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On deformation-induced plastic anisotropy of sheet metals(*)

W. SZCZEPINSKI (WARSZAWA)

PROBLEMS CONNECTED with the theoretical description of plastic flow of polycrystalline sheet metals
are discussed and commented. Sheet metals display distinct anisotropic properties in the plastic
range of deformation. It is observed that these properties may be different depending on the plastic
deformation histories in the course of the manufacturing process. Much attention has been devoted
to the experimental tests of plastic anisotropy of sheet metals and to the comparison of test results
with various theoretical descriptions.

1. Introduction

POLYCRYSTALLINE SHEET metals display anisotropic plastic properties caused by complex
deformation processes, like multistage rolling and stretching connected with heat treat-
ment of the material during the manufacturing process. An important factor, difficult to
be included into the theoretical description, is the non-homogeneity of anisotropy through
the thickness of the sheet. This effect is usually averaged in theoretical analyses.

Depending on the history of deformations during the manufacturing process, the plas-
tic anisotropy of sheet metals may be of different form. In sheet metals it is usually
the orthotropy: two axes of orthotropy lie in sheet’s plane, and the third axis is directed
normally to this plane.

As a very important case of orthotropy, the so-called normal anisotropy, when the
sheet is isotropic in its plane, while its plastic properties in the direction normal to the
sheet’s surface are different, should be mentioned. A more general case of anisotropy one
can observe when the sheet under loadings acting in its plane displays quasi-orthotropic
plastic properties, while the direction normal to sheet’s surface does not constitute the
orthotropy axis. Such a behaviour will be referred to in this paper as the quasi-orthotropy.
Sheet metals may also display the so-called generalized Bauschinger effect.

The proper definition of the type of anisotropy of a sheet metal in question is es-
pecially important, when it is used as the material for manufacturing products with the
use of various drawing techniques, since the anisotropy plays an important role in overall
deformability of sheet metals. These problems are, for example, discussed in the book by
MARCINIAK [1]. The practical significance of the anisotropy of sheet metals stimulated
the development of various experimental techniques allowing to measure anisotropy par-
ameters. The complexity of the phenomena connected with the plastic flow of anisotropic
materials makes useful its theoretical description because, first of all, such a theory allows
us to rationalize any experimental program and the proper interpretation of the obtained
results.

(*) The Editorial Committtee is extremely sorry to inform the Readers that the papers by W. Szczepiriski
“On deformation-induced plastic anisotropy of sheet metals” which appeared in the former issue of “Archives of
Mechanics” contained numerous printer’s errors making it difficult to follow the text: some illustrations were
misplaced by the Printing House. In this situation it has been decided that the paper should be printed again
in the present issue of our journal. We would like to apologize to the Author and to the Readers for all the
inconveniences following from that fact.



4 W. SzczEPINSKI

In the present paper a certain attempt has been made to discuss more deeply the
mechanics of plastic flow of sheet metals with the analysis of various experimental methods
concerning such a flow. The possible practical applicability of the less studied variants of
the theory for interpretation of experimental results has been also analysed.

2. Fundamentals of the classical mechanics of plastic flow of anisotropic bodies

The theory of plastic flow of anisotropic bodies originated in 1928 when the classical
paper by MISES [2] appeared. It has been written in connection with plastic deformations
of single crystals. In the following papers of other authors the concept proposed by Mises
was used for theoretical description of plastic behaviour of polycrystalline metals with
deformation-induced anisotropy.

MISES in his work [2] proposed the following general yield function for crystals:

o)

. bl 2} b )
2.1) o = hyo, + /IZQ(T; + h;;(r; Ry /'I_L;_gT”:

+2/1|}(T.,-(T: + 2/714(7‘,-7",-‘,’ + Zhlﬁﬂ.r"—y: + 2h|(“(7.,~7':‘,v + 2//2_‘,(7”(7_-7 + 2/)3_1(?'_,!T>,-_,/

"
“

+ heTr, + 2h120,0,

2050y Ty F 2hpnayTor + 2h3a0, 7oy + 2hasa, Ty + 2h3e0-T-,
+2hysTyyTyz + 2hagTryTaz + 2N56Ty2 Tax -

[t was assumed here that the yield function is quadratic with respect to stress components
Tpo@yyen.yTop. It contains 21 various coeflicients (moduli) Riz(i, 7 = 142, ...456) of
anisotropy. Function (2.1) remains unchanged when the signs of all stress components
are changed. Thus, when using it, we cannot take into account the Bauschinger effect.
Since in the yield function (2.1) there are terms containing products of normal and shear
stresses, it is necessary 1o establish a rule concerning the sign of the latter in the assumed
Cartesian coordinate system @, 1, z.

Yield condition for anisotropic bodies corresponding to yield function (2.1) can be
writlen as

(2.2) 111004 = const.

For metals the hydrostatic component p of the stress tensor has no influence on the
plastic yielding. Thus, for obtaining the same form of the yield condition after introducing
new stresses o, — p, @, — p, 0. — p instead of original stresses 0., 7, 7, it is necessary 10
reduce the number of anisotropy coeflicients to 15. The yield condition takes then the form

o] > 5
(2%) .f(o'ij) = ’("12(0.1‘ = (Ty)b it 'I"ZJ(U;J - (7:)L + A‘,‘I(U: - (T.r) o 271,«,,[5’-'1(,(1’73 - (T.r')
+h(o, — 0y)] + 21y k(o —oy) + ka(or —0.)] + 27.0[kss(oy, — 02)
+/‘.IS({7y e UJ')] B 21"457—_1/:7-:.1' . 2/(5()7':1‘7—.1'_1/ e 2[‘16147—.1'_(/7-]/*.
+A'44T‘3: + 'I"SSTET + ;“(‘67-.12'11 -1 =10.

OLszak and URBANOWSKI [3, 4, 5] have generalized this yield condition for simulta-
neously anisotropic and non-homogeneous bodies. In such a case all coefficients k;; in
Eq. (2.3) are known functions of the coordinates. The form of the yield condition remains
the same as above.

Function (2.3) may be treated as the so-called plastic potential. Plastic strain rates are
then connected with the stress components by the flow law

WO

2.4 ii = Az .
( ) : ()(T[j

http://rcin.org.pl
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where A is a proportionality factor. Relations (2.4) are referred to as the associated flow
law.

Physical interpretation of anisotropy coeflicients k;; in Eq. (2.3) may be found by
considering various uniaxial stress states, each with one non-vanishing stress component
only. By considering uniaxial tension (compression) we arrive at the relations (cf. [3])

| ( I | | )
R = 2| == He = et
25Y: Y Y2
1 1 1 1
2.5 ky == — 3 s
(2.5) a =5 i ),:Z)
| |
LY =l<f, = l)
¥y ity a5

where Y., Y, V. stand for the yield loci of the material under uniaxial tension in directions
x,y, =, respectively. Exact realization of such tests is rather diflicult for materials with the
general type of anisotropy, since application of the standard testing techniques produces
distortion of the tensioned specimens, which assume the form of the letter S. This problem
has been analysed for example by Boehler et al. [6]. To minimize the arising curvature of
the test piece they have designed special grips with knife-edged joints.

Even more difficult is realization of shear tests which are necessary, if yield loci in
shear (),,, Q,-, (-, are o be directly measured. These yield loci are related to the
respective anisotropy coeflicients by the formulae

1 I 1
(2.6) hyy = ——, hss = ——, heo = —5— -
Q3 Qs Q%y
The anisotropy coeflicients are oflten measured indirectly, especially for sheet metals,

by making use of the anisotropy of plastic strain increments that are connected with the
yield condition (2.3) by the associated flow law (2.4). We obtain from that flow law the
expressions for strain increments

df.r = 2(1/\[/‘.12(0'1' 07 (Ty) - 'l“,‘l((rc _ U.T) o I‘ll(ST.J‘y + (!‘,Z-S + ‘{'.34)7-51: _ I"IST;\:‘] )
(27) (’5.'/ = 2(//\1—1\']2((7.,- . ﬂ“) + ]'.:-3((7!/ s~ (T;:) = L'Q(,T‘,-y = l\';_ﬂ'!/: + (I\'}_ﬁ + /“']5)7—:1‘] 2

(/’5;_ = 2{//\[_’[‘.2](0!/ == (T:) + /\'}](U: o (T_,-) + (I\'](, + A'zg,)T‘,»y = I\'}JT_,/: — A'_'{ﬁT:.,-] .

The corresponding expressions for shear strain increments are not given here, since they
are diflicult to be measured in the laboratory tests and therefore such expressions are not
used in practice.

When using relations (2.7) for indirect measuring anisotropy coeflicients we should be
aware that often the values of these coeflicients measured indirectly differ remarkably from
those measured directly. Respective examples will be discussed later on. Nevertheless, it
should be emphasized that in some cases indirect measuring methods based on relations
(2.7) are the only methods possible for practical realization.

3. Fundamentals of the classical mechanics of plastic flow of orthotropic bodies

Orthotropy is an important particular case of general anisotropy. At each point of
the body three orthogonal planes of symmetry of plastic properties can be distinguished.
Intersections of these planes are called the axes of orthotropy. Directions of orthotropy

http://rcin.org.pl



6 W. SzCzZEPINSKI

axes may vary from point to point. Let us now discuss various types of orthotropy that
are of practical significance.

3.1. Basic relations of plastic orthotropy

In the case of orthotropy the general yield condition (2.3) reduces to the form con-
taining six plastic moduli only. Assuming that the axes of orthotropy coincide with the
axes v, y, ~ of the Cartesian coordinate system we can write (cfl. [3])

(3.1) ki(az — 0y) + kn(oy — 0.) + ks(0, — 0.)* + kaaTy, + kssTZ, + keoTr, = 1.

In HILL'S book |7] this yield condition is written in the equivalent form

(3.1a) F(oy—0.) + G(o, — 0.)’ + H(o, — 0,)" + 2L7), + 2M 77, + 2N}, = 1.
If directions of the principal stresses o, 0, o3 coincide with the directions of or-

thotropy axes, condition (3.1) takes the form

(32) !“12(0'1 = 02)2 + !\723(0’2 = 03)2 + k}]((f} = (Tl)z = ] .
By substituting relations (2.5) we obtain the equivalent form of yield condition (3.2)

1 1 1 2 1 1 1
3.3 +— - —o) + | — o5+ o5 + o5 ) (02— 03)?

T Y
1 1 1 5
+( — i + )(U3~U1)"=2.

72 2 22
).1: )y ):

Here the orthotropy coefficients have been replaced by the yield loci in orthotropy direc-
tions.

Note that for orthotropic bodies, the measurements of yield loci under simple tension
or compression in orthotropy direction can be performed with the use of standard experi-
mental methods, because the test pieces cut out from the material in these directions will
not suffer any distortion.

Yield condition (3.3) may be represented in the space of principal stresses ay, 0;, 03
as an infinitely long cylinder with elliptical cross-section and the axis making the same
angle with all three axes of principal stresses. In Fig. 1 two projections of that cylinder
are presented. Cross-section of the cylinder by an octahedral plane

oy + 03 + 03 = 30

is also shown in the figure. In the lower part a triangular portion of the octahedral plane
with this elliptical cross-section is presented. Dimensions and orientation of the ellipse
depend on the yield loci in the directions of the orthotropy axes

=Y, Yaz=Y,, Y¥K=Y,.

We shall find the equation of the ellipse on the octahedral plane with the axes o
! on that plane being projections of the original axes 7, 03, 03, respectively. Geomet-
rical relations for the tetrahedron shown in Fig. 1 are used to find positions of points
representing the respective yield loci on the axes of, 03, a¥ (Fig. 2)

s 7 2 7 7 2 74 2
}1“=}1 '3', )2“=}2\[§, Y3“=}3 3

http://rcin.org.pl
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a

FiG. 2.

The ellipse with the centre at the origin of coordinates and passing through these three
points has the equation

3 1 1 1 1 1
3.4 _,'12+ 3 - — —=Juv + (— + — — )v2=1
( ) 2},{ 1 \/—(Y’{ Y{) (};22 },32 2),12
in the auxiliary coordinate system u, v (Fig. 2).

http://rcin.org.pl




8 W. SzC7zEPINSKI

Note that the yield surface presented in Fig. | does not determine uniquely the yield
condition of an orthotropic body. It is valid for arbitrary values of anisotropy coefficients
ki, kss, kes appearing in the generally written yield condition (3.1). Thus it corresponds
only to particular stress states, when directions of principal stresses coincide with those
of orthotropy.

Now we shall consider a certain particular case of orthotropy, that can occur in com-
mercial metals, especially in sheet metals.

3.2. Transversal isotropy

Transversal isotropy is a particular case of orthotropy, when all directions perpendicular
to one of orthotropy axes, say z-axis, are equivalent. Such a type of orthotropy charac-
terises certain sedimentary soils and rocks, like e.g. diatomite (cf. [8, 9, 10]). However,
for such materials the yield conditions discussed here do not apply, since plastic yielding
of them depends on the first stress invariant, which is neglected in these conditions.

Transversal isotropy is often observed in sheet metals. Thus its practical significance
is obvious. Yield condition for transversally isotropic materials results from Eq. (3.1), if
the following relations and new notations (cf. [4])

Ifz} = ‘1‘731 = /u']. ’-'4_1 = [I'S_ﬁ = l\':, /\'(,(, = 2(!\] + 2A'11)
are introduced. Then the yield condition for transversally isotropic materials takes the
form
(3.5) kiloy —o0.) + (0, —0g)] + kiz(or — ay)°
+/\'2(T;y + 7,,) +2(k, + ZA‘IZ)T.;‘,/ =1.
Since now we have Y, = Y, =Y, from Eqgs. (2.5) result the expressions for the anisotropy

coeflicients

I | |

2 = e T axre
Y@ 2V

e written in eqmvalenl form

kl

[S]

Now the yield condition (3.5) may

(3.5)  —l(m, — 0.+ (0.~ 0 )1+(1 : )( oy~ @)

I &,

2 4 I 2
+A‘,2(Ty: )+ }“ — F T_r!/ =1.

Let us assume such a stress state when the direction of the principal stress o3 coincides
with the orthotropy axis which has been chosen as the z-axis. The remaining two principal
stresses can be oriented arbitrarily in the plane of transversal isotropy. For such stress
states the yield condition (3.5") can be written in the form

1 1 1 5
2 2 2 _
=G0 + (03— 0 +(—,—i)01—02 =1.
2}:2[( 3) ( & l) ] }/“‘_ 2},:__ ( )

Yield condition (3.6) may be represented in the space of principal stresses by a certain
cylinder with elliptical cross-section, in the similar manner as for the case of general or-
thotropy. Tts el]iplical cross-section is determined on the octahedral plane by the equation

1 1 %2
24 '+ — jo? =1,
ﬂ“ f( }) (7} )

http://rcin.org.pl
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FiG. 3.

One of the principal axes of the ellipse coincides with the o-axis on that plane (Fig. 3).
A certain peculiar type of transversal isotropy occurs when yield loci are identical for
all three directions, that is when

(3.8) Y.=Y,=Y.=Y,.
In such a case yield condition (3.5") reduces to the form
(3.9)  (0z — 0, + (0, — )2 + (0, — ) + 672, + 2kY (12, + 71,) = 2Y{.

For particular stress states, when the direction of the principal stress o3 coincides with
the orthotropy direction z, yield condition (3.9) reduces to the form
(3.10) (01 — 02)* + (07 — a3)* + (03 — 01)* = 2Y .
This form of the yield condition of the material with a special type of orthotropy is
identical with that of the Huber-Mises yield condition for isotropic materials. The cross-
section of the cylinder in the space of principal stresses is circular. However, there is
now a distinct difference with respect to isotropic materials, since yield condition (3.10)
and the respective cylindrical yield surface in the space of principal stresses correspond
to particular stress states only, when principal stress o3 is directed along the axis z of
orthotropy. For other stress states yield condition (3.10) is not valid.

3.3. Cubic orthotropy

Cubic orthotropy (cf. [4] is still another particular type of orthotropy characterized by
identical values of yield stress under uniaxial tension (compression) in the directions of
orthotropy — cf. Eq. (3.8). However, now all three orthotropy axes are fixed, while in the
previous case the problem of transversal isotropy was dealt with. Let us assume that the
axes x, y, = of the coordinate system coincide with the axes of orthotropy.

In the yield condition

2 2 2 72e2 2 2 -2
(3.11) (O — 0y) +(0y — 0.) + (0. — 0x) + 2kYy (7 + Ty + T22) = 2Y;
we have two material constants Y, and k.
When principal stresses are directed along the respective orthotropy axes, this yield

condition reduces to the form Eq. (3.10), which is represented by the cylinder with
circular cross-section in the space of principal stresses. Thus the Huber-Mises cylinder

http://rcin.org.pl



10 W. SzCZEPINSKI

may correspond to various yield conditions including that for isotropic materials and those
for materials with various particular cases of orthotropy.

4. Yield conditions for anisotropic bodies displaying Bauschinger effect

In sheet metals and in metal rods, a generalized form of the Bauschinger effect can
be observed caused by plastic deformations induced during the manufacturing process.
Generally speaking, this effect manifests itself as a difference between the absolute val-
ues of yield points of the material loaded by stress states of opposite signs. Bauschinger
published his results in 1879 [11]. Interesting information concerning the history of inves-
tigations concerning this effect may be found in Bell’s book [12]. Starting from the early
fifties, scores of papers have appeared, in which a more generally understood Bauschinger
effect induced in metals by previous plastic deformation was investigated. We shall men-
tion only few earlier works, [13] to [17]. A comprehensive review of such papers was
published by IKEGAMI [18, 19].

Interpretation of experimental results presented in the mentioned papers requires
certain explanations if they are to be considered in terms of the theory of plastic anisotropy
of commercial metals. Such metals underwent, during the manufacturing process, complex
and usually not clearly known plastic deformations. In the experimental works referred
to, the deformation history was strictly prescribed and registered. Thus it was possible
to analyse the results of tests in terms of various strain-hardening hypothesis. Various
definitions of yield point were assumed. In numerous papers the yield point was identified
with the proportionality limit.

GX GX
FiG. 4.

Two methods of performing experiments concerning the effect of plastic deforma-
tion on the yield condition may be distinguished. The scheme of the first of them is
presented in Fig. 4a — which corresponds to the experimental procedure used in [13].
Thin-walled tubular specimens were twisted beyond the initial yield locus. Then, after
total unloading, they were subsequently loaded by various combinations of axial force and
twisting moment. One of such subsequent loading paths is shown in the figure. During
each subsequent loading a point C' corresponding to the new conventional yield limit was

http://rcin.org.pl



ON DEFORMATION-INDUCED PLASTIC ANISOTROPY OF SHEET METALS 11

found. The experimentally determined new yield surface of prestressed material, shown
in the figure by the dashed line, differs remarkably from the initial yield surface shown
by the continuous line. The new yield surface may be treated as that of the material with
deformation-induced anisotropy.

Such a statement cannot be formulated if the new yield surface is determined according
to the other experimental procedure presented schematically in Fig. 4b. It corresponds to
the procedure being used e.g. in [15]. It was used also in numerous investigations of other
authors. As in the first method, thin-walled tubular specimens were prestressed by twisting
up to the point /A, beyond the initial yield point A,. Then they were only partly unloaded
to a certain value of the twisting moment and subsequently reloaded along various loading
paths — cf. Fig. 4b. In such a manner consecutive points C' corresponding to the new
conventional yield surface have been experimentally determined. If the predeformation
is sufficiently large, the origin of the reference system lies outside the new yield surface
identified with the surface of the proportionality limit.

In both papers [13] and [15] subsequent loading was interrupted when the first nonlin-
ear deformations appeared. Thus the information on the plastic behaviour of prestressed
material was limited. More information may be found in the works of other authors.
Interesting results were obtained by DEAK [20], who measured (with great accuracy) the
deformations in twisted thin-walled tubes during loading, and also during unloading. It
was found that, even after a comparatively small plastic deformations, the unloading dia-
erams are curvilinear almost from the beginning of the unloading process. It means that
the position of point /3 in Fig. 4b depends on the accuracy of strain measurements.

= — 120
T(MPa)

80

40

Fii. 5.

One of the unloading diagrams obtained in [20] for a tubular steel specimen prestressed
by twisting until 3.6 percent of the permanent deformation is shown in Fig. 5. The diagram
is curvilinear almost from the beginning. Thus, assuming the point at which the first

http://rcin.org.pl
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T(MPa) %
120
A
80
- B
40t
N Wit FN — 273 .
0.05 a10 ¥
FiG. 6.

symptoms of nonlinearity of the unloading diagram are observed as the yield point, one
obtains a subsequent yield surface such as that shown in Fig. 4b.

If experimental results are to be used for the description of the deformation-induced
anisotropy, then the subsequent yield locus should rather be identified with the stresses
at which plastic yielding during subsequent loading begins from the stress-free state. The
diagram (Fig. 6) for a steel tube twisted in opposite directions, taken from [20], demon-
strates how points /1 and I3 have been obtained in the testing procedure shown in Fig. 4a.
The specimen was initially twisted in one direction (sector Ay — A) and then, after total
unloading, it was twisted in opposite direction (sector N — I — P) — absolute values
of stresses and strains are shown in the figure. Points Ay, A and I3 correspond to the
respective points in Fig. 4a. In [13] the subsequent loading was interrupted immediately
after point I3 was reached.

Plastic anisotropy induced in the material by deformations connected with the manu-
facturing process will be treated as an existing property of the material, without connecting
it with the previous deformation history.

4.1. On a general form of yield condition for anisotropic bodies with Bauschinger eflect

If the Bauschinger effect in metals with deformation-induced anisotropy is to be ac-
counted for in the yield condition, linear terms with respect to stress components should
be introduced. There were no such terms in the yield conditions discussed in previous
Sections. However, they exist in the yield condition
(4.1) F(oy,—0.)" + G(o, — 0,) + (0, — —0,)

+2L7), +2M7l, +2N7l, — Co, — Do, — Eo. = |
proposed by OTA et al. [21] — cf. also [22, 23].
Constants (', D, I/ must satisfy the equality

C+D+E=0,

http://rcin.org.pl



ON DEFORMATION-INDUCED PLASTIC ANISOTROPY OF SHEET METALS 13

if the plastic yielding is to be independent of the hydrostatic component of the stress
tensor.

We shall analyse a more general form of the yield condition for materials displaying
the Bauschinger effect. By analogy to Eq. (2.3), we shall write

4.2)  [(0i)) = kialor — ay) + kas(oy = 02)° + ky (0. = 0,)°
+27[k16(0; — 02) + ka(0, — 0y)] + 27yz[k2a(0e — 0y) + kay(or — a.))
+27,,[R3s(oy — 02) + kis(oy — 02)]
—2k4sTyz Tz — 2Ks6T oo Ty — 2ReaTuyTyz + A‘“T;: + k557'32_r + kmrf.y
—ba(a, — a,) = ba(o, — 0.) = ba(0. — 02) + bagTyz + bssTor + beeTzy = 1.
Physical interpretation of some of the anisotropy coeflicients A;; and b;; may be de-

termined by analysing uniaxial stress states, each with only one non-vanishing stress com-
ponent. By considering uniaxial tension (compression) we obtain the relations (cf. [22])

h s o ( b g 1 )
BNV Vel Yaled.
1 1 1 I
4.3 kan= = — + + "
fem) s Y, 7y )/)

B o t( I 1,1 )
S A Y2y  Y:2.)°

where Y, Y, Y. stand for the yield limits of the material uniaxially tensioned in the direc-
tions @, y, =, respectively, and Z,, Z,, Z. are the yield limits under uniaxial compressive
loading.

Considering uniaxial tensile (compressive) loadings, we obtain also the following rela-
tions:

1 1

by — b1y = f = Z s
| |

4.4 I RS .
(4.4) 12— 023 Yy Zy
1 1

oy S ECRey
23 )31 Y. Z,

for the moduli by, b3, by This system of equations has no unique solution since its
characteristic determinant is equal to zero. By assuming that one of the moduli, say b3,
is equal to zero we obtain

1 1 | |
4.5 by =0, bp=-—-——+ ;o b= — —
(4.5) 31 012 Y, Z. 13 Y. 7.
Another variants are
1 1 1 1
4.5’ [ b = 0 [1 = — e : [) = - —,
( ) 12 ; 0723 Yy Zu ‘ 31 Y, 7.

http://rcin.org.pl



14 W. SZCZEPINSKI

or
I 1 1 1

4.5” {7=0, b1=*—'* . b k.

( ) )23 12 W At 31 Y. 7

From Eqs. (4.4) the relation follows

(4.6) e Snly =t = — 4+ —+ —.
Mah Vs Sk, Lo i d s

Let I,, be the yield limit under simple shearing by the shear stress 7. y acting in

positive direction, and let 5., be the yield limit under shear stress 7., acting in negative

direction. Similarly R2,., S,. and E.,, 5., stand for the respective yield limits under

loading by shear stresses 7,. and 7., respectively. Then the anisotropy coeflicients Ay,

g by yz P Y- P)
kss, keg and byy, bss, bes can be related to these yield limits

| 1 |
e s T e ST LT
LT TR sk R T
I 1 |
4.7 ko= ——— . hee =
S 5= Rt 5T Sa
| | |
I“ e ( 5 = R .
SN B SO i

4.2. Associated plastic strain increments

The anisotropy of plastic strain increments may be used, as it was mentioned above,
for undirect measuring of the values of the anisotropy coeflicients appearing in yield con-
ditions. For materials with Bauschinger effect the expressions for plastic strain increments

associated with yield condition (4.2) are — cf. expressions (2.7) — as follows:
dey = dA{(2[k12(0; — 0y) — kai(0; — 02) — Ki6Tey
+(kos + k3a)Tyr — KisToz] — bz + b3y}
(4.8) de, = dMN2[-kia(or — 0y) + kaa(0y — 02) — kaeTey
—kyytys + (Ras + kis)Tep] + b1z — bas}
de, = dA\{2[-kyp(ay — 0;) + k31 (0. — ;)
+ (k16 + koo)Tuy — K3aTyz — KasToz] + bas — by} .

