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Diffraction of interface waves by a bottom deformation
B. N. MANDAL and U. BASU (CALCUTTA)

THis pAPER is concerned with diffraction of a train of time-harmonic progressive waves propagating at
the interface between two laterally unbounded superposed fluids in tﬁc presence of a small cylindrical
deformation of the bottom of the lower fluid, the ugpcr fluid being extended infinitely upwards.
A perturbational analysis is employed to obtain the first order correction to the transmission and
reflection coefficients. In the absence of the upper fluid, known results for a single fluid are recovered.

1. Introduction

DUE TO THE PRESENCE of bottom deformation, a train of surface waves propagating in
a laterally unbounded ocean experiences reflection by and transmission over the bottom.
The reflection and transmission coeflicients can be obtained approximately by a perturba-
tional analysis assuming the deformation to be small (cf. MILES [1], MANDAL and BASU
[2]). In the present paper this problem is generalised to two laterally unbounded super-
posed fluids, in which the upper fluid extends infinitely upwards and the lower fluid is of
finite depth below the mean interface and has a small deformation in the form of a long
cylinder extending in the lateral direction. A train of time-harimonic progressive inter-
face waves is normally incident on the bottom deformation. It is then partially reflected
and partially transmitted. By using the perturbational analysis employed by MANDAL and
BASU [2] for the one-fluid case, the problem is reduced, up to the first order terms to a
boundary value problem (BVP) whose solution is obtained by a Fourier transform. The
first order corrections to the transmission and reflection coefficients are obtained. In the
absence of the upper fluid, known results for a single fluid are recovered.

It may be mentioned here that, although two-fluid problems are not difficult to for-
mulate mathematically within the framework of the linearised theory, the literature on
two-fluid problems is rather limited. GORGOUI and KASSEM [3], RHODES-ROBINSON [4],
KASSEM [5,6] studied generation of time-harmonic waves at the interface between two
superposed fluids due to various types of basic singularities submerged in either of the
two fluids. GORGOUI and KASSEM [7] also studied generation of short internal waves by
a cylinder oscillating at the surface separating two infinite fluids. While the methods em-
ployed in [3, 5-7] are extensions of methods used in the corresponding one-fluid problems,
RHODES-ROBINSON [4] used a splitting approach to handle a class of linearised interface
wave problems for two superposed fluids occupying regions which are symmetric about
their common interface. MANDAL and BANERJEA [8] recently used this splitting approach
to solve the plane vertical wavemaker problem for two superposed infinite fluids. How-
ever, this approach is suitable only when the two fluids and the boundary conditions are
symmetric about their common interface, and as such it cannot be applied if the lower fluid
is of finite depth below the mean interface and the upper fluid extends infinitely upwards
as is the case for the present problem. After formulating the problem mathematically as
a BVP, Fourier transform technique is used to solve it approximately following the use of
a perturbational method.
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2. Statement and formulation of the problem

We consider two incompressible, inviscid and homogeneous fluids of densities o, and
02 (< pp) with lower fluid of density ¢, occupying the region 0 < y < h + cc(2),
—o¢ < 2 < oo and upper fluid of density p, in the region y < 0,—00 < = < o,
the (z, z)-plane being taken as the interface at rest and y-axis being taken vertically
downwards. There is a small cylindrical deformation at the bottom of the lower fluid
along the lateral boundary, and it is represented by

y=h+cec(x),

where ¢(z) is a continuous function of compact support so that ¢(z) — 0 as |z| — oo,
and ¢ is a small dimensionless quantity giving a measure of smallness of the bottom
deformation. Far away from the deformation, the lower fluid is of uniform finite depth h
below the mean interface.

Assuming linear theory and irrotational motion, a train of time-harmonic pro-
gressive interface waves can be represented by the undisturbed velocity potentials
Re{po(z, y)e~ "t} in the lower fluid and by Re{%,(z,y)e~""'} in the upper fluid, where

w_m_wgékljx

@1 P, y) = o ;
2:2) Wy(z,y) = —efovrih,

o is the circular frequency, k is the unique positive real zero of

(2.3) A(k) = K(coshkh + ssinhkh) — (1 — s)ksinh kh |

K = 02/g, g being the acceleration due to gravity and s = p;/p;. This wave train is
normally incident upon the deformation. It then experiences reflection and transmission.
The motions in the lower and upper fluids are described respectively by the velocity
potentials Re{w(x,y)e *"'} and Re{¥(a,y)e~'"'}. Then ¢, ¥ satisfy the following
coupled BVP:

Vipg=0, 0<y<h+ec(a),

(2.4)
Vi =0, y<o,
2.5) ' npy=!l7,5: on y=0,
Ke+py,=s(K¥+V¥,) on y=0,
(2.6); wn=0 on y=h+ce(x),
where n denotes the inward normal to the bottom,
(2.6); V¥ —0 as y— —o0.
Also, ¢, ¥ satisfy the requirements at infinity that
Tpp(z,y) as r — 00
2.7 A~ 2 )
270 \ {‘100(1:9y) + Reg(—a,y) asa — —o0
and
e TY(z,y) as T — 00,
(2.7) v {![/(,(m, y)+ TY(—z,y) asaz — —00,

where T and R are, respectively, the transmission and reflection coefficients and have to
be found.
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Now the condition (2.6); can be approximated up to the first order of ¢ (cf. [2]) as

(2.8) —py + c(m)apal +0EH=0 on y=h.

We also note that in the absence of any deformation of the bottom, the interface wave
train propagates without any hindrance and there is a total transmission. In view of this
and of the approximate condition (2.8) we can assume a perturbation expansion for ¢, ¥,
T, R in terms of ¢ as
e, y) = oz, y) + epr(a.y) + 0,
U(x,y) = Yz, y) + ¥ (x,y) + 0D,

T=1+¢eT) +0(d),

R =¢R, +0(),
where ¢, ¥, are given in Egs. (2.1) and (2.2), respectively. Utilising Eq. (2.9) in Egs.
(2.4), (2.5), (2.8), (2.6)7, (2.7) we find that ¢, and ¥, satisfy

Vi =0, 0<y<h,

(2.9)

(2.10)
Vi, =0, y<o0,
(2.11) ey =¥y on y=0,
Ko + ply =s(WN¥ +¥,,) on y=0,
Ply = thy {( Ne'k0T} = g(x), say,on y=h
(2.12) YT Gnh koh (11 1 % %57
V¥, -0 as y— —0,

Tipo(z,y) as & — o0
7 »
(213h # {le( r,y) asr — —00
and

TWo(x,y) as 2 — 00,
(2.13), 4 { RiWy(—2,y) asaz — —00.

It may be noted that 7\ and R, are the first-order corrections to the transmission and
reflection coefficients and will be found in the sequel.

3. Solution for ¢, and ¥,

The BVP for ¢; and ¥, described by Egs. (2.10) to (2.13) is decoupled into two
independent BVP’s for ¢, and ¥, as follows:
BVP-1. To find ¢, satisfying

(3.1) Vg, =0, 0<y<h,
(3.2) ey =7n(x) on y=0,
where 7(z) is assumed to be known for the present,

(3.3) ¢y =¢(x) on y=h,
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and ¢, satisfies the requirements at infinity that

B Typo(z,y) as T — 00,
(3.4) ¥l {R,upn(—x, y) as & — —00.

BVP-II. To find ¥, satisfying

(3.5) Vi, =0, y<o0,
(3.6) Uy, =n(x) on y=0,
where 7j(x) is the same as in the condition (3.2),

(3.7) V¥ —-0 a y— —o0,

and ¥, satisfies the infinity requirements that

T\Wy(z,y) as &t — 0o,
(3-8) v { R\Wy(—z,y) asx — —o0.
The condition (2.11); takes the form
(3.9) K(py —s¥))=—(1—-3s)p(z) on y=0.

In order to solve the equation for ¢, and ¥, we use the Fourier transform defined by

@16, y) = ] e, y)(:‘_ifr dz ,
(3.10) i
vy = f Uy, y)e ¢ da

We also assume ky to have a small positive imaginary part so that ¢, ¥, decrease ex-
ponentially as |2| — oco. This ensures the existence of Fourier transforms of ¢, and ¥;.
Now ,(€, y) satisfies the BVP

-@]yy - ‘Ezal = 01 0 S ) S h )
(3.11) Py, =7¢) on y=0,
qa]y:q(f) on y=h)

where 7 and § are the Fourier transforms on 7(x) and g(z), respectively. The 7, has the
solution given by

q héy — 7 hé(h —
(3.12) BiE, 3) = q(&) cos fy“i:)]f;;és §h—y)

We note that the zeros of £ sinh £/ are not the poles of ;.
Again, (£, y) satisfies

Py =¥ =0, y<0,
(3.13) Ty =T7() on y=0,
¥y, —0 a y— —00.
Then ¥, has the solution given by

(3.14) Tty = Lﬂ)&'i
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To find 7, we take the Fourier transform of Eq. (3.9) and obtain

(3.15) K@, —s¥)=—(1-38)7 on y=0.
Substituting Eqs. (3.12) and (3.14) in Eq. (3.15) we find
I

(3.16) () = ﬁ?
where
(3.17) A(E) = K(coshéh + ssgnésinh&h) — (1 — s)Esinh &R .
Thus we obtain

: e oy a) _ i
(3.18) P(e.) = o) { coshéy - o cosh(h = )|
and
(3.19) Vi(y) = é‘lfl(f) ety

It may be noted that in Eq. (3.19), £ = 0 is not a singularity because 7(0) = 0 since
c(z) — 0 as |¢| — oo.

To find the Fourier inversion of Eqs. (3.18) and (3.19) we note that on the real axis,
A(€) has zeros at +ky;. As ky is assumed to have a small positive imaginary part, we write

1 F 2
(3.20) ;muw=5i£¢@wkmd&

1 P .
(3.21) h(w.y) = 5= [T pet e,

where the path in each integral is slightly indented below the point £ = k; and above
& = —ky. Then using Egs. (3.18) and (3.19) we find

,__L%wﬂf
(3.22) @i(z,y) [.! Esinh&h

{ oshfy — cosh&é(h — y)} d€

K
A©

1 0 = —iér
2 %ﬁﬁﬁf{”m&“luowm“h_”}@
and
K[ Fa@etvie Fg(=etre
i T, )= l
(3.23) iz, y) zw[J eag 7 f £A() ]’

where the path in each integral is indented below the pole at £ = k.

To calculate T} we make @ — oo in either ¢ (x,y) or ¥ (z,y). As ¥ — oo, the
behaviour of ¢; or ¥, can be obtained from Eq. (3.22) or Eq. (3.23) by rotating the
path of the first integrals into a contour in the first quadrant so that we must include the
residue term at £ = k. The path of the second integrals in Eq. (3.22) or Eq. (3.23) is
rotated into a contour in the fourth quadrant, so that these integrals do not contribute as
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x — 00. Then comparing with Eq. (2.13); or Eq. (2.13); we find

oo UKg(ky)
b ko (ky) '
But
G(ky) = —L:,—(z' i c(x)de
sinh® kyh _+_
so that we obtain
(3.24) T = - iky - LT c(z)dx .
(1 — s)sinh“ kyh
h + Vi e e

In a similar way R, is obtained from the analysis of the behaviour of ¢, or ¥, in
Eq. (3.22) or Eq. (3.23) as + — —oo by rotating the path of the second integrals into a
contour in the first quadrant, so that we must include the residue term at £ = k. The
path of the first integrals in Eq. (3.22) or Eq. (3.23) is rotated into a contour in the fourth
quadrant so that these integrals do not contribute as @ — —oc. Then comparing with
Eq. (2.13); or Eq. (2.13); we find

. i]\'ﬁ("'/\f“)

Ry = :
P kA (k)
But
K .
G(—ky) = ——— | c(2)e*™ o dg
q(—kv) sinh‘k(,h_j!o(( )
so that we obtain
ik() (X'J 2ikox
3.25 R, = = c(x)e ™ dy
) ‘ (1 — s)sinh® kyh j ()
h4 ———— -
I

Once the functional form of the shape function ¢(x) is known, 7} and R, can be
obtained explicitly.

4. Conclusion

The first order corrections to the reflection and transmission coefficients for the prob-
lem of diffraction of interface waves propagating at the interface of two superposed fluids
in the presence of a small bottom deformation, was obtained by a perturbational tech-
nique. In the absence of the upper fluid (s = 0), the results for a single fluid are
recovered. In particular, |R;| coincides with KREISEL'S [9] result. These results can be
extended to include the effect of interfacial tension and also for oblique incidence of the
interface wave train.
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Variational principles for the vibration of an elastic dielectric
J.S.YANG (PRINCETON)

THIS PAPER presents two variational principles for the free vibration of a finite elastic dielectric with
linear piezoelectromagnetism (dynamic piczoclectricity). They arc in Rayleigh quotient form for the
natuldrhcqucmy The variational principles are mixed in tge sense that all field variables can be
varied independently.

I. Introduction

THE THEORY of piezoelectromagnetism has fully dynamic electromagnetic fields. Reci-
procity, uniqueness and minimum principles have been proved in [1]. The vibration of
piezoelectromagnetic plates has been studied [2, 3] to consider the effect of radiation
which is a phenomenon not included in the widely used quasi-static theory of piezoelec-
tricity. A variational principle for piezoelectromagnetism is given in [4], which can be
used to derive field equations for piezoelectromagnetism. A mixed variational principle
for the field equations of piezoelectromagnetism is given in [5].

For linear quasi-static piezoelectricity, various variational principles for the natural
frequency of free vibration has been summarized and developed systematically in [6].
It was shown that for each Legendre transform of the internal energy there exists a
variational principle.

[n this paper, two variational principles for the free vibration of a finite elastic dielectric
with linear piezoelectromagnetism are presented. They are in Rayleigh quotient form for
the natural frequency. The variational principles are mixed in the sense that all field
variables can be varied independently. These variational principles generalize indirectly
some of those in [6].

2. Governing equations

Let the finite spatial region occupied by the piezoelectromagnetic elastic dielectric be
V', the boundary surface of 1" be 5, the unit outward normal of S be n;, and S be
partitioned in the following ways

S, USr=8pUuSy=2.9,
S.NSr =8NSy =0.

The governing equations for the motion of a finite piezoelectromagnetic body in V'
with homogeneous boundary conditions on 5 are [4]
Tﬂ"j = pil,, 5,\-, - %(u_“‘ +u; ;) =0 in Vv,
(2.1) Di;=0, =—¢gijxHy;j=-D; inV,
B,'J' = 0, —~ijkEk_.j = B, inV 3
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(21) T," = (('i_j.l;{'gk( = eki_jEk) = () inl,

[cont.]

—D; — (—ei Skt — i) =0 in 'V,
H; - LB, =0 inlV,

fto
wi=0 onS,, —T;n;=0 onbSr,
B,'n,' = (, *ngkn,J'Ek =0 on Sl.; )
D,ni = 0, —E,'Jk’II,J'H;; =0 on SH,

where p is mass density, T}; stress, S strain, u; displacement, F; electric field, D, electric
displacement, B; magnetic induction, //; magnetic field; 1y is the magnetic permeability
of free space; ¢;jx, €,k and €;; are all material constants; ¢, is the permutation tensor.

We note that the homogeneous electromagnetic boundary conditions represent the
two common boundary conditions (7] of short circuit boundaries (electric wall, on which
tangential E and normal B vanish) and open circuit boundary (magnetic wall, on which
tangential H and normal D vanish).

For time harmonic motions, let

wi(x,t) = ui(x) coswt,
Tij(z,t) = Tij(z)coswt, S;j(x,t) = Sij(z)coswt,
Fi(r,t) = Ei(x)coswt,  Di(x, 1) = D;(x)coswt,
Hi(z,t) = Hi(z)sinwl,  Bi(x,t) = Bj(x)sinwt .
Then Egs. (2.1) becomes
Tji,j = —u)zpu,', .5','_] = %(n\,‘,,- + ILI"J') =0 inV,
Di;i=0, —cyrHij=wD; inV,
Bii=0, —¢€ijtErj=wB; inV,
Tij — (CijkiSei — erijEr) =0 inV,
—D; — (—€itSit —cikEr) =0 inV,

(2.2) !
Hi——B;i=0 inV,
fto
w;=0 onS,, -Tj;n;=0 onSyp,
B,‘I?i =0, —SUHIJ‘E;; =0 on S'E )
D;ni = 0, *E,’jk'?ljf[k =0 on .5'[[ .

Values of w are sought from the conditions corresponding to which nontrivial solutions
of u;, v, Sij, Tij, Ei, D;, H; and B; exist. Hence Eqs. (2.2) constitutes an eigenvalue
problem. We note that in Egs. (2.2) the two curl Maxwell’s equations imply the two
divergence Maxwell’s equations. Similarly, the two tangential electromagnetic boundary
conditions imply the two normal electromagnetic boundary conditions. For Egs. (2.2), it
is convenient to introduce the electric enthalpy density function [4]

H(S,E,B) = %CinSijSk( . 6;jkEESjk = %E,’ngEj + %;LU_IBI'BE inV.



VARIATIONAL PRINCIPLES FOR THE VIBRATION 281

Then Eqgs. (2.2) can be written as

7 = 2. y Leag s . Sy = in
fji,j = —wpu;, i - f(”‘lﬂ +u;;)=0 in Vv,

—E[J'A;H;‘-J' = w‘D,‘. —f,'jk[_'.‘k._" = wBi inV )
JoH oH JH
23 i — =0, -Di——=0, H,— =0 inV,
@3 Ti-ps; OE, OB, ot
w;=0 onS,, -Tjmn;=0 onST,
—EL'A.,';‘.IE_,I':A, =0 on S[; —EgJ‘kll_j Hk =0 on ,5'11 .

We now introduce the enthalpy function M from H through Legendre transform as
follows,

M(T,E,H) = H(S,E,B)—T,;5;; - H;B;,
which generates the constitutive relations in the following form:
oM JIdM oM
Si;i=——r—, Di=—5—, Bi=-——+
d (7'11”' oFE; ; OH;

and Eqs. (2.3) can be written as

T = —wipui,  Sij— %(“J"j tu;;)=0 inV,
—eijpHi; =wDi, =-gijxErj=wB; inV,
—— =0, Di+ =0 Bi+ ==
oT;; IE; OH;
wi=0 onS,, =T;n;=0 onSyp,

(2.4) Sij + 0 inV,

—cijknjly =0 on Sg,  —egeniHy = on Sy,

or, eliminating 5,;, [); and B,

" IOM .
Tjij = —wpu;, —%(uN +u; ;) = dT” in V',
oM oM
2] E'"A-HL-_‘=uJ-,.—,. E,“;\-Ek"=w-_— inV s
(...5) L J ()I’:, J ¥ ()}[1
;=0 onS,, -Tjn;=0 onbSt,
—EijkN; I, =0 on SE, —t_,'_)’knjf{k =0 ondSy.

Next we introduce (when w # 0) v; = wu,; so that Eqs. (2.5) can be written as a
system as follows, which explicitly contains w only, not w?:

oM

Tji,j = —wpui, —%('Uj’,‘ + ;)= waTij inV
oM oM
(2.6) Sijkf]k.,j = w-(?_E,-’ EijkEk,j L= WT inV,
v, =0 onS,, -Tjn;=0 onbSr,

—gijnjky =0 onSg, —cuniH=0 on Sy .
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3. A variational principle

In this section, we will give a variational formulation for the eigenvalue problem (2.6).
Different to the variational formulations for the quasi-static case [6] which are for w?,
the following variational principle is for w. This is consistent with the corresponding
variational principle for pure electromagnetic fields of a finite body [8].

Generally, for a fractional functional

1'1
INn=—,
)
we have

1

P
P

61l =

(F6A — A6T) = %(m —1181).

Therefore 6 [1 = 0 implies
oA =16 = 0.
We define

MV TEH) = [ (Tjijoi+ teijli B + deiju By jH)AV
|74

— [ TymjoidS = [ L By HidS — [ leijun; HyEdS

Sr Sg Su
= j (T,i".,f”i + Eijk H;\,EJ(” = ] ij’lljl.’z(/,sv = j EijkNy ]];\ I‘?,‘([S
Vv St Sy
= f (rl'j,"J v; + Eijl:Ek‘j HE)(“ = J. ,[‘J'l'll", (Q‘(/S = f EijkMj [’];,.11,-(1.5' )
v St Sk

Ny, TEH) = [ [~1pvw; + M(T.E.R)V .
£
My(v,T.E,H) = =}
1y, ) T
Then we have, after integration by parts,
oAy = ] [T53,:60; — 2(v50 + 03, 5)6T3; + cijeHe 6 E; + &40 Ey ;6 HildV
‘/

+ [ ’L!iijﬂtj(l.ﬁ' - ] T,',’Tl.jﬁ'virls T j Eijk i?v,'Ekb]'[,'([.S‘ - j E,'J’;L-'JI_,)'II;\.{) E,‘(l.q s
Su

ST Sg Sy
: oM JM oM
or = = pibv; + =0Ty + -8k + =6 H, |dV .

] “,] ( i aT;; Y OE; IH,; )(

Therefore, 8 I1; = 0 implies
oM
Tji‘j = —1Il,pv;, —%(vj‘i + ;)= HIBT-- inV,
(3.1) , T
oM oM
EijaHy =”15F- fijA-Ek__j=H]ﬁ inV |
e :
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(3.1) v; =0 onS,, —Tj;n;=0 onSr,
[cont.] —EijkNj Er.=0 onSg, -t ikl =0 on Sy .

Comparing (3.1) with (2.6), we conclude that the stationarity condition of /7, gives the
eigenvalue problem (2.6) with the stationary value of /7, as w. This variational formulation
is of mixed type in the sense that various mechanical and electromagnetic fields can vary
independently and there are no constraints.

4. A more general variational principle

In [6] for quasi-static piezoelectricity, it was shown that for each Legendre transform
of the electric enthalpy function /1 there exists a variational principle. The situation is
similar for dynamic piezoelectricity. We will show another variational principle in the
following and will not try to exhaust ali possible cases. First we introduce the internal
energy function {7

U(S.D,B) = H(S,E,B)+ F; D, = M(T.E.H) + Tl‘_,'SL'J‘ + E;D; + H;B;,
which generates the constitutive relations in the following form:
, aU ov ou
Tyj=—=—, Ii=—, Hi=_—.
Y88 oD, ' 0B,
Then we consider the following functionals:

Aa(v,T,8,E,H,D,B) = [ (Tjijoi + Yeiju Hu jEi + SeijuEx, jHi)dV
V

— J ’]1_,',71.,‘1),'({.5‘ = j %S,'I,';\.'II._]'EATII,'([.S' = ] %E,‘_,'UEJHA-E,'(LS'

Sp Sg Sy
= ‘]. (,1‘_/-1"_/'“!' + Si‘)kl'lk.j-Ei)(”', = J. Tj,"”j’l?,(].g = ‘f' Euk'il_,‘]']kEil]S
v Sr Sy
= [ Wiijoi + eijuba jHYAV = [ TimjoidS = [ eijun; ExHidS
\" S S‘E
Dy, T.S.EH.D.B) = [ [~4pvie, = 15,5, — E.D; — HiB; + U(S,D,B)JdV,
",
Az
Iy(v.T.S.E.H.D.B) = =

We have, after integration by parts,

12 = ] [T_,i-‘,éui - %(‘1!_1_,‘ + 'L’i'j‘)("‘Tg_]‘ + E,“,‘A-U};‘J‘ﬁEi * EijkEk‘jéf[i]dV
1%

4 f vi0Tjin;dS — I Tjin;6v;dS — f&“,'jknjEkéH,-dS— f.&',’jknijéEgd.S',
Su

St Se Sy
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6Fz = f (~ pviév,- = Tij(s.g,'j = S.,'j(‘)T,'j = E:lle == D;lSEz = Hj(SBt' = B,é][i

aU U ou .
+=65;; + —6D; + =68, |dV .
s, it ah 9B, )‘

Therefore, 6 Il; = 0 implies
Tji; = —Ihpv;, -1 i+v;)=-1MLS; inV,

EijkHi; = -1 Dy, iy ; =—ILB;, inV,

oU aU al
0=11 —ﬂ+-—-,0=n(—a+fr) 0=m(—m+——)
2( a asﬁ) : aD; : dB;
v; =0 onS,, -Tjn;=0 onSp,
—€ijkniEr =0 onSg, —eijunjHy=0 onSy,

which is a system equivalent to (2.4) (when I, or w # 0). Variational principles of other
forms are possible. For quasi-static piezoelectricity four variational principles are shown
in [6]. For dynamic piezoelectricity, we expect more varieties because of the presence of
magnetic fields.
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Diffraction of SH-waves by a Griffith crack
in nonhomogeneous elastic strip

J. SARKAR, S. C. MANDAL and M. L. GHOSH (DARJEELING)

IN THIS pAPER the scattering of elastic SH-waves by a Griffith crack situated in an infinitely long
inhomogeneous strip has been analyzed. Assuming that the shear modulus (1) and density (g) of
the material vary in the vertical direction and applying Fourier transform, the mixed boundary value
problem has been reduced to the solution of dual integral equations which finally has been reduced
to the solution of a Fredholm integral equation of second kind. The numerical values of stress
intensity factor and crack opening displacement have been illustrated graphically to show the effect
of inhomogeneity of the material.

1. Introduction

THE NATURAL or artificial materials are usually inhomogeneous; so in recent years great
attention has been given to the study of diffraction of elastic waves by cracks or obstacles in
inhomogeneous media in view of their application in fracture mechanics. Many problems
have been solved involving one or more cracks in an infinite homogeneous elastic medium.
LOEBER and SIH [1] and MAL [2] have studied the problem of diffraction of elastic waves
by a Griffith crack in an infinite medium. The problem of finite crack at the interface
of two elastic half-spaces has been discussed by SRIVASTAVA et al. [3] and BOSTROM [4].
SINGH et al. |5, 6] considered the problem of scattering of a SH-wave by cracks or strips in a
nonhomogeneous infinite elastic medium. Papers involving cracks located in an infinitely
long elastic strip are very few. The problem of an infinite elastic strip containing an
arbitrary number of unequal Griffith cracks, located parallel to its surfaces and opened by
an arbitrary internal pressure, has been treated by ADAMS [7]. Finite crack perpendicular
to the surface of the infinitely long elastic strip has been studied by CHEN [8] (for an impact
load) and by SRIVASTAVA et al. [9] (for normally incident waves). Recently SHINDO et
al. [10] considered the problem of impact response of a finite crack in an orthotropic strip.
In our paper, the diffraction of normally incident SH-waves by a Griffith crack situated in
an infinitely long inhomogeneous elastic strip has been discussed. The shear modulus (1)
and the density (o) of the material have been assumed to vary in the vertical direction.
Applying the Fourier transform, the mixed boundary value problem has been converted
to the solution of dual integral equations. The dual integral equations have been finally
reduced to a Fredholm integral equation of second kind by applying the Abel transform.
Expressions for the stress intensity factor and crack opening displacement have been
derived. The numerical values of stress intensity factor and crack opening displacement
have been depicted by means of graphs to show the effect of material inhomogeneity.

2. Formulation of the problem

Consider the problem of diffraction of SH-waves by a Griffith crack in an inhomo-
geneous elastic strip of width 2h,. The crack is located in the region —a < z; < «,
—00 < Yy < o0, z; = 0 (Fig. 1). Normalizing all the lengths with respect to a and
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putting x,/a = x, y1/a = y, z1/a = z, hy/a = h it is found that the location of the
crack is —1 <@ <1, —oc < y < o, z = 0 referred to a Cartesian coordinate system
(*,y,z). Let a plane harmonic SH-wave originating at z = —oo impinge on the crack
normally to the z-axis. The variation of the shear modulus y and the density o is taken in
the vertical (=) direction in such a manner that the shear velocity (y/ )"/ is constant.
The only non-vanishing y-component of the displacement which is independent of ¥ is
v =wv(x,z,1).

%

V]

FiG. 1. Crack in the inhomogeneous strip.

