression. The coefficients C and F are related to the shear yield limits obta-
ined from the tests under torsion aud reverse torsion. 

The B coefficient, which is proportional to the rotation of a yield surface with 
respect to ( 0' .ex , Txy) co-ordinate system, has no such simple physical interpreta-
tion as the coefficients described above, and it cannot be deduced from unia.xial 
tests. In order to find its value it is necessary to carry out at least one test in a 
complex s tress state. 

The yield condition in form (4.3) is cleterrn iuecl by five material parameters 
which can be identified with such ellipse parameters as lengths of its axes, co-
ordinates of ellipse centre, and rotation angle with respect to the co-ordinate 
system. 

5. Experimental results 

5.1. Results for the mate rials in the as-received state 

Initial yield surfaces for aluminium alloy and low-alloy steel, both in the as-
received state, obtained for the offset c0 rr = G x L0-5 , are shown in F ig. 5 and 

'rxy 
[MP a] 400 

-20 

····'!··· 

+ Experimental data 
Approximation 
Huber-Mises ellipse 

. ···-··T·+t-------'---+------ii----· 
! 

....... 1'4 ..... . 

-400 -200 0 200 

' ···-~: ........... _ 
i 

400 
O'xx [MPa) 

Fie. 5. Experimental points and fitted yield surface, Eq. (4.3), for the as-received 
aluminium alloy. 
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Fig. 6, respectively. Points in these figures represent experimental results while 
ellipses are determined by the least squares evaluation of the A, lJ, C , D, F 
coefficients in equation ( 4.3). 

'txy 
[MPa] 40 

-20 

Upper yield point Offset strain = 0.005% 

' !J 

• Experimental data o 
Approximation 

h 
/, 

Huber-Mises ell ipse 

'~' ........ T 
i : : ~ ' 

......... L . > ~.~- .:...::::.:::::~=--

... i. 

-400 -200 0 200 400 
O"xx[MPa] 

Frc. 6. Experimental points and fiLted yield surfaces, Eq. (4.3), for t he as-received 
low-alloy steel. 

It is seen that the materials in the as-received state exhibi t cer tain initial 
anisotropy which can be clearly identified by comparison of the experimental 
results with predictions obtained using the isotropic Il uber-f-Iises yield comlition. 
In Loth figures the Huber-Mises ellipses are plotted lJy broken lines. 

In the case of aluminium alloy, an initial anisotropy is reflected Ly flattening 
of the theoretical yield surface calculated using the isotropic Huber-Mises yield 
condition. 

Similarly to the aluminium alloy, also the low-alloy steel tested exhi bits ani-
sotropic behaviour in the as-received state. In this case, however , the effect ma-
nifests itself by t he shift of the yield surface in the direction of tension. 

T he steel tested indicated upper and lower yield limits. The observations of 
the upper and lower yield points did not confirm an anisotropy of the mechanical 
properties of the steel observed for the assumed yield offset. In Fig. 6, besides 
the yield locus for the assumed offset strain, also the yield surface corresponding 
to the upper yield limit is presented. T hat surface was built on the basis of the 
"effective stress - effective strain" diagrams representing eight different directions 
in the two-dimensional stress space (i7xx, Txy)· As it is clearly shown, the upper 
yield point surface does not exhibit anisotropic effects. Hence, it can be descri-
bed accurately by the isotropic Huber-Mises yield condition (ellipse plotted by 
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broken line in Fig. 6). However, it has to be noted that for each direction un-
der consideration , the upper yield point corresponds to a different strain level. 
In other words, the ellipse reflecting the upper yield points obtained for various 
loadiug combinations does not represent any yield definition. Mutual location of 
the yield surfaces presented in this figure reveals a certain form of the a.uisotropy 
of the steel. 

Summing up all of these remarks, it eau be stated that both materials exhibi t 
auisotropic properties in the as-received state coming from the industrial forming 
processes . In the case of steel however, we eau observe isotropic properties in the 
sense of the upper yield limit, but the courses of the stress-strain characteristics 
up to the upper yield point for various loading paths tested in the programme are 
not coincident, identifying in this manner anisotropic character of the material 
in the strajn range under consideration. 

5.2. Itesults for the materials prestrained due to cyclic loading 

The second step of the experimental procedure comprised the cyclic defor-
mation carried out under constant strain aiJiplitude with the objective to attain 
a saturated cyclic state, and cyclic deformation with gradually decreasing strain 
amplitude in order to obtain cyclic curves. An example of this process in case 
of torsion - reverse torsion cycles of aluminium alloy is presented in the Fig. 7a. 
The stress response onto the deformation programme given in Fig. 7a is shown 
in F ig. 7b. 

In F ig. 7c the results for the cyclic loading with constant strain amplitude 
are illustrated in the form of the stress-strain diagram. As it is clearly seen, the 
saturation cycle was not achieved for the assumed programme of cons tant cyclic 
loading. The same effect was also observed for the remaining tests carried out for 
other direct ions of cyclic loadings . 

. Just after the constant strain amplitude cycles were carried out, t lte program-
me of cyclic loading with decreasing strain amplitude followed. An example of 
a typically observed stress response due to this part of programme is shown in 
F ig. 7d. The results in the form of a stress-strain diagram for the cyclic loading 
with decreasing strain amplitude illustrate the method for determination of the 
cyclic curve as a set of tips of the loops for cycles with decreasing strain amplitu-
de. The results shown in this figure are plotted in the stress- total strain diagram. 
Using the DADiSP software, they can be automatically converted to a diagram 
of stress against plastic strain. Such transformation is presented in Fig. 7e. 

In order to show how the initial anisotropy influences the response of the ma-
terial to cyclic loading, the results for another loading path (tension- compression 
cycles) are presented in Figs. 8a, b, c, d . The sequence of figures is similar to that 
in the Figs . 7b, c, d, e, i.e. in Fig. 8a a stress response to the programme shown in 
Fig. 7a is presented, the stress response for constant strain amplitude cycling is 
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FIG. 7. a) Programme of cyclic loading for aluminium alloy (cycling in torsion-reverse 
torsion). b) Stress response to the strain-controlled cyclic loading shown in Fig. 7a. 
c) Stress response to the strain-controlled cyclic loading with constant strain amplitude. 
d) Stress response to the strain-controlled cyclic loading with decreasing strain ampli-
tude. e) Stress- plastic strain diagram of the stress response to the programme of cyclic 

loading with decreasing strain amplitude. 

[886] 
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shown in Fig. 8b. Figure 8c presents the stress response to the cyclic programme 
with gradually decreasing strain amplitude, and Fig. 8d shows the same results 
after subtraction of the elastic strain. It has to be noted that the width of the lo-
ops obtained during tension-compression cycles are significantly smaller than the 
loops achieved during cycling in torsion-reverse torsion (compare Figs. 7e and 8d). 

The results for the steel in the case of cycling in tension-compression are 
demonstrated iu Figs. 9 a, b, c, d, e. Again the stress response to the deformation 
programme given in Fig. 9a is shown in Fig. 9b. In the next figure (Fig. 9c), the 
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FIG. 8. Stress responses to cyclic loading of aluminium alloy (cycling in tension-
compression). a) Stress response to the strain-controlled cyclic loading shown in Fig. 7a. 
b) Stress response to the strain-controlled cyclic loading with constant strain ampli-
tude. c) Stress response to the strain-controlled cyclic loading with decreasing strain 
amplitude. d) Stress - plastic strain diagram of t he stress response to the programme of 

cyclic loading with decreasing strain amplitude. 
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FrG. 9. a) Programme of cyclic loading for low-alloy steel (cycling in t ension-com-
pression) . b) Stress response to the strain-controlled cyclic loading shown in Fig. 9a. 
c) Stress response to the strain-controlled cyclic loading with constant strain ampli-
t ude. d) Stress response to the strain-controlled cyclic loading with decreasing strain 
amplitude. e) Stress - plastic strain diagram of the stress response to the programme of 

cyclic loading with decreasing strain amplitude. 