These expressions will be used in the analysis of stress states in sheet metals.

4.3. Particular cases of anisotropic yield conditions for materials displaying Bauschinger effect
The following particular form of the yield condition (4.2)
4.9)  Fky(oy — O’u) + kp(oy — 0, D+ k(o — o) + 1.447' + kssT2, + keoTt ’
—bi(or — oy) — bZB(Uy —0;) - by(o. — 0,)
+baTys + UssTop + beeTyy = 1

is of practical significance. By substituting Eqs. (4.3), (4.5) and (4.7) we can obtain a more
convenient, equivalent form of this condition which, for the sake of brevity, is not given
here. Another equivalent forms may be obtained if relations (4.5") or (4.5") are used.
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ON DEFORMATION-INDUCED PLASTIC ANISOTROPY OF SHEET METALS 15

If directions of principal stresses @y, o,, 73 coincide with the axes of the reference
system x, y, =, yield condition (4.9) can be written as

(4.10) k(o — 02)* + kn(oz — 03)* + k3 (03 — 07)*
—bia(oy — 02) — by3(02 — 03) — byy(03 —01) = 1,

or in the equivalent form

(4.10) ( I ! )( o)
. — a — -
Yz 'vz vz) ">

1 1 1 ]
+( - +——+ Liga)f
( Vo2, Y%, .Y.%, ) gz 795

1 1 1 ]
+ -+ : — o)
(Y.L‘Z.r Yy‘Z!J Y’:Z:>(03 Ul)

| | 1 |
"2(ﬁ = ZI)(U] = O'z)—‘ Z(f s Zg)(az = (T_z) =225

This yield condition may be represented in the space of principal stresses as an infinitely
long cylinder with elliptical cross-section. The axis of the cylinder is inclined at the same
angle to each of the axes of principal stresses. However, now it does not pass through the
origin of the reference system.

In the particular case when

A
Vol ~dgly | B

(4.11)

yield condition (4.10") takes the following form:

(4.12) (07 — 02)* + (03 — 03)* + (03 — 0})°

e 1 1 1 1 ,
=2Y.Z, [(r - le->(dl —0;) + (Yz — —Z—)(az - 03)] SN T

F1G. 7.
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16 W. SZCZEPINSKI

This particular form of the yield condition is represented in the space of principal
stresses by the cylinder with circular cross-section. Such a cross-section is shown on the
octahedral plane in Fig. 7.

4.4. Comparison of theoretical yield conditions with experimental data

Numerous experimental data show that plastic anisotropy induced in metals by previ-
ous complex plastic deformations is very complicated. Thus it is difficult to expect that it
can be described by an universal theory. All the forms of yield conditions discussed above
are based on certain simplifications and, therefore, they should be treated as approximate
conditions only. Let us use the following examples to illustrate how far this approxima-
tion can be from the actual plastic properties of metals which underwent previous plastic
deformation.

Let us analyse the experimental yield surface of prestressed material shown in Fig. 4a
by dashed line. It has been determined in [13] by a simultaneous twisting and tension
of thin-walled tubular specimen. The stress state reduces to two stress components o,
and 7., if the x-axis is directed along the generatrix on tube’s surface and the y-axis has
circumferential direction.

For such a particular loading mode, the yield condition (4.9) reduces to the form

(4.13) o . L - +( ' L)r. =

Y25 RoySey ™Y Roy Say/ ™ “
if the assumption that Y, = 7, corresponding to the conditions of this experimental test,
is introduced.

The experimental values Y, R, S,, can be estimated from the experimental curve
as shown in Fig. 8. Thus the ellipse (4.13) is uniquely determined. A remarkable difler-
ence between this theoretical ellipse and the experimental curve is clearly seen. Similar
differences can be observed when other experimental results concerning the effect of plas-
tic deformation on the yield condition are compared with various anisotropic theoretical
yield conditions.

Fic. 8.

In numerous experimental investigations of the effect of plastic deformation on the
yield condition, the yield limit is identified with the stresses at which the first deviation
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ON DEFORMATION-INDUCED PLASTIC ANISOTROPY OF SHEET METALS 17

from the proportionality between strains and stresses appears. Such an experimental
procedure has been used in the mentioned paper [13] from which the experimental curve
shown in Fig. 8 was taken. Another experimental procedure in which several conventional
yield surfaces have been determined was used by JAGN and SHISHMARIEV [14] and by
SZCZEPINSKI [16]. Usually such conventional yield loci are determined as the stress levels
at which permanent deformations are reaching a certain prescribed conventional small
magnitude. The shape and dimensions of a conventional yield surface strongly depend on
that prescribed magnitude.

G(X
MPa
200 +—
90°
150 —
100 —
O
50 05%
-

FiG. 9.

As an example, we shall discuss in brief the experimental results obtained in [16]. From
a sheet of an Al-2%Mg aluminium alloy, prestressed by uniaxial tension in z-direction
until 1.92 percent of permanent deformation was reached, small specimens were cut out
in different directions making various angles a with the x-axis. Then all these small
specimens were loaded by uniaxial tension. Initial portions of some stress-strain diagrams
are shown in Fig. 9. It is also shown in the figure how the conventional yield loci were
determined starting from the proportionality limit o, to the conventional yield limit
0.5, when the permanent deformation is 0.5 percent. Having found such experimentally
determined conventional yield limits o, for various angles «, we can calculate stress
components 7., o, T, from the formulae

T = Ty C05 & 5

(4.14) > .
Oy = 048IN° 0, Tpy = 0,SINQCOSQ.

The limit stress states calculated in this manner can be represented in the space of
stresses @, 7, T,,. Then the corresponding curves passing through the respective points
can be drawn (Fig. 10).
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15 W. SZCZEPINSKI

In the discussed example, when there exist three stress components only, yield condi-
tion (4.9) can be represented by a certain ellipsoid. However, the number of experimental
data is not sufficient for determining all the parameters of such an ellipsoid. Neverthe-
less, the experimental curves shown in Fig. 10 clearly indicate that for each conventional
yield limit the ellipsoid will have different dimensions and position. This simple exam-
ple demonstrates how important is the proper choice of the convention concerning the
definition of the yield limit, when the anisotropy coeflicients are to be determined.

5. Plane stress states in anisotropic sheet metals

Plane stress state exists in a thin metal sheet when all external forces are acting in its
median plane. If the coordinate axes are directed as shown in Fig. 11, we have

B O; =Ty =Ty = 0.

The distribution of stress components o, o,, 7, is in general non-uniform across the
thickness of the sheet, but their variations are usually insignificant. Hence they wre as-
sumed to be uniformly distributed.

Various yield conditions for anisotropic bodies discussed above reduce, for plane stress
conditions, to particular forms, that are represented in the space of existing stress com-
ponents o, d,, T,, by a certain ellipsoid. Such a representation of the yield condition
under plane stress states was (for isotropic bodies) used in [16]. For such bodies the yield
condition concerning plane stress states takes the well-known form

=

i o)
(5.2) Oy — ey +0 03T =%

2

This condition is represented in the stress space o, a,, T,, by an ellipsoid (Fig. 12).
One of the axes of the ellipsoid coincides with the 7, -axis, whereas the two others lie
in the ., o,-plane; they are bisectrices of the right angles between the coordinate axes.
Various loading modes used in experimental investigations are represented by certain

ellipses lying on the surface of the ellipsoid. For example, ellipse AB corresponds to a
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Fic. 11.

FiG. 12.

combined torsion and tension of tubular specimens. Such a loading mode was used in
[13] and [15] — cf. Fig. 4. Ellipse B D’ represents the states of biaxial tensile loadings.

Ellipse BEC formed by intersection of the ellipsoid with the plane o, + 0, = ¥j
perpendicular to the o,, o,-plane, corresponds to the states of uniaxial tension in various
directions with respect to the z-axis. For example, point I represents uniaxial tension in
the direction making an angle of 45° with the z-axis.

We shall use such a geometrical representation of yield conditions for anisotropic
materials under the conditions of plane stress states. Geometrical representation of this
kind is useful when experiments for determining the anisotropy coeflicients of sheet metals
are programmed.

6. Yield conditions for sheet metals that do not display Bauschinger effect

We shall discuss now various cases of plastic anisotropy of sheet metals in which no
Bauschinger effect is observed. When analysing such yield conditions, it is necessary
to make certain assumptions concerning the uniformity of anisotropy in the direction
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perpendicular to sheet’s surface. The plastic deformation induced in the sheet during
the rolling process is remarkably non-homogeneous across the thickness of the sheet.
Such a non-homogeneity depends, among others, on the frictional conditions that exist
at the interfaces between the rolls and the work-piece. Cold rolling is normally carried
out with lubricated, polished rolls on material that possesses a fairly high yield stress
in shear. Under these conditions, relative movement is assumed to occur between the
rolls and the strip at the interfaces; this is termed the slipping friction — cf. CRANE and
ALEXANDER |[25].

In hot rolling, which is usually performed using rough unlubricated rolls on a very
plastic hot material, the frictional drag is assumed to be large enough to attain the yield
stress in shear of the rolled strip. It is then assumed that there is no relative motion at
the interfaces, and the condition is termed the sticking [riction.

Such a classification of frictional conditions during rolling has been repeated here
after CRANE and ALEXANDER [25], who performed also the fundamental experiments
concerning the distribution of deformations in rolled strips. Such experiments were per-
formed also by MILSON and ALEXANDER [24]. Most important results of these works are
discussed below.

|
eemEneemmtsiisamassssSESaEEs
— ) NN S SN, I Al Rl i ‘, —1 } ,Fi J,,T_: 1 i
E p o o ; '," 1 t——1——— I T +
I,I‘A/_i, 7 .’ 1 L / [ l;! | 1 [ I [,L i [71 JJ;‘

Fia. 13,

A typical distortion of an initially rectangular grid after part-rolling is shown in Fig. 13
— cf. [24]. The non-homogeneous distortion of the originally vertical lines can be clearly
seen. When formulating the yield conditions for sheet metals with such induced non-
homogeneous plastic strain distribution, their properties in the direction perpendicular to
sheet’s surface are usually averaged if the sheet is treated as a homogeneous body. Since
the distortion in sheet metals is, in most cases, symmetrical with respect to the median
plane, it is justified to assume that the direction normal to sheet’s surface is the principal
direction of anisotropy. However, not always such a symmetrical distribution of distortion
occurs in rolled sheets.

OOV Y

mEm \F " T

T}H 1]
Fie. 14,

If friction at one roll surface is very different from that at the other, very asymmetric
grids may be produced (Fig. 14 — cf. [25]). In such cases the averaged axis of anisotropy
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Fic. 15.

will not be normal to sheet’s surface. Non-homogeneity of distortion through the thickness
of the rolled strips may be connected also with multi-stage rolling. In Fig. 15 is presented
the deformation of an initially rectangular grid after three stages of rolling. This figure
was prepared on the basis of a photograph obtained by MCGREGOR and COFFIN [26] —
cf. also [27].

Fic. 16.

Experimental evidence of the non-uniform distribution of distortional deformation
through the thickness of rolled sheets indicates that, when special test-pieces (such as that
shown in Fig. 16) are prepared, we should be aware that layers of the material deformed
differently from that in the vicinity of the median plane have been removed. Specimens
of this kind are used for testing the sheet metals under plane strain conditions. However,
the properties of the non-removed central part of sheet’s material may be different from
the overall properties of the whole sheet. Nevertheless, such specimens are used in
experimental testing of sheet metals — cf. e.g. [42].

6.1. General form of yield condition for anisotropic sheet metals
For plane stress states the general anisotropic yield condition (2.3) may be written as
((l[) (l\'|2 + }\’3])(7':. = 2:1(120'_,»(7!/ + (:I\'” + :I\':_‘,)(T;

FRaars, F 2560 uTiy ¥ 2080y Ty — 1

)
2
ry

By substituting Eqs. (2.5) and (2.6) we obtain an equivalent form of this condition,
more convenient in practical interpretation of experimental results

1 I 1 1 1 1
6.1 —a2 - ( — 4+ — — e)n,n + —0l+ =12 + 21, (kg0 + ko) = 1.
( ) )‘_L xr )12 )]; )4; vy }UZ Yy Q‘ Ty ly( 162 6 y)

In the space of existing stress components 0., 0, 7., condition (6.1') is represented
by an ellipsoid with the central point at the origin of the coordinate system and with
the symmetry axes inclined, in general, to all three coordinate axes. The dimensions and
orientation of the ellipsoid are determined by the values of all six anisotropy coeflicients
(moduli) appearing in the condition (6.1). Experimental measurements of some of the

i
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anisotropy coefficients is rather difficult and requires an advanced equipment. However,
some of the coeflicients can be measured in a relatively simple manner.

FiG. 17.

Consider at first the ellipse on the o,, o,-plane (Fig. 17) formed by intersection of
the ellipsoid with the 7., = 0 plane. Points on this ellipse represent various limit states
of biaxial tension (compression) in the @ and y directions. The equation of the ellipse
can be written as

r ., l 1 1 1 5
(642) ._’(T.’_ = ( = + — = _')(T a0, + T‘(T:' = 1.
) b s - S bl S

Yield loci Y. and Y, can be easily measured by simple tension tests of specimens cut out
in » and y directions, respectively. Certain problems arising during realization of such
tests have been mentioned in Sec. 2.

The yield locus Y, can be measured by a compression through-thickness test, with
several test-pieces made to adhere to each other by using some adhesive — cf. e.g. [42,
43], or by a plane strain compression of a strip — cf. [43]. Another method of determining
the value of Y, is the equal-biaxial (o, = o) test with the use of cruciform specimens.
During such a test the yield stress 0” = R can be measured. By substitutingo, = o, = It
to the yield condition (6.1') we obtain

(6.3) Y,=R.

Tests in which the cruciform specimens are used are rather difficult to perform. A review
of special testing devices was given by MIASTKOWSKI [28] and also in [29]. The main
problem is to obtain the uniform stress and strain distribution in the central part of the
specimen.

Still another method of measuring the yield stress Y. is the realization of equi-biaxial
tension by the hydraulic circular bulging test — cf. [33, 43], which may be applied with
good approximation also for anisotropic sheet metals.

For cruciform specimens loaded by equi-biaxial tension (o, = o, = o) general rela-
tions (2.7) for plastic strain increments reduce, after substituting Eq. (2.5), to the following
simple relations:
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1 | 1
I, =idh| =i =il
i ();_2 Y2 );2)“
(6.4) d M( 1+1+'>
). Ey = C — (738
b Y2 vz (¥R
de. = 2d)\ l o.

My

For example, by measuring experimentally the strain increment ratio de,./ds, we obtain
a relation between the yield limit Y. and the two remaining yield limits Y, and Y, which
have been previously measured during uniaxial tension tests. Such a undirect experimental
procedure can provide complementary experimental information concerning anisotropic
plastic properties of the sheet, and may also be used for cross-checking the values of Y,
measured by other experimental techniques.

The value of the directional yield limit Y, measured non-directly with the use of
formulae (6.4), or of the respective relations for uniaxial tension, say in z-direction

1
de, = 2([,\YJg Fo
1 | 1
(6.5) de, = —(])\( — + — — ,,)ar,
5
de. =

k ll’\(}—!E - )}2 + %) Tips

r Yy z
may be remarkably different from its value measured by other methods. Such a phe-
nomenon is termed in some works (e.g. [31]) the “anomaly” of plastic behaviour of sheet
metals. We shall discuss this problem later on.

The ingenious method of determining the anisotropy coeflicients of sheet metals by
measuring plastic strain increments during uniaxial tension tests was proposed in 1949 by
KRUPKOWSKI and KAWINSKI [30]. Such a possibility has been mentioned also by HILL [7],
who refers to the original work by Klinger and Sachs.

Experimental measurements of the remaining three anisotoropy coeflicients (moduli)
Q, k16, k2s, appearing in yield condition (6.1"), would require special tests under shearing
load and other tests with shearing accompanied by tension or compression. Such tests are
rather difficult to perform.

6.2. Particular cases of anisotropy of non-orthotropic types

It is often observed in sheet metals that yield loci Y, and Y, are of the same magnitude,
while yield loci measured during uniaxial tension tests on specimens cut out in directions
making a certain angle with the rolling direction are different from Y. Such experimental
observations are cited e.g. in HILL'S book [7]. This effect was also observed in numerous
works, e.g. [16, 42]. This phenomenon is usually discussed in terms of the theory of plastic
orthotropy. Below we shall analyse it in more general terms.

Consider a particular case of anisotropy when

}L = )L/ =Y, and I"lﬁ = /\"2(, = ll.“ .
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Then yield condition (6.1") reduces to the particular form
Yo

) Yo\ ?
oo ot () :

In the space of stress components 7., o, T, yield condition (6.6) is represented by
an ellipsoid shown in Fig. 18. The longer axis of the ellipsoid makes an angle /3 with the
0., 0y-plane. The value of that angle is

1 [ 1 ( 1 1 )]
B3 =-Arccot |— | —= — = :
2 4A‘“ ¥ 32 (J“

Projection of that axis on the o,, o,-plane coincides with the bisectrix of the right angle
between the ¢, and o ,-axes.

) 79 )
) Tyt 2k Y Toy(op +0y) = Y5

2
020y +(T!l + (

Tensile specimens cut out at the angles of +45° and —45° to the z-direction from a
sheet obeying the yield condition (6.6) will have different yield stresses. For a specimen

cut out at the angle of +45° we shall have 0, = 0, = 7, = %(r.,, where @y is the
directional yield stress. From Eq. (6.6) we obtain
1
(6.7) a; = :
1( 1 % 1 ) k2
a\yz @)
For the specimen cut out at the angle of —45° we have 0, = 0, = —T;y = '50.,. Then
we can write
]
(6.7") oy =

1(1 +L>—l;.
PANZIMNE 0

No experimental studies devoted to the investigation of this hypothetical effect are as
yet known to the author. However, plastic deformations induced in sheet metals during
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the manufacturing processes are so complex that the possibility ol existence of such an
eflect should not be rejected without experimental confirmation. It is not excluded that
a non-zero value of the coeflicient ky may be observed in deep drawn non-circular cups,
whose material was exposed to considerable shearing during the drawing operation.

6.3. Sheet metals with quasi-erthotropy

Consider the important case when ks = ko = 0. Then the yield condition (6.1")
reduces to the particular form

(6.8) 1n2—<l+lﬁi>(rﬂ+laz+17’2—l
i ¥: 9y I e ¥ e

identical with the yield condition (6.12) for sheet metals with true plastic orthotropy.
Sheet metals may be considered as fully orthotropic provided certain additional conditions
concerning plastic strain increments are satisfied. These additional conditions require that
distortional plastic strain increments d<,., and de,. should not appear when the sheet is
loaded in its plane. Assuming the associated flow law (2.4) and plastic potential in the
general form (2.3), these distortional strain increments are

(/:’_,-3 = 2(]/\[—11\'15(TJ< + (!1'15 + A’_}S)(Ty . II\‘S(\,T‘I“U] .
(Il‘;"yj = 2(//\[(.113_1 + A']J)Ul- = ]\'240'.” = .117(,47};,] .

Thus a sheet metal is fully orthotropic if all six anisotropy coeflicients in Eqs. (6.9)
are equal to zero. It has been pointed out in Sec. 6 that, owing to complex deformation
histories during the manufacturing processes, these coeflicients do not always vanish. If
some of them have non-zero values, the specimens cut out from the sheet may deform
during the tension test in the manner similar to that shown in Fig. 19. Thus a through-
thickness distortion may appear. Such a deformation of quasi-orthotropic sheets is rather
difficult to measure and usually is neglected in laboratory tests. No experimental evidence
of this effect is available as yet.

A particular type of quasi-orthotropy corresponds to the case when

(6.9)

}’.,. = "y = )i] .
Then the yield condition (6.8) reduces to the well-known form
2 ) }l) ’ 2 Y() ’ p A },2
(()]0) O, — |&— )—.- Tr0y + Uy + a Tu‘y =Yy,

identical with the yield condition (6.14) for exactly orthotropic sheet metals. However,
now the sheet may suffer a through-thickness distortion even in the case when it is loaded
by stresses acting in its plane.

Still another modification of yield condition (6.8) leads to the following condition:

o & 2 4 )," 2 bl b
(6.11) ¥ — [z— (;“) }arny + o)+ [4— (}—”) ]r;y = Y2,

which may be termed quasi-normal anisotropy. Tensile specimens cut out at arbitrary
angles with respect to the z-axis will have the same yield stress equal to ¥;. Yield condi-
tion (6.11) has the same form as the yield condition (6.15) for sheet metals with normal
anisotropy. However, those with quasi-normal anisotropy display through-thickness dis-
tortion when loaded in their plane.

http://rcin.org.pl



26 W. SZCZEPINSKI

Fic. 19.

One can also distinguish quasi-isotropic sheet metals obeying yield condition (5.2),
but displaying through-thickness distortion if even only one of anisotropy coeflicients in
expressions (6.9) has non-zero value.

6.4. Orthotropic sheet metals

Yield condition for orthotropic sheet metals is written in the following form:

(6.12) ol ( e & ! ) Lo iG> o
AR — - ~ - o i U,r'(rl T()’ + ——WT}‘ =
y2'? Y2 Y2 Y2 viyzv g2

a k) y

identical with the condition (6.8) [or quasi-orthotropic sheets. However, now there is
no possibility of through-thickness distortion during tension tests, because for orthotropic
sheet metals all the anisotropy coeflicients which are present in relations (6.9) must be
equal to zero.

In the space of existing stress components a,., @, T,, equation (6.12) is represented
by an ellipsoid with the center at the origin of the reference system and with two symmetry
axes lying in the o, o,-plane (Fig. 20).

This type of anisotropy induced in a M-63 brass by previous plastic deformation has
been observed, for example, by MIASTKOWSKI and SZCZEPINSKI [17]. In Fig. 21 are
presented the yield curves for two definitions of yield stress, namely @, and oy ;. For
comparison, the initial isotropic yield curve @y is also shown in the figure.

The shearing vield point of orthotropic sheet metals can be directly measured by using
for example specimens of the type shown in Fig. 22. When such a specimen is loaded by
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a tensile force, a state of deformation close to pure shearing develops in sections A — 3.
However, it should be noticed that interpretation of shear tests is always connected with
certain difliculties. As an example, in Fig. 23 is shown the stress-elongation diagram for
an ordinary tensile specimen cut out in the rolling direction from a sheet 2 mm thick
of an Al-2%Mg aluminium alloy. The yield stress Y, can easily be determined. The
corresponding diagram (Fig. 24) for the specimen of the type shown in Fig. 22 cut out
from the same sheet indicates that the yield stress under shear can be estimated only
conventionally. These tests have been performed in [45], where also optimal shape of
specimens for shearing tests has been analysed by means of methods similar to those used
by ALBERTINI et al. [46].

\
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Fic. 24,

Let us notice that in both shearing zones of the specimen shown in Fig. 22 shear
stresses 7., have opposite signs. It is of no practical significance in the case of the yield
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condition (6.12) with quadratic terms only. Note that such specimens may also be used
for sheets obeying yield consitions (6.1) or (6.6), because terms depending linearly on 7,.,,
vanish for shear test.

The value of the yield stress () may easily be estimated in a simple indirect manner,
namely by the tensile test on a specimen cut out from the sheet at the angle of 45° with
respect Lo the w-direction. If the yield stress of such specimen equals o, then () can be
calculated from the formula

ayY,

(6.13) = =t

ry 2
4Y?: — o

Theoretically all four moduli of orthotropy in Eq. (6.12) could be experimentally de-
termined by simple tension tests on specimens, each of them being cut out from the sheet
at a different angle « with respect to the z-axis (cf. HILL [7]). For each specimen its
yield stress should be experimentally determined. Then, by substituting relations (4.14)
1o (6.12), we obtain four equations with four unknowns Y, Yy, Y., Q.

Using such indirect methods of measuring the moduli Y, and (), we should be aware
that yield condition (6.12) describes only approximately the real deformation-induced
anisotropy of sheet metals. Thus their values measured in this manner may remarkably
differ from the exact values measured directly.

6.5. Particular cases of plastic orthotropy

Consider the important particular case when
Y. =Y, =Y.

Yield stresses of specimens cut out at certain angles with respect to the r-direction are
assumed to be not equal 10 Y. Then the yield condition (6.12) takes the particular form

. e , 7R .
(6.14) o - [2— () ]n.,.a!, roi+ (B) 2, =%

identical with the yield condition (6.10) for quasi-orthotropic sheets. However, now, as
in the case of the general orthotropy, all the anisotropy coeflicients in Eq. (6.9) must be
equal to zero.

Yield stresses Y, and Y. may be estimated by tensioning uniaxially a specimen cut
out from the sheet, for example in x-direction. The value of Y, results directly from the
stress-strain diagram. The value of Y, can be estimated non-directly by measuring plastic
strain increments in the transversal direction de, and in the through-thickness direction
ds.. Then Y, can be calculated from the relation

i , 3\ 2
(6.15) x={—j=2(-)%) el
(153 )vn

The yield shear stress () may be estimated indirectly in the manner described in Sec. 6.4
by applying uniaxial tension to a specimen cut out at the angle of 45° with respect to the
a-axis. Formula (6.13) holds valid also in the present case.