The equation of motion is given by

Jd dv J dv d*v
(2.1) 5;(*0_1) i E("a—:) BTN

If we consider v(2, z,t) in the form

Wiz, z,1)
20 v(z,2,t) = —==—
22) ©50= =75
then
PW . PWN [ 1 (op) 'Z;t] W
, L . Vo=
(2:.3) H(_ﬁ[).tz + e ) + 2[2‘“ (03> 922 14 4 Y

Putting W(z, 2, 1) = F(2)G(2)e™*" and p(z) = pof(2), o(z) = o00f(z) in Eq. (2.3)
where j, oy are constants, such that (,u.,/g.,)‘/2 = ¢, is the shear wave velocity, it is
found that F'(x) and (J(z) satisfy the following equations

92 I

2.4 —— +n'F =0,
@4 s

9*G i
(2.5) 5’;'*(?—0 —H)G-_-O,
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provided f(z) is of the form
(08 VL LT
2:6) (L) +5(5500) =0,

where n and b are constants.
Let us assume f(z) in the form

(2.7 f(z) = cosh®(bz)

so that Eq. (2.6) is automatically satisfied.
Now the shear modulus ¢(=) and density of the medium o(z) are

(2.8) = jpcosh’(bz), o = pycosh?(bz).
Using Eqs. (2.8), (2.2) and W (z, z.t) = W(x, z)e~*“!, Eq. (2.1) takes the form

W otw . I
(2.9) OW oW sPW =0, B=(B=t), k=2

da? dz? : ¢
The displacement component ¢v{)(x, z, 1) and stress 7()(x, z, 1) due to incident waves are
given by

) A Vz(szwi)
(2.10) Wiz, 2, 8) = S
Jiy cosh(bz)

and
(2.11) ‘r!gi_)(.l:‘ z.t) = Ap/pol ik cosh(bz) — b sinh(bz))e!*= =1,

where A, is a constant.
Henceforth the time factor ¢ ~'“' will be suppressed in the sequel.
Solution of Eq. (2.9) is

(2.12) Wix,z) = ] B,(f)f““i"cos(f.’l’)df + f C'1(¢) cosh(aa) sin(€ 2)d¢,
0 0
where
a=(F- (ke B=E =R ek
=i(k2 - ()2 <k, =—i(kP-EHV <k,
Now displacement v(z, 2) and stresses 7,-(x, z), 7, (¥, ) due to the scattered field are

o

(2.13) v(z,2)= - [ j B(&)e 77 cosEadE + TC(()cosh((rm)sin(;zd(;] .

cosh(bz) “ .

(2.14) T, (v.2) = —pob sinh(b:)[ ] B(€)e "7 cosEa dE

0

+ ];C'(g')cosh(n;zr)sing’:dg’] + jiy cosh(bz)

0

[ - j 3B(€)e™"7 cos £ dE + f(,'C(g')cosh(r.m:)cos(,':d(,'].
0

0

http://rcin.org.pl
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(2.15) rpy(z,2) = m.cosh(bz)[ - ] EB(E)e "7 sin € dE
0

+ I al'(¢) sinh(az) sin (= d( |,

0

where

BO) = Z=Bi©. (1O = Z=C0)
The boundary conditions are
(2.16) Ty=(2,0) = =1, le] <1,
(2.17) v(,0)=0, 1<|z|<h,
(2.18) Toy(Eh, 2) = 0, l2] <

where 7y = th Ay /1.
From the boundary condition (2.18) (/(¢) is found to be expressible in terms of ()
as follows:

2( _] T EB(E)sin(éh)

masinh(ah) £2+ of

(2.19) c@©) = dg.

Next, the use of Eq. (2.19) in the boundary condition (2.16) and (2.17) yields the following
dual integral equations from which the unknown function B(£) is to be determined:

(2.20) e+ M@IB@osr de = pa), o] <1
and U

2.21) [ B costearde =0, 1< 2l <h

where “

(2.22) M(¢) = (? - 1),

(2.23) Py =L+ f gﬂ:;s:(:;) ”j:%f)j%(f—h)de.

3. Method of solution

In order to solve the dual integral equations (2.20) and (2.21), B(£) is taken in the
form

lh
(3.1) B() = -;‘(-' to(t) Jo(EL) d,
Yo

so that Eq. (2.21) is automatically satisfied.
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Substitution of the value of B(£) from Eq. (3.1) in Eq. (2.20), yields a Fredholm
integral equation of second kind

|

(3.2) o(t) + [ ulLa(u,t) + La(u, )o(u)du = 1,
i

where

(33) Ly = J €M@ IEn ety de.

(3.4) Ly(u, 1) = —” ]\ Cledl(ave"

. asinh(ah)

Using contour integration technique [3], the infinite integral arising in the kernel L, (u, 1)
can be converted to a finite integral and is given by

l-
(3.5) Li(u,t) = —ik? J (1= ) 2Lty H S kenpuydy,  w > t,

0
I

= —ik? f (1- 1)2)'/2.1(,(A7'r)u)][t(,”(kqt)dl], w < t.
0

Now

d¢

Lyu,1) = j‘ Cr (e ) Jp(aqu)eieth dc - T-(2](,(at)fu(a-u.)r:“’”

s asinh(ah)

oy sin(agh)
k (2 k QQ

= J = Jo(a ) Jy(evyu)ctg(ag h) d¢ + ij = Jo(e t)Jy(agu) dC

(a3 ay

o o1 0

B T’sz(,(at)ll,(au,)e_"" dc.
k

asinh(ah)
where
ap = (1\72 _ (’-2)1/2'
Putting (2 = A%(1 — »?) in the first and second integrals and (? = k*(1 + y?) in the
third integral, it is found that

1
(3.6) Lp(u.t) = kz[ j (1 — y)Y 200 (kyt) Jo(kyu) crg(kyh) dy

0

1
+i [ (1= )2 dkyt) Jo(kyu) dy

]

o0
- f (1 + y»)' 21y (kyt) Ly(kyu)e ™ *¥" cosech(kyh) dy| .

0
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4. Stress intensity factor and crack opening displacement

From Eq. (2.14) the stress 7,. on the plane = = 0 can be written as
O

l CC(Q)cosh(aa)dC|.

1]

(4.1) Ty=(2,0) = p.,[ — TdB(E)cosE.r dé +
0

Substituting the value of ('(¢) and B(§) from Eqs. (2.19) and (3.1), the expression for
the stress can finally be presented as
TyL

(3.2 = |)l/2
Defining the stress intensity factor N by
(z — l)l/zr!/:(:r.())

Th

T_:/:(4l»'-0)= &(1) + O(1), |.'L" > 1.

N = Lt

r—1"

3

we obtain
1

_L\' = %kﬂ(]”

Now the crack opening displacement Av(2.0) = v(x,0%) — »(x,07) can be obtained
from Eq. (2.13) as

(4.2)

e
anm=2]BQNm@UM.]ﬂ§L
0
which, on substitution of the value of 3(£) from Eq. (3.1), takes the form
27 - Lo(l)

(4.3) Az(z,0) = —

™ -; UZ—_'I'Z—)ml“. |(l'l S 1.

5. Numerical results and discussion

Using the method of FOX and GOODWIN [11], the Fredholm integral equation given by
Eq. (3.2) has been solved numerically for different values of the material inhomogeneity
parameters. In this method the integral in Eq. (3.2) has been represented at first by a
quadrature formula involving the values of the desired function ¢(t) at the pivotal points
inside the specified range of integration, and then converted to a set of simultaneous linear
algebraic equations; their solutions yield the first approximations to the requires pivotal
values of ¢(t). Applying the difference-correction technique, the first approximations have
been improved. After solving the integral equation (3.2) numerically, the stress intensity
factor V and the crack opening displacement jiyAv(x,0)/ 7, have been calculated nu-
merically and plotted separately against the dimensional frequency £, (0.5 < k; < 1) and
dimensionless distance @ (0 < a < 1), respectively, for different values of the material
inhomogeneity parameter b and strip width 2h.

In Fig. 2, the effect of the width of the strip on the stress intensity factor for a
homogeneous material has been shown; the effect of inhomogeneity of the material on
the stress intensity factor for different widths of the strip has been depicted in Figs. 3-5.

It is found that in both the homogeneous and nonhomogeneous cases, the effect of
the strip width decreases with the increase of the f{requency, and the graphs of the stress
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FIG. 3. Stress intensity tactor N vs. dimensionless frequency k.
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FiG. 5. Crack opening displacement vs. dimensionless distance x(b =
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0.2).

intensity factor N become flat with the increase of strip width 2h. From Fig. 3 it is clear
that the effect of inhomogeneity parameter b is prominent for low frequency k; and stress
intensity factor is greater for higher values of the inhomogeneity parameter b.

In Figs. 4-8 the crack opening displacements against dimensionless distance a for
different values of the material inhomogeneity parameter b and the strip width 2h have
been illustrated by means of graphs. Case b = 0 corresponds to the homogeneous case
(Fig. 4). From Figs. 4-6 it is seen that for a fixed value of inhomogeneity parameter b,
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. 7. Crack opening displacement vs. dimensionless distance z(f = 1.5).

the crack opening displacement is greater for lower values of & when the frequencies are
small, but the reverse effect is found for higher frequencies.

Next, in Figs. 7 and 8 we see that for a fixed value of £, the crack opening displacement
is greater for higher values of the inhomogeneity parameter b when the frequencies are
small, but for higher frequencies the eftect is just reverse.

Finally it is found in all the cases that the crack opening displacement reaches its
maximum at about » = 0, and then it gradually decreases and becomes zero at x = 1.
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F1G. 8. Crack opening displacement vs. dimensionless distance x(h = 1.8).
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Refined macro-dynamics of periodic structures (¥)

CZ. WOZNIAK (WARSZAWA)

IN THIS CONTRIBUTION a certain non-asymptotic approach to the macro-dynamic modelling of micro-
periodic composites is proposed. The obtained equations of macro-dynamics describe phenomena
related to the micro-heterogeneity of materials, e.g. dispersion and scale effects. An example of appli-
cations to micro-vibration and wave propagation problems illustrates the usefulness of the proposed
approach.

1. Introduction

AS [T IS KNOWN, by micromechanics of composite materials we mean a study of com-
posite material behaviour wherein the effects of the constituent materials are detected only
as averaged apparent properties of the composite, |1]. For periodic material structures
which are made of a large number of repetitive micro-heterogeneous cells, the basis
for averaging is a certain representative volume element (r.v.e.) of the structure. The
equations of macro-mechanics can be obtained by the known asymptotic approaches to
the macro-modelling of micro-heterogeneous materials, cf. [2-8], where inertial proper-
ties of a composite are uniquely determined by the averaged mass density. Hence, the
asymptotic equations of macro-dynamics can be applied solely to problems in which the
time-dependent excitations of the structure produce the wave-lengths much larger than
the maximum length dimension of r.v.e. In order to eliminate this drawback, a certain
non-asymptotic method of macro-modelling for dynamics of periodic structures will be
proposed. The result of this approach will be referred to as a refined macro-dynamics of
periodic material structures. The equations of refined macro-dynamics can also describe
vibration and wave propagation problems with the wave-lengths of an order of the cell
length dimensions.

The analysis will be restricted to the small displacement gradient theory and to the
linear-elastic materials. The equations of refined macro-dynamics investigated in this
paper will be obtained by simple calculations of averages and do not require any solution
to boundary value problem on r.v.e. Hence, the proposed approach can be eflectively
applied to engineering problems.

Notations

Throughout the paper subscripts !, j, &, [ run over the sequence 1, 2, 3 and are
related to the Cartesian orthogonal coordinate system in the reference space. Indices «,
b run over 1,...,n. The summation convention holds for 7, j, k, [ as well as for «a, b
unless otherwise stated. Points in the reference space R* are denoted by x, points in the
region V' = (=1,/2.1;/2) x (=13/2,13/2) x (—=13/2,15/2) by y. For any differentiable

(*) The research was supported by the Scientific Research Committee, Warsaw, under grant No. 3 3310 92
03.
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function f(x) we denote f; = df/dx;. Symbol = denotes an approximation admissible
from a computational viewpoint. The time coordinate is denoted by 7, 7 € [y, 7] and
it(-,7) = du/OT. For an arbitrary integrable function ¢(-) defined almost everywhere in
the region {2 in R? we introduce the well-known averaging operator

(1.1) () (x) = j B(x + y)dov(y),

v
for every x € {2, where {2y = {z € R*: V(z) C 2} and dv(y) = dy,dy,dy;.

|
vol(V)

2. Preliminary concepts

Let the heterogeneous periodic material structure under consideration in its unde-
formed configuration occupy region {2 in the reference space, and V' C {2 can be
taken as a certain r.v.e. of the periodic structure under consideration. We assume that
I = max{ly, [, (5} is sufficiently small as compared to the minimum characteristic length
dimension of f2. Hence, we shall deal with a certain micro-periodic composite structure.
Every element V(x) = x + V', such that V' (x) C 2, will be referred to as a cell of this
structure. For the sake of simplicity we assume that {2 = UV (z), z € A, where A is the
lattice of points in §2 which are centers of mutually disjoined cells V/(z).

In order to formulate basic hypotheses leading to macromodels of the micro-periodic
body, we shall introduce two auxiliary concepts. The first of them is that of a V'-macro
function. A continuous function F'(-) defined on {2 which, for every x,z € 2 and z—x €
V', satisfies condition F'(x) = F(z) is called a continuous V-macro function. Similarly, a
continuous function F'(+) having continuous derivatives up to k-th order, is called V'-macro
function if I'(+), together with its derivatives up to k-th order, are continuous V-macro
functions. Moreover, for every continuous V-macro function defined on {2 and for every
integrable function f(-) defined on {2 we assume

2.1) () 2 (N0 F(x)
for every x € (2. If (f)(-) is a continuous V'-macro function defined on {2y and F(-) is
V-macro function defined on {2 such that F(x) = ([)(x),x € {2, then

(2.2) j fGdv= Z(f)(z)G'(z)vol(V) = ] FGodv

Q €4 Q
holds for an arbitrary continuous V' -macro function (& defined on 2. Generally speaking,
V'-macro functions describe the macroscopic behaviour of the body.

The second auxiliary concept we are to introduce is that of a micro-shape function. We
assume that the phenomena related to heterogeneous micro-periodic material structure,
from the qualitative point of view, will be described by means of independent continuous
functions h,(-), @ = 1,...,n, defined on R* (which have physical sense only for x € {2),
satisfying the conditions:

(i) ho(x) = ho(x+1e;), 1 = 1,2,3 (no summation with respect to 7) for every x € R,
where e; is a versor of a;-axis,

(ii) (ha)(x) = 0, (ha,i)(x) = 0, for every x € R?,

(i) (eh,)(x) = 0 for every x € §2), where o(-) is a mass density function defined
almost everywhere on f2.
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Condition (i) is equivalent to the statement that h,(-) are V -periodic. Functions h(-)
will be called micro-oscillatory shape functions. The choice of these shape functions has to
be postulated a priori in every special problem and depends on the character of micro-
oscillations which we are going to analyze. As a simple example of functions h,(-) we
can take trigonometric functions sin(2rax;/l;), 1 = 1,2,3,a = 1,...,n (no summation
over ).

3. Basic assumptions

The proposed method of macro-modelling for micro-periodic composite body under
consideration will be based on two fundamental assumptions. The first of them takes into
account the physically reasonable hypotheses that the motion of micro-periodic structure
can be obtained by a superimposition of micro-oscillations on a certain macro-motion.
This macro-motion is represented by a V-macro field U;(-, 7). The micro-oscillations
will be described by means of the micro-oscillatory shape functions h,(-) and by certain
arbitrary fields Q¢(-,7). Denoting by u;(-,7) a displacement field at a time instant 7
from the undeformed configuration of the body, the first of the basic assumptions will be
referred to as:

Micro-macro localization hypothesis

Every motion of a micro-periodic body under consideration can be represented in the
form

(3.1) ui(x,7) = Ui(x,7) + ho ®)QI(x, 7). x€ 82, 7€][n,7/],

where (-, 7), Q%(-, ) are arbitrary continuous V'-macro fields together with their first
and second order space and time derivatives, and h,(-) are postulated a priori linear
independent micro-shape functions.

Fields U/;(-,7) and Q%(-, 7) will be called macro-displacements and correctors, respec-
tively.

The second basic assumption takes into account the fact that in displacement gradients
w; j(x. 7) which can be obtained from Eq. (3.1) the terms involving h.(x) are small as
compared to terms involving h, ;(x). Hence, denoting by £;;(x, 7) the linearized strain
tensor, we formulate the following assumption:

Micro-strain assumption

For the micro-periodic body under consideration the components &, ;(x, 7) of the lin-
earized strain tensor will be assumed in the form

(3.2) £:i(x,7) = Ui (X, 7) + ha (0@ (x,7), xE€ 2, Te|n,Ty].

Denoting by o,;(x, 7) components of the stress tensor and by A;;x(x) components of
the tensor of elastic moduli, the stress-strain relations for a micro-periodic body are:

(3.3) oi;j(x.7) = Ajju(X)[Uw,p(x,7) + ha (0@} (x,7)], x€ 2, Tte€nTy].

It has to be remembered that the tensor of elastic moduli A;;x((+) as well as the mass
density o(-) are V -periodic fields having the periods /; along z;-axes, respectively.
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4. Analysis

The macro-modelling approach of the composite structure under consideration will be
based on the assumptions formulated in Sec. 3, on the properties of ¥ -macro functions
(2.1), (2.2) and on the well-known principle of virtual work:

(4.1) l oi;0s;;dv = f piduda + l (0b; — oli)oudv
2 092 2

where p;, b; are surface tractions and body forces, respectively. Condition (4.1) has to hold
for every admissible virtual strain field 6<,; and every virtual displacement field éu;. In the
sequel we assume that body forces are constant and that 6u; = 0 on the boundary 2. By
means of Eqs. (3.1) and (3.2) we obtain du; = 6U/; + h,0Q¢, b = 6UG jy+ ha.(; 0Q4,
where 6U/;, 6()¢ are arbitrary sufficiently regular V'-macro functions defined on (2, such
that 6U; = 0, 6Q¢ = 0 on the boundary df2. Using Eqgs. (2.1) and (2.2), the left-hand
side of Eq. (4.1) can be transformed as follows:

[ aisbeizdv = 3 [{o:) (@)U (@) + (01ha ) (2 TEQ (@) vol(V) .

2 2€41
From Eq. (3.3) and (2.1) it follows that (o;;)(-. 7) and {;;h, ;)(-, 7) are V-macro fields
defined on §2,. Hence, there exist V'-macro fields S;;(-,7), H,i(-. 7) defined on §2 such
that
(4.2) Fex, TV E (oY, )y X T) & (ol )X, T), € .

By means of Eq. (2.2) we conclude that

(4.3) [ aijbeidv ™ [ (S804 ) + HaibQ%)dv.
2 2

For the right-hand side of Eq. (4.1), using Eqs. (2.1), (2.2) and bearing in mind that
du; = 0 on Jf2, we obtain

(4.4) J pibugda + ] (ob; — oii;)du;dv

52 ”

j[( (0)b; — (YU )6U; — (0hahs)O; 6Q%dv .

V-macro fields Si;(-,7) and H ,;(-.T) wnll be called macro-stresses and structural forces,
respectively, and they represent an averaged state of stress in a micro-periodic body under
consideration. On the basis of formulae (4.1), (4.3), (4.4) we shall postulate the following:

Macro-approximation of virtual work principle

Macro-stress field S;;(-, 7) and structural force fields H,;(-, 7) are interrelated with
macro-displacement field U;(-, 7) and corrector fields Q7 (-, 7) by means of condition

(4.5) f (5:;6Uq jy + H,:6Q)dv = l [(e oV )6U; = (ohahy)Q:6Q0dv

2
which has to hold for arbitrary continuous (with their first derivatives) V' -macro fields
8U;(+), 8Q%(+) definéd on §2, such that 6U; = 0, 6% = 0 on the boundary &1?.
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Under the assumption that fields ¢{7;(-), 6Q¢(-) are independent, from Eq. (4.5), we
obtain

]. (Sij.j + {o)bi — (o) )oU;dv =0,

(4.6) i

[ (Hai + (0hahn)0D0Q2d0 = 0.,

2
for every (sufficiently regular) V'-macro fields 6{/;, ¢(){, which are equal to zero on the
boundary 2. It can be shown that the restriction of virtual fields 617;, Q7 1o V'-macro
fields in Eqs. (4.6) is irrelevant. Hence, using the du Bois-Reymond lemma, conditions
(4.6) are equivalent to

Sia(x, )+ (0)b; — (o) U i(x,7) = 0,
s )+ {0l = )T
IIL”'(X..T) + (Qhuh’)>Qi(x'T) = 0~ X € ‘(21 T & [T()-«Tf] .

It can be easily observed that from Eqs. (4.2), (3.3) and using Eq. (2.1) we can assume
fields .S;;(-. 7), H ,i(-, 7) in the form

,S’i‘i(x‘r) = (-‘Mki)“(l.—.i)(xﬁf) + (f\.jf'mfi.a.k)Q?(x- ),
Hoi(x.7) = (Aijaihn, YUty 7) + (Aijrtha jhe )QR(x. T)

where x € £2 and T € [7, 7). Equations (4.7), (4.8) involve exclusively V-macro fields
and constitute the final result of the foregoing analysis. The proposed method of macro-
modelling in its part related to the modelling of the inertial properties of the body does not
involve any asymptotic approximation. At the same time the material macro-properties of
the body are obtained by using micro-strain assumption (3.2) where terms of order o)
were neglected, i.e. we have applied here an asymptotic approximation. That is why the
proposed method can be referred 1o as a semi-asymptotic method of macro-modelling,

(4.8)

5. Conclusions

The macro-modelling approach introduced in Secs. 3 and 4 describes a certain general-
ized elastic continuum governed by the field equations (4.7) and constitutive relations (4.8).
It is easy to see that the form of Egs. (4.7) is independent of the material properties of the
body under consideration, hence, Egs. (4.7) will be called the equations of motion. Simi-
larly, Eqs. (4.8) will be referred to as macro-constitutive equations. Combining Eqs. (4.7)
and (4.8) we obtain the system of equations for macro-displacement and corrector fields

<.‘l,‘\j;\-{)[‘;;\-‘[‘,‘(x. T) + ("'lf_jk‘fh",t'>Q;f-‘_j(x' T) + (Q)(),‘ = (Q)('_'f,'(x. T )

b r
(Ql’uhb>(2,’(x- T) s <-'l1]k1"1u,»jhh.l>Qﬁ»(x- T) = _("li_’l\'l”]'fl‘j>[’k,l(xsT) 3
x € 2,1 €[n,T5]-

(3:1)

These equations describe on the macro-level a micro-periodic material structure, the in-
ertial properties of which are specified not only by the averaged mass density (o) but also
by micro-inertial moduli (oh,h,). Tt has to be emphasized that the micro-inertial mod-
uli {ph,hy) involve the length dimension of the r.v.e. Hence, Eqgs. (5.1) can be a basis
for investigations of scale eflects in micro-periodic composites. Moreover, the obtained
equations allow to analyze micro-vibrations and propagation of micro-waves in composite

http://rcin.org.pl
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materials, what takes into account the dispersion effects due to the micro-heterogeneity
of the medium. The aforementioned problems can not be investigated by means of the
asymptotic homogenized continuum, cf. [2-8]; that is why we shall consiider Egs. (4.7), (4.8)
and (5.1) as equations of the refined macro-dynamics of micro-periodic elastic composites.

The form of the derived equations depends on the choice and number of micro-shape
functions h,(-), @ = 1,...,n. Let us observe that on the micro-level (inside every cell
V(x), x € £2,) the model is described by a proper choice of micro-shape functions; in
such a manner we can obtain more or less exact descriptions of a problem. Let us also
observe that the corrector fields ()¢ are governed by the second of Eqs. (5.1) which are
ordinary differential equations involving only time derivatives of correctors.

In every special problem governing equations (5.1) have to be considered together
with the boundary conditions for macro-displacements U/; and with initial conditions for
macro displacement U; and correctors (). The form of these conditions depends on the
physical character of the problem and takes into account Egs. (3.1) or (3.3); it has to
be emphasized that the solutions to the boundary value problem for Egs. (5.1) have a
physical sense only if the obtained solutions U;, ¢, together with their first and second
order derivatives, are continuous V' -macro fields.

The refined macro-dynamics constitutes a certain generalization of the macro-model-
ling approach proposed in [5] and developed in [6-8], where the muicro-inertial moduli
were not taken into account. Disregarding in Eqs. (5.1) the terms involving (oh,h,)
as small of order O(l?), we obtain the asymptotic model of micro-periodic composites
described in [S-8] and given by

(Aijret) U 5 (%, 7) + (Aijrtha 1) Q% ;(x, 7) + (0)bi = (0)Ui(x,7),
(Aijktha, jhe)Qh(x, 7) = =(Aijktha YUk i(x, T),x € 2,7 € [1y,74].

In this asymptotic case correctors (¢ are governed by a system of 3n linear algebraic
equations and can be eliminated from the foregoing system of equations. Such situation
does not hold for Egs. (5.1) of refined macro-dynamics, where correctors are governed
by a system of ordinary differential equations, involving second-order time derivatives of
correctors.

It has to be emphasized that for the homogeneous material structures we obtain
(Aijritha) = Aijri(he) = 0 and hence, Eqgs. (5.1) yields two independent systems
of equations

AijktUs,ti(x,7) + pb; = pUi(x,7),
o b
o(hahe) Qi (%, 7) + Ajjri(ha jho)QR(x,T) = 0.

Under initial conditions Q9(x, 7y) = 0, Q' (x,7p) = 0, x € §2, we obtain Qux,7) =0for
T &[T, X € §2. Hence, we conclude that the oscillatory terms in Eqs. (3.1) are due
to the micro-heterogeneity of a material composite structure.

An illustrative example of applications of the refined dynamics will be given in Sec. 6.

6. Applications

The proposed model of the refined macro-dynamics will now be applied to the problem
of a straight micro-periodic linear-elastic bar treated as a uniaxial structure. The repre-
sentative element is now given by the interval (—{/2,//2) of the z-axis, where z = z,. We
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assume that tre Young modulus £(2) and the mass density o(r) are piecewise constant
periodic functions in (—a /2, a/2) are equal to Iy, oy, and in (=1/2,1/2)/(—a/2,a/2) are
equal to 3, o, respectively. For the sake of simplicity we introduce only one micro-shape
function h(2) = hy(x), « € R, which is continuous, linear in (—={/2. —a/2), (-a/2.a/2),
(a/2,1/2), anc in [=1/2,1/2] takes the values i(=1/2) = h(0) = h(l/2) = 0, h(—a/2) =
1, h(a/2) = —1, and has the period [. By U(-.7), ()(-, 7) we denote macro-displacement
and corrector fields, respectively, defined on a certain interval (=L, L) of the x-axis,
where L > [. The derivatives of F'(-) with respect to 2 = 2 will be denoted by F'(-),
and the averaging operator (-) will now be related to a segment (—{/2,1/2) of the z-axis.
From Eqgs. (5.1), neglecting the body forces, we obtain

(ENU"(x,7) + (ER)Q'(2,7) = (o) U (2, 7),
(ohh)Q(x,T) + (ENN)Q(x.7) = —=(ERYU'(x, 7).
Setting &y = «/l, ¢ = (I — a)/l we obtain

(6.1)

(0) = 1oy + 0202, (E) = ¢k + ¢Fn
(ED'Y = 2(E, — Ey),  (EN'D') = 4(E/d) + Ex/dn),
(ohh) = 12/3 x (o) = */3 - (d101 + ¢202).
The aim of the following section is to analyze the problems of free vibrations and wave

propagation related to the micro-periodic bar under consideration. The analysis will be
based on Egs. (6.1).

6.1. Vibrations

Let € (~1/2,1/2) where I, > | and 7 € (—00,00). It can be observed that
Eqs. (6.1) have a solution of the form

Uz, 7)=0, Q@Q(z,7)= Acospr + Bsinur,

where A, B are arbitrary constants and p? = (Eh'h')/{ohh). The positive constant p
will be referred to as the free micro-vibration frequency, and will play an important role
in the subsequent analysis.

First we shall look for the solution of Egs. (6.1) in the form U(z, 1) = Uy(x) exp(iwT),
Q(a, 1) = Qo(2) exp(iwT). Hence

(EYUy'(2) + (o) Un(x) + (ER")Qi(x) = 0,
((ohh)w? = (EW'W'NQu(x) — (E£h")Uj(x) = 0;
(ER'Y
(Eh'h")

and introducing the micro-vibration frequency p we obtain

E" qu_ (9),2 *’-’2r,__.
(6-3) [m = ('ﬁ) len () + (E)w [l = (;) ]LH(J-) =0;

a similar equation we obtain also for Qp().