[888] 
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results for the cyclic loading with constant total strain amplitude are illustrated 
in the form of the stress-strain diagram. As it is clearly seen, the saturation cycle 
was achieved for the assumed programme of constant strain amplitude cycling 
relatively quickly, since it required only five fu ll cycles. The same effect was also 
achieved for the remaining tests carried out for other directions of cyclic loadings. 
An example of a typically observed stress response due to the programme of cyclic 
loading with decreasing strain amplitude is shown in the next two diagrams. In 
Fig. 9d, the stress versus total strain is presented, whereas in Fig. 9e a diagram 
of stress versus plastic strain is shown. 

In the case of the steel, independently of the cyclic loading paths considered, 
no essential differences in the width of the loops were observed, what distinguishes 
the results from those obtained for aluminium alloy. 

T he cyclic curves for aluminium alloy determined for all directions of cyclic 
deformation are compared in Fig. 10. All these curves exhibit different courses 
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FIG. 10. Stress-strain curves of aluminium alloy for various directions of proportional 
cyclic loading. 

and shapes. On the basis of cyclic curves, the cyclic yield locus has been deter-
mined, Fig. 11. Such a surface represents the ability of the material to variation 
of mechanical parameters due to cyclic deformation for different orientations in 
the plane stress state. It has been determined for the same yield offset as that 
used to obtain the initial yield surface (corr = 5 x 10-5 ) in order to enable the-
ir comparison. Comparative studies of the shapes and dimensions of the initial 
and cyclic yield surfaces, Fig. 11, show that the history of cyclic deformation in 
the plastic range induces hardening of the material. It is interesting to note that 
the greatest hardening was achieved in the directions of tension and compression 
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FIG. 11. Comparison of the cyclic yield surface with the initial yield locus for aluminium 
alloy. 

while the smallest hardening was observed in the direction coincident with that 
of the initial anisotropy resulting from the forming processes (this direction cor-
responds to torsion-reverse torsion). It is clear that the initial anisotropy was not 
forgotten due to t he cyclic process. 

The cyclic curves for the steel determiued for all directions of cyclic defor-
mation are compared in Fig. 12. Contrary to the results for aluminium alloy, al l 
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FT G. 12. St ress-strain curves of low-alloy steel for various directions of proportional 
cyclic loading. 
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these curves show a similar course aml shape, especially at low level of the plastic 
strain (up to 0.01%). Here again, on the basis of cyclic curves, the cyclic yield lo-
cus has been determined, Fig. 13. Since the cyclic yield surface has been obtained 
for the same yield offset as that used to obtain the initial yield surface, it is easy 
to compare them and formulate the concludiug remarks. Analysis of the shapes 
and dimeusious of the initial and cyclic yield surfaces proves that the history of 
cyclic deformation in the plastic range for al l directions induced softening of the 
material. It is interesting to note that, iudepeudently of the anisotropy observed 
in the as-received material, the centre of the cyclic yield locus is located in the 
origin of the co-ordinate system. Hence, it can be concluded that in steel, an ini-
tial auisotropy was forgotten due to the cyclic process, and the material exhibits 
a memory for the prestress induced during cyclic deformation. 

1
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FIG. 13. Comparison of the cyclic yield surface with the initial yield locus for low-alloy 
steel. 

After cyclic predeformation, yield surfaces for selected offset strain were de-
termined by the technique of sequential probes of the single specimen. All yield 
surfaces determined for aluminium alloy after cyclic loading along selected pro-
portional paths are shown in Fig. 14 for the offset strain equal to 5 x 10- 5 . They 
are compared with the initial yield surface, plotted in the middle of Fig. 14, for 
the same offset strain. Numbers from 1 to 8 denote the data obtained for the ma-
terial after different proportional cyclic loading paths, the orientation of which 
was described by cp = 0°; 45°; 90° ; 135°; 180°; 225°; 270°; 315° , respectively (cf. 
with Fig. 3). Points in Fig. 14 denote experimental results , while ellipses represent 
the best fit obtained by using equation ( 4.3). Yield surfaces, of the same offset, 
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for the aluminium alloy prestrained due to cyclic loading have significantly gre-
ater dimensions in comparison to those for the ini tial yield surface. This means 
that the aluminium alloy tested after cold work exhibits hardening efrcct iu the 
strain range considered. Since the evolution and mutual location of the yield loci 
are not clearly reflected in Fig. 14, they are compared together in Fig. 1Ga, b. In 