The value of Y. estimated from the relation (6.15) may differ significantly from
that measured directly, or by using other indirect methods. Such differences found by
WOODTHROPE and PIERCE [33] for an aluminium sheet were termed the “anomaly” of
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plastic properties. To eliminate this inconsistency, various non-quadratic yield criteria
were proposed. They will be discussed in Sec. 6.7.

If in the yield criterion (6.14) we shall additionally assume that also Y, = Y, then
this criterion takes the simple form

2 2 o’ 2 r2
(6.106) Oy — 0z0y+0, + (6 Toy = ¥,
corresponding to the cubic orthotropy. This particular form of the yield condition may
also be directly obtained from the general yield condition (3.11) for cubic orthotropy by
substituting there 0. = 7. = 7., = 0.

6.6. Normal anisotropy

Specimens cut out from sheet metals with normal anisotropy at any arbitrary angle
have the same value of yield stress under uniaxial tension. The yield condition for sheets
with such plastic properties has the following form

) o)

}" it ~ )'y E > -
(6.17) oL = [z - ()J) }gray +02 4 [4 O ()—”> ]r;;y = Y2,

identical with the yield condition (6.11) for sheet metals with the quasi-normal anisotropy.
However, now the direction orthogonal to sheet’s plane constitutes the principal direction
of orthotropy. Yield condition (6.17) results also directly from the general yield condition
(3.5') for the so-called transversal isotropy by substituting there 0, = 7,, = 7., = 0.

In the space of stress components 0,., ., T,.,,, the yield condition (6.17) is represented
by an ellipsoid (Fig. 25). For Y, > Y, the ellipsoid is more elongated in the 0-D direction
than that for fully isotropic sheets (cf. Fig. 12), when Y. = Y.

Fic. 25.

If the directions of principal stresses @y, o, coincide with the reference axes x and y,
the yield condition (6.17) is often written in the following form:

. 2r

(6.18) 0y = T 00+ 02 = ¥
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where

(6.19) i'=2(y—f)‘— 1
¥y

is the so-called coeflicient of normal anisotropy.

Comparison of Eq. (6.19) with Eq. (6.15) indicates that r can be measured as the
ratio of strain increments d<, /d<. in a specimen cut out from the sheet and loaded by
uniaxial tension. As it was mentioned in Sec. 6.1, the idea of such measuring method
was proposed by KRUPKOWSKI and KAWINSKI [30]. Tt was also proposed independently
by LANKFORD et al. [35]. In the latter work, the following formula was recommended:

o ln([)/b“)
T In(h/hy)’

where /iy, and by are the initial thickness and width of the tensile specimen, respectively,
and /r and b are the corresponding dimensions after deformation. In [30] the coeflicient
of normal anisotropy was formulated as

_ ‘(1)[)/[))2 -1
- (ho/h)? = 1"

The main difficulty arising when such non-direct methods of measuring the anisotropy
coeflicients of sheet metals are used, consists in changing the anisotropy itself during the
progressing deformation of the specimen tested. As an example let us analyse Fig. 10.
An initially isotropic sheet metal pulled uniaxially in tension by stresses o, to produce a
relatively small permanent deformation (about 2 percent) displays a significant anisotropy.
There is a remarkable decrease of Y, yield stress and an increase of Y, with respect to
the initial values before deformation.

(6.20)

(6.21)

Thus it can be expected that the value of the anisotropy coeflicient  will be dependent
on the amount of plastic deformation induced in the specimen cut out from the sheet in
question. This has been experimentally demonstrated by TRUSZKOWSKI in several works,
e.g. [36, 37]. To estimate the initial anisotropy of a tested sheet metal, TRUSZKOWSKI
(cl. e.g. [38]) extrapolates the experimentally determined curve r(c) for the changing
coeflicient r to the starting point, where ¢ = (.

For practical purposes the anisotropy coeflicient r is sometimes used in the cases
when the sheet material does not accurately obey the yield condition (6.18) for normal
anisotropy. In some works (cf. e.g. [42, 43]) the average value of r is estimated for
sheet materials for which rather the yield condition (6.12) for general orthotropy is more
adequate.

6.7. Non-quadratic yield conditions for sheet metals

It was mentioned in Sec. 6.5 that experiments on certain sheet metals show that they
do not obey the flow law associated with standard yield conditions. Such a phenomenon
was termed the “anomaly” of plastic properties of the sheet. “Anomalies” of this kind
observed in [33] and later in [42] are characterized by the inequalities

{5y Y.

SR S e 5 |
& de, Yy
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Such relations are in contradiction with the relation (6.15) resulting from the flow law
associated with yield conditions discussed above.

To overcome such contradictions sometimes observed HILL [31] proposed some new,
the so-called non-quadratic yield conditions; in the cases when directions of principal
stresses coincide with those of principal axes of orthotropy, the conditions were written
as

(622) 1‘1[0'2 - (T}’m + (,/r"(f:; = (T]\m + []|0'1 — (,T_g.m‘
+A20y — 0, — 03|" + B|20, — 03 — 01| + C|205 — 01 — 0| = 0™,

where m > 1, and o is a certain constant. Coefficients F, (¢, H are positive. Yield
condition (6.22) contains seven material parameters, not counting the constant o. For
practical purposes one can assume, [or a sheet metal in question, various particular forms
of yield condition (6.22), by assuming that certain parameters vanish.

In [31] such particular cases were analysed for the case of transversal isotropy. E.g.,
by assuming, that

F=G=0 and A=B=0,

the following form of non-quadratic yield condition is obtained
(6.23) Hlo, —ay|™ + C|203 — 01— 03| = ™.

From the flow law associated with (6.23) we obtain for uniaxial tension by stresses o,

the following expression for the strain increments ratio

de, H-C
(6.24) x = — e e

(I’E} 2C
Assuming that the direction of principal stress o3 coincides with the z-axis of the Cartesian
coordinate system we denote, as previously, by Y. the yield stress under uniaxial tension
in z-direction, and by Y{, — the yield stress for uniaxial tension in the x, y-plane. Then
the following relations can be written:

(r mn (J_ m (T T
25 P 45 N SO AL R L
S C (zr...) d (n) (z&-;)

Now, instead of Eq. (6.24), we can write

IE“ ’.2 m
o e= e (B)7

(153 Y()

For m = 2 this formula takes the form (6.15).
For plane stress state, when o3 = 0, yield condition (6.23) reduces to the form

2)," m
(()27) [O-l + U;’m o [1 o ( );) :||(TI = O,Z|m - 2}';71 .
0
For m = 2 this yield condition becomes identical with Eq. (6.17), if the latter were

presented in principal stresses. Now we have an additional parameter m. If, for example,
Y. were experimentally determined, say by equi-biaxial tension test, then measuring the
value of Yj, by means of the uniaxial tension and also the strain increments ratio » we
could calculate from Eq. (6.26) the value of m. Thus for the non-quadratic yield condition
(6.27) the problem of “anomaly” does not exist.

Since the yield condition (6.27) is formulated in principal stresses, it does not ensure
the specimens cut out at various angles to have the same yield stress when they are
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uniaxially pulled in tension. To secure this requirement of the transversal isotropy, a
more general formulation would be necessary.

Nevertheless, the condition (6.27) has been applied in a number of investigations. The
value of exponent m was estimated to vary between m = 1.7 and m = 2, depending on
the material (cf. [39]). Condition (6.27) has also been used with certain modifications in
some numerical solutions to various practical problems (cf. e.g. [39, 40, 42]).

A particular form of yield condition (6.22) when A = B = (" = 0 was independently
formulated by Hosford in 1979. In his next work [47] HOSFORD modified this yield
condition by assuming that principal directions of stress and strain increment tensors
coincide independently of whether they are parallel to the orthotropy axes or not. Bearing
in mind that such an assumption may introduce certain errors, the author argues on
the basis of experimental data that in real materials the mutual inclination of the two
directions is rather small. Thus the errors connected with introduction of the hypothesis of
transversal isotropy will be larger than those resulting from his assumption. The modified
Hosford’s yield criterion is

((128) R:l("]!m + R1|Uz|m + 1?11!’210’| — 02

™ = Ry(Ry + DY™,

where 7} and [, are the ratios of strain increments, corresponding to » determined by
Eq. (6.15), but measured in the directions 1 and 2, respectively. Directional yield stress
in the direction 1 is denoted by Y.

" ZHOU WEIXIAN [48] formulated the following, more general form of the non-quadratic
yield condition

"
A

(629) [ = F(o? + 372"/ + (o + 372"/

2 2 2 . 9 ) 2 ~ > )
+ I]I((T, - (TU)L + 4T.IL'!/]W/L + 2‘\ (T.;y)”l/L o g(l + (r + [[)(Tf” —_ 0 "

accounting for the influence of shear stress 7,,. Here a; is the equivalent stress. The
exponent m was estimated on the basis of experimental tests to be approximately equal
tom = 8.

In connection with the problem of formation of the so-called “ears” in the sheet
metals during the deep drawing operations, HILL [7] proposed still another form of the
yield condition for plane stress states. It contains the polynomial of degree n

(6.30) > ikl

where the powers 4, j, k are positive integers or zero (¢ + j + k& < n). Note that for
n = 2 one obtains the yield condition (6.1) resulting from the von Mises general yield
function (2.1).

A particular form of this yield condition for n = 4 was analysed by GOTOH [43, 44]. Tt
was found for some metals that yield curves on the oy, a,-plane differ only slightly from
those resulting from the quadratic yield condition.

Owing to non-quadratic yield conditions it was possible to obtain a more accurate de-
scription of the plastic behaviour of sheet metals. However, even these conditions are not
able to encompass fully all the “anomalies” (cf. also [48]) resulting from the very complex
deformation pattern induced in sheet metals during the manufacturing operations.

http://rcin.org.pl



34 W. SZC7ZEPINSKI

7. Yield conditions for sheet metals with Bauschinger effect

Similarly as in the case of yield conditions discussed in Sec. 6 also now, when the
Bauschinger effect is accounted for, the through-thickness averaging of plastic properties
of the sheet is necessary. Experimental investigations indicate that in sheet metals de-
livered by the manufacturers the Bauschinger effect may be present in a clearly visible
form. A distinct difference between the yield stress under tension and compression was
observed for example by LITEWKA [23] in a sheet [.5Smm thick, made of an aluminium
alloy PA2-M, and also in a sheet Smm thick, made of another aluminium alloy PA4-T1.
For the two materials the absolute value of the yield stress under compression was larger
than that under tension in the plane of the sheet.

7.1. The case of general anisotropy

The general anisotropic yield condition (4.2) reduces for plane stress states to the
following form

A . 2 . A . 2 . 2 . .
(71) ([\]z + ]"31)Ur = lem lz(Tl-(Ty + (/\12 + A'ZB)U_U + A,(,()TJ.y + 2k 1(,(7']»7'1«5} + 2]"26(7;471'_1;
—blz(O'_l- == Uy) = bz_zO'y + b(,(,T_r_,/ =1,
if relations (4.5) for the coeflicients b;; are assumed.

By substituting Eqs. (4.3) and (4.5), this yield condition may be written in the form
more suitable for applications,

(Zi1) —l——nz ( 1 + l l )arr+ l al
' YoZ: ° Yo2o' 3 Rl sy

Y

-
+l‘f(|ﬁ'r,1»y T 27—.1‘1/(]"!(10.1' + 'I“Eh(fy) + bﬁﬁT.r”

NS
e Ty 5 w9y T .
) g8 Zy ))y Av.'/ !

ForY; = Z;(i = x,y, z) and, moreover, for bs, = 0 this yield condition reduces to the
condition (6.1") for sheet metals free of the Bauschinger effect.

In the o,, 0,, T.,-space equation (7.1") is represented by a certain ellipsoid with
the central point shifted with respect to the origin of the reference system. The prin-
cipal axes of the ellipsoid are, in a general case, inclined to the reference axes. In the
yield condition (7.1") the number of material moduli is ten, but relation (4.6) reduces
that number to nine. To determine all the moduli experimentally it is necessary to make
(among other tests) also the uniaxial compression tests on specimens cut out in the x and
y directions. For such compression tests special devices are used — cf. e.g. DIETRICH
and TURSKI [41].

The material constants (moduli) in (7.1") can also be measured non-directly with the
use of expressions for the associated plastic strain increments. For plane stress state we
obtain from the general relations (4.8) the following formulae:

([S_l. = (1/\{2}\'12(0'1‘ = (Ty) + 2,\7310'1; . 2k16T1‘g/ — [J]z + b3l] .
(72) dé'y = ([/\[216[2((71/ —= (T_,\) + 21\'230'3/ = 2167_67'1.!/ + [)]2 . bz_;] 3
(153 = (l/\[—2.’¢23(ry = 2)’\7310'1‘ + 2(]\11(, + I\T;_:(,)TTH + 07_3 2| 1)31] .
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For example for uniaxial tension in the z-direction we obtain, accounting for (4.3) and
(4.5), the formulae for practical use

2 1 1
_'1/\(,—,—01-+T“ . )
Y. Z, Y: Z,
1 1 1 | 1
7.3 l’&‘,z—l/\ . = = e = .
(7:2) ey =~ (v, Y, 7, v7)” Y, zy]

I K 1 1 i 1 ) 1 i 1 ]
= —¢ o o — Tpi = isr r 0
Yo T Z,
Similar relations can be written for uniaxial tension by stresses o,,.
If the moduli Y, Z, and Y, Z, are measured directly by tension and compression
tests, then the values of Y, and Z. can be evaluated by measuring the respective plastic

strain increments. However, such non-direct measuring methods are of questionable
accuracy.

-~
~_
)

N

|

=
n
:

|

7.2. Particular cases of anisotropy of sheet metals displaying Bauschinger effect

From among a large variety of possible particular yield conditions, which may be
deduced from the general formulation (7.1"), we shall discuss only a few most important,
for which there exists a certain experimental evidence. Unfortunately, experimental data
concerning the Bauschinger effect in sheet metals are scarce. However, the few available
data demonstrate that the yield conditions with terms linearly dependent on the stress
components may be of practical significance.

Consider a particular form of the yield condition (7.1") when

Y,=Y, =Yy, Z,=7,=27), kig=kyx=0.

Under these assumptions the yield condition takes the following form

[}

L

Yoz .
(7.4) o5 — (2 — Y”Z”>0I0y + crgz/ + A‘(,(,}"(,Z()T;y

+b6 Y0 20Ty + (Zy — Yo)op + 0y) = Yo7y

Let us denote the yield stress due to loading of a sheet by positively directed shear
stress by (9%, and by ()~ — the absolute value of the yield stress for the case when shear
stresses are acting in the negative direction. Then we can write

1 1 1
Elemary v b= ity
Q+Q Qr @

In the space of stress components o, 0, T, the yield condition (7.4) is represented
by an ellipsoid shown in Fig. 26. Its central point 0* is shifted with respect to the origin
0 of the reference system.

The experimental confirmation of such a type of anisotropy in sheet metals is as yet
lacking. However, anisotropy of this kind may be induced in sheet metals during deep
drawing operations, when a flat blank, before entering the drawing ring of the die, may
suffer considerable distortion. Thus in the drawn object the anisotropy of such a type may
be present.

(7.5) ks
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Fi1G. 26.

For most sheet metals it may be expected that be, = 0. This leads to a still simpler
particular form of the yield condition (7.4)

5 YoZ S Y/ el . -
(7.6) oy - (2 = ﬁ%)“u‘(’y gt i ;22‘)7_45‘1/ + (2o — Yo)(or + 0y) = Yo 2.

Now the central point of the ellipsoid is shifted in the o, o,-plane along the bisectrix of
the right angle between the axes o, and o,
If we shall assume the yield condition in the form

: Y, 7 : Y.Z "
Gka = (2 B &)n‘t.oy + ol + (4 Lt “)r‘;”

Y.Z.
+(Z() = }’())((TJ; + U?/) = );)Z(].

then the yield stresses under uniaxial tension of specimens cut out from the sheet at an
arbitrary angle will be of the same magnitude Y{,. The same concerns uniaxial compression,
when all specimens will have the yield stress equal to 7.

Yield condition (7.7) corresponds to the plastic properties of sheets of an aluminium
alloy PA2 and also PA4 observed by LITEWKA [22]. Yield stresses of specimens cut out
in different directions under uniaxial loadings were of the same magnitude. However,
Litewka noticed also another “anomaly” in these materials, because the parameter s
[cf. (6.15)] was different for specimens cut out in various directions. This is in contradiction
with the flow law associated with the yield condition (7.7).

All the “anomalies” mentioned in this paper indicate that indirect methods of mea-
suring the anisotropy coeflicients should be used cautiously and with a certain criti-
cism.
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Surface waves on thermoelastic half-spaces
M. ROMEO (GENOVA)

SURFACE PLANE waves arc investigated at the boundary of a transversely isotropic thermoelastic solid
half-space. Inhomogeneous wave modes are obtained by imposing a boundary radiation condition,
and their dependence on the propagation direction with respect to the privileged axis of the solid is
discussed. Particular homogeneous modes arise for special orientation of the surface, which do not
carry temperature perturbations and are undamped.

I. Introduction

PROPAGATION of surface waves in thermoelastic solids has been recently investigated with
particular attention to the attenuation of Rayleigh waves in both isotropic and anisotropic
materials [1, 2, 3]. Theoretical results have been compared with available data concerning
particular anisotropic solids [4] showing that only a small fraction of the observed attenu-
ation is due to thermoelastic effects. Experimental results have also shown that wave
speed, attenuation and power flux significantly depend on the particular orientation of the
surface with respect to the privileged direction of the solid (see [4] and references therein).
Special orientations exist which allow for high efliciency in surface wave production, and
where the direction of the power flux slightly differs from that of the phase velocity. To
our knowledge, the latter effects have not yet received any clear and full explanation.

A more general analysis of the admissible wave modes occurring on the boundary of a
solid half-space can be performed by considering inhomogeneous waves, where planes of
constant phase are not necessarily parallel to the planes of constant amplitude. Inhomo-
geneous waves are the natural modes in dissipative solids [5, 6] and are likely to improve
the description of wave propagation in anisotropic solids |7].

In this paper we investigate the occurrence of inhomogeneous surface waves on the
boundary of a thermoelastic solid half-space, focusing our attention on the influence of
the material anisotropy on wave speed and attenuation. A transversely isotropic ther-
moelastic half-space is considered (Sec. 2) where boundary conditions are imposed for an
Y -cut half-space or an arbitrary rotated-cut half-space; a linear radiation condition for the
temperature is introduced in both cases. Inhomogeneous surface waves are introduced in
Sec. 3 imposing some essential physical constraints, and the compatibility condition for
the linear system of balance equations is derived. It is shown that three surface modes
exist which satisfy the radiation boundary condition for both Y -cut and rotated-cut half-
spaces. The high frequency limit is discussed in Sec. 4 using a generalized theory of heat
conduction which allows for thermal waves. In Sec. 5 we show that additional surface
modes may exist on Y -cut or on rotated-cut half-spaces, which carry no temperature per-
turbation. These modes occur for particular orientations on the Y -cut half-space or for
special rotated-cut half-spaces. They are homogeneous and undamped and their speeds
do not depend on frequency or on the value of the unperturbed temperature. We believe
that these modes play an esential role in the high surface wave coupling, experimentally
observed on particular rotated-cut specimens of anisotropic solids.
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2. Basic equations

Let X be a half-space bounded by a plane surface 5, and occupied by an elastic
solid which allows for heat conduction. Assuming that the solid possesses a transversely
isotropic symmetry we introduce Cartesian coordinates x, 2,, x3 with 23 directed along
the privileged axis. According to linear thermoelasticity, the displacement u(x, /) and the
temperature deviation (x, t) from the unperturbed absolute temperature 6, satisfy the
balance equations [8, 9]

2:1) pii = CVe — HVH |

(2.2) pCh = K[V ® V] — §,HVa.

As usual, p is the mass density, C' the specific heat at constant strain and e = sym(Vu)
is the infinitesimal strain tensor. If a generalized theory of heat conduction is taken into
account, the right-hand side of Eq. (2.2) and the last term in the right-hand side of Eq. (2.1)
are viewed as integrals over the history of V&,V © V@ and Vu [11], and consequently,
for harmonic-type fields, the thermoelastic tensor H and the thermal conductivity tensor
K turn out to be frequency dependent [7]. Disregarding viscosity, the isothermal elastic
tensor C is assumed to have constant entries. These may be represented using Voigt’s
notation so that the non-vanishing parameters for the problem at hand are

cu=cn:=20+A, c3:=A, caz=cpi=n-—246,
1
(2.3) €33:=7, Cqa=0Cs5:=0, o= 5((’11 —cp) = py
][11 = ]122 = h, 1133 = E, I\'” = [\-7_2 =R, [\.33 =h.

Thermodynamic restrictions on the constitutive parameters imply the following inequali-
ties (cf. [10]):

(2.4) Rk, FE>0, 2u+A>0, pu>0,86>0, (u+A)yy>(n-968)>~

For transversely isotropic symmetries it is convenient to introduce the potentials \, ¢, ¢’

such that [10]

Uo = X,a T fcu3¢" ekl (“a,’/j = 112)1

(2.5) '
us = ’¢',3 5

where the comma denotes partial differentiation and e, 3 is the two-dimensional alternate
symbol. By means of Eqgs. (2.3) and (2.5) Egs. (2.1) and (2.2) may be written as

(26) PE i .”E,n(,r + bg,]} ’

(2.7) px = (2 + )X 00 +6x 33 + 1033 — k8,
(28) P¢‘ = TIX,L\‘[Y i 7‘/’7‘33 e 59~

(2.9) pCh = KO ont Bl g — 06k o~ 9,)73'22"33.

At the boundary S of X' we impose the usual conditions on the traction and the heat flux.
Denoting by n the unit normal of .5 directed toward the solid, we have

(2.10) (Ce — Hf)n = 0,
(2.11) (KV6)-n =10,
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on S. Equation (2.11) is a linearized radiation condition where r represents a suitable
heat-radiation coeflicient (see also [1]). In particular, if we regard 5 as a black body
radiating surface, we may write

(2.12) r = 4s8]

where s is a constant which, for an ideal black body, turns out to be the Stefan-Boltzmann
constant. We note that the particular case of a thermally insulated surface is obtained
from Eq. (2.11) by setting » = 0. In the opposite situation of isothermal surfaces, Eq.
(2.11) should be replaced by the condition # = 0 on 5. Although we are not interested in
this case here, we observe that thermoelastic surface waves are recovered on isothermal
surfaces under the hypothesis of # being discontinuous at 5.

In the following we analyze separately wave propagation on surfaces parallel to the
privileged axis (Y -cut half-spaces) and along the 2,-axis of surfaces arbitrarily rotated
with respect to the privileged axis (rotated-cut half spaces). In both cases we assume that
the real and imaginary parts of the wave vector (see Sec. 3) lie on a plane P perpendicular
to S and parallel to the propagation direction and denote by ¢ the angle between P and
the privileged direction. Having introduced the unit vectors ey, e,, es, along 'y, 23, 3, in

Fio. 1.

the Y -cut case, without loss of generality we can choose n = e, (see Fig. 1a). Equations
(2.10) and (2.11) then become

(2.13) A +t¥p—¢¥n=0,

(2.14) 2+ X2+ A — 2+ () — &Yz — ho =0,
(2.15) o= Pt =0,

(2.16) kB, =18,

on ¥, = 0. In the rotated-cut case, we have n = (qe; + e3/\/1 + ¢?) where ¢ = tany
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(see Fig. 1b). Equations (2.10) and (2.11) become
(2.17) [@pr+ M\ + A\ 2]g + 60X 03 + 2uq0 2+ 68 o3 + () — O)qb 51 — hblg = 0,

(2.18) 20\ 02 + (22 — PaDlg + 6\ 23 — Yz + ¢ 32) = 0,
(2.19) bz + s+ s+ (= O+ x2) + 7Y — I8 =0,
(2.20) kgl + Rl 5 =710,

onayq+ a3 = 0.

3. Thermoelastic surface waves

We consider a plane harmonic monochromatic perturbation propagating along the
surface .S. Denoting by w the angular frequency, we may write the potentials \, v, ¢, f
das
(3.1) (N0, 0) = (X, 0. Q)exp(—iwl)exp(iky, - x),

(3-2) = Wexp(—iwt)exp(iky - x) .

where, owing to Egs. (2.6)-(2.9) and (2.5), two distinct wave numbers k;, and k- have been
introduced, respectively, for the longitudinal and the transverse parts of the displacement.
Within the framework of inhomogeneous waves, k is a complex-valued vector, ie. k =
k, + ¢k;; in components

(3.3) ky=€&+iv, k=a+:i8, ky=(+1i0.

We require that the amplitude of a surface wave should not increase proceeding from the
surface toward the solid, hence k;, must be inwardly directed. Moreover, since no wave is
allowed to grow in amplitude during its propagation, in analogy with the isotropic case,
we assume k, -k, > 0[5, 12]. Owing to Egs. (3.3) we obtain the following constraints,
(3.4) k, - n>0, &+ai+(oc>0.

The particular case of usual Rayleigh waves is achieved for k, -n = 0 and k, L k.

3.1. Y -cut half-space

Let us first consider a wave propagating along the surface of a ¥ -cut half-space (r; =
0), (see Fig. 1a). We have

(3.5) E+ = q(C +i0).
The last factors in the right-hand side of Eqgs. (3.1) and (3.2) take the form
(3.6) expli(C + io)(qay + x3)]expli(ar, 7 + i3, 7)r2].

After substitution of Egs. (3.1), (3.2) into Egs. (2.6)-(2.9), taking into account (3.6), we
obtain the following compatibility conditions:

(3.7 Kp=1—=HK{+p),
(3.8)[ M Az — ajai(ph + K1) A5 — e3P A K+ ay(pi + K p)(Ay = 2aza3d V)] = 0.