(6.2)

after simple manipulations, defining " = (I) - = (o) Ey+ 02/ E2)~ 1 (cf. [1])

REMARK. The effective modulus £ introduced above makes it possible in the asymp-
totic approximation (/ — 0), to represent the first equation of Eq. (4.1) in the form
E<T/" (2, 7) = (0)U/(x, 7). Let us also observe that E<"/(E) < 1.
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From Eq. (6.3) it follows that (A, B are arbitrary constants):

(i) if (w/p)* < E<T/(E) or (w/pu)? > 1 then there exist sinusoidal vibrations Uy(z)
Acoskz, Qy(z) = Bsinka;

(i) if E"/(E) < (w/p)* < 1 then there exist exponential vibrations U/,(z)
Acoshkz, Qy(z) = Bsinhkz;

(iii) if (w/pu)? = 1 or (w/p)? = E*7/(E) then we arrive at the degenerate or trivial
case, respectively.

This classification holds if (E£A') # 0; if (Eh') = 0 then only sinusoidal vibrations are
possible.

In the case (i) of sinusoidal waves, by substituting Uy(z) = A coska,Qy(z) = Bsinka
into Eqgs. (4.2) we obtain nontrivial solutions (A # 0, B # 0) only if

w{p) — k*(E) k{(Eh')
k(ER" w (phh) — (Eh'h")

Il

=0.

Introducing the micro-vibration frequency i defined above we obtain finally

T (£) 2} («w)?
y e B (o ) (=)
(54) = (¢ i I \g

The second term on the RHS of Eq. (6.4) describes the dispersion effect due to the micro-
heterogeneous structure of the bar, i.e. the nonlinear interrelation between w and k. For
a homogeneous bar E°T = (E) and Eq. (6.4) yields w?(p) = (E)k*, (E) = E. If | — 0
then pt — oo and the dispersion eflect disappears. It has to be emphasized that Uj(+),
Qo(+) have to be V-macro fields (cf. Sec. 2), where now V' reduces to the line segment
(—1/2,1/2). Hence, for sinusoidal waves the obtained results have a physical sense only
if [k < 1. Treating [k as a small parameter we can derive from Eq. (6.4) the formula
P e = SNEL g
W= @ k [1 3(.‘."L) (Eh’lz’)z] + o(k°l7),

which represents w? in the explicit form.

In the case (ii) of exponential waves, after substituting U/;(z) = A coshkz, Qy(z) =
B sinh kz into Egs. (6.2), we obtain nontrivial solutions only if

w¥(p) + k*(E) k(ER')
CK(ERY | wi(ohh) — (ER'R')

=0.

Hence, after introducing p, we obtain

o e

It has to be emphasized that Eq. (6.5) has a physical sense only for micro-heterogeneous
bars, because in the case of homogeneity £<%/(F) = 1 and there are no exponential
vibrations.

Summing up we conclude that the micro-periodic heterogeneity of bars leads to the
dispersion effects and to the exponential vibrations which can not be treated on the basis
of the asymptotic homogenized models of periodic structures.
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6.2. Wave propagation

At the end of this example the wave propagation problem in a infinite micro-hetero-
geneous bar will be discussed. To this end we look for a solution of Egs. (6.1) in the form
U(z,7) = F(z — ¢7), Q(2,7) = ((« — c7), where c is the wave propagation velocity.
Setting ( = = — ¢7 we shall use the notation ' = dF/d¢, G' = dG/d(. Then from
Egs. (6.1) after manipulations, we obtain

(6.6) (E) - <p>c2)£—21~"“ + (B~ (p)eHF =0,
and a similar equation for (;. Eq. (6.6) implies the following special cases of wave propa-
gation in a micro-periodic bar:

(i) sinusoidal waves if ¢* < (E“'"/(y/) or ¢*> ((E)/{e));

(ii) exponential waves if l“‘“/(g S 6 ( 2) /{0);

(iii) degenerate case if ¢© = E"/(v) or ¢ = L)/( )

Conditions (i)-(iii) hold if (E/) # 0; for (£h') = = (E) /(o). In the case (i),
substituting {/(z,7) = Asink(x —¢7), Q(2,7) = B cosA(l —¢7), k =27 /L, where L
is the wavelength and A, B are arhitrury constams, into-Eqs. (6.1) we obtain nontrivial
solutions only if

{
h

; o s 2k?
(6.7 o) = £ + (o) — (EN—
He
The second term on the RHS (6.7) describes the effect of dispersion. The obtained result
has a physical sense only if [k = 27(/L < 1 because functions U(-,7), Q(-,7) have to
be V-macro functions, cf. Sec. 2. Tredung, k! as a small parameter and bearing in mind
that 2 = (ER'R')/{ohh) = 3(ER'L")/1*(0) from Eq. (6.7) we obtain

el AN
= {_ | — l(ﬂ])zj.]‘i_
(o) 3 (Eh'h')?
It can be seen that for kl — 0 the dispersion effect disappears.

Summing up we see that the micro-heterogeneity of a bar implies the existence of
exponential waves and dispersion. These effects can not be investigated on a basis of
asymptotic homogenization equations (for [ — 0), i.e. for the known homogenized models
of a bar.

+ o(k*1%).

7. Final remarks

The example given in Sec. 6 illustrates the fact that the refined macro-dynamics can
be successfully applied to dynamic problems for micro-periodic structures. Among the
advantages of the proposed macro-modelling approach we can mention the relatively
simple form of the resulting equations (5.1). Moreover, the governing equations of refined
macro-dynamics (4.7) and (4.8) can be oblained without any solution to a boundary value
problem on the r.v.e. The main drawback lies in an imprecise choice of the micro-shape
functions h,(+) based often on the intuition of the researcher. Different applications of
the proposed method of modelling as well as the possible generalization of this approach
are now under consideration and will be presented separately,

http://rcin.org.pl
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Virial coefficients, collective modes and problems
with the Galerkin procedure

J. J. SEAWIANOWSKI and A. K. SLAWIANOWSKA (WARSZAWA)

DISCUSSED ARE SOME PROBLEMS in collective dynamics of discrete and continuous systems, and dis-
cretization Emccdurc based on imposing appropriate holonomic constraints and truncation of cer-
tain hierarchy of moment equations. The relationships with the Galerkin procedure is analyzed with
special emphasis on certain relatively popular misuses of this method. As a special example, very in-
structive and geometrically privileged, the model of affinely-rigid body is reviewed in some geometric
details. In this paper we deal with purely mechanical problems. Thermal phenomena and constitutive
assumptions concerning reactions of thermal constraints will be discussed in a forthcoming paper.

1. D’Alembert principle, Galerkin techniques and truncation of the hierarchy of moments

LET US CONSIDER an arbitrary system of material points, without precising at this stage
its being discrete or continuous. Position of the a-th material point at the time instant ¢
will be denoted by x(t, a). Newton’s equations of motion may be written in the following
form:
9% [ du ]
11 —A(t,a) = ®|a(- ), —(."); t,al,
(L.1) A () = |2(.), 56:)
@ denoting the density of forces per unit mass. This is a system of ordinary differential
equations labelled by the “index” a; the latter may have a finite, denumerable, or conti-
nuous range. The density @ may depend on the evolution (1, a) — (%, @) in a functional
way; we symbolize this dependence by using the square brackets. If there is no retardation
or memory, Eq. (1.1) simplifies to
& [ dx ]
1.2 —(l,a) = P|a(t,"), —(t,);t,a|.
(1.2) 5 (@) = @|x(t, ), 50
If the system is finite, it is customary to write a as a capital subscript A = 1,..., N, thus,
Eq. (1.2) becomes

"
P4

(1:3) my £{—1’1(1) = [y (.‘l.‘l(l'). o o2 NA(L); dﬂ(t), : A d:HV (z‘.)) ;

dt? dt
m 4 denotes the mass of the A-th material point, and Iy = m 4 4 — the force affecting
this point. This is the usual system of Newton equations for N -particle systems.

If the system is continuous, the label ¢ becomes Lagrangian radius-vector (material
variables). In the special case of simple elastic bodies free of external interactions (dy-
namically homogeneous physical space), the density @ in Eq. (1.2) is a local algebraic
function of the placement, i.e., of the first derivative of the Eulerian radius-vector = with
respect to the Lagrangian radius-vector «,

(1.4) (1] ;z:(t,-),%%(t,-); Lal =&V, z(t,.); t,a).
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The system (1.1) then becomes a partial differential equation for the time-dependent
vector field @

) -
(1.5) T PV, a(t.); t.a).

When the body is materially homogeneous, there is no dependence of @ on the last
argument a.

By the analogy with Eq. (1.3), one writes equations of motion of a continuous body
in the form

0% da

(1.6) g(,((z)gﬁ(t,a) = Fla(t,.), j{(i, sl
where oy denotes the Lagrangian density of mass, and F = p,® — the Lagrangian
density of forces per unit non-deformed volume. When written in Eulerian terms, Eq.

(1.2) becomes

Do
(1.7) o(t. ;z:)ﬁ(tﬁ.r) = fla(t,.), v(t,.);t, 2],
where a(i,-) denotes the inverse mapping of x(t..), i.e., z(t,a(t,u)) = u for any argu-
ments ¢ and w; v(t,-) denotes the Eulerian velocity field, i.e., v(u) = -_(%(f,. a(t,u)) (W
(2

acting only on the first argument), and f denotes the Eulerian density of forces per unit
deformed volume. The Euler velocity field may be expressed through the fields «(-,-) as
follows:

; dat da’
(1.8) v'(t,x) = —m(l,(z(l..t))(_)—f(t.z,).
D/ Dt denotes the substantial derivative, thus
Dyt v vt
oy + nd

Dt Ot dad”
In the special case of fluids f does not depend on the «a(t,) — variable.

To become a closed system of equations, Eq. (1.7) must be completed by the continuity
equation
(1.9) (())—i) + div(pv) = 0,
and — if we consider the full thermomechanical theory — by an appropriate equation
describing the dynamics of the temperature field.

In a wide range of problems, including certain general considerations, one does not
need to distinguish between continuous and discrete case. We shall use then the general
form (1.1), (1.2) and represent the Lagrangian mass distribution by a positive measure ( on
the set of labels «, i.e., on the material body. The Euler mass distribution in a given config-
uration ¢ (¢ is a mapping from the material space to the physical space, e.g., a — (1, a))
is represented by the measure v = j, obtained from g by the e-transport; thus,

[ Fep)aydu(ay = [ Fx)dp,(2)

for any function f on the physical space.
The unique treatment of discrete and continuous systems is effectively applied in the
theory of collective modes and in moment methods; we shall also follow it. Nevertheless,
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it must be stressed, that there is a deep qualitative gap between both cases, and one
must be very careful when considering them on the same footing. The most spectacular
example we know is the theorem proved by H. ZORSKI [27] about the impossibility of
dynamical injection of discrete systems into continua. Fortunately, the matter considered
below is neutral with respect to those delicate and troublesome problems.

The material measure . gives rise to the following scalar product of functions on the
set of material points:

(1.10) (flg) = [ T(a)g(a)du(a).

The symbol L*(;t) will denote the space of functions square-integrable in the ji-sense,
i.e., such ones that (f|f) < oo. Similarly, for the vector-valued material functions, ie.,
functions assigning spatial vectors to material points, we define the scalar product:

(1.11) Glu, w]:= gij{(u'|w?) = gi; I w! (@)w’ (a) dp(a),

where ¢ denotes the spatial metric tensor (in Cartesian coordinates g;; = &;;).
Kinetic energy and power of forces ¢ are given by the following functionals:

o M shde oz
(1.12) 7 [)—t r,.)] = 3G [ “(t..),-,()—t(r.-)].
da dx dr
B Pl ) —(.[. (1. 2 [a(t.. G0 st

The Hilbert space L*(p¢) is separable; let us choose a complete system of real-valued func-
tions H", » = 0. 1.2, .... For certain reasons, which become clear later, it is convenient
to include here a constant function; we shall put //" = 1 and denote the remaining I/"
by He, p=1,2,....

Let us calculate the moments of equations of motion (1.2) with respect to the complete
system /17, i.e., take the scalar products (1.10) of equations of motion and functions /1.
The resulting equations have the form of balance laws

d

(1.14) W””: N™ r=0,1,2,.... i=1,23,
1

where

(1.15) M = <11’ ddl’ > N™ = <H7‘ \¢i>.

The quantities M ™, N"* are, respectively, H"-moments of the distribution of linear mo-
mentum and the distribution of forces within the body. They provide a global, collective
representation of those distributions. In many problems one is interested rather in aver-
aged, materially smeared out moments (1.15) than in one-particle quantities like

dz
[d'(/ )] (%(t,a,)) = Q“((L)—a—;(t,a),

ete. It is clear that MV N equal, respectively, the total linear momentum of the body
and the total force acting upon it,

(1.16) MY = Pt N% =",

and this is one of reasons for using " = 1 as an element of the complete system H".
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In principle, the system of moments (1.15) is equivalent to the one-particle distribution
of linear momentum and forces, i.e., these distributions may be reconstructed from Eqgs.
(1.15). Thus, in the case of continuous medium, Eqs. (1.14) provide some kind of infinite
discretization, because the system (1.1), labelled by the continuous variable «, is replaced
by a countable system labelled by the discrete index . However, in the case of solids,
the dynamical moments N"* are not [unctions of the kinematical moments M "' alone,
thus, Eq. (1.14) is not an effective dynamical system for M "', Lagrangian representation
(L.1), (1.2) is adequate for solids, but non-effective for fluids, thus, when applying the
moment techniques to fluids and to physical fields interacting with continua, one has to
use the Eulerian form (1.7) of equations of motion. Instead of the material functions
one uses then functions defined on the physical Euclidean space £*. Projecting equations
(1.7) onto elements of an appropriately chosen complete system of spatial functions, one
obtains a discrete system of equations; in certain problems of fluid dynamics such a system
provides an effective tool of integration or qualitative discussion. For example, calculating
multipole moments of Egs. (1.7) with respect to Eulerian coordinates, one obtains the
hierarchy of so-called virial equations used for a long time in hydrodynamical problems
of astrophysics and in the theory of the shape ol Earth. Nevertheless, even in the case
of fluids, described in Eulerian terms, the direct calculation of moments does not lead
automatically to a closed dynamical system.

To transform Eqs. (1.14), at least formally, in a dynamical system, one has to introduce
explicitly the //-moments of configurations, i.e., the quantities (i "|x’). Thus, we expand
configurations 2 (¢, -) with respect to the mode functions H",

(1.17) wi(t,a) = )¢ () H (a),
and substitute this expansion to Eqs. (1.14). We obtain the following system of ordinary
differential equations for expansion coeflicients ¢’

e o dy :

_ Q" —q¢'y = N'i(q. =, 1), r=0,1,2,..., =1,2,3,
(1.18) Z:Q dlzq s (¢ = ), r=10.1, i =1152,3
where
(1.19) Q™ = (H"|H*) = [ H(a)H"(a)dp(a).

If we consider a fluid, described by equations

(1.20) Q(f,;l:)%(i.:nr) = flo(t,-);1, 2],

and calculate the Eulerian moments of Eq. (1.20) with respect to some complete system
F7 of functions on E?, then the most natural way of transforming the resulting system
of moment equations in a closed dynamical system consists in expanding the Eulerian
velocity field with respect to F'",

(1.21) v(t,x) = Y v (OF ().

Substituting Eq. (1.21) to Eq. (1.20) one obtains in principle a countable dynamical
system for coefficients v,..

In this paper we concentrate mainly on the Lagrangian description and Eqs. (1.18).
The mode functions /" need not be mutually orthogonal and normalized; there are
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numerous applications where non-orthonormal systems are more convenient. Thus, we
do not assume that )™* = é”°. It is natural to use real functions // " and real coeflicients
¢'. If they were complex, we would have 10 use additional conditions for coefficients ¢,
to ensure the reality of Eulerian coordinates '

Equations (1.2), (1.18) are in principle equivalent. If the system is finite or discrete,
then the transition from Eq. (1.2) to Eq. (1.18) is a change of coordinates — the
natural variables x, are replaced by generalized coordinates ¢',. Any ¢, depends in
general on all radius-vectors x 4, i.e., ¢ are collective coordinates, parametrizing coherent
multiparticle motions. The same is true in the continuous case, and, by abuse of language,
we can say that the transition from the field variables a(t,-) to the discrete parameters
q', is a change of representation, replacing the one-particle coordinates z(t, a) by the
collective variables ¢',. As seen from the formula (1.17), the quantity ¢°, is an amplitude
of the intensity with which the collective mode //" occurs in a given configuration 2.

(QQ"* are quadrupole moments of the Lagrangian mass distribution. They are H-
collective coeflicients of inertia. In the sequel the Einstein summation convention will be
applied not only to the spatial indices, but also to the Hilbert-space labels, thus we write

: - &5, - l
(1.22) it a) = ¢ (OH (@), Q7 =g'y = N™ (q. o ’)'
di? dt

In equations of motion (1.18) the centre of mass motion and the relative motion of
constituents are mixed in a non-physical way. However, il the system of mode functions
H™ includes the constant function I/" = 1, which we always assume, it is relatively easy
to separate these two kinds of degrees of freedom. The parameters ¢',, 0 = 1,2,...
refer to the relative motion, and the radius-vector of the centre of mass is expressed by
generalized coordinates as follows:

(1.23) q' = I—‘IITQ"([",. = ¢'y + ..\lfQquL“

where M = [ dy is the total mass of the body, and

(1.24) Q" = H"(a)dj(a)

is the H"-dipole moment of the mass distribution; obviously,

(1.25) Q'=M, QW=M, Q%=Q"

Inertial properties of the body in relative motion are described by coeflicients
(126) = QU ~ 2Q0Q;

the subscript int refers to the internal motion, i.e., motion with respect to the centre of
mass reference frame.

As stated above, our considerations are based on the assumption that all multipole
moments () are finite; in particular, the total mass M is finite. In foundations of statistical
mechanics and in general theory of-dynamical systems one considers also infinite systems
of particles with the infinite total mass. The scheme presented here does not work for
such systems because, as a rule, the inertial parameters () will be infinite. Moreover, the
very splitting of motion into translational and internal parts breaks down, because the
centre of mass is no longer well-defined. Only in certain exceptional situations, namely,
when the total linear momentum is finite, the centre of mass reference frame may be
defined. We are indebted for this observation to S. PIEKARSKI.



310 J.J. SLAWIANOWSKI AND ALK, SEAWIANOWSKA

Equations of motion (1.18) may be rewritten in the following form:

d*q = o e Il i
(127) M rulz =l Q=2 = N¥— QU i=1,2,3, = 1,2...,
i.e., they consist of two systems of balance laws
dpt d
1.28 L op, Sues Ng
( ) (lt “ nt int

where M, N;, denote the relative-motion-parts of A, V,

jul}

d : .
(1.29) ME = Qe “flo N% = Neoi %Q@F'.
M

(l/ 0 dgt,
) . dt’ dt ,
coupling between translational and internal dynamics. However, in the theory of multi-
particle systems and in the continuum theory, we are usually interested in a pure relative
dqt,
: dt '
account the expansion (1.17) and the separation of translational and internal motion, we
can rewrite the formulas for kinetic energy and power as follows:

In general, both /' and N7 depend on all arguments ¢, , 1; there is a

int

(internal) motion, where /* = 0 and N, " depend only on ¢',, , t. Taking into

1 dq',dgdy .. M dg'dgl 1 dq',dqi
71=_ iy e i —— —— [, [ o .QO‘
279 @ 299 ar T % T Tar e
(1.30) :
dg', dyg dqt,

gl
P = U di ‘N]T = Jl‘,f_(FFJ + 9ij dt ]\’Ilﬁi}
In this way the system of one-particle variables x(a) has been systematically replaced
by the collective generalized coordinates ¢'. In particular, if we deal with a continuous
medium, i.e., if the label a is a threedimensional radius-vector running over the material
manifold, then the above procedure results in an infinite discretization. This means that
continuous fields a +— x(a) descnbmg configurations are replaced by elements of R, i.e.,
by infinite arrays of numbers ¢*, ¢z, . ... The functions // " represent the basic collective
modes; their choice depends on the pdrlicular physical nature of the problem. Reasonable
choices are somehow suited to the structure of interactions. By this we mean, e.g., that
for any r the degrees of freedom corresponding to generalized coordinates ¢y, ..., q",
are relatively autonomous, i.e., weakly affected by the degrees of freedom described by
parameters ¢',, p > 7. In a wide range of problems it is convenient to choose and order
the modes /1" in such a way that for increasing r the oscillations of functions /" become
faster (starting from the non-oscillating //" = 1). This corresponds to the hierarchy of
increasing lengths of the excited waves. In many problems it is only a few long-wave
modes that is relevant for the considered phenomena and decides upon their qualitative
features. It is so not only in microphysical problems like the dynamics of suspensions, but
also in macroscopic elastic problems, including technical applications.

If the system is continuous, its equations of motion (1.1), (1.2) are equivalent to an
infinite system of ordinary differential equations of the form (1.18). Such infinite systems
are computationally non-effective and do not provide any real simplification of models
based on finite systems of partial differential equations. The same concerns finite but
very large systems (1.3). However, in situations where it is only a few approximately
autonomous long-wave modes that decides about the qualitative behaviour of the system,
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we can perform an eflective finite discretization of Eqs. (1.1), (1.2). This is achieved by
imposing the discretization constraints.

Let us assume that it is known, from some theoretical considerations or from experi-
mental data, that in a given range of phenomena described by Egs. (1.2), motion of the
system holds approximately in a finite-dimensional linear subspace A of L*(p), eg., in
the linear span of modes H" H'. ..., ",

N

(1.31) A= {Zc,.n",«,.ER}.
r=0
By “approximately holds” we mean that, for any = > 0, there exists an open range of initial
conditions for which all trajectories do not depart from 2 by the Hilbert distance larger
than ¢, uniformy all over the time axis. Usually this follows from the fact that, due to a
special organization of internal interactions, the subspace -\ has attractive properties, and
for sufficiently small open domains of initial states, the system performs small vibrations
about 2. This is the typical mechanism of holonomic constraints in mechanics. Performing
orthogonal projections of those oscillating trajectories onto 2 one obtains constrained
trajectories, as seen by observers who do not notice oscillations or do not take them into
account. Such constrained trajectories satisfy equations of motion following from the
d’Alembert principle.
Our constraints equations have the form

(1.32) =0 e N

According to the d’Alembert principle, it would be wrong to substitute algebraically
equations (1.32) to the primary equations of motion (1.2). Instead, equations ol con-
straints should be substituted to modified equations of motion, involving some a priori
non-specified reaction forces,

Q : =¢ + ¢p.

or?

where the power of reactions @ is assumed o vanish on any virtual velocity field V
compatible with Eq. (1.32), i.e.,

(1.33)

(1.34) GV, dg] =0
if )
N
(1.35) V=) V.H"
r={)
Thus, using Eqgs. (1.18), we have
(R B o
(1.36) (-;71\,1“ - Q’s;’zq‘s = N+ NE, +=0,1,2,...,
where N o
(1.37) 9ij Y  NEV7, =0

r=1)

for any system V*,,..., V¥x, k = 1,2,3. Expression N} in Eq. (1.36) denotes the
dynamical H"-moment built of the reaction forces,

(1.38) Ni = (HT|#).
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Condition (1.37) means that all moments of reaction forces with » < N vanish,
(1.39) Ni =0, ie, Fr=0, N§ =0, r=0,1,2,....N, p=1,2,...,N.

Therefore, the first (N + 1)-tuple of the moment equations (1.36) is free of reaction
forces, although the forces @i themselves do not vanish. All motions compatible with
holonomic constraints (1.32) satisfy the subsystem r = 0,1,..., N with algebraically
substituted conditions (1.32),

d? dl
1.40 Mm|A = = = N"(q, , r=0,1,2,....
(1.40) | ;az 'y = N (0 5he) r=on,
Separating the translational and internal motion we obtain
d2qi 1 ot
(1.41) R —41:“ ZQ.m dtz‘“' = .m(q,—, t).

When restricted to the range 0,1,..., NV, the index r will be denoted by capital Latin
letters; similarly, for o0 = 1,..., N, we shall use capital Greek letters. It is a generic
situation that the (N + 1) x (N + 1) matrix [Q*#] is non-degenerate; obviously, the
N x N matrix [@Q*“] is then also non-singular. Therefore, Eqs. (1.41) with p = 1,..., N
is an effective system of equations of motion for the A-constrained system. All hlgher
modes H", r > N, are then non-excited; ¢',, = 0 for r > N. Equations (1.41) with
o= N+ 1,N+2,.. . are superfluous. They may be used, however, for determining the
reaction forces @ .

Constraints (1.32) reduce the kinetic energy expression to

1 dq'adg’p M dq'dqf 1 d¢isdg’y
(1.42) T =g
dt  di

AB _ v
. + =gij el
28 © 28 A YT a @ O
In this way we obtain some problem from the realm of analyu‘eal mechanics of systems
with a finite number of degrees of freedom. Coefficients ¢%. are generalized coordinates,
M and Q* are inertial parameters, and F'', N*' are generalized forces. The assumed

nonsingularity of [, ] implies that the system (1.41) is regular, i.e., solvable with respect
to generalized accelerations,

d*q's i
(1.43) P77 QinsaNit's
where the matrix [Qinx ] is reciprocal of [Q "], i.e.,
(1.44) QnrnQu® = 6%,

This method provides an eftective discretization of continuous systems and computational
simplification of systems with a finite but large number of degrees of freedom.

As mentioned, the moment procedure is applicable also 1o field-theoretical problems in
the physical space E?, in particular, to the Eulerian formulation of the theory of continua.
Lagrangian coordinates « are then expressed as functions of Eulerian variables z, i.e., as
fields on 3. We expand them with respect to the mode functions F'" used for calculating
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the moments of Eqs. (1.7),

(1.45) a(t.x) =Y a ()F (x),
)

substitute this expansion to Eq. (1.7), and obtain a denumerable-infinite system of ordinary
differential equations for a,.. There are some problems, however, with the truncation
procedure. Namely, when the fields 2 — a(f.r) expressing material coordinates through
spatial ones are confined to some proper functional subspace, e.g., to a finite-dimensional
space [" spanned by functions ', F''. ..., 'V, then, except for the very special situations
(very special choices of functions /"), the corresponding Eulerian velocity fields @ —
v(t, ) fail 1o be elements of the same subspace, ie., v(,-) cannot be expressed as a
linear combination of I’7. Thus, the [-moments np of reaction forces fr need not
vanish when contracted with virtual velocities, and it is impossible to obtain an effective
system of differential equations for ap(f), £ = 0.1,..., N, by taking the Ff-moments
of Eq. (1.7) (£ = 0,1,...,N) and substituting a(/, ) = « r(H)FFR(x). For solids the
quantity f in Eq. (1.7) depends on «(/,-), thus, the method of moments and holonomic
constraints is non-adequate as a tool of finite discretization. For fluids the situation is
somewhat better, because [ does not depend on «((,.), and the Eulerian velocity field
v(t..) may be considered as a primary field. Thus, one could try to introduce constraints
of finite discretization by truncation of Eq. (1.21),

N

(1.46) o(t.x) = v (OF () = RO FR (@),
r=I)

i.e., by the direct assumption that it is the Eulerian velocity field which is confined to a
finite-dimensional subspace ['. This procedure is correct and the d’Alembert principle
enables one to eliminate reactions [ and obtain an effective system of N + 1 ordinary
differential equations for functions v;. There is one delicate point however, namely,
the constraints (1.46) are in general non-holonomic. Thus, the problem becomes very
complicated on the level of the field a(t,-), i.e., when in addition to the knowledge of
v(1,+) we wish to follow the motion of fluid particles.

In spite of the very widespread use of moment techniques and discretization proce-
dures, the understanding of the above-quoted subtle points is rather poor in the literature.
It is typical that one does not notice the problem at all, and, for example, substitutes alge-
braically the finitely truncated expansion (1.45) to the (N + 1)-tuple of equations obtained
as F'-moments of Eq. (1.7). One obtains in this way a closed dynamical system for the
parameters ap, [f = 0,1,..., N, however, in spite of its formal consistency, this system
is physically wrong, or at least non-justified, with an exception of some special cases. For-
tunately, usually it is just those special cases that is practically used, thus, the final results
are often correct, although incorrectly derived.