"rxy 200 ,...-;---;-~=;::::::;:::--;---;-:--, 

(MPa) 100 
0 

>:y 
Pa) 0 

-100 ... 
~~~~:;:::;.!.~--1 

.__..._.._...._.;....;_,.._....;.-.~j 1 ,.~,;~ ·~·· 
~()() -200 0 200 400 

Oxx (MPa) 

crJO< (MPa) 

-400 -200 0 200 .coo 
Oxx (MPa) 

FIG. 14. Experimental points and fitted yield surfaces for aluminium alloy prestraincd 
due to cyclic loading along various proport ional paths, offset strain 5 x 10- 5 . 

order to keep clear view, the data points in Fig. 15a, b are omitted. Numbers in 
both figures denote orientations of the proportional cyclic loading paths. Shown 
in Fig. 15a are yield surfaces for the material prestrained due to cyclic loading 
in directions described by cP = 0°j cP = 90°j cP = 180°; cP = 270°' whereas in 
Fig. 15b are shown subsequent yield surfaces for the remaining cyclic loading 
paths considered in the experimental programme. The shape analysis of these 
yield surfaces leads to the conclusion that the dimensions of yield locus are de-
pendent on the direction of cyclic preloading. The greatest hardening effect was 
achieved in the tension and compression directions. It is shown that the sense of 
the loading direction in the first cycle for the chosen direction changes solely the 
location of the yield locus centre without any other visible differences, especially 
in the shape and dimensions of the surface. It was confirmed for all the directions 
examined. 
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FIG. 15. Comparison of the initial yield surface with subsequent yield loci (aluminium 
alloy) a) after prestraining due to cyclic loading along the following proportional strain 
paths: 0° , 90° , 180°, 270°, offset strain 5 x 10- 5 ; b) after prestraining due to cyclic 
loading along the following proportional strain paths: 45°, 135°, 225°, 315°, offset strain 

5 X 10- 5 . 

[893] 



http://rcin.org.pl

894 L. DIETIUCIT AND Z. L. KOWALEWSKI 

In the next two figures are shown the results for steel. In Fig. 16 are presented 
experimental points together with ellipses reflecting the shapes and dimensions 
of the subsequent yield surfaces which have been determined using the yield 

txy(MPa) 
2()()..,.-,.---.,....-....,..-----, 

-1 

-I 00 0 I 00 200 300 
Oxx (MPa) 

-2001+--t-+-r---r---i--! 
-300·2 -100 0 100 200 3 

a"" (MPa) 

FIG. 16. Experimental points and fitted yield surfaces for the steel prestraine<.l due to 
cyclic loading along various proportional paths, offset strain 5 x 10_ ,,. 

condition in the form of equation ( 4.3). As it is clearly seen, a good agreement 
is achieved between the experimental data and the results following from the 
approximation. Similarly to the data analysis of aluminium alloy, in order to 
enable accurate assessment of the steel yield loci variations, in Fig. 17 a, b are 
shown subsequent yield surfaces at one co-ordinate system without experimental 
points. They are compared with the initial yield surface (bold line) for the same 
offset strain ( Coff = 5 X w-5 ) . Again numbers in both figures denote orientation of 
the proportional cyclic loading paths. Yield surfaces, of the same offset strain, for 
the steel prestrained due to cyclic loading have significantly smaller dimensions 
in comparison to those for the initial yield surface, so they are located within it. 
This means that the low-alloy steel tested after cyclic cold work exhibits softening 
effect in the strain range considered. The shape analysis of these yield surfaces 
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FIG. 17. Comparison of t he initial yield surface with subsequent yield loci (low-alloy 
steel) a) after prestraining due t o cyclic loading along the following proportional strain 
paths: 0° , 90° , 180°, 270°, offset strain 5 X 10- 5; b) after prestraining due to cyclic 
loading along following proport ional strain paths: 45° , 135°, 225°, 315°, offset strain 

5 x w- 5 . 

[895] 
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leads to the conclusion that the dimensions of yield locus are dependent ou the 
direction of cyclic preloadiug. The greatest softening effect was always achieved 
in the direction which was coincident with that used in the preliminary cyclic 
deformation. The effect of the cyclic loading sense in the first cycle is clearly 
illustrated in Fig. 17a for example for cp = 90° and cp = 270°. It is shown that the 
sense of the loading direction in the first cycle for the chosen direction changes 
solely the location of the yield locus centre without any other visible differences. 
It was observed for all the directions examined. 

More accurate analysis concerning the degree of the prestraining effect can 
be attained on the basis of graphical illustrations of the variation of yield surface 
dimensions as a function of the predeformation direction. The variation of the 
major and minor semi-axes of the subsequent yield surfaces for the steel due to 
cyclic prestraining is shown in Fig. 18 as a function of cyclic loading direction. 

18G2A low-alloy steel 

300-r------~----------------------. 
Magnitude 

of yield surface 
semi-axes 

[MP a] 
200 

100 

a - major semi-axis 

0 45 90 135 180 225 270 315 360 
Direction of cyclic loading [deg] 

FIG . 18. Variations of the major and minor semi-axes of subsequent yield surfaces for 
the steel. 

The same diagram for the aluminium alloy is presented in Fig. 19. From these 
diagrams it can be observed how the cyclic deformation changes basic dimensions 
of the yield surface. 

The major semi-axis of the initial yield surface for steel was equal to 326 
MPa, while the minor one was equal to 204 MPa. The same dimensions for the 
aluminium alloy were 341 MPa and 150 MPa, respectively. 

The effect of softening is clearly demonstrated for the steel in Fig. 18. The 
maximum softening observed for this material was achieved for those directions 
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which were coincident with the cyclic ones. Moreover, a confirmation of the conc-
lusion that for t he selected proportional load ing path, the degree of softening was 
not sensitive to the sense of loading, can be easily found. For example, the de-
gree of softening for the "positive torsion-negative torsion" direction was almost 
the same, independently of the sense of cyclic process initiation, i.e. the positive 
torsion (90°) or the negative torsion (270°). The smallest softening effect was 
observed for the direction perpendicular to that at the cyclic loading used. 

Magnitude 500 
of yield surface 

semi-axes 400 
[MP a] 

300 

200 

100 

PAS aluminium alloy 

a ····-!·-·-··-·-+-·--·---~--- ... !-- ··•···· 

: :_Q_ !"/-· 

---+-- a - major semi-axis 

0 45 90 135 180 225 270 315 360 
Direction of cyclic loading [deg] 

FIG. 19. Variations of the major and minor semi-axes of subsequent yield surfaces for 
the aluminium alloy. 

Completely opposite effects were observed for the aluminium alloy, F ig. 19. 
The material generally exhibits a hardening effect . Although for the directions 
coincident with cyclic loading the maxi mum hardening was observed, the degree 
of this effect was not the same for all the directions considered. It is interesting to 
note that for the aluminium alloy there were no clear differences in the magnitude 
of minor axes of the subsequent yield surfaces. The reason of such behaviour 
results from the manufacturing processes used to produce rods of aluminium 
alloy. These processes induced anisotropy which could not be changed by the 
cyclic loading applied in the experimental programme. 

In Fig. 19 it is also easy to find a confirmation of the conclusion that for the 