. (, + i 2(8 ; it ‘;;JJL.T Z'H U
K = - Kpr={(——"=2) = p=2q,
w P W P 0

where
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and
M=@+a)N + KN —a,,
A=@p+ON+ KNy —a,,
Ay=(p+ YN + K — e,
with
j Il 1 T, MR
= . 5 = —, = —, ] = . ( = —
B=urnt BT TR TN T4
. h*6 h
(']=ill(. f'2=il ”. d=l—l
Wk PWK h

Concerning the boundary conditions, we observe that Eqgs. (2.6)-(2.9), which are valid
within Y, hold also at the surface 5. Hence we can use Eq. (2.7) to remove # from Eq.
(2.14), letting the boundary condition (2.16) to decouple from the system (2.13)—(2.15).
Using Eqs. (3.1), (3.2) and (3.6), we obtain the compatibility conditions at 5.

721y

(3.9) Kp = — . @#0,

4.2

PR

. 4P K2+ 4ph (K — 1) — K + 1)
(3.10) N it il - Sl e B Y S
16p? K2[1 — (1 + p) i)
where 1 is given by Eq. (2.12). Substitution of Eq. (3.9) into Eq. (3.8) yields an algebraic
cubic equation for I with complex coeflicients. It admits three complex roots for any
value of p if the inequality

(3.11) [(ay + b) — aya3)® < dayb

holds. Without any loss of generality, we assume that r3 grows along the propagation
direction, so we take ¢ > 0. Hence the requirements (3.4) give

> 0.

(3.12) Brr>0, (1+¢)a+ aLrbrr
Those roots of Eqgs. (3.7), (3.8) and (3.9) which satisfy inequalities (3.12) correspond
to thermoelastic inhomogeneous surface waves on Y -cut half-spaces. As to the case of
surface waves propagating perpendicularly to the privileged axis, ie. for ¢ = 7/2, we
observe that the potentials Y, ¢, 1, # may be regarded as independent of x3. Then, the
compatibility condition of the system (2.6)-(2.9) splits into

(3.13) Kr=1-K',
(3.14) (K" + [x',[,)2 —(ay + ey +aye)) (K + Kp) +aye; =0,
where

K (£+iu>2;t
(' = =5
w P

Together with Eq. (3.9), Eq. (3.14) gives two modes which correspond to inhomogeneous
surface waves propagating along the & -axis.
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3.2 Rotated-cut half-spaces

Let us consider a surface wave propagating along the x;-axis on a surface 5 whose
normal makes an angle ¢ with the privileged axis (see Fig. 1b). Equation (3.5) holds as
well in this case, and the wave fields have the following x-dependence

(Y, 0) = (X, W, ) expli(a + 1)) expli(Cr + iop)(qe, + x3)] .
= Wexpli(a + iA)as]expli(Cr + tor)(qay + 23)].

If we re-define the quantities A" and 'y, 1 as

K= (a + 1'/,3)2ﬁ’ R = (CL.'; + i(Tl,,'I)zﬁ’
w P w P

the propagation condition obtained from Eqs. (2.6)-(2.9) may be derived directly from
Eqs. (3.7) and (3.8) by simply exchanging A" for Ay in Eq. (3.7) and A" for ', in Eq.
(3.8). The resulting equations are

1-K
3.15 Ky = $
(3.15) V7 T+
(3.16) K3+ DK+ LI+ I;=0,
where

Dh=A+ A+ 43— nlug[\'L —aycy,
I = A A, + A As + A — aad K (ph, + As) — ealay(php, + A7)
+ axd K (axd — 2a,a3)],
Iy = A A3 Az — aya3p K3 As — e K p(ayp Ay + a3d* Ay — 2aya3a3pd K1),
with
A =p+a)ky —a,
A=+ 0K — a,,
Ay=(p+ bk —¢e.
The boundary conditions for the case at hand are Eqs. (2.17)-(2.20). In analogy with the
previous analysis, we account for the continuity of the wave fields at .S, using Eqs. (2.7)
and (2.8) to remove # from Eqs. (2.17) and (2.19). The resulting compatibility conditions
at S are
: a; a0
(.17) ]"‘:_mpw;fﬁ‘ 040,
P(p+ DN — a)?2K - 1)?
K21 = K)[(K = a)2p+ 12 = (p+ W)
From Eqs. (3.17) and (3.16) we obtain again a cubic equation for A" which admits three
complex roots for any value of p > 0. Posing a > 0, the requirements (3.4) yield

(3.18) Ny = 0 =0.

CLroL,T
o
The roots of Egs. (3.15), (3.16) and (3.17) which satisfy inequalities (3.19) correspond to
inhomogeneous thermoelastic surface waves on rotated-cut half-spaces. We finally remark

>0,

(3.19) oLr >0, B+ (¢ +1)
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that for thermally insulated surfaces, r = 0 and consequently A'; = 0. Then Eq. (3.16)
reduces to the equation
(3.20) /g . (ay +a +cy + r:,(-g)[\'2 + (ayaz + ajey + aey + ayaxc)) N — aypaze, =0,

the roots of which are evidently independent of p.

4. High freqencies

Having recourse to a generalized theory of heat conduction we observe that the ther-
mal conductivities #, ® and the thermoelastic coefficients h, h are frequency-dependent
quantities. In particular, following [7] we have

i " 1 — i 1
(41) (}\'.K) = (H“,KU)—“—-,——. (h,l’]) = (h”,/!”)——,—.
1 —wTr, 1 — wery
where 7,. and 7, are suitable relaxation times. Consequently, the parameters b’ and
d are frequency-independent, while ¢, and ¢, are complex-valued functions of w. We
briefly sketch here the behaviour of the solutions obtained in the previous sections when
w > r7', 7" In this case we have

we'T,,

(4.2) cp — = <, c;— 0.

¥4

Ry
Consider first the Y -cut insulated hali-spaces by taking \'7, = 0 and using (4.2). Equation
(3.8) yields then
(4.3) A; =0,
(4.4) MA; — ayaipK? = 0.
From Eq. (4.3) we obtain
Col
p+b
This solution corresponds to a Rayleigh wave if A'p < 0. Owing to Eq. (3.7), this is true
wC' 6C
two real and positive solutions for A with any p > 0, but, in this case, the condition
Ip < 0is not satisfied for every p > 0. In particular, for p = 0 we obtain
: .
(4.5) K=1 K= f

The first result implies 'y = 0, the second one gives A'p < 0 if ¥ < é. The case
© = /2 for insulated Y -cut half-spaces can be derived by Eq. (3.14). We have

(46) [\', = a, 1\-1 =N -
The first of Eq. (4.6) corresponds to a purely homogeneous elastic wave since, owing to

7
Eqgs. (3.13) and (2.4), k' > 0. The second of Eqs. (4.6) yields A'p < O only if 7, > .“(()'.

fim=

for any value of p > 0 if 7, > max ( ) It is easy to show that Eq. (4.4) admits

As regards rotated-cut insulated half-spaces, Eq. (3.20) gives, for ¢ # 7/2,
(4.7) K=a, K=a, K=cy,

independently of the value of p. The second of (4.7) gives rise to a Rayleigh wave if and
only if & < fu.
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5. Elastic modes on thermoelastic half-spaces

We are interested here in those particular solutions of Eqs. (3.8) and (3.16) which
meet the boundary conditions (3.10) and (3.18), respectively. They apply for @ = 0, i.e.
in absence of temperature perturbations. Concerning Y -cut half-spaces, for # = 0, Eq.
(3.8) must be replaced by the compatibility conditions

(5.1) N = as + (aasd — p = b)N |
(5.2) AR+ BN + I =0,
where

A=p+a)(p+b) - aaip,
B=(@+0(Ny—a)+(p+a)(Ny—ay)— u,u_%[\',‘ .
= (KN, —a)(N —ay).
Substituting Eq. (5.1) into (5.2) we obtain one real solution for A" which turns out to be
independent of p,

ayaz — (ay — ay)d =

=0

(5.3) K =ua

2(!](12(] + (ayd — ayaz)(azazd — b)
The boundary condition (3.10) implies an additional constraint on this solution. Substi-
tuting Egs. (5.1) and (5.3) into (3.10) we obtain an algebraic equation for p with real
coeflicients
(5.4) DypP + Dyp* + Dip+ Dy =0,
where

D; = I()F3|r12 + (aza3d — b+ 1)K — 1],

D, = I()WZ(W — D |az + (ayazd — b+ 1)K — ;

D, = —8K (K — 1),

])1) = (F— ])Z
Owing to Egs. (5.1), (5.3) and (3.7), 'y, and K turn out to be real. Moreover, from
Eq. (3.10) we observe that A’y and Ky are negative for any value of p > 0 il and
only if ¥ > 1. Hence, any non-negative solution py of Eq. (5.4) yields a privileged
direction along which elastic homogeneous (undamped) Rayleigh waves can propagate if
W > 1. Instead, a solution py > 0 of Eq. (5.4) with & < 0 corresponds to a particular
orientation of the plane P on which a purely elatic mode can propagate within the solid
along the x,-axis. For 0 < I < 1 one of these two modes can occur depending on the
value obtained for py-.

As to the rotated-cut half-space, we observe that, in absence of temperature pertur-
bations, the compatibility conditions can be obtained directly from Eq. (5.1) and (5.3) by
simply exchanging A" with /'y Solving for A" and A'j, and substituting into the bound-
ary condition (3.18), we arrive at an algebraic equation of the ninth order in p with real
coeflicients. For brevity we don’t write it explicitly but note that it admits at least one
real solution p,. If poy > 0 and Ky, < 0, Eq. (3.18) gives A > 1 and, in turn, from
Eq. (3.15) Ky < 0. Such a solution represents a particular rotated-cut half-space on
which an elastic homogeneous Rayleigh wave can propagate without damping. If A'y, > 0
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we obtain A < 1 and A'p > 0 and the corresponding rotated-cut half-space admits
an elastic homogeneous mode propagating within the solid along the normal to 5. We
finally remark that, owing to (4.1) and the definition of d, the solutions of Eq. (5.4) are
independent of the frequency and temperature 6.

6. Numerical results and concluding remarks

In order to illustrate the previous results we have determined some of the main surface
wave properties by numerical computation. In particular we are interested in the wave
speed v and the wave attenuation {2 for the modes corresponding to solutions of Eqs.
(3.8) and (3.16). To this end we observe that, according to Eq. (2.12), for a solid-vacuum
boundary at room temperature, the terms containing A’y in Eqs. (3.8) and (3.16) turn
out to be negligible. A preliminary numerical computation of v and (2 has confirmed
this view allowing us to restrict attention to thermally insulated surfaces by putting » = 0.
Denoting by kg the projection on 5 of the real part of the wave vector and observing that
k;, and ky have common values of &, we may write the surface wave speed as

(6.1) U= —.,

As o the wave attenuation {2 we note that, in view of Eq. (3.1) and (3.3), the wave
amplitude decays from x = X to x = X + Ax by a factor exp(—w|Ax|), where, since
Ny =0,

T e
v1+@de+ ———, for¥=cuth — s,
(6.2) 0= Wi' +q
9 (1”\.“. T

S+ (1 +q°) for rotated-cut h — s.

Oy

Obviously, the quantities defined in Egs. (6.2) are subject to the conditions (3.12); and
(3.19),, respectively.

Table 1. Thermomechanical properties of zinc [13].

T 6325 GPa ag 129 (x1077y°K~!
A 36:5) 4 ) 645 (x107TyeK !
0 92 " KK 102 W/m °K

6 39 : (@) 389 I/Kg°K

5 63.5 p 7135 Kg/m?

Our results have been applied to a half-space made of zinc. The thermomechanical
properties at #, = 300°K are summarized in Table 1| (cf. [13] and references therein).
As usual, the thermoelastic constants i and & are evaluated via the thermal expansion
coeflicients oy and @. Using the present notations we have

h=2(u+ Nay+ (n— ey,
il_ = 2(1] = (S)(l‘(; + ‘}Hn 2

According 1o [14] the relaxation times 7, and 7, are taken to be equal to x/tC'; namely
7. = 7, = 10725 Inequalities (2.4) are evidently satisfied by the parameters of Ta-
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ble 1. Tt is easy to verify that also the condition (3.11) is fulfilled. This implies that Eq.
(3.8) admits three complex roots for any value of p. Two of these roots yield thermoelastic
modes that satisfy inequalities (3.12) while, for the third root, {2 turns out to be negative
for any p > 0. The corresponding values of v and {2, expressed in m/s and db/cm,
respectively, are given in Fig. 2 and Fig. 3, against the angle (. Equation (3.20) admits
again three complex roots, one of which yields {2 < 0, the remaining two modes are
practically undamped and their speeds are independent of (. Their value are given in
Table 2. We remark that our results give wave attenuations of the same order of magnitude
as those calculated in [3] for a LiNbOj; hall-space, whose material symmetry is similar to
that of zinc.

v(x10°m/s) Q(dblem

FiG. 2.

Table 2. Speeds and attenuations in rotated-cut
half-spaces.

v (m/s) £2 (db/em)
mode 1 4836 < 0.056
mode 2 2338 ]

Concerning the wave modes described in Sec. 5, we note that I\, as defined in Eq.
(5.3), turns out to be negative, and consequently, X';, and A’y are positive. Equation
(5.4) has only one real positive root corresponding to a particular angle ¢y, while the
analogous solution for the case of the rotated-cut half-space gives one real positive solution
for p corresponding to an angle (.. The results, shown in Table 3, allow us to conclude
that, independently of the frequency and of the value of #, two special elastic modes are
of particular importance for a thermoelastic transversely isotropic half-space. The first
one corresponds to an elastic bulk wave propagating perpendicularly to the surface of
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v (x10°m/s) Q(db/cm)
249 1

FiG. 3.

the Y -cut half-space. The second one corresponds to a homogeneous Rayleigh wave that
propagates on the surface of a ¢, -rotated half-space. Both waves don't carry temperature
perturbations and turn out to be undamped.

Table 1. Particular elastic modes on thermoelastic half-spaces.

) PY Py N Ny, Kr
Y -cut
8.542 66.45° —0.323 4.109 4.084
Prot Prot K Ky, Kr
rotated-cut
1.216 4().88° 4.109 —0.323 —1.403
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Macroscopic modelling of pollutant transport
in porous media(*)

J.-L. AURIAULT (GRENOBLE) and J. LEWANDOWSKA (GDANSK)

A RIGOROUS MODEL for pollutant transport in porous media has been developed by means of the
double scale asymptotic development technique [3, 7]. It has been assumed that the microscopic
equations, governing the pore-scale processes of diffusion, advection and adsorption, are known.
The application of the homogenisation method has permitted the replacement of the real heteroge-
neous medium by the macroscopic equivalent continuum characterised by the macroscopic equivalent
dispersion tensor and the macroscopic governing equations for the average concentration field. The
investigations of three characteristic cases that correspond to different macroscopic models, have
been carried out. The most general case concerns the modelling of flow in the presence of strong
advection as well as diffusion and adsorption. The expression for the dispersion-adsorption coefficient
in terms of the given microscale parameters and geometry has been derived. As an example, a flow
of a pollutant in a layered porous medium has been considered. The different forms of the dispersion
tensor in relation to the order of magnitude of the dimensionless parameters has been presented.

Notations

Q, P, Pey, P, Q, Pe

a,  the specific surface of the porous medium,
c(x,y, t) the concentration of the pollutant,
D;;  the molecular diffusion tensor,
D7}, the macroscopic (or effective) diffusion tensor,
D7 the macroscopic (or effective) dispersion tensor,
1),.‘1" the macroscopic (or effective) dispersion-adsorption tensor,
ERV  the elementary representative volume,
K4 the distribution coefficient or the partitioning coefficient,

[ a characteristic length of the ERV or the periodic cell,
[ a characteristic marcoscopic length,
1 the porosity,

N;  the unit outward vector normal to I,

the dimensionless numbers,

o

R,y the coefficient of retardation or the retardation factor,
Sp the total surface of the solid in the cell,
t the time variable,
v;  the advective velocity,
x the macroscopic (or slow) space variable,
the microscopic (or fast) space variable,
o the parameter of adsorption,
¢ the homogenisation parameter,
¢ the bulk density of the dry medium,
£2.  the solid volume in the periodic cell,
{2y the volume of pores in the periodic cell,

1" the boundary between {25 and 2,
the total volume of the periodic cell,

(*) The paper contains the material which was communicated during the 29th Annual Technical Meeting
of the Society of Engineering Science, University of California, San Diego, September 14-16, 1992
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[£2;]  the volume of pores in the cell,

\is YLad the local vectorial fields.

1. Introduction

THE POLLUTANT transport in porous media represents an important engineering problem
of environmental protection. Although the mechanism of pollutant transport in the mi-
croscale, it is in the scale of pores, has been well established, it is practically impossible
to solve the full equations for the complex microscale geometry. In order to overcome
these difliculties, the idea to replace the real heterogeneous medium by the macroscopic
equivalent continuum has been developed.

There are many methods available in the literature to derive the macroscopic (effec-
tive) governing equations and the macroscopic (effective) transport properties. In the
paper the double scale asymptotic development technique [3, 7] will be applied to de-
termine the macroscopic model of diffusion, advection and adsorption phenomena. The
methodology followed in this paper has been presented in details in [1].

2. Phenomenological approach

Within the framework of the phenomenological approach the medium is investigated
in the scale of a sample, called macroscale, directly [2, 8, 6.

At each point of the medium the vectorial field of the velocity and the scalar field of the
concentration (the mass of the pollutant in a unit volume of the fluid) are introduced. It
is assumed that the phenomena that contribute to the distribution of pollutant in a porous
medium are: advection, diffusion, dispersion and adsorption. At each point of the space
the macroscopic flux of the pollutant, as the quantity averaged over the representative
volume in the vicinity of the given point, is defined. The component fluxes are the
following:

e The advective flux (¢, ¥), where v is the average velocity of Darcy.

e The dispersive flux due to the variations of the velocity in the pores, expressed by the
Fick’s law (=D - V7). D is the coeflicient of mechanical dispersion given by the formula

UERv o i
@1 Dij = Gijin =", 7= [¥]

where the fourth order tensor a reveals the microscopic configuration of the interface
solid-fluid. In the case of isotropic porous medium the components «; ;,,, may be written
in terms of two parameters ay, (called the longitudinal dispersivity) and a7 (called the
transversal dispersivity)

a; +ar

q

<

(22) Aijkm = ”‘T(Sijbkm * (éfk6_1711 ok biméjk) .

Applying the above equation, the following formula is obtained:
(2.3) Dij = arvbd;; + (a, — ar)v,v; /7.

If one of the Cartesian axes coincides with the direction of the average velocity, then
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the dispersion matrix at this point is

a0 0
(2.4) D=| 0 arv 0
0 0 arv

This matrix is evidently anisotropic.

e The average pollutant flux related to the molecular diffusion (=D} - V©), where
D75 = T* D, is the coeflicient of effective molecular diffusion, and T~ is the second order
symmetrical tensor called the tortuosity tensor. For the isotropic medium it reduces to

e U
where
‘S'u'u‘ (: w
(2.6) 95, = 22 and W, = o
S Uy

S . denotes the water-water portion (of the total Sy) of the bounding surface of the rep-
resentative volume (ERV) and [/;,, means the volume occupied by water within the total
volume U/, of the ERV. The total flux of the pollutant is the sum of the flux components

(2.7) Geaoml = Vp(€V — Dy - V),
where Dy, = D + D7 is the coefficient of the hydrodynamic dispersion.
« The mass balance equation gives the macroscopic phenomenological description of
the problem in function of the concentration ¢ = ¢(x, )
de
(2.8) nly— = -V -nEv—D, -Ve),
at
where I, is the retardation coeflicient (12, > 1).
This is the traditional form of the pollutant transport equation for the saturated porous
medium, commonly used in the engineering practice.

3. Homogenisation by the asymptotic development method

The derivation of the macroscopic model will be accomplished by the application of
the homogenisation method which is based on the double scale asymptotic expansions
[3. 7). The general idea of the homogenisation process consists in the passage from the
description of the phenomenon at the microscale (the local scale) where the governing
equations are given, to the equivalent macroscopic boundary value problem that provides
the ,,averaged” behaviour of the medium. The proposed approach is rigorous in the sense
that the macroscopic quantities depend solely on the microscopic transport parameters
and the geometrical properties of the medium.

3.1. General description [1]

The basic assumption of the method is the existence of an elementary representative
volume (ERV) of the medium, small when compared with the macroscopic volume. The
above condition, which is equivalent to the separation of scales, must be valid for both
the geometry and the physical quantities. In the periodic medium the ERV represents
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the periodic cell. Let [ be a characteristic length of the ERV or the periodic cell, and .
is a characteristic macroscopic length. The separation of scales yields

l
(3.1) 7 < 1

The two characteristic lengths / and / introduce two dimensionless space variables X//
and X/ 1, where X is a physical space variable. Each quantity ¢ does depend a priori on
these two dimensionless space variables. In practice two space variables x and y = x/¢ are
used instead because of their more physical meanings. The variable x is the macroscopic
(or slow) space variable and y is the microscopic (or fast) space variable. Two equivalent
descriptions are then possible

P = &(x,y), y=x/c, the macroscopic point of view,

¢ = P(x,y), x

¢y . the microscopic point of view.

If (@) means the average of the quantity ¢, the following relation is generally valid:
(3.2) b =0(P)),

where the symbol O(-) denotes the order of magnitude of the quantity < @ > with respect
lo ¢

(3.3) b =0(d)) if ¢<(P/(P) <.
The separation of scales for ¢ implies that (see Fig. 1)

Fic. 1.

ad o(P
& =0( %)
dy Ox
i.e. the local gradient of @ is of the same order of magnitude as the macroscopic gradient
of (¢). Further, from Eq. (3.2) it is deduced that

oo P
(3.5) el 0 (E) :

Equation (3.4) and Fig. 2 show that the variations of (®) against x over a length O(!) are
small and zero in the limiting case of ¢ — 0. It means that the quantity ¢ is y-stationary,

(3.4)
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i.e. its average is invariant under a local translation of the order /. A similar property
holds when the micro-structure is periodic, the elementary representative volume being
replaced by the periodic cell. In this case ¢ is y-periodic.

P

L y=xe!
FiG. 2.

In the process of homogenisation the unknowns are presented in the form of asymp-
totic expansions with the small parameter ¢ playing the fundamental role

(3.6) b= d(x.y) = P(x.y) + 1P (x,y) + FPHx,Y) + ..

The perfect homogenisation is obtained for ¢ — (. Since in practice ¢ takes small
but finite value, the macroscopic equivalent description, which gives the equation for @',
represents an approximation of the real behaviour with the precision in terms of ¢.

The stationariness or the periodicity implies the y-stationarity or y-periodicity of @'.
If the unknowns can be found in the form (3.6) where @' are y-stationary or y-periodic,
then the homogenisation is possible. If not, the medium and the phenomenon considered
are not homogenizable.

3.2. Microscopic equations

In the analysis a rigid saturated porous periodic medium will be considered (Fig. 3).
The following notations are introduced: {25 — the solid volume in the periodic cell, £2;
— the pores volume occupied by the incompressible fluid, /" — the boundary between
25 and (2, {25 and §2; are to be connected. The solid part {25 is assumed to be
undeformable. In the problem considered the scale [ represents the size of the pores,
whereas the scale 1 reveals the dimension of the sample.

The physical processes of molecular diffusion, advection and adsorption are described
by the following microscale equations:

de 0 de
3. — —_— = oy —— i€ = S
(3.7) T 4+ P ( Di; 3l + v (‘) 0
Jde e y
3. —Ni(Dji— | = a— s
(3.8) I ( J(')!J_j) ity

where [);; is the molecular diffusion tensor, { is the time variable and N, is the unit
vector normal to I'. The coeflicient o denotes the adsorption parameter (o positive).
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Fia. 3.

It represents a length which characterises the kinematics of the adsorption phenomenon.
It is not related to the thickness of the adsorbed layer. For the sake of simplicity of
the presentation it is assumed that the adsorption is instantaneous, reversible and linear
(the linear equilibrium isotherm) but similar results may be obtained for the nonlinear
equilibrium isotherms.

The study is based on the assumption that the microscopic velocity vector v satisfies
the Stokes equation
(3.9) L S Rl

dy;dy; Oy

together with the incompressibility condition

Jdv;
(3.10) — =0
Ay
and the no-slip condition on the solid surface
(3.11) v=0 onl.

The above system of equations shows that the advective motion is independent of
the diffusion and adsorption phenomena. Therefore, the macroscopic description of the
advection (Darcy law), which has been already presented in the earlier contributions, for
example [1], will be directly used in the analysis. Note also that for the sake of simplicity
we assume the thickness of the adsorbed layer and the inter-particle distance as sufficiently
small compared to the pore size | (to assure the validity of the continuous description
(3.7)-(3.11)).

The problem may be formulated as follows:

Supposing that the microscopic equations governing the combined processes of the pol-
lutant diffusion, advection and adsorption are known, determine the macroscopic transport
equation and the effective macroscopic material properties for the equivalent continuous
medium.
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3.3. Normalisation

In the process of homogenisation all the variables will be normalised with respect to
the characteristic length /. Therefore, it can be said that the microscopic point of view
is adopted [1]. Owing to the normalisation, all the quantities appearing in the equations
will be O(1) and the method of homogenisation can be applied properly.

Equations (3.7) and (3.8) comprise three dimensionless numbers £, (; and Pe, that
will measure the relative influence of the different components, representing different
phenomena incorporated into the analysis

d
ay "
(3.12) Pe; = Yi o~ (the Peclet number),
— D,-.—)
0.!/1( T dy; 1
' de
“a
(3.13) Q) = —(—d("— (the Damkdéhler number),
o)
Ay,
de
(3.14) P = ot

705
dy; Ty,

3.4. Homogenisation

Due to the separation of scales the concentration field ¢ is the function of three
variables

c(x,y, t),
where x = (i, 3. x3) is the macroscopic space variable, y = (yy. y2, y3) is the microscopic
space variable and ! means the time variable.