Those misunderstandings have to do with certain misuses of the Galerkin discretization
procedure and other related methods. The Galerkin method of finding approximate
solutions of differential equations like (1.5) or (1.7) consists in what follows [12]. The
first step is to choose a finite number of mode functions H/, B = 0,1,..., N, satistying
appropriate boundary or asymptotic conditions. One expands then the unknown field
functions ¥ with respect to H',

(1.47) W= cpH,
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cp being yet non-specified parameters. Let us write differential equation to be solved in
a symbolic operator form:

(1.48) L¥] = 0.

For example, if we consider equations (1.2), and ¥ = 2(-,-), then

d*x du
1.49 [x] = — b, —:t,al.
Frii Ll = o [' a1 ”]
If we use the Euler form (1.7) and the field variables ¥ = a(.,.), then
Dv
(1.50) Lla] = QF;—_”(L!_‘;[..E'].

where the Euler velocity field » is expressed through a as in Eq. (1.8). Substituting
expressions (1.47) to £ we obtain the following (N + 1)-parameter family of functions

(1.51) Eleco, e1s. . ..en] = LlerH ).

In general, functions (1.47) do not satisfy Eq. (1.48), thus I[¢g, ¢p. . . ., cn] # 0. The next
step of obtaining an approximate solution is to minimize the distance between zero and
expression (1.51) with respect to the parameters ¢ ;. The function ¥ (1.47) corresponding
to optimal values of ¢p, minimizing /7, is an approximate solution of Eq. (1.48). The
crucial point is to define a convenient optimization criterion for Eq. (1.51). To some
extent, the proper choice is a matter of intuition and depends on our purposes. In
some problems it is convenient to base the concept of “smallness” of F[cy, ¢y, ..., cN]
on the L?-norm or supremum norm in the space of ¥. The Galerkin criterion consists
in vanishing of the Hilbert-space projection of /2 onto the appropriately chosen finite-
dimensional subspace A spanned by functions A, A", ... AV In other words, one
substitutes the assumed form (1.47) to the considered equations £[¥] = 0, and then
one calculates the Al-moments of those equations. This results in (M + 1) algebraic
equations for determining the optimal (/V + 1)-tuple of parameters ci. Usually one
puts M = N and K = H" ie., the same functions are used as basic modes and
as moment weights, just as in the above-quoted derivation of collective dynamics and
discretization constraints. Obviously, the Galerkin method may be modified so as to
discretize the dependence of field functions on some subset of independent variables,
but without imposing a priort restrictions like Eq. (1.47) on the dependence upon other
coordinates. In particular, in mechanics of continuous media it is natural to exclude the
time variable and, subject to the discretization procedure, the dependence of Eulerian
coordinates on the Lagrangian ones or conversely. The only diflerence is that ¢y are no
longer constants, but become functions of time, and the above optimization procedure
leads to ordinary differential equations for cp(¢), £ = 0. 1...., . V. Applying this modified
procedure to Egs. (1.2), identifying 1" and K with H”, and cg with ¢}, we obtain
exactly Eqs. (1.41), (1.43). Thus, in this case the Galerkin method and the constraints-
based discretization are essentially identical. The reason is that, when applied to the
Lagrangian representation of continuum equations, the Galerkin procedure is equivalent
to the d’Alembert principle. Thus, there is nothing wrong in algebraic substitution of
constraints to the moment equations, without the explicit introduction of reaction forces.
When working in the Eulerian representation we can also formally apply the Galerkin
method, however, this would lead to equations we have rejected above as inconsistent
with the d’Alembert principle. Thus, the Galerkin procedure must not be automatically



VIRIAL COEFFICIENTS, COLLECTIVE MODES AND PROBLEMS. . . 315

applied to mechanical problems, without taking any care of the physical adequacy of the
criterion it uses. The point is that this method answers correctly the question: what
expressions within a given class do optimally approximate rigorous solutions in the sense
of a given minimization criterion. However, in physical problems the terms like “a given
class” and “a given criterion” must be not only rigorously defined, as they are in the
Galerkin procedure, but also justified on the basis of some physical arguments. I it is
known from experiment, or from some, even rough, physical considerations that (in a good
approximation) the system moves in a neighbourhood of some stable submanifold in its
configuration space and that this confinement is due to some internal elastic-like forces
responsible for the small oscillations about the stable surface, then the proper criterion is
given by the d’Alembert principle. This fact is not only deduced from experimental data,
but may also be formally derived from the “micromodel” of constraints; cl. in this respect
the reasoning presented in the books by LANCZ0S and ARNOLD [1, 10]. It means that
there is no exchange of energy between the “along constraints” and “across constraints”
motion, thus, no pumping of energy from outside is necessary Lo maintain the constraints.
If in addition to mechanical fields also other fields are included into the treatment, e.g.,
temperature or electromagnetic field, the situation becomes more complicated, because
there are no traditional and well-established hints like the d’Alembert principle. In our
opinion, there is no general, universal algorithm and any problem of this kind must be
separately analyzed on the basis of some, even rough, micromodel. In thermodynamics
and electrodynamics of continua, the best way is to maintain the constraints with the
help of the formally introduced heat sources [9] and charges; they will play a similar role
as reaction forces in mechanics. The problem of constitutive relations for constraints-
maintaining forces was analyzed by TRUESDELL and NOLL [20]. More recently, the very
detailed analysis was given by WOZNIAK [21-26].

If one deals with a purely mechanical self-adjoint model, i.e., with a non-dissipative
problem described by equations of motion derivable from a variational principle, then the
d’Alembert principle for holonomic constraints follows directly from the substitution of
constraints equations to the action functional. Discretization of variational problems is
much simpler; there are traditional methods developed by Ritz, Tshebyshev and others.

The characteristic feature of the above-described discretization procedure based on
functional series is that the discretization mapping is linear in generalized coordinates ¢,

N

(1.52) o5 @rs s cnga) = Z ¢ 1 (a).

=0

By discretization mapping we mean an injection of a finite-dimensional configuration
space () into a functional space of all @ priori possible configurations. This restriction
is not necessary; it is possible 10 use discretizations depending in a general nonlinear
way on generalized coordinates, = [(g,a). The range ol the argument ¢ may be a
differential manifold, not necessarily a linear space. The expression (1.13) for power
takes the following form on motions { — x; = f(¢(1).-) compatible with discretization
constraints:

- df'(q,a) dgP
dqB i

Therefore, the effective, reaction-free equations of motion may be obtained by calculating

; d
(1:53) P = gij ] ¢/ j'(r/({)ﬂ.),?)rf-f(q(l).u);l.u dy(a).



316 J.J. SLAWIANOWSKI AND A K. SLAWIANOWSKA

moments of the original equations (1.2) with respect to functions

af
(1.54) a— W(r/,a),

these functions will be called discretization gradients.
Just as in the case of linear constraints, moments are meant in the sense of the scalar
product (1.10). The resulting equations read:

d?qP dgB dg©
1.55 AB—— +[ABC]———— = N4,
ie.,
d*q4 A Y dgP dg© AB nr
1.56 —— ——— =" Npg,
(156) ar * {BC'} a a9 e
where
[8f 8f
) = y T
(1.57) Qap = C [0(1,_, e

denotes the metric tensor induced by f from the Hilbert space L?(;¢) in the manifold @,
and { . } are the corresponding Christoffel symbols,

BC
A 1 ) ;
(159 { o} =304 @buc + Qoo — Quen) = QUIDBC)
the commas denoting partial derivatives. Generalized [orces [V 4 are given by
Jof
1.59 Ngo=G ,P|.
(1.59) N4 [8(1" }

Using the ()-covariant differentiation 1)/ Dt along curves in (), we can write Egs. (1.56)
as

Dz[lfl .
1.60 —— = Q" Ny
(1.60) DI 2" Ng
It may be convenient to use the balance form, analogous to Eq. (1.28),
DM 4 :
1.61 = Ny,
e Dt :

where M 4 are moments of the distribution of linear momentum with respect to the
components of discretization gradients,

Jf i):r] dqP
= aB

dt -

1.62 My = C’[ » o
(1.62) 4 JgA ot
If the function f is linear in variables ¢, f(¢q.:) = ¢', ], A becoming the multi-index
(*4), then the formulas above reduce to those derived previously for the discretization
procedure based on moments. Nonlinear discretization is useful in certain applications
like deformations of rods [11]. Besides, it may lead to interesting models in micro-

mechanics.
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2. Multipole moments, virial coefficients

In a wide class of problems it is polynomials and trigonometric functions of ma-
terial coordinates that provides the most convenient and intuitive model of collective
modes. From the purely mathematical point of view this model is satisfactory, be-
cause it is possible to approximate all sufficiently regular functions in a compact do-
main by polynomials and Fourier series. At the same time, both models are well-
suited to the hierarchy of decreasing lengths of excited waves. The moments of fields
with respect 1o homogeneous polynomials, first of all the moments of densities of ex-
tensive physical quantities, are known in physics as multipole moments and virial co-
effiecients [2]. One is faced with them even in the elementary course of physics, e.g.,
in electrostatics. Usually a few lowest-order multipoles provide a satisfactory descrip-
tion of the spatial distribution of physical quantities within bounded domains; let us
mention, e.g., electrostatic multipoles. If we use homogeneous polynomials as mode
functions, then the expansion (1.17) becomes something very peculiar from the math-
ematical point of view, namely, the Taylor expansion of analytic functions. This is an
additional distinguishing feature of polynomial discretization and polynomial collective
modes.

The method of multipole moments is widely used in continuum theory, including the
mechanics of generalized media with internal degrees of freedom — micromorphic con-
tinua [4]-[8]. Unfortunately, in literature there is plenty of misunderstandings following
from the above-mentioned physical misuse of the Galerkin procedure. The point is that,
in the case of multipoles and polynomial expansions it is especially easy to overlook the
problem and confuse the Lagrangian and Eulerian moments.

Functions H " used in polynomial method are homogeneous po]ynomials of Cartesian

material coordinates. Thus, r is a multi-index of the form r = ([, A;,.. ... Ap), where
l=0,1,2,...and 4; =1,2,3
2.1 {H™} = {La, a™ab, v i PR R

In spite of their non-bounded character they belong to L*(j1), because in realistic problems
the measure p is compactly-supported. The moments M7t N" become the following
tensorial objects:

p Ais < '):.1
(2.2) M AR ] a’t ...a"‘*'((_)—l’(!.a)dp(n.),

2.3 ENACAR Ay ot a)du(a).
) ,

They are mixed material-spatial quantities, because the indices Ay, ..., Ay refer to the
material space, and ¢ is the usual spatial index. In other words, M, ;N are partially
Lagrangian and partially Eulerian objects. They are k-th order multipole moments of
the material distribution of linear momentum and forces. We can define them both
for continuous and discrete systems; in the latter case the integration in Eqs. (2.2),
(2.3) becomes the summation over reference positions of material points. In continuous
medium with internal contact forces and without boundary loads, N may be expressed
through the multipole moment of the Piola-Kirchhoff stress tensorial density

(2.4) N AV-A = Z alt a1 T A gAeer gk,
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Inertial moments are given by Lagrangian multipoles of the mass distribution,
(2.5) QA = [t dp(a).

They are completely symmetric tensors in the material space. Their internal parts are
given by

(2.6) m( bl Q Ap A BBy _ Q Ay Ay By Q Aq.. AmQBl BA
m,k m+k "[ m
where 7 = (m; Ay, ..., Ay), s = (K By, ..., By).
In particular, @ = [a” du(a) = Mq?, where ¢* denotes the radius-vector of
i

the centre of mass in reference configuration. If we choose material coordinates a’* in

such a way that the centre of mass of the reference state is placed at zero, then Q =
1

The quadrupole moment of the mass distribution () is algebraically equivalent to the

l“l
co-moving components of the tensor of inertia (B used, e.g., in rigid body mechanics,
(27) 1AB - ?]('])QCDT]A” _ (2/”3’

pd bl

where 7 denotes the material metric tensor. In Cartesian coordinates .5 = 64p. If we
choose those coordinates in such a way that ) = 0, then
1

(2.8) Q7B = cz"” = Q4°.

Expression of instantaneous configurations (7, .) through the collective generalized co-
ordinates ¢ has the form:

(2.9) =z'(t,a) = "qi(f,) -+ ,q’,\»(I)a." +o ko(aal + ...
o f R ¢ ,,,(/";\'l,“;\'p(l')r.t"' cafr

In certain applications it may be convenient to use another form of this expansion, ex-
pressed through spherical functions of angular variables,

(2.10) zi(t,a) = Z Z ¢ im(D)]a]'Y 'm(|“|)

=0 m=—1

where |a| denotes the length of the vector a. Obviously, ¥ is a real quantity, thus the
coefficients ¢‘;,, must be subject to the following condition:

(2.11) (/ilm o r[il_m,

The obvious advantage of Eq. (2.10) is that there are fewer redundant variables among
¢'i1m- The coeflicients pq Ky.K, are fully symmetric in material indices, thus, only those
corresponding to 'y < ... < Isp are mdependem generalized coordinates.

It must be stressed lhat, in general, y¢' do not coincide with coordinates of the spatial
position of the centre of mass ¢'. Namely,

(212) ([l = "qi EVE Z m(l Aj.. ,HQAIU'A'“.
m

m=1
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Thus,
(2.13) Ti(t,a) — ¢'(t) = i ,,,q’,\lm,hn(f)(u"" vis@A™ /—,‘179""""'").
m=1 s
Kinetic moments ; M have the form
(2.14) (M AT = Z Q Mo Bn%mq'gl,_,gm.
oyt

m

Decomposing them into translational and internal parts, we obtain

(2.15) M o= My + My,
where
: lq!
i ll/‘h...fhl = Al..‘Atf—
(2.16) 1My ? TR
. = d
(2.17) l""jml A _ Z Q ,‘['“A‘BIH'B'H;‘,—"qu|...Bm

m=l bm

Similarly, for dynamical moments ;N we have

(2.18) (N = Ny + N,
where
e : 1
1N|;u !.‘\ Ap LA WQA"“A'FH,
(2.19) i
ljvli\l.../hl ‘1 2/“ A;[r

Equations of internal (relative) motion are:

d = d?

(220) (1 .l["h = Z ’Q Ap.. A/ By..Bm drz"’qu]me = ”VAlw-Aliﬂ
m=1 """
{ =12
The splitting of kinetic energy has the form
. 1 dg rqu PR T
2.21 I = -y, ; y LB BBt — o)
(2.21) 39990 ar ,” ;1 T 0. A,,,n% 771 i,

Polynomial constraints consist in assuming that configurations are described by polynomi-
als of a given finite degree k, ie., ,¢ = 0if p > k. All infinite series (2.9), (2.14), (2.17),
(2.20). (2.21) are then truncated at the step m = k and become finite sums. The effective
system of equations of motion has the form
dqu = I"‘!“ ilﬂ].»ll,..ﬁhi - l‘,\TA]u.A"i.~ l=1.... k
dt? dt R
with directly substituted constraints ,q = 0, p > k.

Let us notice that in spite of our use of terms like discretization, the above derivation
is general and works also for discrete systems with collective modes. For example, for a

(2.22) M
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system of N < oo material points we have

N

(2.23) MAAE = 3 Mo XML XA
p=1

(2.24) (NAAT 2§ XAy A
p=1

where v, I}, denote, respectively, the velocity of the p-th material point and the force

influencing it; .\']j’ are the reference coordinates of the p-th particle. Similarly,

N
(2.25) i@ 1 Arce N R | XA N

p=1
Obviously, for any finite system there exists a certain critical number & of polynomial
collective modes which cannot be exceeded without introducing fictitious degrees of free-
dom. ‘

The above derivation of collective dynamics is based on multipoles in the material
space, thus, it is automatically compatible with the d’Alembert principle. However, La-
grangian multipoles are not very intuitive quantities. It seems more natural to work
with Eulerian multipoles, i.e., multipole moments with respect to spatial coordinates. In
any case, spatial multipoles, having all tensorial indices in the physical space, are more
operational quantities, and certainly are better suited to intuition developed in electro-
statics. And in fact, many authors use them, and, unfortunately, combining them with the
Galerkin procedure, commit the mistake described above and consisting in the violation
of the d’Alembert principle. Let us discuss these problems in some detail.

The Eulerian multipole moments of linear momentum and forces are given by [2]:

ifeitd iy K du
(2.26) ymitetd = f il a) ozt (L, rz)—a—i—(t,a) dp(a),
(2.27) it = J z'l(t,a). ..z (1, a)P (1, a)du(a).

Both terms are symmetric in the first [-tuple of indices. In continuous medium with
internal contact forces we have

!
(2.28) il = o Z I ait L ate-tgtritert | gt
p=1 '
where o denotes the Cauchy stress tensor.
It is possible to express Eulerian multipoles through Lagrangian ones and generalized

coordinates ¢. Namely, in polynomial theory of degree & we have

k
(2-29) Tna‘..fj = Z G(IaA|~-.Au o ;w(/jFl-..Fv-(a+._.+'p)‘}wA'l”F"’jq

. ..p=()

and analogously for dynamical multipoles:

k

AL Fag
(2.30) nth = Z all oy b .‘v,,(]fF‘J___F“;({,.,,'__{.L;)I\, =Sl
...p=()
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If we do not perform polynomial truncation and base on analytic functions, the same
formuilas remain valid after putting & = oc; the sums (2.29), (2.30) become then infinite
Series.

The formulas (2.29), (2.30) tell us that Eulerian multipoles of degree ! depend lin-
early (with functional coefficients) on Lagrangian multipoles of degrees p = 0, 1,...,kl.
Thus, we see again that the Eulerian multipoles of degrees r = 0,1,...,k calculated
for Egs. (1.7), (1.20) do not lead to effective equations of motion of polynomially con-
strained body. The reason is that on the right-hand side there occur also Lagrangian
dynamical multipoles (N, s = k + 1,..., kl. These multipoles are calculated for the
total forces, involving both the given forces and the reactions maintaining constraints.
However, d’Alembert principle implies only the vanishing of reaction multipoles . Ng,
r=0,1,...,k, butnot (Ng, s = k + 1,...,kl. Nevertheless, it is instructive to write
down explicitly the system of Eulerian moment equations. For non-constrained systems,
with configurations described by analytic functions, we have:

k o0

d i d d
2.31 — m = n+ @0 R =@ @ g @ — g
( ) dti : * PZ:] "1-;'(5="( i di'* : 2 il (l’-sl)'rl+__,+1'm+s
i.e., equivalently,

= d?

2.32 RO ® = () = n.
( ) Z (H[ Tk (l"sl r|+..Q+T'l+s 1

It is clear that the balance law for ;/n does not reduce to any conservation principle
even in the interaction-free case yn = (. This is prevented by the strongly nonlinear and
purely kinematical term on the right-hand side of Eq. (2.31). When we impose polynomial
constraints of a finite degree k, then on the right-hand side of all Egs. (2.31), (2.32) with
I > 1 the moments ;n involve non-specified reaction terms ;n g, thus, any (k + 1)-tuple
of Egs. (2.31), (2.32), in particular that one coresponding to [ = 0,1,...,k is either
non-eflective or simply wrong if one neglects the reaction moment.

Another important diflerence between Eulerian and Lagrangian moments is that, in
contrast to (M and | N, the multipoles ;m and ;n with [ > 1 do not split into translational
and orbital parts. Instead, they are very complicated superpositions of terms involving
mutually mixed translational and internal coordinates.

In all these respects the dipole multipoles 7 and n provide a very interesting ex-
ception. This is important for physical applications and also has deep geometric reasons.

Equations (2.29), (2.30) imply that in the k-polynomial theory the dipole moments
may be expressed as follows:

‘.
(2.33) m' = Z "‘in;-..Arr,-s”A""A'ja
r=l)
‘. A o .
(2.34) ”U = Z r‘{[iAl-..Art‘-'\; Al“-Ar];

r=0

for non-constrained systems described in terms ol analytic functions, k = 00, i.e., the
sums in Egs. (2.33), (2.34) become infinite series. Expression (2.33) may be explicitly
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written as
A.

dyq
2.35 ) = ey ”
( ) m Z ( q 0 ) Q

-+
r,8=() g

It is seen from the formula (2.34) that the dynamical dipole yn does not involve Lagrangian
multipoles of any degree s > k. Thus, when the system is subject to A-polynomial
constraints, the quantity ;n is built only on given forces @ but not on reactions ®p;
1ng = 0. This implies that if & > 1, then besides of the monopole equation describing
the centre of mass motion,

dl’qt

1P ,
aP -,

2.36 =M—
(:50) dt di?
also the dipole equation, i.e. Eqgs. (2.31), (2.32) with [ = 1, may be used as a subsystem
of the effective system of equations of motion. This subsystem may be written as

k

dym deq (lsq)
2.37 —_— =+ —_—® ,
( ) dt ! r%;"( dt — dt r@s
ie.,
(2.38) Xk: ( ¢ Q "i") Q =n
. ) = = Nn.
r,8=() (“‘ T+s
In analytic terms:
- k
dm* c d=K d .
2.39 =n' + Sl e Aj...ArBy...B,
( ) dt l 1‘2!) dt I Al dt S‘/ [31...651?3 ’
: ' &z Ay...ArB,...B i j
(2.40) Z r(liAJ...Ar7’53"]!.‘3,,..85 Q) 1t BB = gt
r,s=() (i T+s

In spite of its exceptional properties, the quantity ;7 is not a constant of motion even in
the interaction-free case. This non-conservation ol '/ may be interpreted as a conse-
quence of the parametric dependence of the kinetic energy (2.21) on the metric tensor;
namely, we can rewrite Eqs. (2.39) as

dm' Y aor
=n" +2

2.4] , 2 g
( ) dt f)(/g_j

It is seen that the kinetic term preventing the conservation of ym is a symmetric tensor,
thus, there are no kinetic obstacles against the conservation of ml/], the skew-symmetric
part of m'/,

ol . )
(2.42) (—(m” —m7t) =n' —nlt.
dt

This is physically obvious, because the quantity J'/ := m*’ — m/! is nothing else but the
total angular momentum of our system, related to the origin of coordinates . Similarly,
DU ;= n' — nJ' is the total moment of forces with respect to the same origin. To be
more in accord with traditional language: the angular momentum and the moment of
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forces are axial vectors .J¢, D', related to the skew-symmetric tensors J*J, D/ through
the totally antisymmetric symbol £, .,

(2.43) Ji = ciky . DY =cikp,

The next distinguishing feature of the moments ;m, yn among all other multipoles is their
natural splitting into translational and internal parts,

(2.44) M= My + Mg, 1N = Ny + Ny

The internal moments |y, | iy are defined with the help of the formulas (2.26), (2.27)
modified by substituting the quantities @ — ¢ instead of z*. In other words, they are
dipole moments with respect to the instantaneous position of the centre of mass, whereas
the total moments ym, 1 are related to a fixed origin in space (origin of coordinates z*).
Thus, My, 17 are unambiguously defined tensorial quantities. One can easily show
that

" T . g i
(2.45) \m} =¢'PI = Mg Fa Hlu =q'F

k 3 k d

. i Ay ALBy...Bs /

(2.46) ymj, = Za’l Ajp.. QU‘”uul = Z o --’\1-~--‘19Q e Eﬂqﬁl.“Baa

o0=1 e.o=1 00 '

k

ij ] r A 3

@AT) i =D o, age Nt

=1

It is seen that ;my, depends only on internal coordinates and velocities, whereas m,,
involves only the centre of mass position and velocity.
Obviously, the same splitting is true for the antisymmetric parts of dipole moments.

(2.48) J=1L+S, D=Dy+ D,

where I, 5 denote, respectively, the angular momentum of the centre of mass with respect
to a fixed origin, and the spin, i.e., the angular momentum in the centre of mass reference
frame. It is clear that

. : . g’ dg
LY = lmf," - ,mfrr = (/‘I” q’l" = /\[q —Ii— — Mg J [11’
(2.49) SY = mig = miys
DY =N - N} =¢'Fl - ¢ F,
l)lln/l = \llnjl - \r||’1:

The balance law for the internal part of i has the form

d . d s
(2.50) ],l”’ml = Ny T+ z; ( ([’1 @ (Hl) o)mh

i.e.,

d?
(251) Z (;'] 2) s(])Qr s = 1Mint-
1

rs=
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The subsystem of Eq. (2.31) consisting of Egs. (2.36) and (2.37) is equivalent to the
system composed of Eqs. (2.36) and (2.50).

The exceptional properties of the Eulerian dipole moments 2, ; n, and the operational
status of Eulerian multipoles suggest us to rewrite the system (2.22) in the following,
equivalent form of the balance laws:

(lPi - .
dd -
(2.52) d mU o n‘) 5 zk: i_in A QAI....»l,Bl,..B_.-(_I qu B
i di ™ i b ) 177 it e de®h P
d ‘IAI A _ NAI...Ali =9 2
a[l int = int N . ooy vy
or, in the explicit terms of generalized coordinates
p g
d%qt
ML = pi
dt?
k (2 ..
(253) Z m(] Aj...Am Q Aigntaln ] w((/ B,..B = ”';ﬁjl*
m,l=1 LT @i
k

ln!

2
A...AB,y..B,, ¢ ? <A
Q 1 5 i ([’EqulBlu.Bm 1\ : k] [ = 2"'"’k'

m=1bm

In many realistic problems the hierarchy of Eqs. (2.53) is suited to the ordering of
collective modes which corresponds to their decreasing relevance for the phenomena
considered. For example, one is often dealing with situation where the leading internal
modes correspond to rigid rotations, linite homogeneous deformations, and higher-order
polynomial excitations superposed over them, for example, as small corrections. To single
out the rotational dynamics, it is convenient to split the second equation (2.53) into the
skew-symmetric and symmetric parts.

Let us stress that in the special case of infinitesimal deformations and rotationless
motion, the Eulerian equations (2.31) become eflective and essentially coincide with
Eq. (2.22), because then the spatial and material multipoles differ by higher-order terms.

The exceptional properties and the special role played by the dipole moment m'/
have very profound geometrical and group-theoretical roots. To explain this point we
shall consider variational dynamical models with Lagrangians of the form [, = T — V|

T being the kinetic energy as above, and V' — a potential energy depending only on
generalized coordinates ¢. The corresponding Legendre transformation has the form
oL 0T dqg’
Bi= o3 T a7 T Mg T .fia’_:‘P'/~
dq dq dt
=) g )T
l])Al'"A‘i T - ( — .‘Ii]{’”,:[l Al

G ay..a, G a,

where p;, ipAAl denote canonical momenta, conjugate, respectively, to coordinates q,
19" A, . Al Obvmus!y, just as ;q' 4, .. a,, the quantities ;p?1t- Al ¢ i are symmemc in indices
Ay, ..., A Independent phase space coordinates are given by ¢*, ;¢ Ay Ap Pis 1P Ay
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withi = 1,23, A, < A, < ... < A, L = 1,.... k; nevertheless, in many problems it
is more converient to use the symmetric redundant representation, formally admitting all
possible orderngs of indices.

It is seen ttat the internal parts of material multipoles are closely related to canonical
momenta conjigate with internal coordinates; the relationship is given by the g-lowering
of spatial indices. Thus, roughly speaking, the Lagrangian multipoles are Hamiltonian
generators of ranslations in the configuration space of our problem,

L : , : :
(2.55) ¢ =q+ad, Wa..a =10 4.4 184 A,
,a denoting coastant tensors.

Expressing the spatial dipole moments m'i through canonical variables q, linl...Ap
pi, 1p™1-A1; ve obtain in virtue of Eq. (2.54):

@50 mis = ;.
k
(2.57) Min'j = Z I(IIA,...A‘JIJA""A']',

=1

My P gy M5 7= Min " g Thus, for the total dipole m*’

where, obviously, m,'; :
we have

_ k
(2.58) m'; = ‘fﬂ‘”yhj =q'p; + Z gq",h,”A,[])A‘“'A‘j.