selected proportional cyclic loading path the degree of hardening was almost not 
sensitive to the sense of loading. For example, the degree of hardening for the 
tension-compression direction was almost the same (the difference was less than 
5%), independently of the sense of t he cyclic process initiation, i.e. the tension 
(0°) or the compression (180°). 
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It is interest ing to study how cyclic deformation influences the rotation of yield 
surfaces. In the case of steel tes ted, the rotation depends on the cyclic loading 
path. Experimental data illustrat ing the rotation of the initi al yield locus due 
to cyclic loading path orientation a re shown in Fig. 20 in form of circles for the 
steel, and crosses for the a luminium alloy. Lines in this fi gure correspond to the 
approximations carried out using the least squares method. A significant rotation 
of the yield surface is observed for the steel. It depends on the orientation of the 
cyclic loading path . However, as it is shown in Fig. 20 , the angle of rotation of 
the yield surface almost does not depend on the sense of loadi ng. It means that 
there are no significant differences in rotation for cyclic loading determined by 
those cp which describe the same direction, that is 0° and 180°,45° ami "220°, D0° 
and 270°, 135° and 315° . 

20-r~==============~~-----------, Rotation 
of yield surface 

[deg] 
10 

0 

-10 

0 45 90 135 180 225 270 315 360 
Direction of cyclic loading [deg] 

F IG. 20. Comparison of t he yield surfaces rotation due to cyclic prestraining. 

In the case of aluminium alloy the results show an opposite effect, that 
is there was not observed any signifi.cant rotation of the subsequent yield surfa-
ces due to the same programme of cyclic loading as t hat applied during the 
steel tests. 

In order to complete the analysis of both materials, in F igs. 21 and 22 are 
presented the variations of yield limits due to cyclic prestraining for the low-alloy 
steel and aluminium alloy, respectively. Init ial values of the yield limits obtained 
for the same offset strain equal to 5 x 10-5 are shown in Table 3 for the low-alloy 
steel and in Table 4 for the aluminium alloy. 



http://rcin.org.pl

ON T TTE CYCLIC YIELD SURFACE OF SOME ENGINEERIJ\G MATERIALS 

Table 3. Yield limits for t h e as-received low-alloy steel 
(offset st r ain 5 X 10- 5 ) . 

Tem;ion yield Compression y ield Torsion y ield Reverse torsion 
limit limit limit y ield limit 

372 MPa 280 MPa 198 MPa 210 MPa 

Table 4 . Yield limits for the as-received alum inium alloy 
(offset strain 5 x 10 5 ) . 

Tension yield Compression yield T orsion y ield Rever se torsion 
limit limit li mit yield lim it 

341 MPa 341 MPa 150 ~fPa 150 MPa 

899 

All yield limits considered for the steel decreased after cyclic prestraining. 
Maximum decreasing of the corresponding yield limits was obtained for the di-
rections coincident with cyclic loading. As shown in Fig. 21, the tension and 

Variation of 
yield limits 

[MP a] 

18G2A low-alloy steel 
• compression yield limit (1) 
+ tension yield limit (2) 
.a. torsion yie ld limit (3) 
.., reverse torsion yield limit (4) 

0 45 90 135 180 225 270 315 360 
Direction of cyclic loading [deg] 

FIG. 21. Variations of yield limits due to cyclic prestraining of t he steel. 

compression yield limits do not differ considerably after prestraining. Since these 
parameters before cyclic loading differ by more than 20%, it can be concluded 
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tha t the process of cyclic prestrainiug caused forgetting of the iuitial auisotro-
py resul t ing from the manufacturiug processes of rods used as the blanks for 
specimens. 

In the case of the alumiuium al loy, almost all yield limits increased (except 
the tension yield limits for the directious of cyclic loading described by the value 
of <P equal to 45° , 90° and 1 3G0

) after cyclic loading in comparison to t hose 
determined for the material iu the as- received state. Contrary to the steel, the 
torsion and reverse torsion yield limits for the aluminium alloy after prestraining 
do not depend on t he cyclic loadiug direction. For all directions the same values 
of these limits were obtaiued aud they can be approximated with a good accuracy 
by straight lines, Fig. 22. Such a result suggests that the range of strain realised 
during cyclic loading was uot sufficient to change the ini tial anisotropy of the 
aluminium alloy, and t he material s till exhibits a memory for the maximum 
prestress induced during the manufacturing processes. 

500 
Variation of 
yield limits 

[MPa) 400 

300 

100 

PA6 aluminium alloy 

0 45 90 135 180 225 270 315 360 
Direction of cyclic loading [deg) 

FIG. 22. Variations of yield limits due to cyclic prestraining of t he aluminium alloy. 

6. Applicability assessment of the cyclic yield surface concept 

Having cyclic curves and the results from monotonic loading tests used to 
obtain subsequent yield surfaces for the materials tested after prestraiuiug, the 
directions of maximum softening/ or hardening due to cyclic loading can be iden-
tified in the strain range considered. It can be done using two methods. Using 
the first method, the cyclic yield surface shown earlier, can be constructed on the 
basis of cyclic curves. 
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Iu t he second method, a surface being an envelope of all yield loci determined 
for the cyclically prestrained material can be constructed. Such a surface can 
be obtai11ed on the basis of stress-strain diagrams coming from the first probes 
of the single-specimen method used to determi11e the subsequent yield surfaces. 
To construct this surface, the results obtained from eight first probes were used . 
Since each time the first probe was taken to be coincident with the direction of 
the first cyclic loading, the experimental programme for both materials enables us 
to determine eight points creating the envelope mentioned above. Assuming the 
yield offset to be c0 rr = 5 x 10- 5 , the surfaces being envelopes of all subsequent 
yield loci presented in Fig. 14 for the aluminium alloy and in Fig. 16 for the steel, 
can be constructed. In the case of steel, the surface obtained in this way represents 
the maximum softening of the material. In Fig. 23 it is compared with the cyclic 
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I: Off~et strain = 5 x 10 -5 j 
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FIG. 23. Comparison of t he envelope of subsequent yield surfaces, reflecting directions 
of maximum material softening due to cyclic loading, with t he cyclic yield surface, offset 

strain 5 X 10- 5 (results for the steel). 

yield surface determined on the basis of cyclic curves, F ig. 12, and with t he initial 
yield locus. As it is clearly shown, a close agreement was achieved in locations 
and sizes between the cyclic yield surface and the envelope. Thus, it confirms t he 
equivalence and applicability of both methods of mechanical properties analysis 
for the steel subject to prior cyclic deformation in the plane stress state. 
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In the case of aluminium alloy, the surface being an envelope of all subsequem 
yield loci is shown in Fig. 24 . 

'txy 
[MPa] 400 

200 

0 

-200 

• points of the subsequent yield surfaces 
reflecting directions of cyclic loading 

A. points of the initial yield surface 
• points of the cyclic yield surface 
--r-----,--- -- -------r-- -- -r--