When following the homogenisation technique, it is assumed that the concentration ¢
can be presented in the form of an asymptotic expansion

(3.15) c(x,y, 1) = x,y, 1)+ elel(x,y, 1) + 2y, ) + ...

where the components ¢'(x,y,t) are y-periodic and the variable x is expressed by the

J J
variable y, i.e. x = cy. The latter implies that the gradient operator will be ((’T + Ez)—x>
Y

An expansion similar to Eq. (3.15) is used also with respect to the velocity vector v.

The methodology of the homogenisation consists in application of the asymptotic
development (3.15) in Egs. (3.7) and (3.8). The comparison of the terms of the same
powers of ¢ will yield the successive descriptions in the form of the systems of differential
equations to be analysed and solved.

When applied to the advective motion, the process leads to the Darcy law expressed
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in the form [1]

ordp?
3.]6 ')(.) =_II—!
( ) <l z) \ J 0-7‘_}’
where the pore scale velocity v of a fluid filtrating in the porous medium is
o’
(3.17) o) = ol
“0z;

k denotes the tensor depending on the local space variable y, and K is the permeability
tensor defined as the volume average

ﬁ [ kijas.
2

(3.18) Nij = (kij) =

The second result of homogenisation with respect to the advection problem is the
volume balance equation [1]

J

3.19 M =0,
( ) (.).I'i(rl> 0
where

.20 p! e
(3.20) ) |f?i el

2,

In the next sections three characteristic cases, corresponding to different orders of
magnitude of the dimensionless numbers (), 7, and Pe;, will be examined.

3.5. The case of [} = O(<2), Q; = O(=?) and Pe; = O(=h

The concentration ¢ satisfies the normalised local advection-diffusion-adsorption equa-
tion

, e ' e
(3.21) 5‘_._—(+_—()~(—])i,-;( + evge ) =0
ot Jy; " dy;
with the boundary condition imposed on the solid-liquid interface
e d
(3.22) Alv,-(i)f,-_‘—() =228 onr.
’ dyj 0l

Despite the same notations used, all the quantities appearins, in Egs. (3.21) and (3.22)
are dimensionless now. Hence, the terms standing by £%, ¢! and ¢" are of the order I, i.e.
o).

The analysis of the above problem followed the methodology presented by AURIAULT
[1]. The macroscopic governing equation obtained has the final form

a0 e 0
3.23 R, B S0 1 Mo GO SRR P11 72 0 B S 1
e Yor T ( & ().l’j) dx (X))
where the effective diffusion tensor 1)"~ is defined as
()\
3.24 Dt = Dl I 4) 0.
( ) i) |!—)| f k ( k, ‘)_{/k (
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The local linear boundary value problem to determine the vectorial field \; depends
on the geometrical properties of the cell and takes the form

3.28 Dij\ ik + 5—]| =0,

(3.23) ‘)Jz[ f(l“ dy; 0

(3.26) - N,—[I),-,-(I,A + )] =0 onl,
' dy;

where \; = \;(y) is y-periodic and

(3.27) (x) = j xd2=0.

W!

It can be shown that the tensor D* is symmetric and positive definite. From Eq.
(3.24) it i1s seen that the tensor D* has a contribution from the molecular diflusion and
the geometry of the periodic cell. It does not contain the advective term though this term
appears in the differential governing equation.

The coeflicient /7, (the retardation factor) in expression (3.23) is found to be related
to the adsorption parameter by the following formula

(3.28) o el

3.6. The case of I’} = O(c?), Q; = O(s*) and P¢; = O(<")

In this section the relative magnitude of the microscopic advection will be increased
with respect to the preceeding case. The homogenisation procedure will be repeated
to investigate the form of the macroscopic equation and the definitions of the effective
parameters. The normalised equations (3.7) and (3.8) take the following forms

Jde : dc
(3.29) ELCA (— o R IR r) =0,
ar oy, Ty
0 de
(3.30) 3 ,/\f,-(/),-jf—c> =2aZl onr.
] ()yj Jl

The process of homogenisation leads to two succeeding order macroscopic governing
equations that give the approximation of the real pollutant behaviour within an error O(¢)

(3.31) 2 (@ = 06e),
dr;
el J . cle? d ., 10 e 7
(3.32) Igd_()f T ().TL (j)” ().TJ) + _ari((f.,i)C + <1i>C ) = O(u),

where tensor D** is the macroscopic dispersion tensor defined as

dy dap?
- = 3 ) g kix! dS2.
(3.33) D;; i f]),k(lk] w) (63 OHIQIJ k) d
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The vectorial field \! is in this case the solution of the following cell problem:

dJ U\L)} nd\:c —1/.0 0
3.34 Diillip+=—)| +v,— = ) — v,
ol 0/,{ i( au; )] * gy, T
9,1
(3.35) = [Du(fjﬁﬁ)] =0 onl,
: dy;
where

= yi(y) is y-periodic,

(3.36) e 1 }'x‘ 10 =0,
2] 5
€l

Remark that the presence of v in Eqs. (3.34)-(3.35) makes the vector \; depend on
the macroscopic gradient of pressure.

It can be shown that the dispersion tensor D™~ is positive definite but in general case
non-symmetric. The expression (3.33) consists of two components which both depend on
the macroscopic gradient of pressure and therefore can be said to represent the disper-
sive character. In general, it is then impossible to separate in D™* the purely diffusive
component and the hydrodynamical contribution [2].

In order to derive the differential equation governing the average concentration (c),
Eq. (3.31) is added to Eq. (3.32) multiplied by <. After some transformations the final
form of the dispersion equation is obtained. It gives the macroscopic model approximation
within an error O(£?)

ey 9 ( d{c) ) B 1
3.37 R e— | D7 + v; =0().
( ) i da; & aay U.I'l’(< ){e)) (&3
Note that the dispersive term as well as the transient term are ol the order ¢ in the
macroscopic equation (3.37).

3.7. The case of 7} = O(c'), Q; = O(<!) and Pe; = O(<")

To see the competitive influence of advection with respect to the other phenomena,
the case considered in the Sec. 3.6 will be taken once again, but the parameters £ and
(); will be increased each by one order of magnitude. The equations to be investigated
are

0( J de
3.38 + —| — Dy + =0,
( ) ()[ (')y,( ()r/] ; (>
de de
.39 -~ N Dijj— | =ca— It
(3.39) ( J(_)yj) 200 on

The homogenisation procedure applied to this problem gives for the first order approxi-
mation the macroscopic governing equation which does not contain the diflusive term.
Instead, it consists of the transient term related to the microscopic transient term as well
as the adsorption and the advection terms

d" J
ot ()1z

(3.40) Ry— (v = 0,
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The next order approximation of the macroscopic equation is obtained in the form

o) _ o) 0

3. , L —(o(x}
(341 Ha=p ot i:);z-i((}<\‘>r)
j)_ Ay KW —_ d(c") -
(7.‘1‘,'(<Li><(' ) + ('t>((- )) (1) ) ()L'J‘ = 07
where the symbol ( ) means
it 7z
(3.42) (Whr == [xdS.
] J

Remark that the second term in the expression (3.41) represents the additional ad-
sorption contribution defined as the interaction between the macroscopic gradient of the
temporal changes of the averaged concentration field (¢") and the surface integral of
the microscopic vectorial field (\?)r. If the quantities o and () are assumed to be
x-independent, then the classical macroscopic dispersion equation is obtained.

The tensor D*** is expressed as

fiul ax3 1
(3.43) Di = _.(T| [ {Dik(h\.j + d;:) - 1"’\‘ + r R (\;}p} ds? .
) c

d

Note that D*** depends on the adsorption coefficient a and therefore may be called
the dispersion-adsorption coefficient. It can be shown that D*** is positive definite but in
general case nonsymmetric.

The local boundary value problem for determining the vectorial field x* is the follow-

ing:

d OXF. )] «)f)\i- 0 0
3. — — | D 1 + + v, —= = (v.)" — vy,
( 44) ()Jl [ T( ')l’ ’l ()y; ('L) ”k
o d\ .
(3.45) = f\i[l)ij( ikt ()y;;)} = —a-(v‘z.) onl’,

where y? = \i(y) is y-periodic

(3.46) (x%) = ] 2df =0.

If?l

Remark that x* depends this time not only on the advection but also on the adsorption
phenomenon. Moreover, in this case the pollutant is transported with the velocity (v
equal to the effective fluid velocity divided by the retardation factor.

Finally, the equation governing the average concentration (c) can be determined by
adding Eq. (3.40) to Eq. (3.41) multiplied by €.

e d (e J .
(347) Rd.% —_ Sd'—l (1):‘]**{01_()) + -—()I(<I’l><(,>) ] O(fa-)
Ty T €Ty

where

0 3
c(,)l_i((l(\i)[').
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If Eq. (3.47) is compared with Eq. (3.37), it can be concluded that the increase by
one in the order of magnitude of parameters I’ and (), causes that the transient term
d{c)
R —
“ ot

in the macroscopic equation becomes of the order one.

4. Example

As an example, a layered medium showed in Fig. 4 will be analysed. The medium is
composed of the horizontal impermeable layers forming the spatially periodic structure.
Note that the pores are not connected. The unidirectional flow of a solvent with velocity
vector parallel to the y-axis (the horizontal direction) will be considered. It is assumed
that the solute particles diffuse in the solvent and undergo adsorption on the surface.

77777
OO
77
2 LAY

FiG. 4.

Three different forms of the dispersion tensor in relation to the order of magnitude
of the dimensionless parameters P, (); and Pe; were obtained.

CASE P, = 0(€?), Q; = O(€?), Pe; = O(e!),

nlhD 0 0
(4.1) D=0 0 0
0O 0 nD

CASE P = O(e%), Qu = O(e?), Pey = O(e"),

Dis 0.0
(4.2) D= 05 0, 6,

0 0 nD
4.3 Dip e 1)[1 Pt (Pe)ZJ
(&) =g 23.57 '

It should be noted that this tensor represents the classical Taylor dispersion coefficient.

CASE P; = O(eY), Q1 = O(g"), Pe; = O(eY)

e
(4.4) D" = 0 0 0
0 0 nD
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/ 1 .1 4+ 18 Da +102(Da)?
(4.5) BBt 7 L (Pe) e - 10)
If 2359 (1 + 2 Da)?
where the Peclet number and the Damkohler number are written as
(v‘,’)%h
D
Q: «a

4.7 i o
(4.7) Da P

(4.6) Pe =

and n = h/H means the porosity.

7

:
N\

F1G. 5. The periodic cell.

The formula (4.5) contains the effect of adsorption. It corresponds to the result derived
by DUNGAN, SHAPIRO and BRENNER [5]. They used a variant of a Taylor-Aris method-of-
moments scheme [4] to study convective-diffusive transport of chemically reactive solute
for a general model of multiphase system composed of ordered or disordered particles of
arbitrary shapes and sizes. However, in the method proposed in this paper no assumption
is made on the form of the macroscopic equation.

Remark that if Q; = O(c!) tends to Q; = O(£?), the contribution to the longitudinal
dispersion from adsorption vanishes and D*** = D**.

5. Conclusions

Expressions for the macroscopic dispersion tensors and the macroscopic governing
equations were derived by the double scale asymptotic development method. The pro-
posed approach is rigorous in the mathematical sense. The complete macroscopic laws
were obtained without any a priori assumptions as to their character. The derivation is
made entirely on the basis of the governing equations valid on the local level where the
medium is heterogeneous. It should be noted that the method allows to examine a whole
class of transport processes in heterogeneous media with respect to different dominating
phenomena. It is interesting to remark that the three investigated cases reveal a charac-
teristic length of adsorption & of the same order of magnitude as the pore size /. This
conclusion comes from the following:

Q[ ¥
P O(1).

In result the adsorption effects survive the macroscopisation process.
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As an example, the case of unidirectional flow of a pollutant in a spatially periodic
porous medium has been considered. The classical formula for Taylor dispersivity between
parallel plates in the absence of adsorption has been rederived. The adsorption-dispersion
tensor in the case of strong advection, diffusion and adsorption has been shown to corre-
spond to the one given by DUNGAN et al., |5].
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Nonlinear torsional vibration analysis of the drive systems
using one-dimensional elastic waves

R. BOGACZ and T.SZOLC (WARSZAWA)

IN THE PAPER nonlinear transient and steady-state torsional vibrations of the drive systems are inves-
tigated. Considerations are performed using discrete-continuous models consisting of rigid bodies
of constant and variable mass moments of inertia connected with each other by means of cylindrical
elastic elements with continuously distributed parameters as well as by means of massless nonlinear
torsional springs. An a[)plication of the d’Alembert solutions of the wave motion equations leads to
appropriate systems of linear and nonlinear ordinary differential equations with a “shifted” argument.
The shifted argument enables us to solve these systems of equations numerically in an appropriate
sequence which, in comparison with coupled ordinary differential equations for analogous discrete
models, essentially increases numerical efficiency and accuracy of the proposed method. In the nu-
merical examples some nonlinear effects due to variation of mass moments of inertia, elastic coupling
with nonlinear characteristics, dry friction in the clutch and due to a nonlinear character of damping
are considered.

1. Introduction

TORSIONAL vibrations of the drive systems of machines and motor-vehicles driven by the
internal combustion reciprocating engines or by the electric motors are usually a source
of severe dynamic loads of shaft segments, couplings, gears and other elements. Because
of this reason, possibly accurate analysis of torsional vibrations of the drive systems is
extremely important for design optimization and to guarantee the system quality and re-
liability. This problem was considered so far by many authors using various methods in
theoretical and practical aspects [1-3]. An analysis of torsional vibrations belongs now to
routine practices during designing processes of the considered mechanical systems, where
in majority of cases the calculations are based on linear models [1]. But an urge to obtain
more and more accurate results of investigations makes the linear theory of torsional vi-
brations insufficient. The drive systems of machines and motor vehicles are characterized
by nonlinear effects due to variations of mass moments of inertia of the reciprocating parts
of the system, elastic couplings with nonlinear characteristics, dry friction in clutches and
vibration absorbers, backlashes in the gear stages and joints, variation of the gear mesh
stiffness as well as due to a nonlinear character of damping [2, 3]. For the nonlinear
torsional vibration analysis the considered drive systems are usually represented by dis-
crete mechanical models, motion of which is described by appropriate systems of ordinary
differential equations. Determination of drive system’s transient or steady-state nonlin-
ear torsional response usually reduces to computer simulations in the form of a direct
integration of the equations of motion [2, 3]. Although very many advanced numerical
methods have been developed so far, such computer simulations for relatively long time
of calculations with a sufficiently small integration step still require a big computation
effort. Moreover, there are some problems with numerical stability and accuracy.

In order to overcome the difficulties mentioned above, in the paper an alternative
method is proposed. This method is based on a discrete-continuous (hybrid) model of
the drive system, for which the torsional wave propagation theory is applied for vibra-
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tion analysis. This approach was applied in [4, 5] for crank mechanisms of the internal
combustion reciprocating engines as well as in [6, 7] for the rotor machines.

2. Assumptions and formulation of the problem

In the paper the subject of considerations is the drive system of a machine driven
by the internal combustion reciprocating engine. This system consists of elements of the
engine crank mechanism, flywheel, dry friction clutch with elastic coupling, gear stages,
Cardan universal joints, [ rigid couplings and the machine rotor, connected with each
other by means of shaft segments. The discrete model of such system is a combination
of n + 2m + | + 2 rigid bodies of constant and variable mass moments of inertia [;, i =
1,2,...,n + m + [ + 2, representing, respectively, masses of the engine auxiliary drive
elements, n crank assemblies, flywheel, coupling halfs, gear wheels, joint elements and
the driven machine rotor. These rigid bodies are connected by massless torsional springs
of constant stiffnesses k;, 7 = 1,2,....,n + m + [ + 1, representing shaft segments
as well as by means of m massless torsional springs of variable stiflnesses /i;, k =
n+2.n+3,..., n 4+ m + I, representing torsional flexibilities of the elastic coupling,
gear stage meshings and Cardan universal joints, Fig. 1. It is assumed that the mass

.I-n~m+l’2
3“) In*T( m2 Inom+ [+1

th
(2) ln,kq —(‘I) 3 mk¢3
k kz n mk+ kncrna( )
(b
M1

é T2
M»](t +Ke2
M3H] n,}t n}k)q n‘m*l(t)
Mnalt <) M nemsts2(1)
[n+k+2

F1G. 1. Discrete model of the drive system.

moments of inertia 7-((5-(1‘)) = 2.3,....n + 1, of the rigid bodies corresponding
to the engine crank assemhlles where ! denotes time and ¢; — the j-th rigid body
instantaneous angular displacement, are described by well knuwn functions [2]. Internal
and external damping in the system is represented by a linear model of the viscous type
except the elastic coupling and the gear stages, for which nonlinear damping terms are
introduced [2]. The considered system is excited to vibrations by the external torques
Mol =280, n + 1, due to engine gas and inertia forces, as well as by constant
or variable passive external torques My(1), k= 1,n+2,n+3,....,n+m +[ +2.

Equations of motion for this model are the following well known linear and nonlinear
simultaneous ordinary differential equations |2, 3]:

(2.1) Ty (1) + dydy (1) — er[dy(1) — &y (D)] = ka2 () — di(1)] = M (1),
Ti(d0)di(1) +1di+0.50,(D L) b (1) +eimal by (1) = b; (D] = i Dy 41 (1) = (1]
+ki[0i(1) — di—1(D)] = ki[dir1 (1) — ¢i(V)] = M), t=2,3,....,n+1,
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@.1) T30 + dPEP) + crr[dL0) = b (D] + arern(Adu(®)[ardy (1)

[cont |
— Bidi (0] + ki [6(1) — 68 1(0] + ahi(Adk)argl (1) — BroP (D]
= M“ (r).
796D (1) +dPE (1) = el din (1) — 6L (0] - Brer(Adr () ardy (1) = Brde (1)]

— ki [6) (1) — #P(1)] - nh,\um(f))[umA ( ) — Bl ()] = MP (1),

k= 2n+3,....n+m+1,

Tidi(1) + djo;(1) + cimi[o;(1) — ¢ (D] - )wﬁwn o;(1)]
+!’.J~1[(f)j f) — ¢j1()] = kjl@jn1(t) — ¢;(1)] = M;(1),
j=n+m+2n+m+3 ..... n+m+Il+1,

]N”i("(')nml"([) + (]N?Hf"(')mni"([) + (Hmfl({ I“nm!l(i) q um!._(i)]
+1"1mzll[(,-7nmll I) - C’nm[l(,)] = A'\Inmlz({) 5

whcre Li(¢i(D) = dIi(di(1)/d(d:i(t)), i = 2,3,...,n+ 1, Apy(t) = (u\-o")a_”(f) —

hm W, k=n+2n+3,....,n+m+ 1, and d;, ¢, are, respectively, constant external
and internal damping c()eﬂlclems, j=12,...,n+m+l+2,1=1,2,..., n+m+l+1.

However, functions (A (1)) and h;\.(_\ok(t)) denote nonlinear damping and stiffness
coeflicients, respectively, for the elastic coupling, gear stages and joints. Coeflicients
ay and /4. are radii of the driving and driven gear wheels, respectively, for the case
of gear stages. However, for the elastic coupling, friction clutch and for the Cardan
universal joints oy and /3 are equal to unity. Superscripts (1) and (2) are assigned to
respective quantities corresponding to the driving and driven elements in the system, and
nml2=n+m+1l+2,nmll=n+m+10+1.

The above system of equations can be solved numerically using various direct inte-
eration methods. The most advantageous for this purpose seem to be the Runge-Kutla,
Newmark, Hamming or the Taylor method |2, 3].

In order to avoid the mentioned numerical difficulties connected with integration of
Eqs. (2.1), for the considered drive system an alternative discrete-continuous (hybrid)
model is introduced. This model consists of the same number of rigid bodies like the
discrete one, but the shaft segments of constant torsional flexibilities are represented by
torsionally deformable cylindrical elastic elements with continuously distributed parame-
ters of lengths /; and identical stiffness values A;, ¢+ = 1,2...., n+m+[+1, Fig. 2.
Only torsional flexibilities of the elastic coupling, gear stage meshings and the Cardan
universal joints are represented by the massless springs of the same variable stiffnesses
/p_,', ] =n+2,n+3,..., n + m + 1. The external torques as well as the variable
components of the mass moments of inertia are described by identical functions as those
in the case of discrete model. Moreover, in the hybrid model also external and internal
damping is assumed in the form of analogous concentrated linear and nonlinear damp-
ing moments imposed on extreme cross-sections of the continuous elastic elements [4-8].
These moments due to external, inlernal and nonlinear damping are characterized by the
same coeflicients d;, ¢; and ey, j = 1.2,..., n+m+{+2/0=12,....n0+m+[+1,
b=n+2n+3....n+m+l, respecnvely, as in the case of discrete model. The
constant components of mass moments of inertia of the hybrid model rigid bodies are
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FiG. 2. Discrete-continuous model of the drive system.

determined using the proper parameter identification procedure [6] in order to keep the
total mass moment of inertia of the system unchanged and, for the assumed stiffness and
damping coeflicients k;, d;, ¢; with sufficiently small /;, to obtain possibly small diflerences
of the corresponding first natural frequencies and mode shape functions of linearized free
vibrations in comparison with those of the discrete model.

Equations of motion for angular displacements of the elastic element’s cross-sections
of the hybrid model are the classical wave equations

(2.2) a’0; po(2,8) — O u(z, ) =0, i=12,..., n+m+1l+1,

where @’ = (¢/p and z is a spatial coordinate parallel to the system rotation axis, Fig. 2.
These equations are solved with following boundary conditions

1191‘1’1 +([]9]’¢—F|[1(')1’_”— l\fllle)l“l- = 1[|([). for =0
[(@)Oi i + [di +0.50;  Li(0)]O; 1 + ciili-10i-1,5¢ — ¢iliOi zy
+ki—],i—]6)i—l,r4A7i]i(—)l..l‘ = M;(1), O,_, =6,, 2= 2,3, 005t + 1,

for = = bt s
j=1

IP0k 10 +dVOk o1+ choilim1O k1,00 + rer(AC D)k Op—1 .t — 1Ok 1]

(2.3) + ki1l 1O 10 + Rl (A0 kOk—1 — BrOk] = M (1),
[P0+ dP0k — ckliOk ot — Brex(AOM) arOk_1,t — FrOk (]

—klk O — Brhi(AOL(D)[rO k-1 — SrOk] = MP(1),

k—1

AOK(t) = 0, Op_y — 31Ok, for 2= ZIJ-, k=n+2n+3, ....n+m+1,
j=1

[j(‘)j,“ + ([j(")j.t + (‘J'_lljfl(,')jglyq.t - CJ'I.’]'(‘)J"T{ + k_,v'_,!j_l(-)j_l,i. — A‘,J-f_]'(‘)j’_,f = .*‘Uj(l') "
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j—1
(23) O;1=0;, j=n+m+2,n+m+3,....,nmll, for z= Zl,-,

[cont ] =1
1;1.7”[2(—-)1111111,H + (]nm!'l@n mll,t + ¢y m!l[nmll(—-)nmll..rt + knmlllnml](_)n.m!l.r

nmll

= Maupl®), -for == Z b7 s
=i

where the subscripts after commas denote partial differentiations (notice the analogy
between the appropriate terms in the dynamic boundary conditions (2.3) and in the motion
equations (2.1) for the discrete model). Solutions of Eqs. (2.2) are sought in the form of
d’Alembert wave solutions

O(x, )= filat —a + 1)) + gi(at + 2 — 1)),

i—1 i~1
24) Qi(z, )= filat—x + > I +gilat+x =D 1), i=23,...,n+1,
i=1 j=1
n—1 n—1 k-1
Or(a, ) = fr(al —a + Z ;) + gi(at + z — Z [, -2 Z 1:);
i=1 i=1 j=n
k=n+2n+3..., n+m+Il+1.