I=1

It may easily be shown that the quantities on the right-hand side are Hamiltonian gener-
ators of the spatial linear group L(3,R). This group acts on the Eulerian variables t*
according to the usual formula, [+'] — [Uix7], U € GL(3,R). The resulting transfor-
mation rule of generalized coordinates reads

(2.59) "¢ =V, 10 a.A = U nd a4
These formulas describe rigid rotations and homogeneous deformations of the body in

the physical space. The corresponding transformations of canonical momenta have the
form

2.60 II)i - )'U_U{, ')A""A’.L- - ,,)Al...A( 'U_lj;‘.
Pj 1l I J

Let us consicer an infinitesimal transformations [/ = [ + ¢, I denoting the identity matrix
and ¢ — an arbitrary ,,small” matrix. For any function F' of the phase-space variables
" 10 A Ap Pir jpAt-AL; we have the following Poisson-bracket expression for the
increment of F under U = [ + ¢:

(2.61) §F = {F,m';}e’;,
where

8F(q, 14, p,p) = FCa ' "p.'p) = (4514, P 1)
and the formula (2.61) is valid up to second-order terms in . Thus, in fact, the quantities
mi; are Hamiltonian generators of (+L(3,R) acting as in Egs. (2.59). As it is seen
from Eqs. (254), (2.55), the total linear momentum p; generates spatial translations, i.e.,

transformations of the Eulerian variables z* given by @' — 2 + a', a' being constants.
In terms of canonical coordinates: ’

(2.62) ‘(' =q' +d', Sg=19, 'pi=pi I'p =
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Thus, the system of functions m';, p; generates the action of the spatial affine group
GAf(3,R) = GL(3,R) x R

We have the following system of Poisson brackets, corresponding to the structure
constants of (<A f(3,R):

{m';,m¢} = 6'ym°; - 6% jm'y,
(2.63) {m*;.pa} = 8'upj,
{pispj} = 0.

We conclude that the crucial role of the monopole and dipole moments of linear momen-
tum is based on the fact that they generate the spatial affine group. They are distinguished
among all multipole moments by the very afline geometry of the physical space. Their
balance laws give an account of the relationship between this geometry and the structure

of internal interactions. Expressing the angular momentum .J through canonical momenta
we obtain Hamiltonian generators of spatial rotations,

(2.64) J’j =mj—mj' =m'; qJU ‘'m*,.

The system .l"j, Pa generates the spatial Euclidean group. If there are no external
forces, then for the usual non-polar continuum, the balance of J"j and p, becomes the
system of conservation laws of angular and linear momentum. The quantities S*; generate
rotations about the centre of mass; the orbital angular momentum L' generates rotations
of the centre of mass about the origin of spatial coordinates, without affeclmg the internal
variables. Analogous statements may be formu[aied about mjy,'; and m*;. In particular,
the Poisson brackets for internal parts mjy';, S*; have the same form as those for the
total quantities m'j, J*;. The same is true for translational parts m,*;, L*;. Obviously,
internal quantities are in involution with translational ones, i.e., the mixed Poisson brackets
vanish,

(265) {”llrij» nl’imab} = {p/u '“imij} = {L”bw-"'lj} {Pa - } = 0.

Transformations generated by higher-order multipoles are not geometrically interesting.
Besides, their Poisson brackets do not close to a Lie algebra. If k& > 1, then the system
of Eulerian multipoles ;m, { = 0,1,...,k generates an infinite-dimensional Poisson-Lie
algebra of phase-space functions.

Besides of spatial transformations one also considers material ones, acting on configu-
rations through an approprlate action on Lagrangian variables a. For example, the mate-
rial group (G L(3,R), i.e., the group of material rotations and homogeneous deformations
transforms configurations a +— 2(t, a) into configurations a — (2U)(?,a), U € G'L(3,R),
where

(2.66) (xU)(t,a) = z(t, Ua).
In terms of generalized coordinates ¢', ;¢* 4,..4,:
(2.67) 't =q', (a4 =108 80P, .. . UB,

The first two subsystems in Eqs. (2.52), (2.53) give an account of the geometric part of
the dynamics — they are balance laws of the Hamiltonian generators of spatial (Eulerian)
affine transformations (2.60), (2.62). The remaining equations (2.52), (2.54), correspond-
ing to [ > 1, have no natural geometric status.
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3. Affinely rigid body and additional constraints

Tt seems to follow from the above geometric discussion that, at least from the academic
point of view, particularly interesting should be such systems whose equations of motion
are equivalent to the balance laws of the first two Eulerian multipole [13-19]. For such
systems k = 1, i.e., the polynomial discretization is truncated at the step of affine functions,
or, using a more traditional language, inhomogeneous linear functions,

(3.1) it a) = ¢ () + ¢' a(t)a.

In this special case the zeroth-order term coincides with the centre of mass position in
space, provided the origin of material radius-vectors is placed at the reference position of
the centre of mass. The matrix [¢' 4] is non-singular for any time instant {. Thus, at any
fixed ¢ € R, transformations (3.1) are elements of the spatial affine group. In this way, the
configuration space [3] becomes identical with the groupspace of the three-dimensional
affine group, i.e., with the homogeneous space of this group, with trivial isotropy groups.
The considered system becomes an affinely rigid body. By this statement we mean that
during any admissible motion all affine relations between constituents of the body are
invariant, in particular, that material straight lines remain straight lines, their parallelism
is conserved, and all mutual ratios of segments placed on the same straight lines are
constant. In the special case of continuous medium the configuration space becomes the
proper affine group GAf*(3,R) = R* x (GL*(3,R), i.e., matrices [¢' 4] have positive
determinants. For discrete systems the total GAf(3,R) = R* x G L(3,R) is in principle
admissible. Among all polynomially-discretized models, the affinely-rigid body is peculiar
in that its configuration space is a Lie group, or, to be more precise, a group space.
Transformations described by polynomials of a finite degree k& > 1 do not form a group;
their composition results in raising the degree.

Equations of motion of affinely constrained body result from the system (2.52) or
(2.53) by the direct algebraic substitution ;¢ = 0 for [ > 1 and the neglect of all multipole
equations of degree [ > 1; thus, they have the form:

dp . ood o a9 adg'

3.2 L o F, —mi=nl s QABZ2
(3-2) dt BT i dt dt
i.e., explicitly,

d*q' . P ij
3.3 m = [ ‘ i AB _ Lu ,
( ) ([’-2 q A (H: nlnl
where [Q4 5] denotes the matrix of the quadrupole moment of the mass distribution,
(3.4) QAB ,m QAB “ata® du(a).

As mentioned, [Q*?] is algebraically equivalent to the matrix of co-moving components
of the inertial tensor I,

AB (D Ab‘ AB
(3.5) 1% = nepQ -Q
Let us introduce the quantities
. - ] I\ —lA 1 1
m?p = ¢ imia'j¢'B, 1B =q :‘nim‘j(I"B,
(3.6)

AB _ _—-14A _—IB ij AB _ ,—14A _-1B
m =q iq JMips =4q iq Jnml.
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It is obvious that they may be interpreted as co-moving components of the tensors m' s
n';, m, n', ie., their components with respect to a reference frame affinely frozen into
the body. A certain delicate point must be stressed here. Namely, the distinction between
mixed and contravariant Eulerian tensors is not very essential, because they are related
through the spatial metric tensor, i.e.,

3.7 m'; = m'*g;, n'; = n”“ykj,

In affine coordinates the metric components g, ; are constant, in particular, in orthonormal
Ykj _

frames g,; = é;. Unlike this, the material tensors m* g, m4¥” and n g, n1B are not

interrelated through the constant reference metric 74 3. Instead, we have

3-8) mAp = mAGep, nj =n'Gep,
where (& denotes the Green deformation tensor,
(3-9) G’AB = gij([‘AflJB.

Only in non-deformed configurations, when G 13 = 1,45, mixed tensors are related to
the contravariant ones through linear expressions with constant coefficients 74 3.

It is not mAB, but m4; that is geometrically interpretable in a similar fashion as
m';. Namely, the quantities m? g are Hamiltonian generators of the material action of
GL(3 R). Let us consider the action of U € (G/.(3,R) on the phase-space variables ¢,

q'a; Php

(3.10) (q','q as"pi'p%) = (¢, ¢'BU B 43 pi, U= 5pB)).
If U = I + ¢ is infinitesimal, ie., ¢ ~ 0, then, up to higher-order terms,
(3.11) 6F = {F,mp}eB 4,

where

SF(¢', @ aipinp™0) = FCq''q 43 'pi, ') — F(G, ¢ s pin ).
Poisson brackets of m4 g have the form

(3.12) {m?g,mCp} =6 gm?p - 64pmCp.
Besides, we have
(3.13) {mi{,mAp} =0, {p.m"p}=0,

because spatial and material transformations mutually commute.
In the special case of affinely-rigid body the expression of quantities m';, m“ g through
the phase-space coordinates takes on the following simple form:

i ‘ ' A ;
(3.14) m'; =q'p; + q'Aij = mlu + mmu mig = ¢ ip'B,

where ¢, is an abbreviation for g='4,, ie.,

inqu - le
If the Lagrangian has the form L = T'—V/, V' being independent of generalized velocities,
then the corresponding Legendre transformation is given by -

oL d¢/. . 9L _ dqf
-8? = 'In-gljﬂv ]) 1T ()(11, J!J (“ Q

(3.15) pi =
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Kinematical quantities p’, '/ are given by

i dq B dq’ g AB
(3.16) pt=m Frg m G'A—— g Q
The form (2.51), (2.52) of equations of motion is very convenient when we aim at deriving
equations of motion of additionally constrained systems. For example, d’Alembert prin-
ciple implies that equations of motion of the usual rigid body are given by the balance laws
of linear momentum and angular momentum, i.e., by Eq. (2.53); and the skew-symmetric
part of Eq. (2.53),,

-
4

dt?
By the same argument, based on the d’Alembert principle, we can show that equations of

motion of an incompressible affinely-rigid body are given by Eq. (2.53), and the g-trace-
less part of Eq. (2.53),

(3.17) m

ml

. ‘ .o
q‘ = 1'11, q[lA ;EZ—(IJ}”QAB [’Jl.

i v 1 d? |
(318) ([‘A_I_-,—ii(JAB _ —!lub(lu i 1 BQ \H LJ — n S bnczbJU
dt? 3 dt 3
(The 15-fact0r comes from the dimension of space; in an m-dimensional space it would
be replaced by 1/m).
If the only admissible modes of internal motion are dilatations, then the internal part

of dynamics is described by a single scalar equation — the g-trace of (2.53),,

d
(3.19) 9011 4 5

If the body undergoes only rigid rotations and dilatations, then the internal part of dy-
namics is given by the system composed of Egs. (3. 17)2 and (3.19), i.e., skew-symmetric
part and g-trace of Eq. (2.53),.

There is an interesting example of non-holonomic constraints imposed on affine mo-
tion. To describe them we must introduce additional concept, namely that of affine qua-
sivelocity. It is defined by the formula

. -
¢ QAP = gijnY

dqg' 4
(IAJ;.
dt

The object ¢ is non-holonomic in the sense that there are no coordinates z*; satisfying

(3:20) e;=

e; = —.Tij. Its kinematical meaning is that it defines the Eulerian velocity field of

affinely constrained continuum,

) (-)_‘i la? . . .
(3.21) vi(t, x) = —O—Lr—(t,a(t,m)) = ‘-{i’fi- + et (@l — gf).
One also uses the quantities
, gt
(3.22) ety =gt 2
dt
which are exactly the co-moving components of the tensor €',

(323) Eij = q'AGABqBJ.
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From the geometrical point of view the quantities ¢';, ¢” 5 are Lie-algebraic objects,
corresponding, respectively, to the right-invariant and left-invariant vector fields on the
group G/ L(3,R). Under the spatial action of U/ € (/L(3,R), [2'] — [U*;27], the object
e'; transforms as:

(3.24) [e';]— [U'reX U]

Obviously, ¢'; is non-sensitive with respect to the material action of I/ € GL(3,R),
[a?] — [U#paP). The material object ¢ has reciprocal transformation properties.
It is easy to see that the internal affine moments may be interpreted as non-holonomic
canonical momenta conjugate to affine velocities, because

')A ) dql/l

(3.25) P T = 'm."jeji = m,"BeBA.

The quantity
7 : ; Sl
(3.26) whis= S(eh - el = ¢ - gikg'e®)

is interpreted as the angular velocity of affine motion.
The deformation rate is given by

(3.27) d'j:=e';+e; =€ +girg'er,

The co-moving components of d;; = gixd*; = d};, ie., dap = d;jq' 4¢’ p, represent the
strain rate,

1d
24dt
where (i 4 = ¢,;¢* 2¢’ g are components of the Green deformation tensor.

Rigid-body constraints may be alternatively described by the condition d'; = 0. By
analogy, the constraints of rotation-less motion have the form w'; = 0. However, there
is a deep geometric novelty, namely, they are non-holonomic and do not impose any
restriction on the attainability of affine configurations. Let us remind for comparison
that, in spite of its anholonomic form, the equation d'; = 0 may be integrated to the
finite condition

(3.29) GaB = 0ij¢' 4’ B = B,

defining the rigid-body configurations.
Using the d’Alembert principle, we can show that equations of rotation-less motion
are given by the symmetric part of Eq. (2.53),, i.e.,

(3.28) daB = ;-G aB,

e
P

{—n
L2
Approximation of rotation-less motion may provide a reasonable model of the dynamics
of small inclusions in very viscous fluids.

j \B (1)
q‘”BQH = ”[n[ ®

(3.30) q“
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Deduction of thermodynamic balance laws for bidimensional
nonmaterial directed continua modelling interphase layers

F. DELL'ISOLA (ROMA) and W. KOSINSKI (WARSZAWA)
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AN HEURISTIC METHOD for the solution of some contradictions arising in the formulation of direct
models for nonmaterial interphase layers is proposed. The novelty of the method consists in its
use as a guide for the formulation of the right balance laws for a pretty new object: nonmaterial
bidimensional continua. By means of an integration across the thickness of the layer starting from
balance laws which are valid for 3D nonpolar continua, new 2[) balance laws are derived. In
modclling surface phenomena associated with interfaces between phases a notion of “interfacial
thickness”™ that could vary both with respect to time and along the interface itself, is recognized,
even when the interphase layer is modeled as a 2D continuum. The quantities — together with
their evolution equations — necessary to describe surface phenomena, heuristically assuming that
the 2D continuum actually models a three-dimensional interfacial continuum, are indicated. Surface
balance laws for all h-moments with respect to the thickness of the interface, where suitable surface
extra-fluxes naturally appear, are deduced with quoted heuristic method and therefore postulated.
Preliminary considerations aiming to prove that Tolmann’s formula cannot be improved — in order to
match all éxperimental evidence — without introducing at least a first order model for the interface
between two phases, are developed.

1. Introduction

THE SURFACE phenomena play an essential role in the border land between the chemistry,
physics and mechanics of fluids and solids. Since the days of Young [S1] mechanical
phenomena associated with fluid interface regions in equilibrium are well-described in
terms of a surface tension: indeed, the interface between two fluids — say, a liquid
and its vapor — has been considered from the mechanical point of view as if it were a
uniformly stretched mass-less membrane of zero thickness.

When a system in equilibrium is composed of two or more phases, the interface region
between any two phases has a small but perceptible contribution to the mechanical and
thermodynamic behavior of the system. An extensive description of thermostatic behavior
of multi-component interfaces was established by GIBBS [20]; it used the method of the
dividing surface. However, non-equilibrium situations are more complex. Any compre-
hensive theory must accommodate the possibility of transport phenomena both within and
across the interface; bulk motions may be induced by inhomogeneities of fields and of
the matter in the interfacial region (cf. BUFF [9], LEVINE [33], LEVICH and KRYLOV [32],
MURREL and BOUCHER [37], ONO and KONDO [41], OSCIK [42], SCRIVEN [44]) and
moreover, physical adsorption and evaporation can occur there.

The use of the classical method of the dividing surface of Gibbs has been pre-
ferred by many authors (cf. ONO and KONDO [41]) to avoid the necessity of assigning
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some thickness to the interface zone. In that method the surface tension is not only a
quantity strictly defined with reference to the dividing surface since the excess contribu-
tions to the densities and fluxes (currents) appear there in the form of superficial quan-
tities.

The above method for treating surface tension and description of the excess contribu-
tions to the densities and fluxes (currents) at the dividing surface in the form of superficial
quantities, is simple, intuitive and often useful but:

i) it is of approximate nature from the molecular point of view (cf. ONO and KON-
DO [41]), for the structure of the fluid undergoes not a discontinuous but progressive
modification across the actual interface.

ii) it does not seem to be easily extendible to describe non-equilibrium phenomena
(for a full discussion of this point see DELL'ISOLA and KOSINSKI [11]).

In the majority of known models of interfaces a surface or a layer of singularity of
bulk fields appear, which in the case of models dealing with a 3D layer become ad-
ditionally carriers of interfacial fields; the latter being defined as mean quantities of
either true or excess bulk localized fields. In the both approaches: the singular divid-
ing surface and the interfacial layer of finite thickness, the resulting systems of universal
balance laws of mechanics and thermodynamics have in principle similar forms. The
differences concern interpretations of the terms appearing in the resulting balance equa-
tions (1).

At this point one should underline the difference appearing between two models based
on the concept of the interface 3D layer: the first referring to the excess quantities and
the second referring to the true ones. In the first model one introduces a dividing surface
located somewhere in the transition (interface) zone, and then the bulk quantities are ex-
trapolated up to this surface by stipulating (cf. DREEMER and SLATTERY [15], DUMAIS [16],
ALTS and HUTTER [5], GOGOSOV et al. [21]) that they must satisfy the typical 31 balance
equations and the bulk constitutive relations (whatever these may be). The main problem
of this model consists in introducing surface excess densities (quantities) (o compensate
the error introduced by replacing the exact (true) quantities by the extrapolated quantities
in the transition zone.

In the second model no extrapolation is made (%), instead two dividing surfaces are
introduced (cf. GATIGNOL [17]), which make the boundary between the single phase bulk
media and the interface zone; in the latter multi-phase behavior is observed, in which
the confining matter possess constitutive properties different from the surrounding bulk
phases.

In both models the averaging procedure is applied in which the integration along the
thickness is performed thus yielding mean quantities defined as surface fields. In the
first model one relates those quantities to the deviations between exact and extrapolated
quantities in the layer, in the second one the mean quantities are defined as the line
integrals of the exact fields on some reference (e.g. mean) surface located between the
previous two ones. Here no physical meaning is ascribed to that surface as it simply
models the “geometry” of the interface layer: however, for the convenience one can call
it the dividing surface (like in the first model).

(") A slightly different point of view represents BLiNOWsK1 (7).

(%) For seek of selfconsistence we describe here the deduction procedure formally introduced in DELL'ISOLA
and Kosikski [11], and KosiNskl and ROMANO [29].
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In the present paper as well as in the second approach the interface is modeled as a
shell-like Eulerian region composed in principle of different material points at different
time instants. (%)

Having, without any extrapolations, the exact integral relations for the surface true
fields in terms of the bulk quantities of the layer, one Lries to make constitutive description,
that takes into account the interface and its interaction with the bulk phases as a whole,
without retaining those “microscopical” details of its structure which could be regarded
(for a certain class of phenomena) as irrelevant. A more detailed description (%) for the
interface can be given by developing theories in which higher order moments of the true
fields appear (cf. DUMAIS [16] and DELL’ISOLA and KOSINSKI [12]) as proposed in the
last section of this paper.

In the phenomenological approach we are presenting the interface is modelled as a
finite slab, and more detailed information about the structure of the dividing surface is
introduced by relating the interfacial quantities to their 310 counterparts.

It should be pointed out at this place that both the approaches lead finally to equations
which are similar to those of the thermodynamics with surface field singularities. In this
way one can find a common point with the singular surface approach well developed in
the literature (cf. SCRIVEN [44], GHEZ [19], MOECKEL [35], ROMANO [43], DELL'ISOLA
and IANNECE [10], ALBANO, BEDEAUX and VLIEGER [2], KOSINSKI [24]).

It is one of our aims to draw attention that by localizing the surface phenomena to
their carrier, namely to the moving surfaces, we are loosing some information necessary in
the constitutive modelling (cf. MURDOCH [36].) To get it back we can explore the results
of our exact derivation and the formula in which the interfacial quantities appearing in
the interfacial balance laws are defined in terms of the corresponding 310 quantities. In
this way we get some “hints” and “compatibility” conditions to be taken into account
even when 2D balance laws are to be postulated, in that which is usually called the direct
approach for the development of the theory of 21 nonmaterial continua. The reasoning
developed in this paper could be considered in such a direct approach as “heuristic” in
nature.

2. Moving shell-like Eulerian region in a continuum

Let us now assume that the effect of the interface in a continuous material system B
occupying at time / in a motion Y a simply-connected region B, in 3D space E* may be
localized in a three-dimensional moving region Z, of finite (and in a sense to be made
precise “small” when compared with its “area”) thickness. The region B; consists of two
phases B and B; . In addition there exists a narrow layer Z, which divides the volume
phases B

The boundaries between Z, and both B are regular surfaces X and X;; between
them a reference (mean) surface ¥, is located 1o which the mean, interfacial, fields will
be referred. (Note the subscript ¢ appearing in the sets introduced, which reflects the fact

(®) This is unavoidable in the case of phase transition, while the case of adsorption may be also modeled
by a material region with extra mass supply sources, cf. OSCik [42].

(*) Another approach can be developed by introducing two different scales: micro- and macro-coordinates,
the former responsible for the inner structure of the layer. The nonstandard analysis tool could be helpful here.



336 F. DELL'ISOLA AND W. KOSINSKI

that the sets are not fixed in the time, they change (°) with time.) In the case when the
excess quantities are used the reference surface Y, plays the role of the dividing surface
(cf. DEEMER and SLATTERY [15] or ALTS and HUTTER [4-6]).

The model with a shell-like interfacial region, whose geometry was described above, is
aimed to formulate an nnlual boundary-value problem in terms of the bulk field equatlons
valid in the regions B and the interfacial field equations valid on X;: indeed in the
present formulation of the problem the motion of the region 2Z, will be determined by
means of (free-moving) boundary conditions, since the conditions pnmluvely (and physi-
cally) formulated on the lateral boundary of 2, i.e on §2; := d.,t\_,, , once recalculated
(read: integrated along the thickness) will lead to boundary conditions for the interface
equations.

2.1. Geometry and kinematics of the interfacial layer

2.11. Normal coordinate system. In the case of layers of constant thickness z = z* — z~ and
the boundary surfaces Eft are equidistant (parallel) and the parallel surface coordinate
system (NAGHDI [38], NAPOLITANO [40]) is most convenient for the description of an
arbitrary point in the layer Z,. If the position of the reference surface at time ¢ is given
by

(2.1) y =r(l',%1),

where ! and [? are Gauss parameters of the surface, then an arbitrary point x in Z; can
be represented as

(2.2) x = r(I',*,t) + In(r(l", %, 1)),

where [ € [z, z*] is the third coordinate, measuring the distance of the point z from Y
along the unit normal n. Here points of the region Z, are referred to a fixed rectangular
Cartesian coordinate system.

The representation (2,2) means that the zone Z, is delineated by the surfaces Et', at
the distance of [ from ¥ 1l and represented by Eq. (2.2) with fixed /, and is delimited by
the surfaces X'} and Y7, at the distance of [ = z* and [ = 2~ from Y, respectively,
where to the surfaces lying between Y, and B; the negative values of the coordinate /
are attributed. We will see in the next subsections that Eq. (2.2) allows us to “delineate”
the interfacial layer also when its “thickness” is variable.

2.1.2. Geometrical properties of parallel surfaces. Let
or(l*,1) dr(l*,t)
o " T
denote two linearly independent vectors a; and a, tangent to Y, at r, then a®, where o =
1,2, denote the co-tangent vectors of the surface L; defined by the relation ag-a® = 63,
where 3 = 1,2 and a® - n = 0. If we define the surface gradient grad (-) by the formula
du(l”, r) .
al ’

(2.3)

=l a

(2.4) grad, u(l”,t) :=

(®) Only Eulerean formalism is possible in modeling surface phenomena at phase interfaces in phase
transition problems (c.f. DELL'IsoLA and RoMANO [13, 14].
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for an arhtrary vector (or tensor)-valued smooth field u, then Eq. (2.4) allows us to define
the tenso field on (the tangent space of) the surface Y, called the curvature or second
fundamenal tensor, by

(2.5) b:= —grad n,

forwhichb, 3 are its components in the tensor basis {a® & a’j}. The components of the
curvature tensor in the basis {a, @ a3} or in the mixed basis {a, © a®}, are b*# and

3, respettively. As we will need it when manipulating the expressions where b appears,
we recall here the Cayley-Hamilton theorem for 2 x 2 matrices, from which the identity
follows

(2.6) d* —dtrd + 1,detd = 0

for any suface tensor d, where 1 denotes the unit (metric) tensor of L.

Obviaisly Eq. (2.2) allows us to use for the parallel surface ! the same Gauss par-
ameters 1sed for Y;: in this way all geometric differential objects we have introduced
for X, ae naturally inherited by all Ef. To underline that except for the field of the
normal vector n, the intrinsic as well as the embedded geometries of the surfaces X can
be differeit, we shall explicitly consider the dependence of the objects a*, ag and b on
the third soordinate [ (if [ differs from zero).

Usingthe representation (2.2), together with Eq. (2.3), we have, after performing the
necessary differentiation, the relation

(2.7) a.(l) = (1, — [b)a, .

In whit follows we shall need the expansion formula for the second invariant of the
surface tewsor (1, — [b), denoted by j(l), i.e. for the determinant of the matrix [85 — (b7],

(2.8) J(l) = det[6” — %) =1 - 2HI + KI*,
where H and I are invariants of b, i.e. the mean and Gauss curvatures, respectively. If
we put k{r) and k;(r), for principal curvatures at r € X, then to avoid loss of regularity
of the refresentation of the layer, we have to restrict the thickness z of the layer to the
value
: < inf{min(|k,(0) 7!, [k2(r)7Y) v € 24}
The r:lationships (2.7) between the basis of a typical surface ¥} and Y; allows to

calculate ts surface metric tensor components «,3(/), and the area element /a(l); we
obtain

aop(l) 1= as(l) -ap(l) = a, - (15 — [b)’as.
Hence a() := det[a, ()] = det[a,z]det(ls — (b)* = aj(l)™.
It meens that the ratio of the surface area elements of £/ to ¥, is given by

(2.9) j() = yJa(a!.

The lest formula is particularly useful in splitting the volume measure v in the layer
Z, into tie product of two measures: dl and da;. Here dl represents the line measure
(element) of a typical segment {r+ In(r) : [ € [z7,z*], r € X'} in the layer, orthogonal
to each sirface ¥, while da; is the the surface measure (element) of Tl The last
measure an be written as da; = \/a(l)d['dl*. From the orthogonality of segments and
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the surfaces X!, and the formula for j(/), follows
(2.10) dv = dlda; = j(D)dlda ,

where da is the the surface measure (element) of X;. We can proceed further to get
relations for other geometrical objects in the layer. Due to Eqs (2.2), (2.5) and (2.8) we
obtain

(2.11) b(l) =)' =IK1,) =) 'b(1s + {(b—-2H1,).

The surface tensors appearing under the sign of the last bracket, will play an important
role in the further derivation, they satisfy the relation

(2.12) J(D1s = (1, — )AL(),
where
(2.13) A():==1,+1b, b:=b-2HI,.

Note that at a spherical point of the surface Y, where b = H1,, the tensor b is of
opposite sign to b, i.e. b = —b. To determine a”(/) we use the relation a({) - a?(l) = 62,
valid for any [/, to get
(2.14) a’() = j()7' (1, + b)a® = j(1)7'A4(D)a” .

The expressions (2.7), (2.11), (2.14) relate the geometry of a typical surface X} to the
geometry of Y, quite similarly to the thin shell theory. What differs this derivation from
that in the shell theory is the fact that here the region Z; is not material, in general. To
finish the derivation of geometrical relationships in the layer let us transform the oriented
surface element N(I)da of the ruled surface £2, formed of segments

{r+in(r):l€[27,2%], r e C 24},
where C; is a curve (°) on ¥;. Here N(/) is the outward unit normal to {2, given by
(2.15) N() :=t; x n||t; < n|| 7",

where t; is a tangent vector to the curve C! which is the lifting of the curve C; to L; the
vector tangent to the latter we shall denote by t, . Due to (2.2) and the fact that each of
t; and t, are orthogonal to n, and n has the unit length, we get (cf. Appendix)

(2.16) N(\)da = j()(@"(!) ® a,)ndl ds ,

where we have put n := t; x n/||ty|| for the unit normal to the curve C; that is both
tangent and outwardly directed with respect to X, and by ds we denote the line element
“of the curve (.

2.13. Kinematics of a family of parallel surfaces. To describe the kinematics of Z; we employ the
vector

_ or(i=, 1)

St

which represents the velocity of the displacement of the point

(2.17)

[* = const.