1 

------1------1---
1 
I 

-400 -200 0 200 400 
<Jxx[MPa] 

FIG. 24. Comparison of the envelope of subsequent yield surfaces, reflecting directions of 
maximum material hardening due to cyclic loading, with the cyclic yield surface, offset 

strain 5 x 10 5 (results for the aluminium alloy). 

It is compared with the cycl ic yield locus as well as with the initial yield 
surface. Contrary to the steel specimens, significant differences can be observed 
between the cyclic yield surface and the envelope. In view of this, the questiou 
arises why for one material a close agreement can be achieved between the cycl ic 
yield surface and the envelope, but for the others considerable discrepancies are 
observed? In order to explain this problem, we must return to the results concer-
ning cyclic loading. It has been shown for the aluminium alloy that the saturatiou 
cycle was not achieved during cyclic loading with the constant strain amplitude. 
The results for steel indicate that in order to obtain the saturation cycle, only a 
few full cycles with constant strain amplitude were necessary. It seems that the 
lack of stable behaviour of the aluminium alloy during cyclic loading applied is 
the main reason for the differences between the cyclic yield surface and the enve-
lope. Therefore, it can be stated that the applicability of the cyclic yield surface 
concept to the mechanical properties analysis is limited to those cases in which 
the material tested reaches the stable hysteresis loop during proportional cycl ic 
loading. 
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7. Final remarks 

Determination of the true constitutive equatious for cyclic plasticity provides 
many difficulties since, up to now, the majority of experimental investigations ha-
ve been carried out at uniaxial stress staLes. T herefore, the available experimental 
data for multiaxial stress conditions are Jimi ted and, as a consequence, they do 
110t fully reflect all aspects of the material behaviour under cyclic loadings. Since 
the paper presents the results of tests carried ou t under complex stress state, it 
completes somehow the lack of data in this area aud my be useful in modelling 
the material behaviour. The data obtained allow us to formulate a few important 
concluding remarks. 

It was observed that the shape am! location of the initial yield surfaces de-
tennilled for both the aluminium alloy and steel, for clearly defined yield ofrset, 
identify the anisotropy of the materials coming from the manufacturing proce-
sses. 

A cyclic loading programme induces softening of the steel in the considered 
strain range accompanied by a remarkable reduction of the yield loci dimensions. 
In the case of aluminium alloy, the same programme induces the hardening effect 
reflected by the increase of yield loci dimensions. 

The amount of softening in the case of s teel, and hardening in the case of 
aluminium alloy depends on the direction with respect to cyclic prestraiuiug. 
The greatest effects were always observed in the same direction as that used 
during predeformation process whereas the smallest ones were observed in the 
direction perpendicular to that in the cyclic loading applied. 

If the number of cycles is sufficient to achieve the state of saturation, the 
concept of the cyclic yield surface reflects well the ability of a material to change 
mechanical properties due to cyclic deformation in different orieutatious of the 
plane stress state. 

The analysis of the dimensions of the cyclic yield surface for the 18G2A 
steel proves that the material exhibits the same softening level for all directions 
examined , and moreover, it forgets the initial anisotropy induced during strain 
history coming from the manufacturing processes. The same analysis for the 
aluminium alloy proves that the material exhibits various amounts of hardening, 
depending on the initial anisotropy. 
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Boundary conditions for a capillary fluid 
in contact with a wall 

ll. GOUIN (MARSEILLE) and W. KOSINSKI (WARSZAWA) 

CoNTACT or A FLUID with a solid or an elastic wall is investigated. The wall exerts 
"molecular forces" on the fluid which is locally strongly non-homogeneous. The pro-
blem is approached with a fluid energy of the second gradient form and a wall surface 
energy depending on the value of the flu id density in the contact. From the virtual 
work principle and taking into account the fluid density, its derivative normal to the 
wall and the curvature of the surface, limit conditions are obtained. 

1. Introduction 

Ttm PHENOM ENON or. SURfo'ACE wetting is a subject of many experiments [1]. Such 
experiments have been used to determine many important properties of the wet-
ting behaviour for liquid on low energy surface [2). In fact the wetting transition 
of fluids in contact with solid surfaces is an important field of research both for 
mechanics and physical chemistry. In the recent paper [3), the firs t author using 
statistical methods has proposed an explicit form for the eneq,ry of interaction 
between solid surfaces and liquids. This energy yields a bridge connecting sta-
ti~tical mechanics and continuum mechanics. To obtain the boundary condiLious 
between fluid and solid , it is also necessary Lo know the behaviour of the fluid as 
well a:s t he solid . 

\\'e propose a mechanical model similar to that used in the mean-field theory 
of capillarity that leads to the second gradient theory of continuous media in 
fluid mechanics [4]. The theory is conceptually more straightforward than the 
Laplace one to build a model of capillarity [5, 6]. That theory takes into account 
systems in which fluid interfaces are present [7). The internal capillarity is one of 
the simplest cases since we are able to calculate the surface tension in the case of 
thiu interfaces as well as in thick ones [8). It is possible to obtain the nucleation 
of drops and bubbles [9) . 

It seems that the approximation of the mean-field theory is too simple to 
be quantitatively accurate. However , it does provide a qualitative understanding. 
Moreover , the point of view, that the fluid in interfacial region may be treated as a 
bulk phase with a local free energy density and an additional contribution arising 
from the nonuniforrnity which may be approximated by a gradient expansion 
truncated at the second order terms, is most likely to be successful and perhaps 
even quantitatively accurate near the critical point [10). 
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In this paper we connect boLll the inLeraction of a solid surface and a fluid 
phase by means of the virtual work principle. The distribuLiou of fluid energy in 
the volume and the surface dcnsiLy energy on the solid surface yield the boundary 
conditions. The conditions are different from those obtained for a classical fluid 
within the theory of gas dynamics. We obtain an embedding effect for the density 
of the fluid; moreover, the conditions take into account the curvature of Lhe 
surface. The result is extended to the case of an elastic wall. A discussion is 
obtained depending on the value of the density of the fluid at the surface. 

Let us use asterisk * to denote conjugate (or transpose) mappings or covec-
tors (line vectors). For any vectors a , b we shall use the notaLion a" b for their 
scalar product (the line vector is multiplied by the column vector), a · b and 
ab* for their tensor product (the column vector is multiplied by the line vector) 
a ® b. The product of a mapping A by a vector a is denoted by !1 a. Notation 