The functions f; and ¢; in Eqs. (2.4) represent torsional waves propagating in the elastic
elements as a result of the external torque applied. They are determined by the boundary
and initial conditions [4-8]. Thus, substituting Eqs. (2.4) into the boundary conditions
(2.3) leads to the following system of linear and nonlinear ordinary differential equations
with a “shifted” argument = for the functions f; and g;, i = 1,2,...,n+ m + 1+ 1,

raf71(z) + T fi(z) = My(2) + sag7™1(z = 200) + sugi(z = 21),
"'z,nmtl.(/a’q/mll(z) + rl.rl’mlﬂ.qfnnll(:) = Mpmi(z) + SZ,T“”[A]fT’L’Nl“(z ~ 2lamn)
+51,nm{2.f7’nnn(3 = 2lamn) ,
g ==fl=-2)+ flaG=-l) +gig,(z=-1), i=23,...,n,
(/,,(:) = —f;(: - 211') + .fj+1(3 . 2lj) at _(]_;-H(Z . 21_‘1')’
j=n+m+l,n+m+2,....,.n+m+1,
() [ (2) + 112(2) [3(2) = Ma(2) + 522(2)95 (2) + s12(2)95(2) + t22 f1' ()
+112f1(2),
(2.5)  ru(2) [ (2) + ri(2) fi(2) = Mi(2) + 52i(2)g; (2) + $1:(2)gi(2) + tai fi 1 (2 = i)
+tfi_(z = lic1),1 =3,4,...,n + 1,
[Ziz,kl 0 ] [ﬁ’k-'_l(3+21k—1)] i [ Prx—1(2) —ﬂ'kﬂkf'k(ﬁk(:))]
0 7k fr(2) —ayBrep(Ar(z)) k(%)
I:.[J"k—](z + 21;;4)] i { athk(Ak(2)) <¥k/3kflk(dk(3))] [Qk—l(f +7—1k—1)]
f{(:) —Ok/jkflk(;;\k(:)) /iihk(-—\k(:)) fk(z)
[Af,ﬁ”(z) + 1wz o1 S (2)
M}P(z) + 8 kg1 (2)
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(2.5) g -1(2) [ (2) + aufrer(Ai(2)gi () + i (Ar(NBrgi(2) — ar froi(2)]
com) F91k(2)95.(2) + arBrer (Ar(2) fimy (2) = Biha(ArCDIPryr(z) — ok fi-1(2)]
Ap(z) = ar[fi-1(2) + gi-1(z + 2U—1)] = Belfr(2) + g (2)],
k=n+2,n+3,..., n+m+ 1,
P2 () + T 1) = M) + s2300 (2) + s0,02) + (a3 S1a(2) + [ (2),
j=n+m+2n+m+3,..oon+m+l+1.
91(2) = = fl(2) + f1(2) + g3(2),
where
T2 =C|,1+([[l,l'” =[5(}l'tll+(1{ll)/{l-, S21 =(’lll—(l]1. S11 zls(ll'lll—(ll’h)/(t‘
2 nmi2 = ('nmfljn‘mll + ”]7nr112~ F'iami2 = /s('l"nmfllimlll + (”ln,miz)/” 3
S2ami2 = (.HHI“I?HH“ - ”lmn[b Styaml2 = ,sU‘-‘nmillnmll - ”([nm[l)/" 3
r2i(2) = ciliteilisi+ali(2),  1i(2) = Llkilithiolio +a(di+ 2:(2) Li(2))]/ e,
'921'(3) = ('e[i*cz—l[i—l'_ﬂlz(:)s "*li(-:) = {s[["i[i_kifl[ifl _”(({f+-(-)1(:)Ifi(:))””‘
i = 2cimlicy,  ti = 2kicglicds/a, 2:(2) = 0.5 f](2) + g:(2)],
¥ = 253 ey n+l,n+m+2,n+m+3,..., n+m+1+1,
Prie1 = chtlocy + eI, prr_1(2) = Llkeolioy + a(d + ader(Ar(2))]/a,

Up ko1 = Ch—1lp—1 — n](_”, g k—1(2) = L[kl — a(r[i” — ni.r';\.(_\;\.(.:)))]/n ,

rax = exly + al@) 1 k(2) = Lkl + a(d? + Blen(An())))/a,

sop = el — ol 81 1(2) = Llkrlk — a(d — Biex(Ar(2))]/a,
k=n+2n+3, ..., n+m+1

and [, is an arbitrary value. Using the Newmark method to solve Eqs. (2.5) together with
Eqs. (2.4), one obtains a system transient or steady-state dynamic response in the form of
tangential stresses, torques, angular velocities and displacements of arbitrary cross-sections
of the hybrid model elastic elements. The “shifted” argument in Eqs. (2.5), which is a
consequence of the wave interpretation of torsional vibrations, makes their right-hand
sides always known in each computation step. Thus, contrary to coupled equations (2.1)
for the discrete model, it is possible to solve equations (2.5) successively, one after another,
in the presented order. This feature very essentially simplifies the numerical procedure
making it much more eflicient, stable and accurate, which will be confirmed by numerical
examples.

3. Numerical results

The proposed wave method of torsional vibration analysis was compared with the
traditional ones based on the discrete model. Numerical calculations were performed for
systems consisting only of the crank mechanisms of 4 and 6 cylinder in-line engines, i.c.
for n = 4 or n = 6 and for m = [ = 0, in steady-state operating conditions. Figure 3a
presents plots of dynamic angular displacements of the crankshaft’s free end of the 4-
cylinder Diesel engine of the automobile type in resonant operating conditions. However,
Fig. 3b presents plots of tangential stresses in the 7-th journal of the crankshalt of the
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F1G. 3. Steady state response of the crank mechanisms of (a) 4-cylinder and
(b) 6-cylinder engine using the wave (—) and the Hamming (- - -) method.

6-cylinder medium-speed Diesel engine at nominal operating conditions. The obtained
results of steady-state vibrations for the crank mechanisms of the engines mentioned
above, where for the discrete model the Hamming method was applied, are characterized
by very similar plot shapes. For the investigated cases the greatest discrepancies of extreme
values did not exceed 6-8%. But the wave method requires about 2.5-3.0 times shorter
computation time with an excellent numerical stability, contrary to the Hamming method.
For the same cases the Runge-Kutta and the Taylor methods are characterized by better
stability than the Hamming method, but they require much longer computation time [4].

For the linear hybrid model, where the variable mass moments of inertia of the recipro-
cating parts of the engine were represented by their average values, the wave method was
also compared with the well known Fourier method [1] for 24 and 36 harmonics. Then,
discrepancies of results for steady-state vibrations are greater and reach 40%, particularly
for more “peaky” torsional responses. Figure 4 presents exemplary plots of tangential
stresses in the 5-th crankshaft journal of the 4-cylinder carburettor engine of the automo-
bile type. For resonant operating conditions at the rotational speed 4250 [rpm], where the
curves of system response are characterized by fluent “quasi-sinusoidal” shapes, the wave
and the Fourier method yield quite similar results, Fig. 4a. However, for non-resonant
operating conditions at the speed 2000 [rpm], where the system response is more “peaky”,
essential discrepancies of results take place, Fig. 4b. The peaks yielded by means of the
Fourier method are smoothed in comparison with those obtained by the wave method
and the hybrid model. Thus, one may expect that the wave approach is more accurate.
Moreover, it should be noticed that, for the compared models of the 4- and 6-cylinder en-
gine crank mechanisms, computation times for the wave method and the Fourier method
were comparable.

From the above comparisons it follows, that the wave method based on the hybrid
mechanical model is characterized by the greatest numerical efficiency, and very good
stability as well as a numerical accuracy of this method seems to be higher. Because
of these advantages, the proposed approach is most convenient for relatively long in
time nonlinear transient vibration analyses. As an example, a run-up simulation was
performed for the drive system of a machine driven by the 6-cylinder in line Diesel
engine by means of the elastic coupling and two rigid couplings, ie. for n = 6, m =
I and [ = 2. The characteristic of the elastic coupling was assumed to be linear or
progressive and degressive hyperbolic sinusoidal. But the damping coeflicient ey(A@g(1))
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FIG. 5. System transient response for various coupling characteristics.

was described by the constant or parabolic function [2]. This system was accelerated
from the average rotational speed 500 [rpm] to the nominal speed equal to 2800 [rpm].
Figure 5a presents plots of the system response for constant sy and eg in the form of
dynamic torque transmitted by the drive-shaft segment (8), and in the form of vibratory
angular velocity of the machine rotor. However, Figs. 5b and c present plots of the
mentioned quantities for variable kg and eg, where Fig. 5b corresponds to the progressive
coupling characteristic and Fig. Sc corresponds to the degressive one. Plots in Fig. 5a are
characterized by relatively fluent increase and decrease of local extremes occurring during
a passage through the resonance zone. For the progressive characteristic of the coupling
and the variable damping coefficient ey one obtains greater extreme values of the dynamic
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torque and smaller extreme values of the angular velocity than those for constant iy and
ey, Fig. 5b. Moreover, in this case the transient response of the system reaches maximum
at higher value of the shaft average rotational speed, and then decays rapidly. However,
for the degressive coupling characteristic and variable ey the system response increases
rapidly to reach a maximum at smaller value of the rotational speed than in the case of
constant fiy and eg, Fig. Sc. The extreme values of the torque are much smaller, but peaks
of the angular velocity are slightly greater only at the beginning of the run-up. From this
exemplary comparison it follows, that the elastic coupling with degressive characteristic
seems to be optimum for the drive system considered.
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FIG. 6. Transicnt response of the system with the friction clutch of the overload type.

In the case of coupling with progressive characteristic, in order to minimize the extreme
values of the drive shaft transient response, a dry friction clutch of the overload type was
applied [2], Fig. 2. The dry friction characteristic of the clutch was assumed according to
the Coulomb model [2]. This clutch was expected to transmit maximal torque, the value
of which did not exceed 1.5 of the maximal average torque produced by the engine. For
this case Fig. 6 presents plots of the dynamic torque in the drive shaft and of the vibratory
angular velocity of the machine rotor. A character of the obtained curves is completely
different than that of the curves in Fig. 5b. The overload friction clutch in the drive system
caused an essential decrease of extreme values of the dynamic torque transmitted by the
drive shaft.
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FiG. 7. Transient response due to run-up of the system with friction clutch of the disengaging type.

During run-up of the machine the smallest values of the dynamic torque in the drive
shaflt were obtained, when the machine was started from its rest, i.e. from null rotational
speed, by means of the disengaging friction clutch. Figure 7 presents plots of the dynamic
torque in the drive shaft and of the vibratory angular velocity of the machine rotor, where
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the initial average rotational speed of the engine shaft was 500 [rpm] and then the system
was accelerated to the common nominal speed 2800 [rpm], and where a duration of
the clutch fluent engaging was equal to 1.5 [s]. In this case fluctuations of the machine
rotor vibratory angular velocity were also characterized by the smallest local amplitudes
in comparison with the previous cases presented in Figs. 5 and 6.

4. Final remarks

In the presented paper nonlinear torsional vibrations of the drive system were in-
vestigated. For this purpose a discrete-continuous (hybrid) model and the torsional wave
propagation theory were applied. In the performed considerations, for the proposed wave
approach and for the methods applied so far, the analogies were emphasized between the
respective mechanical and mathematical models. Nevertheless, because of a continuous
distribution of mass in the elastic elements representing the shaft segments, one can state
that the discrete-continuous mechanical model better corresponds to reality than the dis-
crete one. Moreover, the wave interpretation of torsional vibrations leads to ordinary
differential equations with a “shifted” argument, which one can solve successively in an
appropriate order. This feature of the mathematical model of the proposed approach,
in comparison with the classical methods based on the discrete model described by the
coupled ordinary differential equations, causes an essential increase of the numerical effi-
ciency of the presented procedure, as well as yields a very good numerical stability, which
was confirmed by the numerical examples. Also the numerical accuracy of this method
seems to be higher than the accuracy of the methods based on the discrete model ap-
plied so far. Thus, the wave method can be particularly advantageous (from the practical
standpoint) for nonlinear transient vibration analyses for relatively long time spans.

For example, the presented procedure enabled us to investigate an influence of the
elastic coupling characteristic on the transient torsional response of the drive system
due to run-up. Moreover, an application of this method made it possible to select an
appropriate type of the friction clutch for the considered drive system in order to obtain
minimal extreme values of the transmitted dynamic torques and the smallest fluctuations
of angular velocity of the driven machine rotor.
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On the compatibility conditions in the fluid-fluid saturated
porous solid contact problems

M. CIESZKO and J. KUBIK (POZNAN)

COMPATIBILITY CONDITIONS for macroscopic mechanical fields at the material discontinuity surface
formed by the permeable boundary of a fluid-saturated porous solid being in contact with flowing
viscous bulk fluid are considered. The conditions are derived by means of the standard discontinuity
analysis applied to the general balance equations for mass, linear momentum and mechanical energy.
Within the saturated porous solid region the macroscopic description of immiscible porous solid-fluid
mixture is applied, while in the bulk fluid region the governing equation are those of Newtonian fluid
mechanics. It has been shown that at the surface of porous skeleton there exists a dissipation of
mechanical energy due to the fluid viscosity, for which the constitutive relation is proposed. It has
been proved that this dissipation dircctg influences the form of linear compatibility conditions for the
tangential components of the relative fluid velocities, and that the condition postulated by BEAVERS
and Josep [2] is a special case of the condition obtained in the paper.

1. Introduction

IN PROBLEMS of fluid flow through porous solids with permeable boundary it is necessary
to describe the flow conditions to be imposed at the interface between regions of a fluid
flow in a porous skeleton and the adjacent bulk fluid flow. There exists a number of works
which describe coupled fluid motions satisfying the Navier-Stokes equations in the bulk
fluid, some averaged or semi-empirical equations (typically Darcy’s law) within the porous
material and propose the matching conditions at the common boundaries (see ref. in [1]).

The classical conditions at the permeable boundary are, for a viscous fluid, the con-
tinuity of the fluid pressure and the normal velocity across the surface, and vanishing of
the tangential velocity at the surface of the bulk fluid.

Though the adherence condition is valid at an impermeable surface, it is not valid at the
permeable boundary where there exists a migration of fluid particles across such boundary.

Experiments done by Beavers and Joseph, |2], have shown that the zero tangential fluid
velocity is not adequate. Therefore, instead of the adherence condition, these authors
introduced a slip velocity condition in the following form:

(

s I Blup —q).

y=0

(1.1) 7
In Eq. (1.1) up is the slip velocity of the bulk fluid at the permeable boundary B3, and ¢
is the filter velocity of a fluid flowing through the permeable skeleton (Fig. 1). Parameter
3 is a material constant characterizing the skeleton pore structure within the boundary
region and does not depend on the fluid viscosity.

It should be pointed out, that both experimental and theoretical work was done (see
[3-7]) to establish the validity of such a condition without obtaining a concluding answer.

The main purpose of this work is to establish conditions (say Compatibility Conditions)
matching macroscopic mechanical fields at the contact surface between fluid-saturated
porous solid and the adjacent bulk fluid.
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Impermeable
matenal

Fic. 1. Velocity profile for the rectilinear flow in a horizontal
channel with impermeable (a) and permeable (b) lower wall.

Our approach is based on the description of two-component immiscible mixture, which
is the most adequate model to discuss transport processes across the permeable boundary
of fluid-solid composition being in contact with bulk fluid.

Such a model motivates the use of independent velocity fields for each component
and, therefore, allows to define the material discontinuity surface (contact surface).

In our analysis fields describing macroscopic mechanical phenomena in bodies occu-
pying two adjacent regions being in contact will be considered as compatible if they satisfy
the balance equations for mass, linear momentum and mechanical energy at the contact
surface of these regions. Consequently, general compatibility conditions are identified
with the balance equations at the contact surface.

In the paper we derive the local form of compatibility conditions using standard dis-
continuity analysis. The obtained conditions allowed us to prove that the macroscopic
relative fluid velocities (for both the bulk and free pore fluid) with respect to porous
skeleton are discontinuous at the permeable contact surface. This justified the existence
of dissipation of mechanical energy at such surface due to the fluid viscosity, for which
the constitutive relation is proposed. Special attention was paid to the analysis of linear
compatibility conditions. It has been shown that the form of linear conditions for the tan-
gential components of the relative fluid velocities is directly connected with the existence
of fluid energy dissipation at the surface of porous skeleton. It has been found, moreover,
that the condition postulated by Beavers and Joseph is the special case of the conditions
obtained in the paper.

2. Macroscopic balance equations for the basic mechanical quantities at the surface of
discontinuity. Compatibility conditions for mechanical fields

We consider a deformable system (see Fig. 2) composed of a fluid saturated porous
solid (Region I) being in contact with a bulk fluid (Region II) at the permeable boundary
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. The o-surface is a material singular surface. The viscous fluid filling pores and the
bulk fluid are physically the same.

flud boundany
q.v. T . layer

particles
of skeleton

porous skeleton Y non-matertal

filled with fluud -+ -surface
'S i
é.g.'f: g.v.T n V2

Fic. 2. Contact surtace between fluid-saturated porous skeleton and bulk fluid.

The problem is to establish compatibility conditions at the contact surface o for the
macroscopic mechanical fields describing deformation and flow phenomena in both re-
gions. We assume that the motion of bulk fluid and its local state is defined by the particle
velocity, v, density p and stress tensor T that satisfy the dynamic equations for viscous
fluid (see e.g. [8)).

The mechanical macro-behaviour of porous solid filled with fluid is described by con-
tinuum immiscible mixture theory [9], in which geometrical pore structure is characterized
by two macro-parameters. In the case of isotropic pore structure they are: the volume
porosity, f,, and the structural permeability parameter A (A < f,), [10].

The quantity f, represents the fluid volume fraction and A reflects the pore architec-
ture and is the measure of inhomogeneity of the fluid micro-velocity field in its relative
flow.

It should be pointed out that, within the two-parametric theory, the fluid-saturated
porous solid can be considered as composed of two physical components or two virtual
components, [11]. For physical components, which are simply porous skeleton (|*) and
fluid (]/), the local velocities v* and v/ and partial densities 5° and 3/ are understood as
the local volume average quantities.

In the case of virtual components resulting from kinematic division of fluid-porous
solid mixture, the first one is the skeleton and the fluid associated with it, of partial

B Ly A . : 1 ; .
density o = 2% + (1 — x)5/ and moving at the skeleton velocity v. The other is the free

2 b
fluid of partial density » = x5/ moving at its own velocity v, where

5 ) |
bav, Favelerov), m=a/h.
K
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1 2
Partial stress vectors t and t for virtual components are related with those for physical
components (t* and t/) as follows

=+ (1-rt, ¢
They satisfy the Cauchy theorem

k k
t=T-n, (k=1,2),

n
Vs

= H.lf .

k
where T (k = 1,2) are the stress tensors of the virtual components and are related with
stresses for physical components by

= kT/.

-t

1
T =T + (- &1,

2.1. General balance equation for a region containing the material discontinuity o-surface

Let ¢ be any scalar-, vector- or tensor-valued field function prescribed in the region
of space occupied by the material system shown in Fig. 2.

We consider general integral balance equation for quantity  in an arbitrarily chosen
region P’ bounded by a closed non-material surface d P and containing the o-surface, i.e.
interface between regions of a fluid flow in a porous skeleton and the adjacent bulk fluid
flow. This can be written in the following form:

d o "~ -
(2.1) i [ wdv = j Jd(n)ds + [ T dr + f U, ds,

o P ap P a0
where

oy =0 {51 1
In the above equation, the first term on the RHS stands for the total flux of ¢ into the
region I’ across d I, the second term represents the total production of ¢ within P, and
the third term is the total production of ¢ in the part of o-surface included in P.
In order to derive the local form of balance equation for quantity ¢ on the o-surface

we consider the region P to be divided by this surface into two disjoint parts P and /7,
where

(2.2) PLUP,=P.

These subregions are bounded by the closed surfaces d Py and d 1%, respectively, which
are

(2.3) OP, =0l UBP, OPy=0; UDP,,

where 9P, and 9P, are disjoint parts of # P divided by the o-surface so that

(2.4) dP,uaP, =P,

Quantities o;" and o, stand for the + side and the — side of the surface oy, respectively!").
In our consideration n is a unit vector normal to the surfaces bounding particular

regions and is externally oriented. For the o-surface external orientation is assumed to
be related with the region occupied by porous skeleton.

(O From the microscopic point of view o* and ¢~ form two different surfaces demarcating the boundary
contact layer of both media.
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Taking relations (2.2)—(2.4) and applying the theorem on the time derivative of time-
dependent volume integral, [12], Eq. (2.1) becomes

5 t J ‘
ap, 0P, a, a

(2.5) ] i;_;{l!/ + / @vi - nds + l PV -nds + [ ot v -nds — / kp_{’ ~nds

0

= l 8.nds+ I 9-nds+ l UV de + j D, ds,
ap ;)?’: P agy
. o S 0 e ‘ 1
where v; and v; are velocities of surfaces 0P and JF,, respectively, v represents the vel-
ocity of porous skeleton particles which form material discontinuity surface . Quantities
" and ¢~ denote the values of ¢ on the surfaces o and o, respectively.
In derivation of Eq. (2.5) the linearity condition for the flux ¥(n) with respect to the
normal vector n was used, i.e.
Jn)=9-n,

where the order of tensorial quantity ) depends on the character of the balanced quantity
28

Since Eq. (2.5) is valid for arbitrarily chosen region P, it should be also valid for
the particular case when the volume of P tends to zero preserving, however, the area of
ay-surface (Fig. 3).

FiG. 3. Scheme of transition from 3-1 to 2-D balance region.

In such a case, and under the additional assumptions that quantities dy/d1 and 0* are
continuous in P, and P, the volume integrals in Eq. (2.5) tend to zero and the formula
gets finally the form

(2.6) - ] eh'vi onds + j @ vs-nds + f ap*\lf -nds — f gp‘\l' -nds
- +
7

L
70

70 oy

- N

=—]B -nds + fB -nds + fﬂads.
7y Ty

T\
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Since the surfaces oy, oj and o, coincide and are arbitrary, from Eq. (2.6) it follows that

(2.7) OV = V) n—@T (W —V)en=(®" —98").n+7,

It is the general form of the local balance equation for quantity  on the interface be-
tween a fluid-saturated porous solid and an adjacent bulk fluid. This equation is, at
the same time, the general compatibility condition at the contact surface o for me-
chanical fields in both regions In applying the condition (2.7) the important thing is
the identification of ¢*, =, 8% and 9~ with the parllcular balanced quantities com-
patible with the motion deﬁmtlon of the surfaces 0P, and dP, which approach o

and o, respectively, (8" - n is the flux of o across ()Pl, and 9~ - n is the flux of

@ across O,). If we identify the points of surface P, — o with the particles of
porous skeleton, and the points of surface (‘)’f-’z — a, with particles of bulk fluid, we
have

g oo "

Vi = v, v, =V

and then Eq. (2.7) takes form

(2.8) o (v=¥)n=(®" -8 -n+1,

The above equation will be used in derivation of the balance equations for mass, linear
momentum and total mechanical energy at the discontinuity surface o.

2.2. Balance of mass

On the assumption that at the o-surface there is no source of mass (W, = 0), it is
evident that the condition (2.8) for the skeleton and the associated fluid (the first virtual
component) is satisfied identically.

In the case of fluid phase we find that on the positive side of o there is a free fluid (the
second virtual component), and on the negative side of o there is a bulk fluid. Therefore
we have:

~— ~+

(2.9) g~ =p, & .n=0, -nE—é(%—h-n,

&

where the “—” sign in the term (2.9); resulis from the fact that the direction of fluid flux
is opposite to the normal vector n. Using Egs. (2.9) the balance equation (2.8) for the
mass of fluid takes the form

22
(2.10) ou-n= pu-n,
where
1 2 7 i
u=v-—v, u=yv—yv

are velocities of bulk and free fluid flow relative to o-surface, respectively.

Equation (2.10) is the first compatibility condition on the interface between regions
of fluid-saturated porous skeleton and the adjacent bulk fluid. This condition proves that
the normal component of the relative fluid mass flux across permeable boundary of the
porous skeleton is continuous.
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2.3. Balance of linear momentum

It is evident that the force interaction at o-surface exists between the bulk fluid and the
both virtual components of fluid-saturated porous solid; therefore the balance of linear
momentum has to be formulated jointly for these three components of the system under
consideration.

In such a case, quantities of general balance equation (2.8) can be specified as follows:

(2.11)

8 nz=(t+t)— bv(v—v)-n,

where t, i and t are stress vectors for the bulk fluid, the first and the second virtual
components of the saturated porous medium, respectively. In the expression (2.11)3 the
“+7 sign at stress vectors and “—7 sign at the momentum flux due to the mass transport
results from the convention for increase (decrease) of the momentum in the balance
region.

In the analysis we assume that there is no external surface force on the o-surface, thus
the surface momentum production is equal to zero, i.e.

(2.12) ,=9,=0.
Taking Egs. (2.11) and (2.12) into account and using Eq. (2.10), the Eq. (2.8) for the
momentum balance at o-surface takes the form
. 1 2
(2.13) ou-n(u—u)=t—(t+t),

which is the second compatibility condition for the macroscopic mechanical fields.

2.4. Balance of mechanical energy

First, we recall that on the discontinuity o-surface three components of the system
interact with each other. Thus, similarly as in the case of balance of linear momentum, the
balance of total mechanical energy has to be formulated jointly for all three components.

In this case the specification of 9, and 8" in Eq. (2.8), gives

1 .
w = (;v-v+rbf)‘ 9 -n=t-v,
(2.14) 1 - |
-~ 22 2 2. .3 2
9 -nEt-\lf+t-v—g(iv-v+c?-f’r)(v—\lf)-n7

where ¢ and eP stands for the internal energy of the bulk fluid and pore fluid, respect-
ively ),

The absence of the external surface force on the o-surface assumed in the previous
section eliminates the possibility of existence of the mechanical energy source at this
surface. However, as it will be shown later, at the o-surface a sink of the mechanical
energy may exist due to dissipation caused by fluid viscosity.

Therefore we may write

(2.15) 9, = =9, .

(2) For the barotropic fluid these quantities are uniquely determined by effective pressure of the fluid.
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Making use of the expressions (2.14) and (2.15) and taking Eqs. (2.10) and (2.13) into
account, the general equation (2.8) for the balance of mechanical energy on the o-surface
gets the form

”
L

] o) 2.9 2
(2.16) ou-n E(u“—(u)*)+rhf—rzpf =t-u—t-u—1,.

Equation (2.16) is the third compatibility condition for mechanical fields on the interface
between regions of a fluid flow in a porous skeleton and the adjacent bulk fluid flow. It
can be effectively used after the specification of v,-function.

3. Dissipation of the mechanical energy at the o-surface

We will show here that at the discontinuity surface o all the three macroscopic velocity
fields of the constituents of the considered system are in pairs discontinuous. These
discontinuities, together with the assumption that the pore and bulk fluid are viscous,
motivate the existence of a sink of mechanical energy on the o-surface.

3.1. Discontinuities of the velocity fields

The normal components of macroscopic velocities of particular constituents of the
system under consideration are confined by the mass continuity equation for the fluid
phase. Equation (2.10), after the use of the inequality

Q-zﬂ#é’:’\l)+ <AL fi 1)

shows that the normal component of the relative velocity of fluid flow through the surface
of porous skeleton is not continuous, i.e.