(") If ¢; = X, N Z4, then the ruled surface will be the lateral boundary of 2y, ie. 9Z,\(Z; U Z}).
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It is obviois that in another parametric representation of the moving surface, say r =
r'(k®, 1), tie calculated time derivative will lead in general to another value

, Or(keLt)
CE ——.
ot
However, tie normal component of both the derivatives ¢ and ¢,
(2.18) n-c=n-¢ =¢,

are equal. That is easy to see, if one starts with the implicit representation of the hy-
persurface S := |J X x {t} in terms of some nontrivial diflerentiable function g by the
equation

S C {(x,t): g(x,1) = 0}.
Then substtuting r or ' into the equation g(x.?) = 0 and performing the differentiation
under the ilentity sign, we get

dg(r,t )
D grad g
dJt

due to the :xpression for the normal vector n. The normal component ¢,, of the velocity
of the dispacement of the point {* = const is called the nonnal speed of displacement
of the surfuce, since it is independent of the parameterization. On the contrary, the
tangential component ¢ := ¢ -a” is strictly related to the parameterization (/*), for in
another paramelterization ¢/* = ¢’ - a”. Let us notice that il the both are related by a
time-dependent transformation
- YR It
LY = ked” 1) then ¢’ =¢+ %(L)l[_i_)

(2.19)

Il

—Cp s

Now, if we choose the transformation £ ({7, t) such that its time derivative is equal to
—¢™, then in the parameterization k& the tangential velocity ¢’ vanishes. That particular
parameterization of the moving surface is called the convected parametenization (BOWEN
and WANG [8], KOSINSKI [27]), in that parameterization ¢’ is equal to ¢,n. The integral
curve of the field u = ¢,,n, i.e. the spatial projection of a solution of the vector differential
equation

da dt

Ts = ¢,n(x), is =1,

is called the normal trajectory of the moving surface {S,} if at ¢, = t(0) it begins at
a certain point of the initial surface ¥y ; each point of X is the starting point for
a certain normal trajectory; moreover, through different points of ¥ different normal
trajectories are passing. In the convected parameterization the normal trajectory is a
locus of the surface point & = const. The choice of the convected parameterization in
the description is of particular convenience in the derivation of any formula of a general
nature.

Moreover, no final formula should depend on the particular choice of the parame-
terization of the moving surface, consequently it should be independent of the tangential
component of the velocity field ¢, only its normal component ¢, has the geometrical
meaning.
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In the literature, however, one can find a discussion concerning the form of the ¢“a,, .
In our opinion this velocity has no physical meaning, unless a fictitious point [* = const
will be equipped with an additional structure.

2.2. Displacement and other time derivatives

In the derivation of the local balance laws in the interfacial layer, an invariant time
derivative has to appear, which is independent of the chosen parameterization of the
moving surface Y. Introducing the velocity of displacement ¢ of the moving surface in
a particular parameterization, namely in the convected parameterization, and following
THOMAS [47, 48] and HAYES [22], the so-called

displacement time derivative 5

of a quantity (a (''-smooth field) u can be defined on the “hypersurface S as the time
derivative of u at fixed convected parameters of the moving surface {¥,}, i.e. by the
formula
6 du(k“, 1)

2.20 —ui= —
( ) ot ot
where (k®,t) is the convected parameterization of §. It is a direct consequence of
Eq. (2.20) that in any (not necessarily convected) parameterization ([, ) the operation
formula for this derivative is
1) du(l®,t)
—u=— "
ot ot

Together with displacement (or Thomas) derivative we need to introduce other time
derivatives of fields defined on a moving surface . To this aim we begin to apply the
representation (2.2) of the surface ¥! so that the velocity of displacement of X! can be
calculated as

(2.22) c(l) = ¢ — Il(grad, c,, + bc).

Here the explicit dependence of the fields on the coordinate [ is written only, neither
dependence on [* nor on t is represented. To get Eq. (2.22) we have to differentiate (2.2)
with respect to time ( keeping (® and [/ constant. Hence we need the time derivative of
the normal vector field n (note that here n is the same for each [ in the zone Z;). Due
to the fact that n-a, = 0, where the dot - denotes the inner product in E¥anda =1,2,
we get

(2.21) —grad uc.

an ac(lﬂv t) ~ -3

(2.23) I = *H‘—E){'T v a” = —ngrad,c = —(grad, ¢, + bc).

The derived formula (2.22) for the velocity is exact and can be compared with that
proposed by GATIGNOL and SEPPECHER [18] and others. Additionally to the derivative
related to the motion of the reference surface V', and due to the derived representation
for ¢(!) in Eq. (2.22), we may introduce the time derivative following the displacement of
the whole region (layer) Z,. We denote this derivative by d./d{ and define it by
dcﬁ,‘ 0Y(x,)

= —= + grad ¢(x, ().

2.2 .|
(2:25) a7 o
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where, according to Eq. (2.2), we put @ = r({*,[*.t) + (n(r({", [*, 1)) and ¢ is an arbitrary
(C'-smooth field) defined (at least) on 8

8:= U120 x {1} 1€ 1),

2.3. Moving regions of variable thickness

The assumption about the constant thickness of the layer is rather reasonable when
very thin layer of the interfacial medium is modeled. However, the constant in time (and in
the surface coordinates) interfacial layer restricts the class of physical problems successfully
treated by both the models based upon Gibbs’ excess or true quantities. Consequently in
this section to overcome this drawback we shall try to drop this assumption and to check
its consequences on the formulae derived till now.

We consider a narrow layer Z, dividing the volume phases b [ : the boundaries between
2, and both B are regular surfaces ¥} and Y, which, however, are not in general
any more equidistanl (parallel). As before we use the parallel surface coordinate system
describing an arbitrary point in the layer Z,: if the position of the reference surface is
given by Eq. (2.1), then an arbitrary point @ in Z,; can be represented as in Eq. (2.2),
where the third coordinate ! measuring the distance of the point x from X; does not
run over a fixed interval. Indeed, two scalar fields (= and (* on the hypersurface S
are defined such that their values give the distance of the boundary surfaces ﬁti from
Y,. The thickness = ol the layer can then change according to the difference of both the
functions, depending on the point and time, i.e.

(2.25) (e, 1) = (T (rt) = (T (ry 1)
The interfacial zone Z, is therefore delineatec by the surfaces ¥, at distance / from

Y, and represented by Eq. (2.2) with fixed [, and is delimited by the surfaces X" and X
given by
(2.26) Sr={ye Z y=r+(Er,tOn@), re I}
which are not parallel to Y, unless (*(r,t) is independent of the position r. Let us
notice that under the present weaker assumptions the layer can shrink locally to a surface
if (¥ = 0. Moreover, it is possible now to describe the situation when the lateral boundary
of the whole layer is not a ruled surface.

To avoid any singularities in the representation of the layer described in terms of
the parallel surface coordinates, the assumption similar to that made in Sec. 2.2 and
concerning the maximal thickness of the layer

¢ = sup{max(|¢™(r, O, [¢"(r, D)) 1 (r,0) € S}

should be done. The geometry of the boundary surfaces X V% will be related to that of X,

as follows. If a , a = 1,2, denote the natural base vectors of either surface, then due
to Eq. (2.26), we get

90t
e at = (1, — (*hja, + Qg’#"

For the components of the metric tensor we then obtain
ac= fc*

2
(2.28) o, :=at -a} =a, - (1, - (*h)ag + 5= 9iF °

2} e
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The directed surface element of £'# is given by (cf. Appendix)
(2.29) nE(r)dat ;= af x aFdl'dl* = (G(¢E, r)n(r) — A(CF) grad, (F)da,

where on the RHS the surface element da = \/ad!'dl*. In what follows the ratio da* /da
we denote by j*; it is a function of r and .

The boundary surfaces Sft move now with a velocity different than that calculated
by Eq. (2.22). In fact, performing the time differentiation in Eq. (2.26) we obtain the
following velocities ¢* of displacement of £*:

+ + a¢c*
(2.30) ¢” =c¢— (7 (grad;c, + bec) + W—n

To finish the geometrical preparation to the next section concerning the general balance
law for 3D fields we write the product of j* and the normal speed of displacement of
either boundary surface ¥ (cf. Appendix)

-+

6
(2.31) J*c*-n*(r)=j(c*,r)(c"+7‘;—;) (* grad, (*AL(C*) - grad .

3. Balance laws for a moving non-material shell-like region

The tools we developed in the previous sections will be now applied to derive the
general and particular balance laws of thermomechanics. It will be done for the case of
interfacial layer with nonvanishing thickness and for true, not excess, quantities.

3.1. General balance law

In one of previous papers (cf. DELL'ISOLA and ROMANO [14] or KOSINSKI and
ROMANO [2]) it was assumed that the lateral boundary of the whole interface (transi-
tion) region, i.e.

ZANET WES
is a ruled “lifted from a curve” surface .

It turns out that this assumption can be disregarded out on the global level keeping,
however, this assumption, on the local level, i.e. during the passage from global to local
forms of balance laws. It can be done assuming the integral form of the laws to be valid
for any sub-layer, which is a proper subset of the whole layer bounded by subsurfaces of
E,i and a lateral boundary which is a ruled surface. In such a case the natural boundary
conditions given on the lateral boundary of Z, need to be recalculated in an appropriate
way, also by introducing lines with material properties.

According to our notation the normal unit vector of E,i will point from the region
“—"to “+”. The question how to choose the surfaces Eli and the reference surface X,
lying between ¥ will not be discussed here (cf. DELLISOLA and KOSINSKI [11]). The
choice of its position should be based on the mathematical convenience in the process
of modelling and solving; this convenience is especially evident in the case of variable
thickness of the layer.
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The surface field p* defined by

+

(3.1) P (' Pty = [ p(e(®.0) + In(e), )i (L r(1®, D)l

-
with j(/,r(I*, 1)), « = 1,2, given by Eq. (2.8), will be called the surface mass density.
Here and in what follows both the cases of constant and variable thickness are discussed,
for the former (* should be identified with 2%,

Notice that in terms of the surface mass density p® the mass of the matter contained
at instant ¢ in the zone Z, is

M(2)):= j pla, dr = j pda .

Therefore our definition of “surface” density is such that introduction of the 2D
continuum Y; as a model for the interface Z; does not cause a loss of the quantity M.
On the other hand, let us notice, that the definition of the surface mass does not take into
account the type and the form of the 30 motion governed by the particle velocity field v
in the layer (especially its tangential components): as a consequence we shall get an extra
term in the flux of the mass in the 2. continuity equation (3.21). However, confining the
velocity field to a particular form we could define the surface mass density in a different
way appropriate to this form. Particular examples of 30D motions in a material zone are
discussed in KOSINSKI and WASOWSKI [30].

After choosing the moving reference surface Y, as a geometrical object the remaining
material structure of Z, is preserved by equipping the surface Y; with a structure of 2D
continuum. It is done by defining, in addition to p*, next surface densities and fluxes
of physical quantities as suitable integrals of the corresponding volume ones along the
thickness of Z;. Hence, following the definition of the mass density, we can define for f,
representing the density of a bulk quantity (i.e. a 3D density field) in the layer Z;, the
corresponding surface field f° as

¢
(3.2) fo= [ Unfe+in@),dl = (jf).
pd

The procedure makes possible the identification of interfacial quantities which appear
in surface balance laws, even when we are dealing with non-material continua. Moreover,
a more careful discussion of the Galilean invariance of the derived interfacial balance
laws is possible when dealing with the explicit representations of the interfacial densities
and fluxes (cf. Eq. (3.2) and (3.11)), respectively. This was the subject of the previous
papers of DELL'ISOLA and ROMANO [14], KOSINSKI and ROMANO [29], DELL’ISOLA and
KOSINSKI [11].

Referring to this last paper for a more detailed discussion, we remark here that, in
our opinion, to the geometrical surface speed field ¢, describing how Z; moves in i
no physically meaningful tangential component can be added. In the literature, however,
such a component is searched for, which is “reasonable” from_the physical point of view,
thus getting a “complete” velocity field to be used in the balance of linear momentum
(cf. IsHII [23], GATIGNOL and SEPPECHER [18], MOECKEL [35]): in DELL'ISOLA and
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ROMANO [14] it is proved that these reasonable reasonings are valid only in the case of
perfectly viscous interfaces as defined by Ishii.

On the other hand, in phase transition problems the material particles constituting
the interfacial matter at instant ¢ differ from those at another instant t'. Hence, together
with the field ¢, n, we have to introduce an average velocity V* of particles belonging to
the layer. In terms of the 3D material (particle) velocity field v, the densities p and p?,
the “surface” material point velocity V° is given by the relation for the surface momentum
density

<
(3.3) P’V = j pvi(l,e)dl |

-
together with Eq. (3.1). A continuous 20D system modelled by Y will be called non-
material if (7)

cp=c-n#FV .n,

which means that in the mean the material points (particles) occupying the interface layer
will not stay in it all the time. The difference

(3.4) d,:=(-V)-n
is a Galilean invariant and it is relevant to phase transition and adsorption processes if
it does not vanish. It can be regarded as a quantity which needs to be determined by a
constitutive equation (cf. DELL’ISOLA and ROMANO [11] and KOSINSKI [28]).

The classical balance law for the quantity ¢ with its Galilean invariant flux (current)
w and the source (supply + production) term p in the material volume P; C By is of the
form

d . ‘
(3.5) 7 f pdv = - j w -+ Nda + j pdv
P, P, Py

where N is the outward unit normal to dP;. Using the derivative d./dt , we get the
following integral balance law for ¢» in the non-material, in general, region Z; moving
with the velocity «,
ds g2 :
(3.6) pr, J Ydv = _.,7.”! (¥(v —¢) + w) - Nda + J pdv.
e Ay <t
After the partition of both volumetric and surface measures into the product measures
(cf. Egs. (2.10) and (2.16)) we get (*)

I, ,
G.7) :Tt J pida = _Cf (W' {0} — ¥°Pe)ids

— [ ()™ + Fgm) " )da + [ p*da.

The “weighted” limiting bulk-field values (wjn)* are
(3.8) (win)t := w(r + (En(r).)(n)* .

(") The surface is p-material if the equality holds (Kosinski [27]).
(%) Here P denotes the tangent projection operator, i.e. Pe = ¢;.
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where
(3.9 wi= o (v—c)tw

is the new flux in Eq. (3.6) appearing under the surface integral over 02, and we have
used the fzct that Nda = (jn)¥da on YE. Let us notice that in the case of a constant
thickness (f = - is independent of r and {, and

(3.10) Gmt = +5(:%. on,

while the case of a variable thickness is governed by Eq. (2.29) with ¢* depending on
r and ¢, in general. Since the definition of a general surface density has been given by
Eq. (3.2) we have the definition of the surface flux in place of w. To the flux win Eq. (3.9)

the corresponding surface flux WSI{‘(,Z'} (note the prime over s) is defined as
(3.11) Wsl{dv} = (v @ (v + Lgrad, ¢, )A (D) + (WA,(1)) .

The above definition together with Eq. (3.2) give at the same time the only possible
relationships between the surface quantities and their bulk counterparts (better to say —
their primitives), in order to make the interfacial balance law localized on the surface Xy
compatible and derivable from the 31 law. The latter is postulated for ¢ in the integral
form Eq. (3.5). Let us notice that the surface [lux W‘”'{c'} is Galilean invariant (due
to the Cayley-Hamilton identity (2.6)). Now, we can get the final form of the integral
balance law for layer Z,

- fd, , : ' E
‘J (ii—;ws + ¢° div_,.c,)(la + LJ (W {¢} — ¢° @ ¢;)nds
= j (Wjn)~ + (wjn)")da + f pida.

> B

z PP

Here we have used ¢- to denote the tangential part of ¢. However, in order to obtain
the local, differential form of the law we have to perform the localization procedure by
applying the integral law to an arbitrary subzone Z; of Z;. Here by a subzone we mean an

arbitrary (shell-like) subregion Z of Z; C P, bounded by subsurfaces % of BF with

a subsurface ¥/ of £, and with a nonvanishing lateral boundary being a ruled surface,
for which the Stokes and Green-Gauss theorems can be applied.

After calculating the time derivative of the first integral and applying the obtained
integral law to the arbitrary %} (supporting, by means the lifting along its normal field
the subzone Z|! of the layer Z;), we get under the continuity of the integrand (), the

following local equations:
([L‘ 5 S - . s’ 8 -~
(3.12) EU + v divg e + divg(W {¢} — ¢ D¢r)
=—({va-+whin +({va(v—c) +whin)} +p°.
() It weaker conditions were assumed, like measurability of the integrand, the derived equation (3.12)

should hold except for a set of H *-measure zero, (i.e. at most on curves) where H*-measure represents the 2.0
Hausdorff measure. This more general case leads to additional equations responsible for contact line effects.
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Using the Thomas displacement derivative é,, /6t (cf. (2.20)), together with the rela-
tionship

d. | - : : bn
— 7 + ¥ divg ¢ — divy (Ve ) = —* =20 catp®,
dt ot

we arrive at

n

b ,
(3:13) e = 2He, b + divy W {4}

=—{({vav+e)+wlin)” + ({0 (v—c)+whin)*} + p°.

In the constant thickness case we obtain the following formula, which we quote here
for the sake of completeness:

On ' =
(3.14) E-ws —2He, 0 + divy W {0} =[¥o(v—c)+ W] n +P°,
where
(3.15) Lol := g(r+ ¢ n(r),t) = g(r + ¢ n(r).t)

for an arbitrary field ¢ defined on B,.

The last equation is very well known in thermodynamics with surface singularities
(called also: thermodynamics with singular surfaces, cf. MOECKEL [35], IsHII [23], KO-
SINSKI [24, 26, 27], ROMANO [43], ALTS [3}, DELL'ISOLA and ROMANO [13]). The surface
term p®, called there a surface supply, is equal here to

(3.16) f)s = ps + ﬂh{‘gi‘:(v —¢)+ w}ﬂ ‘n.

where h(z¥,r) ;= (K (r)z* — 2H (r))z%, and as previously r € ¥,

ALTS [3], ALTS and HUTTER [5, 6] gave a boundary layer model for curved phase
boundaries and compared it with the model employing a singular surface. In their deriva-
tion, however, the surface quantities are identified with the so-called excess interfacial
quantities in contrast with the definition given in the present paper. Moreover, they
made use of balance laws for fields which are “extensions” of the bulk-field values at
the boundary layer edges, i.e. at S?:, in our notation. In this way their definition of
the surface quantities depends on the method of continuation of the bulk fields into the
layer. The same definition of surface quantities has been used by DUMAIS [16], who
performed the derivation for the case of a fixed material volume, not taking into account
the diffusion terms. Partial results under the similar definition was obtained by Deemer
and SLATTERY [18] together with the structural models for interface employing local area
averages dealing with excess quantities. The present results could be compared with those
of GATIGNOL and SEPPECHER [18], where dimensional and quantitive analyses of an ap-
proximation were performed. The present derivations are rather close to the results of
the 2D approximation theory of shells. A comparison will be done in the other paper by
KOSINSKI and WASOWSKI [30].

The variable thickness case ends with the law similar to Eq. (3.14), in which however
the surface supply term p? is different and if we denote it by p®, then due to Egs. (2.29)
and (2.31) it is equal to

(3.17) PP =pt +[h{vv—c) +wi]-n—[¢ o (v + ¢F grad, e )AL (CH) grad, ¢F]

: X Dt o
—[wAs(C*) grad, (¥ - ﬂaciwj]l .
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Brief inspection of this term (in view of the previous one) shows the contribution of a
new tangential part. This can be particularly important even in the case of the equilibrium
equation for the interfacial stress tensor. The change of the thickness of the soap film on
the bubble could be explained by means of those new terms.

3.2. Particular balance laws

Let us consider the particular quantities to be balanced by Eq. (3.14).

a. Mass balance equation: ¢ is equal to p, and if the mass is conserved in the bulk
medium, the flux of mass w and supply p of p (compare notation in (3.11)) are zero. The
surface flux W* {p} is given by

(3.18) W {p} = (p(v + Lgrad, c,)A.() =: (m(})) ,
which can be split into two parts

(3.19) Wsr{p} = p"Vi+ W, = p°Vi+ (p(A,() = J(DI,)v + Ipgrad, e, Au(0)) .

In the obvious way this equation leads to the definition of the extra mass flux W,,.
Hence the local balance equation for the mass is

bn : : gy y
(3.20) b—{-p" —2He,p® + divg(p®Vi) + divy W, = [jp(v—=1¢)] - n

é
+p(v + (* grad, c)As (CF) - grad, (F] - |[5—’;c*pj]| ,
where from (3.18) and (3.19) follows the explicit form of the surface extra mass flux W,
(3.21) W, = (Ipv)h — K (IPpPy) + {{Ip)1, + (I*p)b} grad, c,, .

The last two terms on the RHS of Eq. (3.20) disappear in the constant thickness case.
The simple inspection of Eq. (3.21) shows that the first tvo moments of the mass (i.e. (Ip)
and ([?p)) and of the momenta (i.e. {Ipv) and (I*pv)) lead to the nonvanishing, in general,
extra flux of the mass. Dealing with a p-material interface and the excess mass density field
p— pE, in the constant thickness case, ALTS [3] and then ALTs and HUTTER [4, 5] put the
term corresponding 1o our W, equal to zero. They chose, however, the surface coordinates
as lines that are frozen to the motion of the surface “particles” (where the particles are
defined in terms of the excess mass density). They should however distinguish between the
density of surface particles defined in terms of the true mass distribution and that defined
in terms of the excess fields, since their mass density can be negative. Moreover, their
choice is local in [, and the disappearing of W, cannot be interpreted as a constraint
on the thickness of the layer which, in the constant thickness case, is a material intrinsic
quantity, independent of /7.

On the other hand, assuming that a reference surface should be chosen in the layer
so that the quantity on RHS in Eq. (3.3) could represent the flux of mass, one cannot
regard the same quantity as the surface linear momentum density, independently of the
kinematics and the geometry of the surface, due 1o the A" and grad, ¢, appearing in it. Tt
follows that in the exact theory of interfaces one should expect the additional term W, in
the balance of mass, as compared with the form of this law given by the singular surface
approach.
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Let us notice that in the present model of an interface layer, the appearance of the non-
vanishing extra flux of the mass W, means that the flux of the surface mass is different from
the density of interfacial linear momentum density; this observation has been already made
by DELL’ISOLA and ROMANO [14] and SEPPECHER [45], using however an approximate
theory.

b. Linear momentuin balance equation: > = pv and the Cauchy stress T with the
minus sign serves as the flux of linear momentum, and the body force pf is the supply

term (no production in the bulk medium is admitted). For the surface flux W""{pv} we
have

(3.22) W {pv} = (pv o (v + Lgrad, ¢,)A, (D)) — (TA4(1)) ,
which can be split into two parts
(3.22)) W v} =V QW {p} + T,.

The Galilean invariant interfacial surface stress tensor T, can be written as the sum of
two invariant parts S and W, where the definition of the first part imitates exactly that
known in the continuum mixture theory (with the integration across the thickness instead
of summing up over mixture constituents), and the second part can be called the extra
surface linear momentum flux, i.e.

(3.23) =5(r, ) := (TA,()} — (p(v = ¥*) © (v = V)A,(1)),
i Wou(r. ) 2= (p(v = V") © ((As() = J(D1)V* + Ip grad, e, Ay (1)) -

The other splitting can be made by defining two new components contributing to T,
as S' and S°, where we put

Si(r, 1) := —(TA,())),
(3.24) S(r, 1) := ((v = V*) @ m(l)),
T, =S8 +§°.

Using the last formula we can write the local balance equation for the linear momen-
tum as below, where the superscript + is omitted,

o ; - , :

(3.25) E(/}“V‘”) — 2H e, p°V* + divg(V* @ (p°V2 + W,) + Ty) = p°f°

+{(py @ (v - n — ¢,) = Tn)j] — [pv & (v + ¢ grad, ¢,,)A(C) grad, ¢]
o ooy, At

+[TA,(¢) grad, ¢ - 5P| -
The last three terms on the RHS of Eq. (3.25) disappear in the constant thickness case.
The above expressions for the interfacial stress tensor T show that even in the equilibrium
case, when the diffusion terms §* and W, are put equal to zero, the symmetry of the

tangential components of § cannot hold automatically. Moreover, the normal component
nT; of the surface stress tensor T contains a contribution from the diffusion terms unless
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the tangential component v, of the velocity field v is constant along each segment of the
layer ("), i.e. is independent of /.

The last but not the least important proposition concerning the interfacial stress ten-
sor concerns the explicit dependence of § on the curvature of the interface Y,. The
dependence will be present even in the case when the contribution due to the diffusion
is neglected. Consequently, in formulating a constitutive equation for the surface stress
tensor one should not forget that S is a function of b as well. In particular, if the interface
is modelled as a two-phase Korteweg fluid, then

~T=pl+ani n, ('

with a scalar p as the pressure, then even in equilibrium (i.e. when v—V* = 0), the surface
stress will be different from the spherical tensor because of the term —(/p)b. Note that in
the case of a spherical interface with non-vanishing thickness (e.g. a soap bubble) under
equilibrium conditions v — V* = 0, the surface stress will be

(3.26) T, = (p(1 + /)1,

where r is a radius of the bubble. We can interpret the term (p) as the classical surface
tension, here the additional part (pl/r) appears, which is normally very small, unless the
thickness of the bubble is comparable with the radius r. This will be the case of very small
bubbles. In our opinion, a deeper investigation of the consequences of (3.26) will lead to
the improvement of Tolmann’s formula which is considered necessary by ADAMSON [17]
to match the experimental evidence. The quoted investigation will be made possible
by means of the introduction of a first order model for the interface (cf. the following
section).

It is seen from the above derivation that the local balance equations known in the
singular surface approach are limited to very particular cases of the present approach and
are valid under a particular set of assumptions.

c. Angular momentiun balance equation: v = x X pv. We restrict ourselves only to
nonpolar continua. The master angular momentum balance law is well known in the 3D
theory; its interfacial counterpart requires to define two quantities, namely
(3.27) W= (j(r+In) X pv), W¥5:= (jlnx pv)
and the corresponding flux and production terms
(3.28) wil)=—(r+m)xT, wol)=—-InxT,

' p° = (J(r+In)x pf).  p; = (jln x pf) — (jF),

where .
JF:=(l+Ilb - K1) xT)—jnxT-n—m(l) x (v.-n)n+ jpvx cyn.

Making use of the balance law (3.14), replacing ¢* with those defined in Eqgs. (3.27)
together with the corresponding terms from Eqs. (3.28), we arrive at a pair of equations.

(" In that case (fv), = ([)v, for an arbitrary field f, and v, = vE = V5. Such condition has been
admitted by DELL'1sOLA and ROMANO [14] and interpreted as the perfect viscosity consequence of the viscosity
of the 30 matter contained in the layer.