b* A means covector c* defined by the rule c* = (A* b )*.The divergence of 
a linear transformation A is the covector divA such that, for any constant 
vector a , 

div( ; l) a = div (A a). 

If f (x) is a scalar function of tl1C vector x associated wiLh the Euler variables 
in the physical space, fJ J / fJx is the linear form associated with the gradient of f 

(
EJf) * and consequently, &x. = grad f. 

2. Continuous mechanical model of capillary layers 

We consider a fluid in couLact wiLll a solid. The fluid occupies the domain D 
and its boundary E which is common with the solid wall. P hysical experiments 
prove that the fluid is nonhomogeneous in the neighbour hood of 2.-' [1 0 j. It is also 
possible to consider the fluid as a continuous medium by taking into account a 
"capillary layer" existing in the vicinity of E and a form of its stress tensor [11 j . 
One way to present the behaviour of such a fluid is to consider the specific internal 
energy c as a function of the density p as well as g,Tad p. Such an expression 
is known in continuum mechanics as internal capillary energy, see [4, 5] . It is 
related to molecular models of strongly nonhomogeneous fluids in the frame of 
the mean field theory and is equivalent to the van der Waals model of capillarity 
(see the review by RowLTNSON and WmoM (10]). T he energy c is also a function 
of the specific entropy. In the case of isothermal media at a given temperature, the 
specific internal energy is replaced by the specific free energy. In t he mechanical 
case, the entropy or the temperature are not concerned by the virtual variations 
of the medium. Consequently, for an isotropic fluid , it is assumed that 

c = J(p ,(3), 
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where {3 = grad p · grad p. The fluid is subjected to external forces represented 
by a force potential f2 per unit mass as a function of Eulerian variables x. 

We denote by E 3 x --t B(x) E n. the surface density of energy of the solid 
wall. The total energy E of the fluid in D and its boundary E is the sum of 
the three terms expressing: internal energy E f, potential energy Ep and surface 
energy Es : E = Ef + Ep + Es, with 

E1 = j pE(p, {3) dv , 
0 

Ep = j p ft(x) clv, 
0 

Es = j B ds. 
E 

Let us denote by 0 a variation of the position of the fluid as in [12]. The 
variation is associated with the virtual displacement 

D 3 x---) Ox = ( (x). 

We have the following results presented in the Appendix, 

( 2. 1) o E f = j (-cl i v a) · ( dv + j {- Ac~~~' 
D E 

+ ( :-?~, n + gradt9 A + an) · (} ds 

with 
a = -PI - C gradp 0 gradp = -PI - C ___p_ ___p_, (

f) )* f) 
ox ox 

where C - 2pc0 and P = p2E~-p div (C grad p), E~ denotes the partial derivative 
of E with respect to p, (n = n*( where n is the external unit normal to E and 

dp dp op 
Jt - Cp - where - = - n . 

dn dn ox 
The scalar R,,. is the mean curvature of x; and gradt9 is the tangential part 

of grad relatively to E. 
Moreover, 

(2.2) - J ()[2 J oEP = p ox ( dv = p grad f2 · ( dv, 
D 0 

and using the results presented in the Appendix, 

(2.3) oEs = j (oB- ( ~ n + gradt9B) · () ds. 
E 

One assumes that the volumetric mass in the fluid has a limit , interfacial 
value Ps at the wall E (which is not the surface density of the wall but the mass 
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density per unit volume as in the shock wave analysis). One assumes also that 
IJ is a function of Ps only. These hypotheses are confirmed by results presented 
in [3]. Then, 

oB = D'(P.~)ops - -psB'(Ps) div ( . 

Let us denote G - - Ps U~... CousequenUy, 

j oH ds - j G div ( ds = j ( C (:~~~ - ~~ n · ( - gradt9 C · ( ) ds 
E E E 

(see Appendix). 
Now, JJ = B(ps)- p_,n~.(Ps) is the Legendre transformation of 13 with 

respect to Ps. Then, 

(VI) oEs = j ( C (~~; - ( "211 l~n t- gradt91I) · () ds. 
E 

The d 'Alembert-Lagrange principle of virtual works is expressed in the form 
[12]: 

(2.5) VD3x-t ( (x ), oE = O. 

Consequently, from the fundamental lemma of variation calculus, we obtain the 
balance equation in the fluid D and the boundary conditions on the solid wall L;. 

Equilibrium equations 

From any arbitrary variation D 3 x -t ( (x) such that ( 0 ou X , we take 
first 

j ( p ~~ - div CJ) · ( dv - 0. 
D 

Consequently, 

(2 .6) 
. [)[2 

d I V (J - (J OX = 0. 

This equation is the well known equilibrium equations [5, 7, 9] 

Boundary condltions 
a) Case of a rigid (undeformed) wall. 

We consider a rigid wall. Consequently, the virtual displacements satisfy ou E 
the condition n* ( = 0 . Then, 

j {(C - A) ~~n + ( 2(~l~,JI) n + gradL9(A- Il) + CJn) · (} ds - 0 
E 

at the rigid wall. 
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Hence, we deduce the boundary conditions at the rigid wall: 

(:2 .7) for x E LJ: C - A = 0 

aild moreover, there exists a Lagrange mu!Liplicr E 3 x ~ .X(x) E R such tl1at 

(:2.8) 
2(A- II ) 
--'---....:...n + grac.IL9 (A - Il ) + a n = ), n. 

Rrn 

b) Case of an elastic (non-r igid) solid wall. 

lil such a case the equilibrium equaLion (2.6) is unchanged. On E, moreover, 
the condition (2. 7) is also unchanged. The only different condition comes from 
the fact that we do not have anymore the slipping condition for the virtual 
displacement ( n*( = 0). 

Due to the possible deformation of the wall , the virtual work of mechanical 
stresses Oil ~· is , 

6Ee = j e c; ds 
E 

with t - T n representing the stress (loading) vector, where T is t he value of 
Lhe Cauchy stress tensor of the elastic wall Oil the boundary E . Relation (2.8) is 
replaced by: 

(2 .9) 
(A- H) 

2 Itrn n -1 gradL9 (A- J-1) + an = - t . 

3. Analysis of the boundary conditions 

Relation (2.7) yields: 

(3. J) c dp + IJ' - 0 
dn p., 

and we obtain 
H -A = B. 

Consequently, from the definition of a, 

dp 
a n = Pn - C- gradp. 

dn 
T hen the tangential part of equation (2.8) is always verified and equation (2.8) 
yields the value of the Lagrange multiplier >.. 

For an elastic (non-rigid) solid wall we obtain 

(3.2) and 2IJ I dp 
ln = -1) + P -Bp.-d' 

~n 71 
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where LT
9 

and Ln are the taugential and the normal components of t, respectively. 

Taking into account (3 .1), Ln = P 1 
2

JJ + Cl (B~.f and equations (3.2) yield 
If,// 

the value of the stresses in the elastic (uourigid) medium. The only new condition 
comes from (3.1). 

VIe have the next consequences. In [3] it is proposed the surface eucrgy in the 
form B(ps) = -!JPs + ~2 p~, with ~f ,, and 12 as two posit ive constants. We 
obtain the condition for the fluid deusity on the wall 

(3.3) Cl dp 
-
1 

= /1- r 2Ps , 
c n 

dp ( ) ( and hence is positive or uegative in the vicinity of the wall if Ps < Pi or 
dn 

Ps ~ Pi) with Pi = / J h2 which is the bifurcation fluid density at the wall. 
If Ps <Pi, we have a lack of flu id density at the wall. If f?s ~ f?·i, we have a.It 

excess of fluid density at the wall. 

4. Conclusion 

For a conservative medium, the first gradient theory corresponds to the case 
of compressibility. To take into account the superficia l effects acting between 
solids and fluids, we propose to use the model of fluids endowed with capillarity. 
The theory interpretes the capillarity in a continuous way and contains Laplace's 
theory. The model corresponds for solids to "elastic materials with couple stresses" 
indicated by TOUPTN in [13]. 

VIe notice that the extension to the dynamic case is stra ightforwru·d: by the 
virtual work principle, equation (2.6) takes the form: 

[)[2 
PI - diva + p ox = 0, 