()#u-n#lzl-n#(l

or equivalently

(3.1) ven#von#
The inequality (3.1) proves that in general case the normal velocity components describing
a motion of particular constituents of the system differ from each other on the discontinuity
surface 0. Similar conclusion for tangential components of these velocities can be derived
basing on the linear momentum balance (2.13), and the balance of total mechanical energy
(2.16) when the experimental results, that of BEAVERS and JOSEPIH [2], are used.
Rewriting the Eqgs. (2.13) and (2.16) in the form corresponding to the fluid flow along

)

«n.

the a-surface (u-n = ion= 0) and disregarding in this step the function /,, from Eq.
(2.13) we have

1 2
(3.2) tr=tr+ by,

and from Eq. (2.16) we obtain

(3.3) lr'urzir’ﬁra

where the subscript 7 indicates vector components tangential to the o-surface.
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In the case when a fluid in the system is non-viscous, the conditions (3.2) and (3.3) do

not impose any restriction on the tangential velocities u; and u -, since the lack of the
tangential force interactions, i.e.

2 1
t,=t,=t, =0,
ensures these conditions to be satisfied identically, irrespective of the values of velocities

u, and lzlr.

For the viscous fluid, however, all the tangential stresses are not zero, and the condi-
tions (3.2) and (3.3) constrain both the values of tangential stresses as well as the tangential
velocities u, and ﬁ,

Taking into account the Beavers and Joseph experimental results for viscous fluid flow
along permeable boundary [2] which proves that the tangential component of the bulk
fluid velocity is nonzero, i.e.

(3.4) u, # 0,

from Eqs. (3.2) and (3.3) we conclude that

(3.5) W, #0.
and also

(3.6) u, # u,.
The inequalities (3.4)—(3.6) rewritten in the form
(3.7) ViE VLAV,

show that the tangential components of velocities of particular constituents of the system
differ from each other on the o-discontinuity surface.
The above considerations allow us to state that at the o-surface the velocity fields of

virtual components of the fluid-saturated porous solid (\lr. \2') and the bulk fluid (v) are
discontinuous in pairs. It concerns both the normal and tangential components of the
velocity vectors.

The existence of relative motion of the constituents on the o-discontinuity surface
results in the viscous friction between the constituents responsible for the dissipation of
mechanical energy.

It should be pointed out here that the dissipation process takes place on the o-surface
unlike the well known volume dissipation appearing in viscous bulk fluid. Thus the func-
tion 9, requires a separate constitutive postulate.

3.2. The constitutive postulate for the dissipation function

In the previous section we have stated that the dissipation of mechanical energy on
the o-surface results from the discontinuity of velocity fields of particular constituents of
the system. Therefore, on the assumption that the pore structure of permeable matrix
is isotropic, it is reasonable to assume that the constitutive function for the sink of the

. . . 12 .
mechanical energy . will depend on velocities v, v, v and, additionally, on the o-surface
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orientation defined by the normal vector n. We write

l ')
(3.8) J. = Jo(v, v, V,n).
A common requirement for constitutive function is to satisfy the objectivity condition.

e . - L 1 2
Moreover, it is evident that o., for arbitrarily chosen nonzero values of v, v and v,
should be a positive defined function, i.e.

(3.9) J.(v.v,v.n) >0
and in the case of no fluid flow (v = v = v = 0) it should satisfy the following condition
(3.10) 7.(0,0,0,n) = 0.
The inequality (3.9) results from the entropy production principle [13], due to the dissi-
pation of mechanical energy on the o-surface.

The objectivity condition, [12], when applied to Eq. (3.8) shows that v/, depends only
on the relative velocities and vector n. We may write
(3.11) = 7 . (u, i, .n),
where

1 2 2 1
U=vV—-vV, uU=V-—-yv.

Moreover, the function 5: is the isotropic scalar-valued vector function, i.e. for any or-

thogonal tensor Q(Q? = Q~!) and all vectors u, u and n, the condition

—! 2 —=/ 2
(3.12) J,(Qu,Qu,Qn) =V, (u, u,n)
is satisfied.
According to the Cauchy representation theorem for the isotropic scalar-valued func-

. =/ 2 - : . o
tions, [12], we find that ¥/, (u, u, n) can be regarded as a function of five scalar products

1 u-u, u-lzl, 121121 u-n, o-n.
Then the relation (3.11) takes form
(3.13) T(u, bn)=7 (u-uu- b, 8- 0,u-n 0.0 =7, (),

and for any 7; the condition (3.12) is satisfied identically. Now, taking the compatibility
condition (2.10) into account, the number of arguments in Eq. (3.13) can be reduced by
one, and we obtain

(3.14) J, =D (u-uu-u,u-0,u-n).

e 2 ; . A
After decomposition of u and u into their normal and tangential components, that is

&

(3.15) u, = (u-n)n, u; =u-—uy,, lzl-,-=ll—(lzl-ll)n,

we get the following representation

(3.16) 0, = D (ul,uy -y, 0y - to,uen)

http://rcin.org.pl



ON THE COMPATIBILITY CONDITIONS. . . 87

where, according to (3.9) and (3.10), the function DE has to satisfy conditions:

(3.17) Joulup e G, s uuen) >0,
(3.18) 7,(0,0,0,0)= 0.

The relation (3.16) is a general form of the constitutive equation for the dissipation of the
mechanical energy at the interface between regions of a fluid flow in a porous skeleton
and the adjacent bulk fluid flow. The only constraints for the function 5(. are conditions
(3.17) and (3.18).

The form of constitutive function (3.16) is fully equivalent to Eq. (3.14), but the
interpretation of Eq. (3.16) is easier due to the fact that the decomposition of fluid flow
into the normal and tangential parts with respect to the o-surface is compatible with
internal symmetry of the system.

Since in general case the function U, may not be an even function of the argument
u - n, then from Eq. (3.16) it follows that the dissipation of mechanical energy during fluid
flow out or into the porous skeleton may reach different values. However, if velocities u,
u, and u - n are small, conditions (3.17) and (3.18) ensure that ¢, is an even function of
the argument u - n.

It results from the fact that when the function ¥, satisfies (3.17) and (3.18) and its
derivatives are continuous at u = u = 0, it has also a minimum there.

In such a case the dissipation function can be proposed in the quadratic form

(]

bl "l,, 5
(3.19) U, =aju, = 2aou; - Uy +azul 4+ c(u-n)”,

2, a3 and ¢ are constant coefficients. Considering particular cases of fluid
flow (tangential and normal to the o-surface) it can be shown that the constitutive relation

where o, a;

(3.19) will have a minimum at u = u = 0 when constant coefficients satisfy the following
inequalities:

(3.20) ap >0, a3 >0, ng < oasz, €>0.

4. Linear compatibility conditions

The general equations (2.10), (2.13) and (2.15) together with the dissipation function
(3.16) form the set of compatibility conditions for mechanical fields on the discontinuity
o-surface.

We take these equations to establish the linear form of compatibility conditions which
play an important role in a large number of linear problems of porous media.

The linear compatibility conditions for stress vectors of particular constituents of the
system can be derived directly from the balance equation of linear momentum (2.13)
disregarding the nonlinear terms of its LHS. These conditions written for the normal and
tangential stress components are

1 2
(4'1) Iy =1y + ty,

1 2
(4.2) tr =t +t,,
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where

(Jn=(-)-m, (-)r=(=)—)n-n.
From Egs. (4.1) and (4.2) it follows that in linear interactions between the bulk fluid and
the saturated porous solid the force exerted by the bulk fluid on permeable boundary is
equilibrated by forces occurring in both constituents of saturated porous solid.
The immediate linearization of the balance equation (2.15) for total mechanical energy
on the o-surface, in contradistinction to the balance of linear momentum (2.13), is not

possible. We can arrive, however, at linear relations under some assumptions. After the
use of Eqgs. (2.10) and (3.19) and disregarding the LHS of Eq. (2.15), we obtain

t, |, 2
(4.3) [0(; 5 Tl> - f'un]un =t;-
0

In the above equation the components of stress vectors of bulk and free fluid are related
with the corresponding relative velocities.

Since, in the linear case, the normal and tangential components of any vector field are
mutually independent, Eq. (4.3) will be satisfied if its both sides are identically equal to
zero. According to the relations

"
“
-

5 2 2
r—tcur —oqul +200u - U, —azu

=

bl
A

(4.4) o=0", b=X* tyo=-p, l,=-Mp*

from Eq. (4.3) we get
B e
(4.5) 0" <P— - L) = EUy ,

ot 07

2 5 2 29
srU, —trur —oquy + 200u - u —azul =0,

-

(4.6)

where superscripts + and — denote values of quantities on the positive and negative side
of o-surface, respectively.

2
Now, assuming the tangential forces t, and t, to be linearly dependent on the relative

velocities u, and u ., we can separate Eq. (4.6) into two independent equations

2
4.7) t, = o, —abu,,
(4.8) -t, = azu, — aju,,
in which
(4.9) ab +a) =20;.

In order to obtain the linear form of Eq. (4.5) we assume that the fluid is barotropic,
L.e.

(4.10) P = p(o)

and fluid densities o* and p~ differ from its equilibrium density g, in such a way that the
following relation is satisfied

(4.11) pt—p =afet - 07),
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(r]p){‘
ay = | —
('19 2=0

is the velocity of disturbances propagating in an undisturbed region of the bulk fluid.
Under the above assumptions, from Eq. (4.5) we obtain the linear compatibility con-
dition

(4.12) pt —p~ =

where

~

1 — (po/o0)orf S
It relates the fluid pressure on both sides of the o-surface and the normal component of
relative fluid velocity.

In the case when the RHS of Eq. (4.12) can be omitted, the condition (4.12) reduces
to the classical one reflecting the fluid pressure continuity

(4.13) Pt =pT =p.

Assumptions (4.10) and (4.11) and condition (4.12) allow the linearization of the fluid mass
balance equation (2.10) at the o-surface. As a consequence, we obtain the compatibility
condition for normal components of fluid flow across the o-surface

(4.14) Wy = Al

in which the proportionality coeflicient is the pore structure parameter A.

Equations (4.7) and (4.8) are the next two linear compatibility conditions. They define
the dependence of tangential components of the vector stresses for bulk and free fluid on
the corresponding tangential velocities.

Their functional form is directly related to the dissipation of the mechanical energy of
fluid due to viscosity at the surface in the boundary layer of porous solid.

Conditions (4.7) and (4.8), when fluid viscosity y« and permeability of porous skeleton
k are explicitly introduced, can be written as follows:

1] ;2

4.15 b =gt iy <5 k)i
( ) \/A_( 1 24 )
(4]6) _ir - 'fl_(’\1ﬁr = ’zlur)ﬂ

vk
where coefficients Ay, A4, AY, (A + AY = 2);) and A3 are nondimensional constant
quantities.

Taking into account the fact that tangential stresses in bulk and free fluid are related
with their corresponding velocity gradients via the constitutive equations, the compatibility
conditions (4.15) and (4.16) can be transformed to the form of conditions for the velocities
only.

Considering a one-dimensional rectilinear fluid flow along a plane surface of porous
solid, we have

du,
(4.17) t, = —[l—am—‘t,
i =;1.*allztr-r
T a"l_ b

(4.18) ()r=0)r,
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where 7 is the unit vector tangential to the o-surface indicating the direction of fluid flow.
The coordinate x is directed along the vector n normal to the o-surface. In Eq. (4.17)
the “—” sign results from the fact that vector n is oriented internally to the region of bulk
fluid.

The coeflicient 1~ stands for the effective viscosity of a fluid filling the porous skeleton
corresponding to the coeflicient introduced by BRINKMAN [14]. In such a case, from Eqs.
(4.15) and (4.16) we obtain

du ] >
4.19 L RN S S L
( ) f),‘l‘ T \/I( lul ‘_uT)
" 9 i . 1 2
(4.20) B (Dgiie — M),

jodx vk
Taking the above results into account, and the linear relationship between volume

discharge and velocity u ; of fluid flow through porous skeleton, we find that the Beavers—
Joseph postulate (1.1) is a particular case of the condition (4.19).

5. Final remarks

The problem of compatibility conditions for macroscopic mechanical fields at the con-
tact surface between the fluid-saturated porous solid and the bulk fluid have been consid-
ered on the grounds of standard discontinuity analysis.

General form of these conditions is obtained as the balance equations for mass, linear
momentum and mechanical energy formulated at the discontinuity surface.

The analysis of the compatibility conditions derived proves the existence of discon-
tinuity of the macroscopic relative fluid velocities (free and bulk fluid) and justifies the
existence of the mechanical energy dissipation at the contact surface due to the fluid
viscosity. The proposed quadratic form of the dissipation function introduces to the
considered description of the contact problem certain new parameters characterising the
permeable boundary layer of porous skeleton. Their relations with the skeleton pore
structure characteristics require further theoretical and experimental investigations.

It has been shown that the slip condition postulated by Beavers and Joseph for the
relative bulk fluid velocity is the special case of the linearized conditions obtained in this

paper.
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Underlying algebraic and gauge structures
of the theory of disclinations

C. MALYSHEV (ST-PETERSBURG)

THE MAIN PURPOSE Of the paper is to derive the group of gauge transformations of the theory of
disclinations with the help of the Schaefer’s motor calculus. The Lie algebraic aspect of the problem
under consideration is specially emphasized. The first part of the paper deals with the representation
of the algebra is0(3) = t(3) 9 so(3, R) (motor algebra) by the Schaefer’s differential operators, the
clements of 2s0(3)-valued exterior calculus are suggested. The second part of the paper contains the
derivation of the group of gauge transformations of the defect theory. It is shown that the theory of
disclinations is a particular case of the gauge model with noncompact Abelian gauge group.

1. Introduction

IT IS REMARKABLE that the gauge field formalism turns out to be useful not only in
the physics of fundamental interactions, as it was intended, but also in the descrip-
tion of defects in solids [1-3]. The meaning of this assertion becomes especially trans-
parent if one takes into account the energy scales characterizing these two fields of
physics.

The main purpose of this paper is to deduce over again the group of gauge transforma-
tions of the theory of disclinations which was successively developed by R. DEWIT in the
series of papers [4, 5]. This group of gauge transformations was derived for the first time
in the Refs. [6, 7] under the influence of the idea concerning close analogy between the
pure dislocation theory and the Maxwell’s electrodynamics, both being considered as the
Abelian gauge models. We shall denote this group of transformations as the GLE-group
(abbreviating the names of the authors [6, 7]).

The theory of disclinations (another equivalent name is the defect theory) is based
on the incompatible theory of elasticity, and it describes both the rotational and trans-
lational defects in solids, i.e. disclinations and dislocations. The algebraic structure of
the theory of disclinations non-typical for the Abelian gauge approach is connected with
the existence of two different types of the defect densities, and it is provided by the form
of the corresponding continuity equations. These equations are connected naturally (as
it will be shown below) with the Lie algebra iso(3) = {(3) D so(3,R), where so(3,R)
and £(3) are the Lie algebras of the special ortogonal rotation Lie group SO(3,R) and
translation Lie group 7'(3), respectively, and P denotes semi-direct sum of algebras [8].
But it is known that the algebraic structure of any gauge model is stipulated by the gauge
group choice and it is an important ingredient of the machinery of gauging in general. As
to the analogy discussed in Refs. [6, 7] and to the original strategy of derivation of the
GLE-group, namely the choice of the gauge group and, consequently, the pure algebraic
aspect of the problem were missing there, and so the following question was left open:
why the theory of disclinations admits two different types of defects, i.e. disclinations and
dislocations? Some attempts to clarify this question will be made in the present work with
the help of the motor calculus proposed by H. SCHAEFER [9, 10].
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The monographs [1, 2] contain the recent attempts to develop the gauge model, both
of dislocations and disclinations, in the way proposed by C.N. YANG and R. MILLS [11].
The gauging of the group 150(3) = T'(3) ® SO(3,R) (® denotes semi-direct product
of groups [8]) [1, 2] again shows us the important role of the corresponding Lie algebra
1s0(3). So just the same algebras lie behind the basic geometric constructions in the defect
theory [4, 5], on the one hand, and in the model [1, 2], on the other. This coincidence
helps us to get an alternative way of deriving the GLE-group and explains the relations
between the approaches of the Refs. [4, 5] and [1, 2]. It is possible that the wievpoint
developed here can stimulate a more profound explanation of the problem concerning
the embedding of such a reliable model as the theory of disclinations in some extended
non-Abelian gauge models.

As to the general notions concerning the physics and mathematics of gauge fields, for
the needs of this work it is sufficient to restrict ourselves only to Refs. [12-14]. A brief,
but quite instructive insight into the pure mathematical aspects of gauge field formalism
is given in [15].

This paper is written in four sections. Section 2 is devoted to some mathematical pre-
liminaries concerning the representation of the algebra iso(3) by Schaefer’s diflerential
operators. We shall develop the so-called iso(3)-valued exterior calculus which gives the
most adequate tool to investigate the gauge properties of the theory of disclinations. Sec-
tion 3 deals with the derivation of the GLE-group’s transformation law. Special emphasis
will be laid on the close similarity (from the geometrical viewpoint) between the defect
theory and the Abelian gauge model without monopoles. The discussion in Sec. 4 con-
cludes the paper. Some auxiliary information about the difference between the Abelian
gauge models with compact and non-compact gauge group can be found in the Appendix.

Let us note that the consideration in this paper is restricted only by three spatial
dimensions (it implies a static defects distribution). In the non-relativistic limit time and
space coordinates play quite different roles, both physically and geometrically, and so the
case of moving defects requires a separate consideration.

The following notations will be adopted here. The Latin indices denote 1, 2, 3; re-
peated indices imply summation. The symbol := denotes equality by definition, o —
the composition of two formal operators, € and > are the belonging signs, €%t s the
Levi-Civita tensor (¢! = 1).

2. The representation of the algebra is0(3) by Schaefer’s differential operators. Schae-
fer’s exterior calculus

The group of rigid motions of three-dimentional Euclidean space F is the Lie group
[50(3) = T(3)50(3,R), and the corresponding Lie algebra is 1so(3) = {(3)Dso(3, R).
Let us denote by {7,} and {e,} the bases of the three-dimensional algebras so(3,R)
(it consists of skew-symmetric real matrices of the third order) and 1(3), respectively.

Arbitrary elements of these algebras look as follows:
A = Ag7q € s0(3,R),
(2.1) Zhehil s
n = 1aea €103),

where A\, and 7, are real numbers, v, are the matrices with elements (Yadbe = ebee and
¢, are the columns with a unit in the a-th line (otherwise zero). The algebraic composition
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laws for so(3,R) and {(3) are given by the following commutation relations
s
(2.2) [Ya, 7] = Caprs  [eases] =0,

where ('K, are the structural constants, and [-,-] is the Lie bracket. For the case of

s0(3,R) we have C¥, = ",

ab
The algebra iso(3) is the six-dimensional algebra defined by the following Lie brackets:

[M,, My] = € M.,
(2.3) [P, , My] = P, ,
[[I)u s])b ]] . 0-,

where [, generates translation along the a-th axis, and M, generates rotation around
the a-th axis; [-. -] is here the Lie bracket for 1s0(3). The formulas (2.3);, (2.3); coincide
with the expressions (2.2) and, namely, the bracket (2.3), defines the semi-direct sum of
1(3) and so(3.R), giving 150(3).

It is convenient to represent the elements of 750(3) by square matrices of the fourth
order with the block structure as follows:

(2.4) is0(3) 3 X := [6\ 3] ,

where A and 7 are given by Eqgs. (2.1). The usefulness of the matrix representation (2.4)
is due 1o the possibility of expressing an arbitrary infinitesimal rigid motion of £ 3 x

X—X+AXXx+7

via the matrix multiplication as follows

] =oen )= e

where 1, is the unit matrix, and the equality
(2.5) [AX]r = Au(Fa)bee = (A X X)y

is used. Furthermore, taking

, 7. O ) , 10 e
‘””—[0 0 and P, = 0 0

it is easy to get all the Lie brackets (2.3) by direct computation of the matrix commutators
ﬂ/\]./\zﬂ . /\|)\2 = )\2/\] .

The Lie bracket for /s0(3) can be expressed via the Lie bracket for so(3,R) with the
help of the matrix representation (2.4). One gets

CH A ./\ﬂ A, — /\2
(.7.()) II’\I')\ZH - [[ l0 s] 12 0 1'|I:| )

Using Eq. (2.5) it is possible to rewrite the bracket [\, A;] in the following way: [Ay, A;] =
(A} X A2).7va, what permits, in turn, to convert Eq. (2.6) into another form:

(2.7) N [("1 AEHFIR A1 Tl UES ’“] .
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Now it is easy to see that the R.H.S. of Eq. (2.7) is nothing else but the rule of motor
multiplication of two formal 6-vectors (motors) as follows:

- A AL X As }
2.8 /\ /\7: = il 3
(2i8) 1942 [m]o[nz} [Alxﬂz—hzxﬂl

The notion of a motor and the rule of motor multiplication of two motors (2.8) were
introduced in theoretical mechanics by R. MISES [16]. Following the terminology of the

Ref. [16], A is the vector part and 7 is the moment part of the motor A= [:‘]]

The change of the so-called reduction point [16] due to a constant shift x — x +y
results in the following replacement rule for the motor A:

e =l

Thus, from Eqs. (2.6)-(2.8) the main observation of the present section follows: the R.
Mises motors are simply elements of ¢s0(3) endowed with the replacement rule (2.9) and
the motor multiplication Eq. (2.8) is nothing else but the corresponding Lie bracket Eq.
(2.6) for two elements of 1s0(3).

Now it is appropriate to consider briefly two representations of the algebra 1s0(3)
which are isomorphic to the natural matrix representation:

Ya 0 0 e
V = /2 ) = 2
M, [ 0 OJ B [O U] '

Let us introduce the space of differentiable scalar functions Ds 3 f(x), x € £* and
let us consider two differential operators acting on elements of Dg : 0, := d/dx, and
(x X d), := *"*2,d.. These operators generate infinitesimal changes of the functions
f € Dg under the replacement of variable x:

x — x+de < x+ dx,
[—= [+ (dx-0)f+dp-(xxd)f.

It is easy to check that the operators P, = d, and M, = (x x ), satisfy the following
algebra:

(2.10)

[M,, My] = €2 M.,
(2.11) [P, , M] = P,
[P, P 1=0,
and give us the well-known representation of iso(3). The bases {7,. €, } and {(xxd),, 0y}

are dual ones because they generate the changes in the two dual spaces: £7 and D.
In order to get another representation of iso(3), let us define the space 1))y of motor-

valued functions
% A(x)
Alx) = ;
x) [n(X)]
where A(x) and n(x) are differentiable vector-valued functions. It is possible to call A(x)
and mn(x), respectively, rotation and displacement fields acting on the vector x as follows:

(2.12) X — X+ 0(x), O6(x):=AKx)xx+n(x).
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Let us compare the terms 6(x) (2.12) for the two neighbouring points x and x + dx. One
gets

(2.13) S(x + dx) = 6(x) + de I A X x+J,m + A X ey].

Starting from Eq. (2.13) one can introduce a new differential operator 9>" — the so-called
Schaefer’s derivative — acting on elements of Dj;:

2 g5hy = . ({)'!A

(2.14) a7 " A(x) : [(,)”n +AXE |

The operator 7" Eq. (2.14) generates infinitesimal variations of iso(3)-valued functions
A(x) as follows:

(2.15) Ax + dx) = Mx) + (dx - 3°M)A(x).
It is important that Eq. (2.15) is the operator equation: action of the L.H.S. of Eq. (2.15)

" +] rlx}‘ and of the R.H.S. of Eq. (2.15) — on the vector [T] yields the

ordinary equality, leading to Eq. (2.13). The operator 35" Eq. (2.14) was introduced by
H. SCHAEFER (9, 10] in order to construct the description of a Cosserat continuum.

Following the clear analogy with the case of scalar functions, let us define the operator
(x X d)7" generating rotations of elements of I ;:

e < ah
(2.16) (x X 9)7"A(x) := (x X a){,(: 1 g)x (ea X X)

on the vector [

Substituting M, = (x x 3)3" and P, = 9" into Eq. (2.11) one concludes that the
Schaefer’s operators (2.14), (2.16) form together a representation of ¢so(3).

With the help of the matrix representation (2.4) one can rewrite the formulas (2.14),
(2.16) as follows:

5N = DX + [N eal s
(x X )N = (x X d)u A + [, €4 X x],

where the vectors e, and e, x x are alse written in the matrix representation:

0 e, 0 e, xx
0 ¥ |2 0 0
The algebra 7s0(3) can be viewed as an additive Abelian group (vector space) and this
is why it is possible to construct the formalism of “motor-valued” (iso(3)-valued) exterior

calculus. As to the standard notions of exterior calculus see, for example, [15, 17]; the
short remark is given also in [18].

(n)
Let us introduce the linear infinite-dimensional spaces {2 (£?) consisting of iso(3)-

valued differential n-forms (cg) (x) defined on E3:

- (n)
U e (B,

where n = 0,1,2,3. The forms of higher orders are trivially zero on F3. One has the
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. ¢ iRy " n)
following explicit expressions for (w (x):

® e Yy = AT My o Aa M|y,
w (x) = /\(X) = [0 Uj[ y W (}\) = /\,,(x)(l.l a — [ 0 0 } da as

(2) £4 ’\ub Mab

w (x) := (1/2DAp(x)dx g A dzy = (1/2) 0 0 dar, A dxy,

3) <

w (x) := (1/3D)Ape(X)dz g A dzp A dz,

A be Mabe
= ' aoe anc ' n .
(1/3Y) [ 0 0 de, Ndxy A deg,

where A i, m,, ;, are skew-symmetric with respect to iy,...,1,, and A denotes an

exterior product. Now let us introduce the Schaefer’s exterior derivative operator " :=
S . (n)
dx, A 33" acting on w (x) as follows:

(2.17) Y = dQ + D, an,

where d is the standard exterior derivative and dx is the one-form in matrix representation

(2.4). Calculating the second term in Eq. (2.17) one has to multiply the forms (Q‘) (x) and
dx externally.