(''y We are assuming here that inside the layer i) Vp is parallel to the field n inside the layer, ii) o is a
nonvanishing scalar ficld.
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Subtracting the second from the first one and using the cross product of r with the linear
momentum equation (3.25), we end up with

(3.29), (J(1xT) =0

which is automatically satisfied if T is symmetric. On the other hand, the last equa-
tion, which represents the zero order condition of non-polarity of the layer, leads to the
following one:

(3.29), h+L+(1-n@n)xXT,=bx 'T,
1.3 1.3
where:
i. The product
NxM
1,3

between 3-3 double tensors N and M, whose components in a given basis are N7, and
M*™ | respectively, is a 3-vector whose i-th component in the same basis is:

j km
Eijk N’ m M )

with ¢, being the components of the three-dimensional Levi-Civita tensor.
Similarly the x product between 3-2 tensors is introduced; il N and M are 3-2 tensors
1.3

whose components are N/, and M*“ respectively, with a fixed basis e; for £* and

another one a, for the tangent plane to Y, then we denote with the symbol N x M a
1,3

three-dimensional vector whose i-th component in the basis e; is given by:
gijeNI g M5,

ii. The quantities Iy, I, and 'T, have to be determined by means of constitutive
equations. The quantities |, and 1, represent, respectively, the zero and higher order
sources of kinetical couples, and are introduced in order to describe those [eatures of the
kinematics of the layer which cannot be completely neglected even in the case of very thin
layers. Indeed they can be represented, in terms of 31) fields, as follows:

= (p(vy, — e)n X (v1 — VT)).
L= ((1 = J)p(vy, — cp)n X (vr = V) + (w, X (V-n)n)
+b 'M® x 'V — (grad, ¢, x lpjv),
where
'M?® = ('m())) = (jlpvis) + 'w,
is the flux of the first moment of mass, 'V* is defined by
"7 W = (plgv),  'p® = (pjl),
and
Iw,, = (Ip(As(l) = jly)v + I*p grad, ¢, A (1)) .
Finally the quantity
g VUL N
represents the interfacial first moment of stress tensor, where
1S {pv} == ((v— 'V )@ 'm(l)), 'S:i{pv}:= —(ITA, ().
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Before closing the discussion of the equation of motion we shall write the explicit
relation for the normal and antisymmetric parts of the surface stress tensor T in the
natural basis {a,,n}. They are

T = —(GT" )+ (Gp(v-n—c,))(@" = V) + ((v=V’) - nw}) - (6T T™)) ,
(3.30)
T =T = —(INT? = T + (b — b)T'))
where
T;% :=n-Ts", TV .= a' . Ta?, etc.

d. Energy balance equation: v = p(e +0.5v - v) =: pI/, where ¢ represents the specific
internal energy, the sum —vT + q serves as the flux of the total energy, where q is the
heat flux vector, the sum p(f - v + 7) is the supply term, where  represents the body heat

supply density. For the surface flux W* {pE} we have

(3.31) W {pE} = (Em(l) - (VT — q)A,(1)) -
If we define
piet = (jpe), Ti=e+0.5(v— V), p'F = (Jp(r + £(v— V7)),

(332) ¢ :=((pe(v—V) +q - (v-V)DA()),
Wi = (pe(As(l) — J(D)1)V + Ipé grad, e, A5(l)) .

then the local energy balance equation will be
511 : .
(3.33) H(p""(«“ + 0.5V - V) = 2H e, pP(e® + 0.5V - V*)

+divy(p*(e® + 0.5V° - VI)V? + q° + Wp + VT, + 0.5V - V°'W,)
=p°f  VE+ p° T +(pe + 0.5v-V)(v—c)+q—VvT)j]-n
—[p(e + 0.5v - v)(v + Cgrad, ¢, )As(C) grad, (] + [(vT — @)A;(C) grad,, (]

‘571 . .
i ] Sy - y
{[MQP(H-O v V)J]]

The last three terms on the RHS of Eq. (3.33) disappear in the constant thickness case.
The above expressions for the interfacial heat flux Q° and the supply terms p*7* lead to
the following relations:

Qs = CIS +Wg,

pSTS # ps;js ,
which mean that even the case of a nonconductor of heat at the 3D level leads to the
nonvanishing interfacial heat flux, and the vanishing heat supply term pr at the 3D level

leads to the interfacial heat supply p*7* equal to (jpf - (v — V*)), which does not need
to vanish if f is different {rom zero.

(3.34)

f. Thermodynamic inequality
The second law of thermodynamics for the 3/ material continuum is assumed in the
form of the entropy production inequality

d ; . ‘
(3:35) 7 ] pndy > — J (q/¥ + k) - Nda + ] pr/id

Py aPy P,
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where 7) and ) represent the specific entropy and the absolute temperature, respectively,
while k is the so-called extra entropy flux. Performing the usual localization for the
interfacial layer we get the inequality

(3.36) ﬁpsv)‘“ —2H e, p*n® + divy(p* Ve + K + W,)
. ot = T s\, G

zp7ry (v =)+ q/0 + K)j] - n

i . . . " On . .
—[pn(v + C grad ¢, )A(¢) grad, ¢ - [(q/¥ + K)A,(Q) grad, (] — ﬂﬁwwﬂ )

where

W {pn} = (pym(D) + ((4/V + KAL) ,

and we have defined
s

Py’ = (Gpu), p°ry = (ip(r/ D)),
(3.37) k* = ((p(q/? + KAL) + (pn(v = V*))A,())
W, = (pn(As() — j(D1)V® + lpngrad, ¢, Ag(])) .

The last three terms on the RHS of (3.36) disappear in the constant thickness case.
The above expressions for the interfacial entropy flux cannot be simple related to the
interfacial heat flux Q°, even in the case of the vanishing extra-term k. However, under
particular set of assumptions concerning the kinematics and the constitutive properties of
the matter in the layer, some simplification can be made in order to derive such a relation.
This will be the subject of a future paper.

4 . H-order models for nonmaterial twodimensional continua

Using the model developed in the previous sections one could not completely take into
account the influence of the thickness of the layer on the thermomechanical behaviour of
phase interfaces. The quoted model will be called a 0-th order model.

On the other hand the considerations preceding and following formula for (3.26)
clearly point out the following circumstance: if one wants to account the influence of
surface effects in the formation of small drops, one has to consider (at least) the first
moment of the interfacial tension field.

In order to provide a guide to the introduction of a more complex structure to non-
material bidimensional continua, an H -th order model can be developed (cf. DELL'ISOLA
and KOSINSKI [12] for the case of the constant thickness) the idea of which comes from
DUMALIS [16]. Similarly to the previous sections we will assume that the interfacial layer
has a variable thickness, in the sense made precise in Sec. 2.

4.1. H-th order model
One introduces the k-th moment field (& < ') of a typical interfacial quantity f by
(4.1) Kf=1%a,t")f whenze Z,.

Here [* means the k-th power of /.
Then for every & the following k-th local balance equation for the physical quantity
represented by the field v» can be easily derived by evaluating partial time derivative of
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the k-th moment *¢:, using the properties of the function /(x,t*) and using the local

balance equation for the field ¢* (see Eqs. (3.17)-(3.20) in KOSINSKI [31]):
(4.2) 1 Mo+ div( Mo ov+ fwy = Ap + k( Fly @ (ven—cn) + .

Regarding Eq. (4.2) as the local form of a particular case of Eq. (3.5) and recalling
the form (3.14) we get the following surface balance equation:

“'w.n).

611 . ¢ s . - . .
@3 = s — 2l e, 9 + divy({ S0 @ (v + Lgrad, ¢,)A, (1) + ( *wA(D))

k=1

=[(Fe o (v—c)+ "wlen+ KPP+ (k( =l (ven—cy) + w-n)),

where the following definition has been used:

(4.4) P i= Fpt+{ o (v—o+ "w}l]-n

—[ e @ (v + ¢ grad, e )AS(C*) grad ] - [ FwA(CF)grad, CF] - [[%?c* *‘wj]l :

Equation (4.3) is valid for any k& > 1.

We remark that when & = 0 the primitive interfacial balance law (3.14) with (3.17)
yields Eq. (4.3) as a particular case.

However, a question may arise concerning the completeness of a k-th order model,
formulated by postulating, for the interface, the first k + 1 surface balance equations of
the type (4.3) and assuming that all the higher order quantities appearing in them are
determined by means of constitutive equations.

To answer this question one should first notice that the A-th moment of a typical
function f in Eq. (4.1) (regarded as a function of ! only) defines the projection of f on
the polynomial /* belonging to the basis formed by all polynomials of the function space

L¥([z~, 2], dp = jdl).

The measure ju is positive and absolutely continuous with respect to the Lebesgue
measure as long as J is positive and H and A" are finite; this corresponds to the assumed
hypothesis on the thickness of the layer Z;. Therefore the [f-order theory deals with
truncated expansions across the thickness of the layer of the physical quantities to be
balanced.

4.2. H-th order thermomechanical balance equations

We present here the balance equations of k-th moments of mass, linear momentum,
energy and entropy.

We explicitly remark that balance of angular momentum leads to some surface equa-
tions which simply generalize either Eq. (3.29), or its different formulation (3.29)..

a. Balance of mass
bn 1 s : , s ke .k
45 kp° — 2H e, Fp® + divg( Kp® FVE) + divs *W,
= (jk*'p(v=¢)) - n+[j “p(v =) n

: . . . O d
—{ Af)(v + Q:t grad, ('H)AS(Qi) - grad, (-i]] o Hﬁgi Af)]]] )
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where we have used the following notation:

kps kvs = (J A'/)V).

b. Balance of linear momentum

bn : ‘ : ‘ ;
(4.6) 5z( kps kvs) — 2He, *p* "V + div,(*VC & *M® + KS' + ksl

= Mo0* +1(Fpvo (vom—c) = FTm)j)+ (k(F v o (ven—c) = F'Tm)j)
.l kPV @ (v + ¢ grad, ¢,)A,(C) grad, ¢ + [ ATA&(Q)grads q ks I[(S{( pV]]
where we have omitted the superscript = and used the following notations:
( *p(v + lgrad, ¢,)A.())) =: ( *m(])) =
*S'(r, 1) := —( *TA, (),
kS3(r, 1) := ((v— *V*)@ *m()).
¢. Balance of energy
(4.7) g'ii( kp*( Fe® + 0.5 v . kv _ 2Hc, ¥p°(Fe® + 0.5 Fv* . Fy?)
+dive( Kp*( Ke® +0.5 5V vE) Fve 4 Kgt 4+ Fwg
i kvs kTs +0.5 kvs . kvs kw”) - k(pf)s . kvs kps k--
+( k/;(r- +05v-v)(v—c)+ Fq- vT)]]] -n
+(k( ¥ ple + 0.5v-v)(v — ) + k_lq - k"'vT)j) -n
—[ “pe + 0.5v-v) @ (v + ( grad, ¢,)A,(¢) grad, (]

[ *vr = “q)A,(¢) grad, ¢] - |[6—tc “ple +0-5v-V)J]| ,

where we have used the notations:

kp® Ke? o= (jp X&),  p°F = (j¥p(r + 1. (v = V?))),

", = Fs + 4s,.
d. Thermodynamic inequality

b" e o
(4.8) o Kps ks — 2He, ¥p® Bn® + divg(Xp* *9p* S + R+ “W,,)
k_s A ]

2 fpt 1 pv =) + Fq/i + FK)j]-m
-1 “pn(V+Cgrad,fn)As(L)grads@I]—i( /v + "KA(Q) grad, (]
on .k . . ! e
[[37@ I‘P'U}] + (k(“pn(v = ) + “a/V + *K)j) - n
where we have used the following notations:

p = (GRom), o™y = (50 /),
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A'is :

Il

(C*pla/ v + WA () + (Fpn(v = V)AD)) .

W, = ( “pn(Ay(l) — J(O1L)V* + L *pyygrad e, A5(l)) .

4.3. Epilogue: future developments towards a constitutive theory for nonmaterial twodimensional continua

The problem which has to be faced at this stage of the development of our model
concerns Constitutive Modelling of the interfacial layers.

Self-consistence arguments will lead us to try to deduce, exactly so as it was done for
balance equations, the constitutive relations for nonmaterial bidimensional continua from
the corresponding threedimensional ones.

One observation is immediately possible: let us look, [or instance, at the previously
obtained expression for surface stress tensor: the deduction ol the surface constitutive re-
lations is not straightforward from the threedimensional ones. Indeed, in the expression
for 2D quantities the 3D velocity field v appears: this means that the particular kine-
matical situations inside the layer affect the behaviour of the twodimensional continuum
modelling it.

The last circumstance, while giving reasonable chances to yield the right framework
for modelling Marangoni eflects, renders the constitutive description of bidimensional
nonmaterial continua more complex.

A possible way of avoiding such a difficulty is suggested in the classical “Theory of
Shells” (material bidimensional continua) by LOVE [34]: some physically reasonable as-
sumptions about the kinematics inside the thin continua are made, what leads to suffi-
ciently accurate bidimensional models.

This procedure proved itself to be fruitful also in the theory of nonmaterial bidimen-
sional continua: indeed, for the so-called perfectly viscous interfacial layers (introduced
by IsHII [23]) even the deduction of surface balance laws is greatly simplified (for more
details see DELL'ISOLA and ROMANO [13, 14] or SEPPECHER [45]).

For this reasons we are led to define the Kirchhoff~Love type interfaces.

We call the Kirchhoft-Love type interfaces such interfaces 2, that:

i) Z, is delineated (in the sense of our Sec. 2) by a surlace Y, and surface fields ¢
(or z1),

i) the material 3D field v has the following particular form:

(4.9) v(l;r ) = vo(r. t) — l(grad; wy, + bov,),
where vy, v, and «,, are the suitable vectors, tangent (to X) and scalar fields defined on
Y, and on every V!, respectively.
Previous definition can be interpreted as follows:
a) all the particles belonging to the line
:={ze 2,/ e[(".¢(7] z=r+In}
move with the same normal (i.e. along the vector field n) speed: v, - n;

b) when the fields «, and v, are independent of the variable [, then the tangential
velocity field along the same I, depends linearly upon the variable /;
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¢) when the following equalities
(4.10) Vie[(T, ("] wpo=cn, (Q=n@n)vy=v,

hold, then all the particles belonging to the same I; at a given instant ¢ will belong (if they
still belong to Z,) to the same line 1, for every different instant T,

d) when, togheter with the relations (4.10), also the following equality
ypy-n=¢«¢,,
holds, then the layer Z; is material,

The case d) was considered by Love, in his classical treatment of the theory of material
shells.

Appendix

Here the derivation of the translormation of the oriented surface element N(/)du of
the ruled surface {2, formed by segments {r + In(r): [ € [z7,z%],r € C; C X}, where
Cy is a curve (**) on X', will be given. Here N(/) is the outward unit normal to 2, given
by
(A.1) N():=t; x n||t; x n||~",
where t; is a vector tangent to the curve C/ which is lifting of the curve C; to X!; the
tangent vector to the latter we shall denote by t,. Due 1o Eq. (2.2) and to the fact that
each of t; and t, is orthogonal to n, and n has a unit length, we get

t; = (.lg == /b)tu and t X n= (ls = /b)t” X n
and
(A.2) It x nl| = [lt] = J(Dllt]] -

If by ds; and ds we denote the line element of the curves (,’[’ and Cy, respectively, then
from Eq. (A.2) it follows that its ratio ds;/ds := ||t;||/]|ty|| is equal to j({). If the tangent
vector ty has (%) the splitting d“a,,, then t; = d“a(l), and denoting components of the
alternation tensor (/) of the surface %! by <., 5(1) = j(/)c-. (cf. one formula above
Eq. (2.9) and the next one, i.e. (2.10)), we obtain

tyxn=d%,(l)xn=d%.,,(Ha"(l) = d°j(l)e,.a"(])

= d°j(1): 36227 (1) = d°j()e gola” - a,)a> (1)
=d"j((a, xn)-aa” ()= j(H)@" (1) @ a)y X n.

If we put o := t, x n/||ty]| for the unit normal to the curve C, that is both tangent and
outwardly directed with respect to X, then the last expression, together with Egs. (A.1)
and (A.2), will lead to relation
(A.3) N(D)da = N(O)dlds; = j(H@ (D@ a,)ndl ds.

The componentwise derivation of the last formula can be found in ALT and HUT-
TER [4].

() 1fC; = £, N Z,, then the ruled surface will be the lateral boundary of Zy, ie. dZ,\(Ly ULZ]).

('3) If A, running along some interval of the real line, is a parameter of the curve Cy and each of C,’, then
d® = dl* JdA.
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The normal (not unit) vector to either surface £F in Eq. (2.26) will be given b
t q g Y

(A.4) af xat =a, xa,— (¥(ba, x a; + a) x bay) + ((¥)’ba; x ba;

S g s aE aci)
()[‘_ P (.)Il - Q (ha[ X N—F/—7F ()l + n X ba: all
. 42 . r?g ac*
- - + +,2 R
=gl = ¢ ll'b'f’((, ) deth)n+;,;(, ( 0[2 bl PapTT )
,0 ,0 '+ .
—e12C (b c;’l’ bv )gll )a' — £z grad; g*

lnspecung the contents of the first bracket we can sec the value of lhe Jacobian j
at | = (%, while the next two brackets give minus (¥ (b — 2H 1,)grad, (% equal (cf.
Eq. (2.12)) to —(*bgrad, (*. With this at hand and remembering the tensor A(!) from
Eq. (2.13), we write the final relationship
(A.5) nt(r)da® = ali X a3 ' dl? = (G(¢E, n(r) - A(Ci)grads(;i)da 5
where on RHS the surface element da = /adl'dl*. In what follows the ratio da* /da is
denoted by j*; it is a function of r and t.

The boundary surfaces ¥ move now with a velocity diflerent than that calculated
by Eq. (2.22). In fact, performing the time diflerentiation in Eq. (2.26) we obtain the
following velocities ¢* of displacement of Y7

" " og
(A.6) ¢" =c¢— (" (grad,c, + be) + Tn.
(

Now we are making the final calculation of the product of j* and the normal speed
of displacement ol either boundary surface _‘Tf. It will proceed as follows
ATy - JeF )

—

J . . .
= ( - (*(grad, ¢, +be) + —37) - (J(¢E . rn(r) — A(CF) grad,, (F)

2=

()
= ¢t n{en+ S

5 grad, (ic) +(E grad, CEAL(CY) - grad, ¢, .

Using the formula (2.21) for the displacement derivative we can rewrite Eq. (A7) to
get
+ + 4 : b¢* +
(A.8) JTet o (r)=]((, ,r) (”+b—t +(, grad, ¢ AS(.’, )-grad; ¢, .
Hence follows the expression for ji
7% = |laf x a¥|| = Va(((¢*,r) + grad, (* - AY(CT) grad, ()",

which can be useful in some derivations.
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On transient development of waves generated
by a porous wave maker

U. BASU and MD. ABDUS SALAM (CALCUTTA)

THE INITIAL VALUE problem of surface waves generated by a harmonically oscillating porous wave
maker immersed vertically in incompressible homogencous liquid is considered. The resulting motion
is investigated by using the Laplace transform in time and the Fourier transform of special type in
space. An asymptotic analysis for large time and large distance is given for the free surface elevation.

I. Introduction

THE LINEAR theory of surface waves generated due to harmonic oscillations of a wave
maker was initially developed by HAVELOCK [1]. During the last two decades this theory
was studied and developed by many investigators (cf. URSELL, DEAN [2], KENNARD [3])
for vertical and nearly vertical wave makers. The influence of leakage around a wave
maker on the wave amplitude is an important effect and an interesting phenomenon to
study as it may have application in the study of surface waves in reservoirs or lakes caused
by landslides during earthquakes, and in designing the construction of dams.

In the present paper we consider the transient development of waves at the free surface
of the fluid produced by harmonically oscillating porous wave maker immersed vertically
in a homogeneous incompressible fluid of finite depth. Following TAYLOR [4], regard-
ing the boundary condition on the porous wave maker it is assumed that the velocity
perpendicular to the porous plane is linearly proportional to the difference in pressure
between the two sides of the wave maker. The integral representation of the free surface
elevation is obtained by application of the Laplace transform in time and the Fourier
transform of special type in space coordinate (following SNEDDON [5]). Then the solu-
tions for asymptotic waves for large time and distance are obtained by the application of
stationary phase method. It may be mentioned that CHWANG [6] solved a porous wave
maker problem by the eigenfunction expansion procedure. In the present paper, an ini-
tial value formulation of the generation of surface waves due to oscillatory wave maker is
presented and solved by means of the integral transform technique to obtain the solutions
representing progressive transient wave and ultimate steady wave as ¢ — oc.

2. Statement and formulation

We consider the two-dimensional motion in a liquid of finite depth h and volume
density o in the gravitational field, neglecting the effect of surface tension at the free
surface. Let the y = 0 plane be chosen as the undisturbed free surface with the y-axis
taken vertically downwards. The motion is generated due to a prescribed time-harmonic
normal velocity

(2.1) Uy, t) = u(y)e' " H(t)
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on a porous wave maker occupying the position @+ = 0, 0 < y < h, where u(y) is an
arbitrary function of y, w is the frequency and //(t) is the unit step function.

The velocity potential p(x, y, t) satisfies an initial boundary value problem in which
Py P
dx? o dy?
The bottom condition is

=0, 0<2<>, O0<y<h, 1t>0.

7]
(2.3) =0 on y=h i>0.
dy
The linearized dynamical and kinematical boundary conditions are, respectively,
J
(2.4) _C}? =gn(x,t) on y=0, t>0,
de 0
(2.5) (); = an(;v.[) on y=0, >0,

where 7(x, t) is the elevation of the free surface above its mean level, ¢ being the accel-
eration due to gravity.

Following CHWANG [6] and basing on TAYLOR'S [4] idea, the hydrodynamic pressure
on the positive side of the wave maker surface p*(y, t) is related to that on the negative
side of the plate by

PO, y,t) = p*(y,1) = =P~ (y,1),
where P(x,y.t) is the hydrodynamic pressure. As the wave maker is made of material
with very fine pores, the normal velocity of the fluid passing through the porous plate is
thus linearly proportional to the pressure difference between two sides of the wave maker
plate, and is given by

) b, _ 2
Wiy, t)y==(p* —=p~) = —P(0,y,1),
It It

where y is the dynamic viscosity and b is a coefficient which has the dimension of
length. But the hydrodynamic pressure is related to the velocity potential (o(x,y,t) by
the Bernoulli equation as

P=—pp.
Therefore

2b
Wiy, t) = ——gupt at z=0.
0

The boundary condition on the wave maker surface is the difference of the horizontal
velocity and normal velocity

J
_i = Uy, t)—W(y,t) a a=0,
da

or

dy dy
i v
dx ot
where ¢ = 2b/u, p being the dynamical viscosity, and b — the constent having the
dimension of length.

(2.6) Uy, t)y at  x=0,



ON TRANSIENT DEVELOPMENT OF WAVES 363

The initial conditions are
(2.7) e=n=0 when =0.

3. Method of solution

_ We define the Laplace transform in time of the function F'(x, y.t) and denote it by
F(x,y.p),
o

(3.1) Fey,p) = [ e Fa.y,t)dt.
0
We also introduce the Fourier transform of a special type in the horizontal space coordi-
nate r as
(3.2) U, y.p) = ] (Ecos€x + epsiné)p(x, y, p)da
0
where (., y. p) is the Laplace transform ol (v, y, t).
The corresponding inverse transform of Eq. (3.2) is given by

“(Ecosla + epsinéa )!P(f.y‘p)t[{.

2+ e

3.3) 2 = —
(3.3) Plr.yp) == [
Hence application of the transform (3.1) and (3.2) to the system of Eqgs. (2.2)-(2.6) gives
a set of equations to be satisfied by ¥ (£, y, p) in the form

F'I’ . —
(3.4) - € = ET(y.p).
dy*
{
(3.5) (—il/ =0 on y=h,
dy
(3.6) v = %O on y=0,
and
3.7) ;—Illl =p2(&,p) on y=0,
¢y

where (2(£. p) is the Fourier transform (defined in Eq. (3.2)) of the function 7j(z, p), the
Laplace transform of (. 1).
The solution of Eq. (3.4) is given by
Yy =
(3.8) W€y p) = AE )Y + BE p)e™8 + j sinhé(y — 2)U(z,p)dz,
0
where A(. p) and B(£, p) are functions to be determined from Eqs. (3.5)-(3.7).
Using Eqs. (3.6) and (3.7), we get

1en = (555 een.

B(E.p) = (’52 - )f’(i p).

(3.9)
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Hence, by using relations (3.9) in Eq. (3.8) we finally get ¥ (£, y. p) in the form
]

(3.10)  W(L.y.p) = j’—)cnsh{y + gsinhfy] Q&)+ [ sinh&(y — )T (2, p)dz.

0
Again, to get f2(&, p) we substitute Eq. (3.10) in Eq. (3.5) so that

p l’ Ecoshé(h — 2)U(z, p)

P+l coshéh

dz,

(3.11) Qep) = -
where a?(£) = g€ tanh €h.
Substitution of Eq. (3.11) in Eq. (3.10) gives ¥ (£.y, p) in the form

h_ — A\TT >
J coshé(h — 2)U(z, p) s
cosh&h

Y <k
(3.12)  W(&y.p)= [ sinh&(y— 2)U(z, p)dz ~ sinh &y
0 0
_ g€cosh{(h —y) * cosh€é(h — 2)U(z, p) s
(p* + a?)coshéh ”J cosh&h .

Taking the inverse Laplace and Fourier transforms and applying the convolution theorem
for the Laplace transform in Eqs. (3.11) and (3.12) together with Eq. (2.1), we get

(3.13) n(a.t)
= _é jsx\[(f)[ i (,.@r{ ;jr cosa(l — 7 — A)sin(sA + ;L-E)rl)\}(lr] d¢ ,

0
i

2 %% -
(3.14)  (x,y,t) = - j {N(.y)- M({)sinh{y}{ J e T[sins(t — T)coséa
0

0

+ coss(t — 1) sin€x] d'r}df

_i_‘z l‘;j EM(E)cosh&(h — y){ jvﬁiwr t],f[Sin ol

avcosh &h s g

x sinaAcoséa + coss(l — 7 — A)sinaAsinéx] dA d’r} d€

where
K€ y)= | sinhé(y - 2u(z)dz.

‘ " cosh&(h — 2)u(z)
M) = [»/ cosh&h

s(€) = €/e.

Again, Eqs. (3.13) and (3.14) can be expressed as

® sM S : :
(3.15) (e, t) = j : (6)1 ; : {e™!(ssincf — iwcosz€) + iw cos(st + x€)
a? — st 2 —uw?
]

dz,
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1
(3.15) —ssin(st + 06)} + — . {(‘“(lwsu)s € — a’sinx€) + sasin at cos z€
2 — 2

|cont.] T e
. 2 . . . .
—iwscos st cosx€ + a’cosatsinzf + iwsinatsin €} | d€
and

(3.16) Slroy )= ;_:27 ]\ { AE ) —’ M(i) Sinhﬁy}I s cosx€ + iwsin x€)

St —Ww

[}

—scos(st + af) — wwsin(st + w€)]dE —

29 TSM(E)COSN(h )
7r (a? = s?)cosh&h

a o .
X [ - —{e"“(scosaé + iwsina€) — scos(st + 2€) — iwsin(st + x€)}
§7—w?

1

)

(X =

iwt

—{ e’ (scosaf + iwsinzf)
2

. . ? . . .
—ascosatcos xf — iwssinalcos € + a’sinatsinxf — iwacosatsinazf}| dE.

4. Asymptotic analysis of solution

We are interested to investigate the principal properties of the wave motion after a
long time and a large distance; the free surface elevation 7(a, 1) is obtained in integral
form given by (3.15). We write

(4.1) (x.1) = = Z,,,,_

nl

where

X 'AZ 1‘[ d
= I - ° (61) Ef) —(asinat — iwcosat + iwe'“)cosz€ dE
J (@ = sHla? - W)

b sHEOM
ne- ] SOM(E)

PR )(A sin st — iwcos st + iwe'“t) cosaf dE

ns = }C 5“({)1‘1(5 (q(_‘iwf

- — — (¢ — scos sl — jwsin st) sin w2 d€
(a7 = D) = )

M= — [ f(é)n}e)ﬂ,’[(f) — (e’ — acosal — iwsinat)sinzf dE.
(f — s9)(af — w*)

Again, we can write
(4.2) i = [_,‘ + J_,' (7 =1,2.3,4),
where

_iwett F SOME) e, i
I = 2 “J (”2_53)(“2_&3)(’ + ¢ YdE,

http://rcin.org.pl
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- lwetwt > sHE)M(E) iz —ige
l= 2 (a — s?)(s? — w.z)((' +e )dE,

(‘iwf T s"({).‘[(f)
/ (a?

wré _—irf
B ,-.'3)(32—\.02)(( c )f[{’

I}l

(
[J = _ﬂ ]\' g(5)”‘({)“[(6) (( z.L'E . (,—i.l‘ﬁ)clg i

It is also found that

4

.Z’lﬂ ({=1,2,3,4),
i=1

f\ SHEOM(E) cletE8) ge

0

(a? — ) (a — w)

(4.3) Ji=

J“,‘Il)_

Il

T SEM(E e
Jiz, Jig = — f o —(f)l)(n({.;). “;)(—t(ut;LE)(lf,
0

22 _i‘:&)ﬂ({)—f,z(stix&) de

T TR

Jau,Jn =

J23, 02 = J M"_i(sqré)([f-

- L o s (s +w)

5 = __M i(stxaf) g¢
Ja,J2=F . (a2 — s?)(s — u-‘)( £

_SOME) | —ierrre) g
(a2 = $2)(s + ) ’

* _'ij({)(l’(:f)-’\l(é) PUCEE 223 d€ ,
((j‘ — ‘.\"‘)((-\ . “';)

SOUOME) i g

(2 — s (a+w)

JiaJu=F

=y

Ju,Jn =+

S—

0

Jodu=2% [
()

If f(£) has a simple pole at & = & ina < & < b, then |z] — oo. We get (cf.
LIGHTHILL [7])

b

] [ dE ~ im sgn(a)e'tr - [remdue of f)atl =&+ 0 (|—|)]
; i

For large ( and «, the pole and stationary point ol the integral give the main contribution
to asymptotic value of the above integrals. It is noted that Iy, 1y, Ji1, Ji2s Ja1, Jaz contain
two simple poles at £ = & and & = &; Iy, [y, Jai, Ja, J31, J32 have two simple poles
at £ = & and € = &. Ji3, Jua, Jas, Jasy J3s, Jas, Jus, Jug have a simple pole at £ = £,
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where £, &, &5 are only real roots, and this results {rom the equations given below

a(§) = s(§).
(4.4) a) =w,

s(€) =w.
Equation (4.4), gives an infinite number of imaginary roots § = £, k = 1,2,..., 00, but
as |2| — o<, by choosing the contour suitably, the polar contributions due to imaginary

roots vanish.
Therefore, using Eqs. (4.4) and adding them we get

o SEME)  e—sen o L
(45) Mpolar Of’(gz){w s 3(62)} € +0 (1) .