where 1 denotes the acceleration of the fluid. Equations (3.1)-(3 .3) and consequ-
ences in Sec. 3 are unchanged. 

Appendix 

First of all, we recall the following fact from the differential geometry: Let E 
be a surface in the 3-dimensional space and n i ts external normal. 

For any vector field ( , 

n * rot(n X ( ) = div ( + ~ n*( - n * ~: n. 

T hen, for any scalar field A, we obtain : 
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(A.1) 
d( 2A 

A div ( = A -l n - n ( n - (grad;9A) ( + n* rot (An X ( ) 
c n ' "'" 

= tr [(oA (nn*- 1)- 2
A n* ) <] + A d( n I n*rot(/\ n X (). 

&x n,lt dn 
Let us calculate 8E1 : since D is a material volume, 

E1 = j p c dv =* oE1 = j p oc dv 
D D 

with 6c - 8c op + 8c 6{3. From 6 Dp = Dop - fJp fJ( , we deduce: 
fJp o{3 fJx ox &x ox 

I !:[3 _ 2 1 J:(f}p) 0p* 
P€(3 u - p cf3 u - -

ox fJx 
c (( fJc~p- op o( )) fJp * 

fJx &x fJx Dx 

with 2pc~ = C. 
In the mean-field molecular theory, the quantity C is assumed to be constant 

[10], but it is not necessary. Oue can suppose that the scalar C is a general 
function of p and even {3. Then 

pc'p 6{3 div(C grad p 6p) - div( C grad p)6p - Lr ( C gradp grad* p ~~) . 

Due to the fact that 6p = - p div ( (sec [12]), 

Then 

p6c = div (C grad pop) - (p2c~- p div(C grad p )) div ( 

-div(C gradp grad*p () +div(C grad p grad*p) ( 

p6c = div (C gradp op- (C grad p grad* p) ( - P ( ) 
or 

-1 -
8 

( + div(C grad p grad* p) (. 
X 

6EJ = j ( oP + d' (C d d* ) ) ; dv &x 1v gra p gra p -. 
D 

+ j div ( -Cp grad p div ( - C grad p grad"" p ( - P ( ) dv 
D 

= j - (diva)( dv + j (-A div ( I n*a ( )rls. 

D E 
Taking into account (A.l), we deduce immediately 
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-1 j n *roL(!l n x ( ) ds . 

E 

But, j n*rot( A n x ( ) ds - j At· (n x ( )de = j A(t , n ,() de, 
>; r r 

where r is the line boundary of X aucl t its tangent unit vector. If n' t x n , 
we obtain the relation 

+ n*a) ( ) ds + j J\.n '* (a de. 
r 

In the following, we assume that ;; has no boundary aucl consequently, tile term 
associated with r vanishes. 

Let us calculate i5Es 
Es - j 13 ds. 

E 

Then 

(A.3) i5Es = j {o13 - (n• :t, I gracl*B(l - nn*)) (}ds 1 j J\ n'* ( d(. 
E r 

We notice that grad* B(l - nn") belongs to the tangent plane to X. 

Let us prove Eq. (A.3). If we write /~'s j 13 deL (n , d1x, d2 x) where d1x 
E 

and d2x are the coordinate lines of X, we may write 

Es = j B det F det(F-1n ,d1X ,d2X ), 
Eo 

where Eo is the image of E in a reference space in Lagrangian coordinates X, 
and F is the deformation gradient tensor &x/ oX. 
Then, 

i5Es = j oB det Fdet (F- 1n ,d1X,d2X ) + j 13 o( dct Fdet (F- 1n ,d1X ,d2X )) . 

Eo Eo 
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Moreover, 

j 13c5( dct F det (F - 1n , d1X , d2 X )) = j J3 div( deL (n , cl ,x, r/2x ) 
~o E 

+ B del ( ~: (, cl 1x , d2x) - B deL ( ~~ n , cl1x, d2x) 

= j ( di v(D( ) - grad* B (- IJn* ~~ n) ds . 
E 

From (A.l) we obtain 

T hen , 

(}JJ ( 
div(B() - [] (div n ) n*( - n* n = n*roL (Bn x ( ). Dx 

j B6 (det F det (F - 1 n , d1X , d2X )) = j (B (div n)n* 
Eo Eo 

+ grad* B(nn* - 1)) ( ds + j n*roL (Bn x ()ds 

E 

2 
and we ootaiu (A.3) with div n = -

H," . 
VIe assume that >"7 has no boundary and cousequeut.ly, the tenn associa ted wi Lh 
1' is uull. 
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On waves due to a line source 
In front of a vertical wall with a gap 

SUDESHNA BANERJEA AND C. C. KAR (CALCUTTA) 

I N T tm PRRSENT PAPER waves d ue to prc:;cnce of a line source in front of a vertical 
wall with a gap are studied. A sim ple exprc:;:;ion for am plitude of radiated waves at 
infinity i:; obtained by application of Green's integral theorem . 

1. Introduction 

WATER WAVE PROPAGATION in presence of a vertical barrier form an important 
class of problems within the framework of linearised theory. Among the various 
types of problems in this class, the study of wave motion due to presence of line 
source in front of an obstacle has been made by various researchers. 

EVANS [2], while studying the wave motion produced by small oscilla tions of 
a partially immersed ver tical plate, obtaiued as a special case the amplitude of 
radiated waves due to presence of a liue source in front of a ver tical pla te partially 
immersed in deep water by simple applicatiou of Green's integral theorem. Later 
BASU and M ANDAL [3] and MAI'<DA L [4J used the same technique to find t he 
amplitude of radiated waves when the vert ical barrier is completely submerged 
and extends infinitely downwards, or is submerged up to a fini te depth below the 
mean free surface. 

In the present paper , the wave motion due to a line source present iu front 
of a vertical wall with a gap in deep water is studied. These problems have 
rclevau ce in manoeuvring of a ship near a wall (cf. [7]) . In general , a study of 
wave motion in presence of a ver tical wall with a gap has pract ical application in 
construction of breakwaters. Here the ampli tude of radiated waves a t infinity is 
obtained by applying Green's integral theorem in the fluid region to two suitably 
chosen functions. One of the functions represents t he velocity potential which 
is the solution of the corresponding problem of scattering of a normally incident 
wave train by a vertical wall wi th a gap. T his solution is given in [6J. However , we 
have obtained it here by a different method using an integral equation formulation 
based on Havelock's expansion of the water wave potential. The other function is 
chosen in appropriate form, the unknown velocity potential describing the motion 
in the given problem. From the results thus obtained, it is observed that, when 
the source is situated within the gap in t he wall, then the wall has no effect on 
the source. 
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2 . Statement and formulation of the problem 

We consider a vertical wall extending from above the mean free surface and 
having a gap given by x = 0 and y E L = (0, a) U (b, oo) in deep water occupying 
the region y 2:: 0 with y = 0 as the m eau free surface (cf. Fig. 1). The motion is 
generated in water due to a harmonically oscillating line source of unit strength 
and circular frequency(}, acting at the point (~, 77) , (~ > 0, 77 > 0) in front of the 
wall. 

:r 

B_exp( -Ky + iJ(x) Rt-exp( -Ky + i l (:r) 

(0, a) 

(0, b) 

y 

FIG. 1. 

Assuming the linearised theory, the motion is described by the velocity po-
tential Re{ <P(x, y) cxp( -i(}L)} where <P satisfies the following boundary value pro-
blem: 

(2.1) 

(2.2) 

V2 <P = 0 in the fluid reo-ion except at (t: n) o· '>' ., ' 

J( <P + cpy = 0 on y = 0, 

where I< = (}"2 j g, g being acceleration of gravity, 

(2.3) 

(2.4) <I> ,....., In p as p ---+ 0 

X = 0, y EL, 

(2.5) r 112 V<P is bounded as r---+ 0, r = {(x)2 + (y- cf}112 , 

c = a or h 

(2.6) '\lcf;---+ 0 as y ---+ oo, 
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(2.7) <P"'{ JJ 1_ exp(- 1\y I il\:r) 
B_ exp(-Ky - il<x) 

as x ~ oo, 
as x ~ - oo, 

919 

where IJ± (unknown) are (complex) amplitudes of radiated waves at iufi.uity on 
either side of the wall. Let G(x, y; ~, ry) denote the potential due to a line source 
of unit strength at (~, ry), (77 > 0) in the absence of the barrier which is given by 
(cf. [1]), 

00 

J l\l(k , ry)!I I (k, y) 
(2.8) C(x, y ; ~ , ry) = -2 k(I<2 1 

k2 ) exp( -k J x- ~ J)dk 
0 

- 27riexp(-K(y + ry) I i l ( I x- ~ 1), 
where 1\I(k, q) = k cos kry- J( sin kq. 

\ Ve express the potential functiou cP as 

(2.9) <P - G I rp, 

where 1> is the correction of G due to the presence of the barrier. Then 1> satisfies 
the equations: 
(2.10) "V2 rp 0, y > 0, 

(2.11) J( 1> + r/>y - 0 on y = 0, 

(2.12) rf>x( O, y) = f(y) = -Cx(O, y; ~, 17 ), x = 0, yE L =: (0, a) U (b, oo), 

(2.13) r 112"V 1> is bounded as r ~ 0, 

(2.14) "Vrp ~ 0, as y ~ oo, 

(2.15) 1> "' { B ex p (- f( y + i ]( x) , 
-B exp(-Ky- iK :r), 

X ~ 00 

x ~ - oo 

where fJ (unknown) is the complex amplitude of scattered field. It may be noted 
here that because of (2.12), cp is odd in x. 

3. Method of solution 

Let '1/J(x, y) denote the potential describing the motion due to normal incidence 
of a progressive wave exp( -Ky + i J(:r ) from negative infinity upon the vertical 
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wall x = 0, y E L = (0, a) U (b, oo) present in deep water. The explicit form for 
'1/J(x, y) can be obtained as (see Appendix and also [6]): 

(3.1) '1/J(x, y) = 

exp(- f(y I il<x) I R exp( - Ky - iKx) 
00 

+ j D(k)i\l(k,y)cxp(kx)dk, x· < 0 
0 

Tcxp( - }(y 1- iKx) 
00 

+ j C(k) lvi(k, y) exp( - kx)dk, x > 0, 
0 

where !vi(k, y) is given by (2.8) 

(3.2) 

l i 
R = A1l = ---, 

J +if 

. J 
T = 1- R = -tJA1 = ..,..----...,... 

(J+Ii)' 

A - t 
1 - (J + Ii)' 

J 
_ exp( - K a) x ( () 2a2(K, F1) 
- J( + UCl2 I - ---'--1f-'---...C.., 

2 
{1(-1 cxp(l(a) + -az(-K,Fl) } 

0 = 7f 
0:2(-K) 

(}() ( ) ( "') juF1(a, b, u) ( ) 
Cti = Cti K , 1 , Cti K , h = Ro(u) cxp -K1t d1t, 

t; 

{ 

(-a,a), i = 1, 
ii = (a,b), i = 2, 

(b, oo), i = 3, 

a 

J Ro(v) 
F1(a,b,u) = 2 2

dv. 
v -u 

0 
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Therefore, 

2 A 1 [ Jb uS ( u) l -C(k) - D(k) - ; k(k2 + /\2 ) - sin ka -1 k a Ro (u) cos kudtt 

s(u) - [6 - ~ 1-} ( a,b, u)]. 
Applying Green's integral theorem to the harmonic functions cp, ·tj; within the 
re!,riOn bou nded by t he lines 

y - 0, 0 < X ~ X ; X - 0 I , 0 ~ y < a; X = 0- , 0 ~ y < a; 

y - 0, - X ~ X< 0; X -X, 0 ~ y ~ ) '; y = Y, 

X ~ 0-, b < y < OOj x - o~- , b < y < oo; y = Y , 

X X , () ~ y ~ Y ; 

for X , Y -t oo we obtain 

a oo 

( 3.:3) iB = J g(y)J(y)dy I J g(y) J (y)dy 
0 b 

where 
g(y) = '1/J (O 1 , 1/'(0 1 , y), y) - '1/J(O-, y). 

- X ~ :r < 0; 

0 ~ X ~ X; 

Usiug the expression for g(y) from (B.9) , the following simplifications eau be 
made. 

(3.4) 

where 

a n 

J J '2y cxp( !(y) 
f (y)g(y)dy = - Ro(Y) s(y)h1 (y)dy, 

0 u 

00 00 

j J (y)g(y)dy = j 2Y81~~~) (y) cxp(Ky)dy , 
b b 

y 

h1(y) = A1 j J (L) exp( - I<i)dl , 

0 
y 

h2(y) = A1 j f (l) cxp(- Kl)dl , 
00 
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s(y) is I:,riven by (3 .2) and J(y) eau be obtained from (2.12) and (2.8) as 

00 

J 1\I(k, y)lvf(k, r7) 
J(y) = -Gx(O, y; ~' TJ) = 2 k2 + ](2 exp( - k0dk 

0 

+27r /( exp( -(y + rJ) + i /(0. 

Thus, using (3.4) and (B .9) in (3.3), we get Bin the form 

(3.5) B ~ -2ni [ R exp( - ]( ry + i KO - [ C(k)M(k, ry) cxp( - k.;)dkl 

where ll and C(k) are given by Eqs. (3 .2). 
Now B± can be obtained by assuming I x J-t oo in (2.9) after using (2 .7), 

(2 .8), (2.15). 
Thus as x -t oo, we have 

(3 .6) R 1. = - 27ri exp( -KrJ- i l<O + B = -2wi'l/J( -C rJ) . 

Also as x -t -oo , 

(3.7) B_ = - B - 27ri cxp( - J(ry + iK~) = - 21ri 'lj.; (~, ry) . 

It is obvious that 

(3.8) B 1. + B _ = -LI1ri exp( -I<ry) cos K~. 

This shows that if](~ is an ocld mult iple of 7r / 2 ancl Kry is arbitrary, then 
the wave ampli tudes at either infi. uity are the same, the surface elevation being 
exactly 180° out of phase with each other. Similar conclusion were also drawn by 
EVANS [2) and BASU and MAl'\DAL [3j . 

Again, 
00 

'ljJ(O, ·ry) = T exp( - J(rJ) + j C(k)M (lt, ·ry) clk . 
0 

Using (B.4)1 we have for ry E (a, b) 

'ljJ(o, ·ry) = (T + R) exp( -I<ry) 

and immediately it follows from (B.3) that 

(3.9) 'ljJ( O, ry) = exp( - I<ry). 
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T lterefore, 

(:~.10) /J+(O,rJ) =- lL(O, 11 ) = -'hi exp(-KrJ). 

T his shows that the wall has no effect on the source if the source is situated 
within the gap in the wall. 

4. Appendix 

Let us consider a wall x - 0, y E L , L = (0, a) U (b, oo) immersed iu deep 
water with y = 0 as a mean free surface. A traiu of surface waves exp( - /( y I i I\. x) 
of frequency C7 is incident on the wall from negative infinity, then it is partially 
reflected and partially transmitted. If l?c{ 'lj'(.r, y) cxp( -ie7t)} denotes the velocity 
potential, then ·if; satisfies the following boundary value problem: 

(i) \127j; - 0, y ~ 0, 
(ii) }( 'ljJ + 'lj;y = 0 on y - 0, 
(iii) 'lj;x = 0, y EL= (0, a) U (b, oo), 
(iv) r112\l'lj; is bounded as r -t 0, 

r being the distance from the sharp edges of the plate, 
(v) \1'1/J -t 0 as y -too, 

.t. _ { ex p(-Ky I i f( x) -t /? exp(-K y - il<x) , (vi) '+' 
T exp( - Ky I iKx), :r -too, 

as x -t-oo, 

where N and T are reflection and transmision co-ef£cients, respectively, to be 
determined. Using Havelock's expansion of water wave potential, '!j;(x, y) eau be 
expressed by 

(B. l) V;(x , y) = 

exp(-Ky 1-if(x) 1 Rexp(-Ky- iK1·) 
00 

I j D(k)ill (k, y) exp(kx)dk, x < 0 
0 

Texp( - Ky I iKx) 

00 

t- j C(k)!II(k, y) exp( - kx)dk, x > 0 
0 

where lll(k, y) is given by (2.8), and C(k) and D(k ) are unknown. 
Let 

(B .2) V;(O, y) = { ~(y), y E L 
y E (O,oo) - L, 
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where by (iv) 
y -t a, 
y -t b. 

Then by Havelock's inversion theorcw, 

,, 
T = 1 - R = -2i j F(y) cxp(-Ky)dy, 

(B.3) " b 

2 L J -C(k) = D(k) = ; k(/\2 I k2 ) F(y)llf(k, y)dy, 
a 

Now an integral equation for F(y) can be obtained from the fact that V·(:r, y) 
is continuous across the gap in the wall. Thus, 

'lj;(+O,y) = 1/'(-0,y), y E (a,b) . 

Using (B .l) and noting (B.3) we have, 

00 

(B.4) 1 R exp(- K y) = j J\l(k ,y)C(k) dk , y E (a,b). 
() 

Substituting C(k) from (B.3) we get 
(B.4)2 

00 b 

1r J M(k,y) J -2 R exp( -Ky) = k(k'2 -1 K 2 ) F(t)!lf (k, L)dt dk, 
0 a 

y E (a, b). 

Applyiug the operator ( dd + I<) to (B.3) we have the following iute6rral equation: 
y 

b 

(B.5) JF(t) [f( ln /y-t/1 -
1
- I -

1
-] dt = 0, 

y-1 I. y-t y+ t 
a 

The solution of integral equation (B.5) is given by (cf. [5]) 

(B.6) 

where 

X 

F(x) = :~ exp(-I<x) j exp(l<u).A(u)du 
b 

y E (a , b) . 
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I?0(7L) , F1(a,b,u), 8 and !11 are given in (3.2). One relation connecting A1 and 
R eau b e obtained by substituting F(J.:) in (B.4)2. After some simplification we 
obtain 

(B .7) 

where O:;(K) and O:;(f(, F1) are given by (3.2). 
Also substituting F(t) in the first equation of (B.3), we get another relation 

connecting R, A 1 which is given by 

(B.8) 1-R = [-oa:2(K) f-~ o-2(K,F1)- 1~cxp(-J<a)] (i.AI). 

Thus from (B .7) and (B.8), R and !11 can be obtained. Again , C(k) is obtained 
by substituting F'(L) in the second equation of (B.3) . After simplifications, C(k) 
can be obtained as given in (3.2). 

Let g(y) = 7/J( +0, y) -7/J( - 0, y). Using (B.l) we get 

Therefore, 

cc 

g(y) = -2Rcxp(-1\y) 1 2 j C(k)M(k,y)dk. 
0 

00 

f{ g I gy(y) = -2 j C(k)(J<2 + k2
) sin ky dk. 

0 

Substituting C(k) from (B.3) and making s ilflplification we have, 

f{g(y) + gy(y) = 

0, a < y < b, 

2y AI S(y) 
Ro(Y) 

2y A1 S(y) 
Ro(y) 

0 < y <a, 

b < y < oo, 

which gives a fter integration 

0, a < y < b, 

(B.9) g(y) = 

y 

( f{ )! 2L S(L) cxp(Kt)d 
cxp - y Ro(L) t , 0 < y <a, 

a 
y 

( I{ )! 2L S(L) exp(Kt)d 
- exp - y Ro(L) t, 

b 

b < y < oo, 
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where the constant of integration can be chosen to be zero, and s(y ), J\ 1 is gi veu 
by (3.4) . 
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