None of Ij', JZj’ J_z,J' (_] = 123.4) and J“, JH, -1.”, -]4.{ has a stationary pOiﬂ[. Ol‘lly
Ji2, Jhs, Ja2, i3 have a stationary point at £ = £, which is found from the equation

(4.6) e 2,
d€ {
If f(A) = [ g(t)e' MO dt has a stationary point at { = t, then, following COPSON [8],

b

an [ oo | }1/2”{'\“”*”4}*0(1)
4 g & ; ( gito /\Ih”(il))l ) AN

o

Using formula (4.7) we get the contribution for 7 nsicnt

"

oo { | }'/L s(E)M (Ey) [f-i{a(én):—reu—n/ﬂ
™ Jam Ular @S {ale) + s@} . até) - w

e—{ant—zgy—7n/4} 1
_ ] + 0 (—) 2
(,I’(&)) + W t

M@, ) = Npolar + Theansients Where 1piae and gnsien is given by Egs. (4.5) and (4.8),
respectively.

(4.8)

5. Asymptotic solution in the case of infinite depth

If the fluid is of infinite depth, that is when h — oc, the functions M (), a(£), s(£),
the poles, £, &, & and stationary point §, are all simpler in the form and they are given
by

M) = l u(z)e 8 dz,  a(f) = TR

()
s€)=¢€fe, &=cg, L=wg. G=cw, & =gtifalt

Therefore in this case, the asymptotic solutions for #(x, 1) can be obtained independently,
or from Eqs. (4.5) and (4.8) by letting formally h —

2w (wz/y)‘}t!(wz/g)px{dl—(u‘!/y).l'} + O( 1 )

X N ... ¢ .3
G-D e~ = T @)

|z
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(5.2) i [g t (gtt/4a)M(gt?/4a?) ¢ (gt /4x)=/4}
5= e ~ 3 Y bl B
L T a3 {c(gt/2x) + (gt /4x))} | {(gt/22) — v}

2
e—i{(gt?/4m)—r/4} 1

- ] + 0| —) :
{(gt/22) + w} \ ¢

6. Conclusions

For a deeper understanding of the wave motion and the behaviour of wave forma-
tion at all times it is necessary to study the steady state and transient solution explicitly.
The surface wave generation by a harmonically oscillating vertical porous wave maker
immersed in an incompressible fluid of finite depth is investigated following the method
of generalised function (c{. DEBNATH [9]), and an asymptotic analysis for large times and
distances is given for the free surface elevation. For impermeable wave maker, taking
¢ = 0, the results of FALTAS [10] can be recovered. The analysis presented here reveals
the fact that the transient solution 7, decays rapidly to zero as { — oo. Thus the ultimate
steady state solution in Eqs. (4.5) and (5.1) represents the outgoing progressive wave
propagating with the phase velocity w/€; and g/w for finite and infinite depth of liquid,
respectively.

3k x=5,h=1, w=2,d=1

N7
1 1 | ¥ < 1 1 1 I 1 |
0 1 2 3 4 5 6 7 8 9 10
FiG. 1. Surface wave profile for different values of cat 0 = 5, w = 2, h = L, d = L.

The graphical representation of wave profile have been presented for CHWANG'S [6]
results by a dotted line, and for our results — by a continuous line in Fig. 1. The sarface
wave profiles are plotted against time for fixed space variable x, frequency w, depth h
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and parameter ¢(= 0.1,2) in Fig. 1. It is interesting to note that, as time increases,
the ultimate steady state solutions for both the cases coincide exactly, although the initial
development of wave amplitudes differ which is an expected and very interesting feature to
note. The graphical pictures confirm that the transient part 7, of wave amplitude rapidly
decays 1o zero. By plotting the curve 1, 2, 3 for different values of ¢, the important result
should be noted that the wave amplitude decreases with the increasing value of c. If
we take ¢ = 0, then the permeability character ol wave maker can be eliminated, and
the surface waves have maximum amplitudes, as it also has been noted by CHWANG [6].
Again it can be stated that if ¢ becomes very large, the wave amplitude reduces to zero,
i.e. the wave maker behaves as a transparent object and this result was also explained by
CHWANG [6]. Due to the effect of permeability on the wave maker, the amplitude of a
progressive wave is changed quantitatively, but the qualitative nature of the wave remains
unchanged.
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Geometrical aspect of symmetrization of quasi-linear systems
of the first order partial differential equations

S. PIEKARSKI (WARSZAWA)

IN CONTINUUM MECHANICS, one often discusses symmetric and symmetric hyperbolic systems. Such
systems are of interest for phenomenological thermomechanics where the additional balance law
implied by a symmetric hyperbolic system of field equation is often interpreted as the entropy bal-
ance. The aim of this paper is to discuss the structure of the process of symmetrization of a system
of partial differential equations. The approach to symmetrization developed by Boillat (G. Boillat,
Sur Pexistence et la recherche d’equations de conservation supplementaires pour les systems hy-
perboliques, C. R. Acad. Sc. Paris 278A,909,1974) is formulated in an invariant manner and its
ceffectiveness is discussed. The geometrical approach naturally leads to a distinction between the
trivial and nontrivial equivalencies of symmetric systems.

1. Introduction

IN CONTINUUM MECHANICS, one often discusses symmetric and symmetric hyperbolic sys-
tems. Such systems are of interest for phenomenological thermomechanics where the
additional balance law implied by a symmetric hyperbolic system of field equation is often
interpreted as the entropy balance [1-7].

One interesting problem concerns the conditions which are necessary or sufficient in
order to ensure that a given system of field equations can be written in a symmetric form,
the other problem is how to construct such a transformation explicitly. For the case of
hyperbolic systems, this problem was discussed by BOILLAT [12] who expressed the sym-
metrizing matrix in terms of the eigenvectors occurring in the definition of hyperbolicity.
In this paper, we apply the invariant definition of a symmetric system introduced in [10]
in order to discuss the process of symmetrization. In Section 2 we show that Boillat’s
result is valid only for a certain fixed normalization of eigenvectors; however, in order to
determine this normalization we first have to know the symmetrizing matrix and there-
fore Boillat’s approach is not directly effective. The improved procedure leads to the
system of partial differential equations (Egs. (2.41), (2.42)) which, in principle, allows us
to determine all symmetrizing matrices. However, the point which seems to be the most
important is the definition of a symmetric system. In our approach the symmetric system
is defined invariantly, that is, in the manner which does not depend on the choice of a
coordinate system in the space of the dependent variables. From geometrical point of
view, our approach is equivalent to Cartan’s invariant description of partial differential
equations and our invariant definition of a symmetric system can be easily written, in
Cartan’s language, in terms of diflerential forms. Of course, every differential form rep-
resenting the symmetric system can be explicitly written in different coordinate systems
what leads to the symmetric systems which are, from ,,analytic” point of view, different.
In fact, they are not different since they are represented by the same differential form. In
turn, sometimes a given symmetric system of partial differential equations can be geomet-
rically represented by the different diflerential forms which cannot be transformed one
into another after multiplication by a scalar function of the dependent variables; in such
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a case, we say that the discussed systems possess nontrivially equivalent symmetric forms.
Therefore, a distinction between the trivial and nontrivial equivalencies of the symmetric
systems seems to be important for the purpose of formulating the theory of transforming
the systems of partial differential equations into the symmetric form. In Section 2 we
discuss these problems in more detail and we use the approach which, being equivalent
to that of Cartan, is simpler from the computational point of view. In our approach, it
is possible to describe the process of symmetrization of a system of partial differential
equations in a manner which does not depend on the choice of ,,independent” equations
and on the coordinate system.

By means of the geometrical formulation introduced by PERADZYNSKI [8, 9], the
system before symmetrization can be written in the ,abstract Cauchy form” which has
the above mentioned invariance properties. Then, exploiting the geometrical definition
of symmetric system given in [10, 11], the approach to symmetrization developed by
BOILLAT [12] is formulated in the invariant manner and its eftectiveness is discussed. In
our approach, the symmetric system is represented as a cross-section of the vector bundle
T*(Q)® T=(Q)® T4 (Q is the manifold of dependent variables, 7*((Q) is its cotangent
bundle, and 7', is the translation space corresponding to the affine space A of independent
variables). Of course, the same cross-section of 7(Q)) T (Q)) T4 can be multiplied by
non-vanishing real functions defined on () and, written in different coordinates, gives rise
to the infinite number of “symmetric forms” of a discussed system of partial differential
equations. All such symmetric forms correspond to the same geometrical object and are
in this sense indistinguishable. However, the existence of the systems of P.D.E. possessing
“nontrivially different” symmetric forms can be demonstrated. For simplicity, we discuss
systems of P.D.E. with vanishing source terms. The presence of non-vanishing sources
does nor modify our results. Throughout this paper, we apply Einstein’s convention
assuming summation with respect to repeated indices. In order to maintain the self-
consistency of presentation, all necessary definitions are presented at the beginning of
Sec. 2.

2. Geometrical aspect of symmetrization of quasi-linear systems of the first order partial
differential equations "

In this paper, we shall apply the notation used in [7]. In the system

(2.1) u*’,‘(y,':g)ﬁ=0, I=1,....m,5=1,....m,it=1,...,n,

) : €;
the independent variables (x,), i = 1....,n shall be interpreted as a coordinate system
on affine space A
(2.2) RS (x;)— 9 +uae, €A,
where e;, i = 1,...,n is a basis in the translation space 74 of A and ¢ is an arbitrary
point of A. In turn, the dependent variables (y;), j = 1,...,m shall be interpreted as a

local coordinate system on the manifold (). The solution of Eq. (2.1) which in coordinates
is given by the functions

(2.3) yj = y;(x:)

attains the geometrical meaning of the function f acting from the subset of the affine
space A into the manifold @ (in order to simplify the notation, in Eq. (2.3) we do not
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dlslmgunh between the function y;(«;) and its value y;). The natural base vectors J,,,
i = 1,...,m of the coordinate system (2.2) can be identified with the corresponding
vectors lr()m the basis e;, i = 1,...,n, whereas the natural base forms dzt, i = L saml
of the coordinate system (2 2) can be identified with the forms from the dual basis F,
t=1,...,no0f the basis ¢;, : = 1, , 7.

The equauons of the system (2.1) can be written in terms of contractions of the vector-

valued 1-forms !

(2.4) wl = w’j"rly-" Qe, I=1,....m,

with the derivative f. of f

) .
fo =0y, 2l gt = 0y, Wi o
du; 1O
i 4]
(23) (w!, f.) = <wliedy’ ® e, 0'/1 ay_ ® F' >
€

o! i a*‘dyf =l
() J ().’L,
(in Egs. (2.5) b"', and b}" denote Kronecker’s symbols).

Let us assume that the system (2.1) is determined. Then the set of equations which are
algebraically implied by the system (2.1) can be identified with the set of cross-sections
of the m-dimensional vector subbundle 5 of the vector bundle T*(Q) @ T4 which is
spanned by w'...., w™ 8, 9].

Let vi,.... v, be the vector fields on () which are such that for each ¢ € (@ the
vectors vi(q). . .., v,,(q) are linearly independent.

Let us define the field of the two-point tensors x

m
(2.6) K= Zv; @ w!
I=1
The system (2.1) can be alternatively written in the form
m
2.7 T T v ® fa)
(2.7) b ARG fe Z"!

where Tr means the trace operation taken with respect to the indices («, 3). In order to

(o)
simplify the notation, the trace operation on A & £ in which the 2-nd index is contracted
with the 4-th, the 3-rd index is contracted with the 5-th, A is a tensor field of the order 3
and B is a tensor field of the order 2, will be denoted (A, B),. If, instead of w',. .., w™,
we take any other set of independent equations 2!, ..., 2™ (corresponding to another
maximal set of linearly independent cross-section of S) then

(2.8) w! = AL,

where Aj, is a field of nondegenerate real matrices on (}, and the object x defined in
Eq. (2.6) transforms according to the following rule

(2.9) k=Y viauw =3 veAin! =3 vA)e 2’
d I J
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It should be stressed that the geometrical representation of the system (2.1) by the
field of the two-point tensors x is not defined uniquely since instead of vy, ..., Vo, We
can take any other set of vectors fields on () which form a moving frame on (). The
expression (2.7) gives us the geometrical representation of the discussed system as the
cross-section of the vector bundle 7°(()) » T(()) ©> T’y and the important fact is that
such a representation is not uniquely defined. Instead of the vector fields, we can use
alternatively the fields of forms; for example, let us multiply the /-th equation of the
system (2.1) by the form dy’ and let us add the results. The expression

Ay,
(2.10) w! i gyl < g
= dz;

‘1

obtained in that way can be equivalently written in the form
(2.11) (! dy" ® dy’ @ e, f.)2=0

and therefore the discussed system can be equivalently written as the contraction of f,
with the field of the two-point tensors (¢ defined by

(2.12) G = ’ll’lji(ly[ ® rly-i & .

Formula (2.11) defines the geometrical representation of the discussed P.D.E. as a cross-
section of the vector bundle 7*(Q) 2 1(Q) @ Ty and is convenient for a discussion of
symmetric systems; as it can be easily checked, the symmetric systems can be invariantly
described by a such fields of the two-point tensors of the kind (2.12) which are symmetric
in the first two indices. The invariant definition of symmetric systems based on this
geometrization was introduced in [10] an exploited in [11].

As it has been already mentioned, the geometrical representation of the system of
P.D.E. as the cross-section of T'(Q)) @ T(()) ® T4 is not uniquely defined. In order to
eliminate this ambiguity, we shall restrict our considerations to the case of such systems
which can be transformed to the Cauchy form. The convenient manner of discussing
such systems is to apply the notion of a chronological structure [7]. Such a chronological
structure is similar to that known from the theory of Galilean spacetime and is described
by the so-called chronological form ¥, 0 # ¥ € T} (by 7'} we mean here the dual space
of T4). The form ¥ distinguishes the class of bases in T'4; we say that a basis E;, ..., E,
of T4 is consistent with ¥ if and only if

(WVEI) = ]s

(2.13) (CEY=0 [=2... .5

In the coordinate system on A corresponding to the basis E,, ..., E,
(2.14) R"3(,2)—= 9+tE +2'E, €A, (=2,...,n

The coordinate multiplying the vector E, can be interpreted as the time coordinate,
whereas z°, ..., z" have a meaning of “spatial” coordinates.
Let the system (2.1) be in a Cauchy form with respect to the time coordinate

oyl Oy
i + w!jl,—y"

()2[
After mulliplying equations of the system (2.15) by the corresponding natural base vectors
dy of the coordinate system (y;), I = 1,...,m and adding the results, we arrive at

(2.15) =0, I=1,..., m, j=1,....m, =2 ....n
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the following geometrical representation of the system (2.15) as the cross-section (&' of
TQeTrT ()T
(2.16) G' = dyp o dy! D Ey + dyr o @ jdy? © Ey,

J 0\,

(2.17) (G, fu)2 = (% E “’l.jl(.)—J:':)()yl =

and the equivalence of Eqs. (2.17) and (2.15) follows from the linear independence of the
vector fields dy;, [ =1,.... m. Let us take a contraction of the 3-rd index of G’ with a
chronological form ¥; in order to simplify the notation, the result of such a contraction
will be denoted by &' = ¥ (such a simplified notation for the operation of contraction
will be applied also in the rest of this paper). From the relation (2.13), we immediately
obtain

(2.18) G'ow =y ady! <W, E >= dy; @ dy'.

The expression (2.18) defines the identity operator Idp(g) acting on vectors tangent
to Q. Of course the operator Idpg) does not depend on the choice of the coordinate
system. This suggests the following definition. We shall say that the cross-section G’
of T(Q) o T=(Q) @ T4 defines the system P.D.E. in the abstract Cauchy form in the
direction ¥ if and only if
(2]9) (J’l s U’ = Id] Q) -

If the property (2.19) is satisfied, then the discussed system is in Cauchy form with respect
to the time u)ordmdlc in all coordinate systems corresponding to bases consistent with &.
Let E;. E,.. E, and Ll E be two bases consistent with W. The transformation
rule between such bases is

E; = E, + BiE,,

E[ = l};’i;:[l, [,l,=2....,1l,

(2.20)

where B,” is a nondegenerate (n — 1) x (n — 1) matrix and 4, [ = 2,...,n are the
arbitrary real constants [7]. After inserting Eqs. (2.20) into Eq. (2.16) we arrive at the
following transformation rule for G’

(2.21) G' = ld](Q} GEp + dyy ‘U’!JI[ I @ E;

ldyg) OB, + JuEy) + dy & @' j'dy’ © Bl Ev

ld7(g) QE, + [0 0 + @' ‘b’l ]dJ,@ dy’ & Eyp.

For simplicity, the part of Eq. (2.16) describing “spatial” derivatives will by denoted
by i,
(2.22) K:=0dy ® w! j rly] 2 E;p.

Let £, 22, ..., [o™ denote the basis in T’} dual to the basis E;, E,, ..., E, in T4. Let
L, denote the vector space spanned by the llnear combinations of the forms S
(of course, L is a vector subspace of 1'7). The system (2.16) is hyperbolic if and only if
for each form & from [ the linear operator K(¢) - ¢ defines the eigenproblem
(2.23) (K(2) © 2)70(q,®) = o, P)7ale, P)
with real eigenvalues ¢, (¢, ®) and eigenvectors 7, (¢, ¢) which, for each ¢ € @, span the
m-dimensional vector space. Of course, the eigenvectors in Eq. (2.23) are defined up to
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multiplicative constants. It can be easily checked that the transformations (2.20), (2.21)
preserve the hyperbolicity. For simplicity, we shall assume that the eigenvalues ¢, (¢, ®)
are nondegenerate. We shall also make use of the eigenvalue problem dual to Eq. (2.23).
In order to describe it in a more detail, we shall write the eigenvalue problem for K ) ¢
in slightly modified form

(2.24) (’\Id.l(Qj + K- t[))V =0,

where A is a real parameter and V denotes the vector field on Q. Let % (¢, ®),a’ =
1,...,n denote the forms dual to the vectors 7,(¢, ?). v = 1,..., n. Equation (2.24)
can be alternatively written as

(2.25) {/\[Z Yalq, P) @ 7“((14’)] + [ZC(.((/.(])) ® Yo ® ,]} ©V
= {30+ calt: 100, D) & 1 (¢, )} OV = 0

which has a nontrivial solution if and only if

(2.26) A= —c,(q,P),

and the vector V is proportional to v, (¢. ). In turn, we can also consider the equation
(2.27) w© (Aldp) +Ke @) =0

which is solved for

(2.28) A= —ca(q.9P)

by the forms w being proportional to 7 (¢, @). Let
(2.29) H = Hjjdy’ & dy’

be a field of tensors on ) which is covariant in both indices and which symmetrizes the
discussed system of P.D.E. in the sense that

(2.30) detH;j0 # 0
and the contraction of H with Idyg) ©OE; + K given by
(2.31) H o (Idr)@E +K)=HE + H OK

is symmetric in the first two indices. Of course, in coordinates this is equivalent to the
symmetrization of a quasi-linear system by means of multiplying it by a nondegenerate
matrix H ;;; it can be easily checked that after writing the explicit form of Eq. (2.31)

(232) HOE +HOK
= H”fdyj %) dyi' o E + (]Ijj;r!yj ([yj’) @ (dyr @ iblj-ul{lyj“ ®E)
= Hjjdy’ ® dy’ @ E, + ]ljj""”j,’j‘(‘[U‘i @dy’ @E, 5,5,5"=1,..., m

and after taking the contradiction of Eq. (2.32) with f. according to the rule (2.11), we
obtain the symmetric system. Let us discuss the following equation

(2.33) (HA+ HOKOP)E =0,

where the field of symmetric twice covariant tensors standing in parentheses is interpreted
as the linear mapping assigning to vectors tangent to (J the corresponding covectors. It
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can be easily checked that the nontrivial solution of Eq. (2.32) exists only for
(2.34) A= —c,(q.P)

and requires the vector £ 1o be proportional to v,,(y. ®). From the symmetry of the tensor
field standing in Eq. (2.33) in parentheses it immediately follows that the solutions of Eq.
(2.33) satisly also the equivalent equation

(2.35) EoANT+H DK P)=0.
In turn Eq. (2.35) can be written as
(2.36) EH ) (MNdp)+K e @) =0

which, compared with Eq. (2.27), shows that £/] must be proportional to v“(¢, ®?) for
certain av, 1 < o < m. If we denote the corresponding proportionality coefficient by
Z (g, ®) then we arrive at the identity

(2.37) Yolg DV = Za(q. 0)y " (q. B)
(in Eq. (2.37), we do not apply Einsteins convention!).

For a fixed value of the form & we can express the tensor field [/ by means of the
fields of forms v*(¢. @), a = 1,...,m

(2.38) H=Y Huowv*(q,9) 27 (¢,9).

The elements of the matrix //,, ., can be determined by taking the double contraction
of H with the vector fields 7,(q,P), 7,:(¢,®), a.a’ = 1,...,m. After taking into
account (2.37), we obtain the following explicit form of H:

(2.39) H=3" Zalg. )7 (q. %) 0 7" (q, P).

The important fact is that the expression (2.39) does not depend on the form ¢ since
the tensor field [/ does not depend on @. Therefore, the identity (2.39) shows what
constraints are imposed on a distribution of eigenvectors for a hyperbolic system by the
requirement that the discussed system can be transformed to the equivalent symmetric
system. If the functions 7, (¢, ®) are positive, then one can change the normalization of
Vs Y o according to

|

e gl s, &
I =

én((’l.( )

[o T’n = \/ Z('-(rf“p)‘llclv
and the identity (2.39) takes then the form
(2.40) H=Y 3@~

In principle, the formula (2.40) (which was obtained by Boillat) expresses the “sym-
metrizing matrix” /I in terms of the eigenvectors 7, o = 1,...,m. However, it is not
directly effective for the purpose of obtaining fI since one has first to find a particular
normalization which is needed in order to determine ¥, o« = 1, ..., m (see Eq. (2.40)).

http://rcin.org.pl
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In order to symmetrize the discussed system we can proceed in the following way. If

we determine the distribution of eigenvectors 4., a = 1....,m then we can form the
expression
(2.41) H':= 3" Z!(4.9)7"(¢,9) © v° (¢, D),

o
where Z/| are treated as unknown functions. If we impose the condition that

dH' B
dé

then from the system of P.D.E. for Z!, obtained in that manner we can try to determine all
the symmetrizing matrices. It should be stressed that the functions Z,, in Eq. (2.39) can
be sometimes negative; in such a case the discussed system of P.D.E. can be hyperbolic
and symmetric but not symmetric hyperbolic. It can be easily checked that there are
examples for such systems. If a system of P.D.E. can be geometrically represented by a
field of two-point tensors of the form (2.12) which is symmetric in the first two indices,
then after multiplying it by a non-vanishing real function on (), we obtain the equivalent
symmetric system. Moreover, such systems can be explicitly written in different coordinate
systems (the transformation rule between different coordinates follows immediately from
the fact that the field of the two-point tensors of the form (2.12) are twice covariant in
the first two indices). The equivalencies between the symmetric systems obtained in that
manner will be called trivial (they are a direct consequence of the invariant definition of
a symmetric system). The interesting question occurs whether there exist such symmetric
systems which are nontrivially equivalent. Below we shall give a simple example of such
systems. Let v“, a = 1,...,m denote fields of forms on () which are such that for
each ¢ € () the forms v'(¢),...,»™(q) are linearly independent. Let U,, v = 1,....m
denote the nowhere vanishing mappings from () into the translation space 7’4 of the

(2.42)

affine space A. We can consider the fields of the two-point tensors w!, . .., w™ defined
by the following rule:

(2.43) w¥ = v @U,, a=1,...,m,

The two-point tensors (2.43) define, via the contraction given by Eq. (2.5),, the determined
system of quasi-linear partial differential equations. Let v,, a = 1,...,m denote the
vector fields on () dual to the form fields »®, a = 1,...,m. Let us define the field of
the two-point tensors /',

(2.44) k= Z Vo @ ¢ & Ug.

The system of P.D.E. corresponding to (2.43) can be alternatively written by means of
the following contraction of +" with f.:

(2.45) (K, fu)2 = (Zuﬂ @ v*Q Ua.f.> =Y va(r* @ Ua, f.) = 0.

Let {u, @ = 1,...,m be the non-vanishing real functions on (). Let us define the twice
covariant tensor field /' on () by the rule

(2.46) H' ="t @ve.
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As it can be easily checked, (2.46) is a “symmetrizing matrix” for the system of P.D.E.
defined by Eq. (2.43):

247) H'GK = (Zgu,w' 9v) @ (ZV“ Qv U(,.)

af

] r -
= Y L O QUL = Y L @17 B U,
n'.(x [e]

and symmetric systems defined via the contractions of (2.47) with f, are, in general
(that is, without imposing additional constraints on £,), nontrivially equivalent (what
means that they cannot be transformeg one into another by means of trivial equivalencies,
corresponding to multiplications of Eq. (2.47) by smooth real functions combined with
changes of coordinates).
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BOOK REVIEWS

Mechanics of continuous media by Cz. RymaRz, Polish Scientific Publishers, Warszawa 1993, 513 pages.

THE BOOK REVIEWED is a fully mature monograph concerning the mechanics of material continua. Tt contains
a complete description of basic problems of mechanics of continuous media, starting from its general foundations
and concluding with the analysis of most of the mathematical models used in the theory, both the classical and
nonclassical ones, such as e.g. the microstructural media.

The book consists of two parts and three appendices; both parts of the book are divided into six chapters,
cach of them ending up with a suitable set of problems and questions addressed to the readers.

Part 1 deals with the general laws and relations which are valid for all kinds of continuous media. The
considerations concern the description of motion and deformation of material continua, the conservation laws,
foundation of thermodynamics, theory of the constitutive equations, and some elements of the dimensional
analysis and the similarity theory.

In Part 2 the author presents and reviews some of the models used in the theory of continuous media.
In addition to the classical models such as liquids or elastic, viscoelastic, elastic-plastic and elastic-viscoplastic
media, also certain nonclassical models are discussed, and namely the microstructural, micropolar as well as
liquid crystalline media.

The last chapter of the book is devoted to the problem of interaction of mechanical and electromagnetic
fields. The three appendices concluding the monograph are aimed at familiarizing the readers with certain
mathematical notions appearing in the text; they contain concise exposition of the foundations of the tensor cal-
culus, group theory and ditferential geometry. The extensive bibliography grouped according to the consecutive
chapters includes 246 positions.

The book has been very carefully edited and printed on paper of good quality; the material is presented on
a rather high level of mathematical abstraction, modern mathematical apparatus being extensively used; this,
together with the indicial notation written mainly in curvilinear coordinates, will markedly reduce the readership
of the book. The book, however, is intended for the readers of a good mathematical background; it will be a
useful tool for the students and research associates in the fields of applied mathematics and theoretical physics.

A very wide range of models used in mechanics of continua makes it virtually impossible to apply clear and
uniform system of notations throughout the monograph.

The book is definitely a very interesting and valuable contribution to the literature concerning the mechanics
of continuous media.

J. Ostrowska-Maciejewska
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