; - s " . (n)

It is clear from the definition (2.17) that d°" increases the order of n-form w

(n) 45h (n+1) ) )
Q2 (E3) 5= 2 (F%). One can establish also that d°" is the nilpotent operator: d>" o

. (n) . X .. (n) ., (n—1)
d>" = 0. We shall say that n-form w is the exact differential form if w = d°" w |

and & is the closed differential form if d5" &0 = 0. Due to nilpotency property of "

one can find the following sequence of homeomorphisms is exact [17]:

(0) Sh

aogsh ) s @ e ()
RULEY— L7y — R2(E)— L2(F).
In the next section we shall consider the gauge properties of the theory of disclinations.
The most natural way to do it is to take into consideration the elements of the i1s0(3)-
valued exterior calculus introduced above.

3. The “toy principle” of gauge invariance and the gauge structure of the theory of
disclinations

Now one can proceeds to the direct consideration of the gauge properties of the theory
of disclinations. To begin with, one has to postulate the principle of local gauge invariance
of some Lagrangian (following, as usually, the standard YANG-MILLS approach [11]). In
this work the general principle of gauge invariance will be replaced by the requirement
of the local gauge covariance of the appropriate derivative operator. A condition of such
kind might be called the “toy principle”. Here it is natural to confine ourselves only to
the “toy principle” because it is sufficient to deduce the group of gauge transformations
of the model in question. On the other hand, application of concrete Lagrangians and
analysis of the dynamics generated by them are outside the scope of this paper. As to the
derivative operator, we shall consider here the Schaefer’s exterior derivative (2.17).
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Let us consider an arbitrary 1so(3)-valued field
SRR B 2169 1 I VI C 92 BT
o) = [VQ(X)] a [ u(x) |
The algebra iso(3), as an Abelian additive group, acts on v#(x) by the shifts
(3.1) B(x) — B(x) + 6Ty,

where it is proposed to adopt the following rule of calculating the term &%

wy + (]/2)(6 X U[;)
u )

(3.2) 6%y 1= [

For constant vectors wyy and vy the formula (3.2) gives the usual additive transformation
of the field #(x). It is not the case for the x-dependent functions w(x), uy(x). The rule
(3.2) implies that one takes into account both the direct rotational contribution wy and
the rotational contribution (1/2)(d x uy) from the displacement field uy to the vectorial
part of the field ©(x). Now one gets the following variation of the exterior derivative
d*"7(x) Eq. (2.17) under the replacement (3.1)-(3.2)

= Shy~ 0

(3.3) (6 od’™)o(x) = [wn & (/x} ;
Let us identify the vector part of J°"%(x) with a bend-twist one-form [4, S, 7]. The
coeflicients of the moment part of d°"7(x) after symmetrization give us the strain tensor
components. After the transformation (3.1)-(3.2) both the bend-twist tensor and the
strain tensor remains unchanged because the coefficients of the one-form wy x dx are
antisymmeltric.

Now let us assume the shifts (3.1)-(3.2) are inhomogeneous. Then one gets, instead
of Eq. (3.3),

(3.4) (Eo (/‘”’)Fn(x) = (Sh [‘:n] + dSh [('/2)8 Il
0

s [rlw” +(1/2)d(d x u”)}

duy

0

i |:(.Uu X dx + (1/2)(6 X ll()) X ([Xj[ )
Following the standard strategy of the gauge approach let us define the “compensated
derivative D°" := " + A" in such way that the inhomogeneous replacement (3.1)-
(3.2) will contribute to the moment part of (6 o DS™)(x) only antisymmetric terms (like
in Eq. (3.3) for the case of homogeneous shift). It is just the requirement of the “toy
principle” of local gauge covariance of the derivative DS". Tt is clear from Eq. (3.4) that
one-form A" should have the following structure:

A.qh i [@‘} @ (]/2)([(!% X Bc) t+ @,

i 5 ) B* := Bdz,, @ := @ dx,.
The compensating shift is generated by the transformations
(3.6) " — B™ — duy, ¢ — ¢ —dwy

(3.5)

() We shall use further the Mises notations (columns) for the iso(3)-valued n-forms, bearing in mind the
correspondence between motors and matrices (2.4) when calculating the Lic brackets. It is convenient to do so
in order to “avoid” formally the zeros in the fourth line of matrices (2.4).
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giving, after substitution into Eq. (3.5), the result
(]UJ“ + (1/2)(1(6 X Ul))]

(/U[)

(37) A..“\'h el AS)L - [

It is evident that the shift (3.7) possesses the required property.
It is appropriate to put the gauge transformation rule (3.7) into a slightly extended
form

0

The point here is as follows: both transformations (3.7) and (3.8) generate the same
replacement rules

" — @ — dwy — (1/2)d(d x uy),

SymBu = Syn] Ba — (1/2)(0a(11(3)f’ + ()b(l[[l)ll.)7
where Sym implies symmetrization of the coeflicients of the one-form ™ (symmetrizing
the distortion one-form coeflicients one gets the strain tensor components). The rules
(3.9) at w, = const are just the gauge transformation for the bend-twist and the strain
tensors derived in [7], i.e. the GLE-group.

One-form A" is an iso(3)-valued one-form looking like an Abelian connection one-
form. Then the two-form

(3.10) F=(1/2) B““)} dz, A dry = [‘;} = dSh ASh

ab

(3.9)

should play the role of the curvature two-form of the Abelian connection A", and
(3.11) dhF =0

is the analogue of the Bianchi identity (see Eqgs. (A.1), (A.3) in the Appendix). From
the electromagnetic analogy viewpoint, F is the strength of the field A" and Eq. (3.11)
is a kind of the first Maxwell's equation forbidding the presence of monopoles. The
corresponding bundle over £ turns out to be topologically trivial. The two-form F Eq.
(34110) is gauge-invariant under the transformation (3.8) due to nilpotency of the operator
dry

Let us express the components of the form F by the fields ¢,, B, Eq. (3.5),
eaf] 5] ]
or

Sy de™
(8:12) "= [([13" + @ i(lx] g

where
o ndx = (1/20)(@; X e, — @ X ep)dr, A dxy .
The coeflicients of the form F Eq. (3.10) can be written as follows:

AR = 8,00 — Obpar

3.13
( ) ]},;;b = au(bk - i)berrk g CkCﬂ@be €

ke

b,
Yac s

where ey = (1/2)(Bsr + Brp). The coefficient-functions A%, and B%, are just the
disclination and dislocation densities of the theory of disclinations [4, 5]. It can be made
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more obvious by introducing the one-form ¥ dual to F as follows:
- 0 ) i | Acd
' = a . @ = 2 acCe C )
(3.14) * F [a,,} de, [(Xq] (1/2)e [Bmi}

The coeflicients 0, and «, are the disclination and dislocation densities of the defect
theory [4, 5].
The Bianchi identity (3.11) has the following explicit form:

ASh Ahc NSh Aub NSh Aca _
a9 a0 [ ] w0zt [A] 03t 3] <o,
or
(3.16) Dubap = 0,  Opag — €%,y =0,
where

Hub _ | O
[aub] - [au:| .
The Eqs. (3.16) are the continuity equations of the theory of disclinations, and being
written in the form Eq. (3.15) they show us the algebraic (related to ¢so(3)) nature. The
Eq. (3.11) (without indices) directly characterizes the defect theory as an example of
Abelian gauge model without monopoles.

Before concluding the section let us compare the Eqs. (3.9) with the corresponding
equations of the Ref. [18], where the approach of the Refs. [6, 7] was formulated on the
basis of the “usual” (scalar-valued) exterior calculus. First of all it is necessary to establish
the correspondence between the definitions of the defect densities here (given by Eqgs.
(3.12)-(3.14)) and in [18]. In the Ref. [18] the disclination density three-form 0 and the

dislocation density two-form « are defined in the following way:
0 = dk,

(3.17) ‘
ax=dp +«,

where {3 is a distortion one-form, and « is a bend-twist two-form. Let us identify the Eq.
(3.17), with the equation

B = dp* + ¢* Adx

(see Eqgs. (3.10), (3.12)) because both of them define the dislocation density two-form.
This comparison gives us the explicit expression for the two-form «

(3.18) K= @* Adx.

Let us apply the exterior derivative operator d to both sides of Eq. (3.18) in order to
compare the two definitions of disclination density, given by Eq. (3.17), and (3.12)-(3.14).
The result is as follows:

(3.19) eaX0,=0g or €0, =(g),.

Here 0p denotes the disclination density three-form (i.e. zero form) in the sense of
Ref. [18]. Strictly speaking, the Eq. (3.19) shows us that the disclination densities do
not coincide with each other, and so both the definitions can not be transformed into
each other by means of the exterior calculus only. Nevertheless, we shall compare the
corresponding formulae for the gauge transformations groups.
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In the Rel. [18] the group of gauge transformations is defined by the replacements
(3.20) B—pB+dh—g,
K — Kk +dg,
preserving the form-invariance of the Eqs. (3.17). Here g is an arbitrary one-form and
h is an arbitrary exact one-form. One can identify the term dh in (3.20), with the
term — duy in Eq. (3.7). Moreover, taking into account (3.18) the unique way to get
the replacement rule (3.20), consists in performing the following transformation of the
one-form ¢~:
" — @ = dw,
(3.21) I
K — k —dwy A dx = k + d{wy x dx).
One gets from Eqgs. (3.21) and (3.20); that
g = wy x dx
and so the shift g Eq. (3.20), is also contained in the moment part of the transformation
(3.8).
Finally one can conclude that the transformation (3.20) overlap partially the transfor-

mation rule (3.8) (except the shift (1/2)d" g T) el

]) On the other hand, the gauge

Wy

transformation GLE [7] does not contain the shift d=" . So the transformation rule

(3.8) includes both the results of the Refs. [7] and [18]. The approach given here, involv-
ing Schaefer’s exterior calculus and some modification of the arguments of the Ref. [11],
leads to the required gauge transformation group (3.9) in a more formal and expedient
way.

4. Discussion and conclusions

Let us summarize the main results of the preceding considerations.

The main idea following from Sec. 2 is as follows: the motor algebra introduced by
R. MISES [16] is nothing else but the Lie algebra iso(3) corresponding to the Lie group
I150(3) = T(3) » SO(3,R) which is used now to formulate the non-Abelian gauge
model of defects in solids [1,2]. Such viewpoint suggests the representation of the alge-
bra 1s0(3) by the tools of the motor calculus: the Schaefer’s differential operators, acting
on the space of differentiable zso(3)-valued functions, form indeed such a representation.
The algebra 1so(3) can be considered as a six-parameter additive Abelian group (i.e. as
a six-dimensional linear vector space provided with the additional operation of Lie mul-
tiplication), and it allows us to introduce a notion of the iso(3)-valued exterior calculus.
In spite of the fact that a close picture has been established in the original SCHAEFER'S
papers [9, 10], the pure Lie algebraic structure of the corresponding formulae related to
the representation of iso(3) has not been achieved there. For example, the operator ="
Eq. (2.17) is treated here without involving the formalism of affine connections [10], but
pure algebraically with the help of the Lie bracket for ¢s0(3).

The next Sec. 3 contains the investigation of the gauge properties of the theory of
disclinations [4, 5] by means of the formulae of the Sec. 2. Postulating the “toy principle”
of gauge invariance one gets the group of gauge transformations of the defect theory.
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The replacement rule (3.8) (leading to the gauge transformation group (3.9)) combines
the corresponding results of the Refs. [6, 7, 18] in the sense that one can deduce from
Eq. (3.8) all the concrete gauge transformation formulas suggested in these references.
The approach given here makes it evident that the algebra is0(3) plays the role of the
six-dimensional Abelian gauge group in the theory of disclinations. Furthermore the two
types of the defect densities (disclination and dislocation ones) arise in the model in
question due to the Lie algebraic structure of iso(3) itself, what is shown by the above
considerations. Both the expressions of the defect densities in terms of the bend-twist
and strain fields (3.13) and the continuity equations (3.16) take the form of the “iso(3)-
valued” Abelian electrodynamics without monopoles (compare Egs. (3.10) and (3.11), with
the corresponding formulas given in Appendix). Hence the disclination and dislocation
singular lines get the status of Dirac strings for the case of monopole being at spatial
infinity in /%, As it is explained in the Appendix, the given gauge model corresponds to the
trivial bundle over I with vanishing first Chern class [('}] = 0. As to more complicated
generalization, the singular dislocation lines can not be attached to monopoles but only
to the dislocation lines (as it is clear from Eq. (3.16)) due to noncompactness of the
translation subgroup — it is a well-known fact. But the disclination lines can admit some
monopole-like sources if it “compactifies” any subalgebra of so(3,R) C iso(3) up to a
one-parameter rotation group S0(2).

The gauge properties of the theory of disclinations turn out to be related to the pure
mathematical problems of exactness and closeness of the corresponding differential forms.
The exterior calculus language is the adequate mathematical reformulation of the Abelian
gauge problems and the theory of disclinations is a special example of such kind.

The given approach leads to the following questions. For example, is it possible to
introduce the non-Abelian generalization of the defect theory in order to smooth the
singular defect’s cores — as it happens for the Hooft-Polyakov solution of the Georgi-
Glashow gauge model ([12], Chapter 15)? Or, how to reduce the general Cartan equations
of some non-Abelian gauge model to the simple equation F = d*" A" in order to iden-
tify unambiguously the disclination and dislocation densities? Anyway, a more detailed
study of these problems deserves further investigation.

Appendix

Several facts concerning the Abelian gauge fields.

The classical Maxwell’s electrodynamics and the quantum Dirac’s electrodynamics are
particular but most important examples of the Abelian gauge models. They correspond
to the two possible choices of the Abelian gauge group (i : (i = U(1) & SO(2) = 5"
is the compact group (Dirac’s electrodynamics) or (¢ = T(1) = R is the non-compact
one (Maxwell’s electrodynamics). Here the symbol =~ denotes isomorphism, S1is a one-
dimensional sphere, R is a set of real numbers; 7'(1) is a one-parameter translation group,
[7(1) is a one-dimensional unitary group, and SO(2) is a rotation group [8].

Let us consider a smooth oriented three-manifold M endowed with some Euclidean
metric. Let (7 be an Abelian gauge group and G its Lie algebra. One can pick a (7-bundle
[2 over M (in particular I/ may be a trivial bundle) by introducing a §-valued connection
one-form A which defines the parallel transport law on M. The corresponding curvature
two-form /7 looks as follows

(A.1) I'=dA,
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where d is the exterior differentiation operator. The form F' (A.1) is the gauge invariant
under the transformation rule

(A.2) A= A+df

due to the nilpotency property of the operator d : dod = 0. The two-form Fis defined by
(A.1) unambiguously on the whole M and usually one identifies /" as a physical quantity
with field’s A strength. Obviously the following Bianchi identity holds

(A.3) dF = 0.

The form [ defines an element of the second group of cohomologies H?(M) of the
manifold M. The corresponding class of cohomologies is the first Chern class [('(].

The bundle F is topologically trivial if and only if the first Chern class vanishes:
[C'1] = 0. The following question arises: when an arbitrary closed scalar two-form [ is a
curvature form of some Abelian bundle? The answer is the following:

a) for G = U(1) the necessary and sufficient condition is [('}] & 27 Z,;

b) for (- = T(1) the necessary and sufficient condition is [(/;] = 0;

(here 7 implies the ring of integers). From the physical viewpoint the condition [('}] =
(} means the absence of monopoles in the case of a non-compact Abelian gauge group.

More detailed information about the gauge field formalism can be found in the cited
literature and in the references therein.
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Kink-shaped solitary waves in viscoelastic material:
Selected properties

A. BLINOWSKI (WARSZAWA)

I 18 sHOWN that, for a wide class of nonlinear viscoelastic media, the propagation velocity of kink-
shaped stationary solitary wave, as well as the total dissipation rate associated with such a wave
motion, do not depend on the viscous propcrtics of the material and can be found in terms of
boundary value conditions and the elastic characteristics without solving the equation of motion,
which may include unknown viscous constitutive characteristics. Moreover, their values are equal to
the corresponding values, obtained for the case of shock propagation in inviscid material (provided
the wave amplitude and the elastic potentials are the same). Thermodynamic restrictions imposed on
the kink-shaped wave propagation schemes are briefly discussed. For a simple wave motion scheme,
the viscous wave profile is effectively found.

1. Introduction

RECENTLY, ([1, 2]) the present author considered, in the framework of the small de-
formation approach, Eimer’s bimodular material modeling the cracked media. If such a
material is additionally endowed with the linear viscous properties, then a quasi-stationary
solution of the wave propagation problem with diffused shock profile can be obtained. It
turned out, that both the propagation velocity of such a wave and its total dissipation rate
do not depend on the viscosity and (as one could expect in this situation) are equal to the
corresponding values obtained from the considerations on the shock front propagation in
purely elastic material.

It was natural to suspect that these particular results are valid also for much more
general situations that those considered in the mentioned paper.

It is not possible to mention here even a small part of the vast literature devoted to the
problem of viscous shock propagation, thus we shall point out a few papers only. The text-
book example of the complete solution of the initial-value problem of discontinuity evolu-
tion for the Burgers equation!) describing the wave, asymptotically tending to the quasi-
stationary solitary kink, should be mentioned here |3]. This result points out, that it could
be worthwhile to study the quasi-stationary solitary kink waves in infinite viscoelastic me-
dia as the asymptotic forms of the real solutions of the initial-value problems. Despite the
huge variety of the papers devoted to these and related problems, still many authors find
it possible to contribute some new elements to the knowledge of the problem (e.g., quite
recently, the paper by GOODING and BALES [4], see also the references quoted in [4]).

The author cannot point out, however, any paper, containing sufliciently general re-
sults, from which the effects observed for Eimer’s material can be derived as a particular
case.

In the present paper the author, using very simple, but quite general, purely mechanical
model, will try to disclose some general features of the problem, which apply also to the
particular case of Eimer’s material.

M (1) Le. wy + wuy = Viuge.
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It should be underlined here that the problem under consideration is by no means of
purely academic interest only. It is a well known fact that, in the course of numeric calcula-
tions of the shock wave propagation processes, some (usually artificial) viscous properties
must be introduced into the algorithm in order to suppress the numeric instabilities. On
the other hand, if the old, but still eflective, classical analytic model of the discontinuity
propagation is employed, then the real material viscous properties are disregarded. Thus
it seems o be worthwhile to learn, at least qualitatively (but not only), how the viscous
properties aflect the global characteristics of the wave motion.

2. Preliminaries

Since we shall consider one-dimensional deformations only, it will be convenient to
introduce a simplified scalar notation corresponding to the tensorial symbols in three-
dimensional nonlinear mechanics of continua. Thus we shall denote by

r = (N, 1)

the current (Eulerian) coordinate of the material particle whose (Lagrangian) coordinate
in the reference configuration was .\'. We denote also:

L da(N.0) e
(2.1 il )—(Z?f) E:)) o llfm— )
_ de(A, L)E%.
(@) v=—fr .

where o denotes the density in reference configuration. Tt is obvious that o is the current
density (in the symbolic notation we can express the one-dimensional mass conservation
law as follows: oda = pydX'). From Eq. (2.1), using another well-known expression for
mass conservation law (in one-dimensional form):

(2.2) o= —odv/du.

where the dot stands for the material time-derivative: o = dp(N.1)/J1, we obtain at
once:
(2.3) = Fov/ox.

For the further considerations we confine our attention to the quasi-stationary field,
describing waves travelling into right-hand side direction with constant velocity without
change of its shape. Thus for #(.\'.{) we can write:

(24) .T(.\—. /) =X + H(.J’(,'\'. f) = {1) + Zpt f“()[ )
where [7, @y and v, are some constants, the choice of the last two of them is merely a

matter of choice of the frame of reference; for the time being, we shall assume them to
vanish. According to the definition (2.1); and (2.1),, using Eq. (2.4), one obtains:
. 00X du de(X.t)— Ut ,
(2.5) F = ax * T L= ().X)' . 1+ u'F,
where “prime” stands for d/d&, £ = » — Ul. For velocity we obtain:
N du J[x(X, 1) = Ut
d(x = U al

(2.6) v = u'(v - U).
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Eliminating u' from Eqs. (2.5) and (2.6) we obtain the following relation between [ and v:

(2.7) v=U(l-F),
hence
(2.8) ()_' =v = -U}F',
du :
and
(2.9) bp=-UF = —(Iﬂ—( 2FF'.
Jdr

3. Basic assumptions and constitutive relations

We shall consider a class of viscoelastic materials exhibiting the following behavior:
a. The total stress can be subdivided into two parts:

(3I) T = Tel + Tinel s

where we assume that:
e the first term depends only on the present state of deformation (strain <),

(3.2) Ger = Tu(e).

® T (which can be a function of deformation and velocity gradients of any order)
vanishes in absence of velocity gradients.

Since we consider one-dimensional processes only, by @ we denote in Eqs. (3.1) and
(3.2) the normal component of Cauchy stress tensor. One-dimensionality of our problem
makes it possible to represent all functions of deformation ¢ as functions of density o (we
have 0 = py/(c + 1)).

b. The total energy density (per unit mass) is equal to the sum of the elastic potential,
which depends on the strain (density) only, and kinetic energy density, thus the total
energy I (per unit cross-section) of the portion of medium contained between the planes
r = a and » = b can be expressed as follows:

b i
(3.3) E= [ Q(u'(@) + 7) de

[t/
thus we have constricted our field of interests to the purely mechanical theory. The
energy density w(0) can be considered, depending on the problem under consideration,
as Gibbs or Helmholz ree energy density. Let us consider now the total mechanical energy
dissipation rate ) in the material interval (A, ), defined as the difference between the
external force power and the total energy growth rate

y d ¥
(3.4) D=ov|, - = l (u + 2) dad

where a = x(A.1), b = (B, ). Taking into account, that pda = pyd. X', we can rewrite
Eq. (3.4) as follows:

L rd dw
(3:58) D= ] [,—_(mr) — g(,(——é + l‘f‘)]d,\' !
. ! de
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Recalling that ¢ = [ = Fdv/dx and d/dX = Fd/dz, we can write

B pe
&) D= ] {[(d—d - m) v+ 1"(0 - nu’]“ ) m } dX .
A dx or

In virtue of the equation of motion, the first term in parenthesis vanishes; if the material
were elastic then the second term would also vanish, thus for consistency of the model,
the following constitutive relation should be valid:

(3.7) iy ) L - at(n)

= —0
de do
(the second equality follows from the relation (1 + ) = py).
Thus we finally obtain the foll()wing familiar expression for the dissipation rate 1):

dv 2 dv
(3.8) ] Foinaz—dX = | Oiner =

w

4. Kink-shaped quasi-stationary wave profiles

Among all possible quasi-stationary solutions in infinite regions we shall consider only
localized solutions, i.e. we shall require vanishing of the strain gradients in infinities (in
virtue of Eq. (2.7) also velocity gradients should vanish then).

We shall start from the equation of motion in the absence of body forces expressed in
terms of Cauchy stress,

(4.1) («)-Z = oi.
Jx

Using relations (2.1) (d) and (2.9) we can reduce Eq. (4.1) to the following ordinary

nonlinear differential equation:
(4.2) (&) — ol?e'(€) = 0,
where, as it has been already mentioned, “prime” denotes differentiation with respect to
£ =a— Ut and

T() = aal=(O] + Tinal=(§),€'(6)]
is an expression for the stress as the function of £, while o, and oy, are known functions
of the strain and its derivative.

The inelastic stress 7, depends on the strain derivative ¢’ since it depends on the
velocity gradient which, in turn, for quasi-stationary solution, can be expressed through
¢’ (compare Eq. (2.8)).

Equation (4.2) in fact constitutes a cornerstone of all our considerations, the remaining
reasoning is merely a matter of skills in the formula transformations.

Integrating Eq. (4.2) (we assume of course p, = const), we obtain at once

2 v
(4.3) Y, e —oUe=C,
where (' is an integration constant, £ = £(£).*)
@ For the sake of simplicity we confined our considerations to the dependence of inelastic stress on the

first velocity gradient; one can easily see that taking into account the higher gradients does not change the
consideration.
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This yields immediately
(4.4) O_co — QI)UZE—N =0 — Q“UZE'X- ;
Solving algebraic equation (4.4) with respect to [/* one obtains:
- T-oo = Ooo
(4.5) . . B
00(€ —c0 = €c0)

or, in terms of densities

O o= Too D—vubiss
(4.5), gt = Ioeo T fe ool
0o = O—co 24

Two important facts should be mentioned here:

The first — according to our assumptions, the inelastic stress vanishes at infinities,
thus relations (4.5),, (4.5); express propagation velocity [/ entirely in terms of strains
(densities) at infinities and elastic properties of the material independently of its inelastic
properties.

The second — taking arbitrarily vy = 0 in Eq. (2.4) we assumed tacitly (compare Eq.
(2.7)) that the medium in local reference configuration is at rest; the point is that, for
certain processes, it can happen that no part of the material remains in the local reference
configuration (e.g. for the case of wave propagation through the pre-stressed material).
Thus, rather the difference between the material velocity and propagation velocity than
merely the propagation velocity has the physical meaning.

Using Eqgs. (2.7) and (2.1); we obtain immediately

(4.6) (v- U2 =U?

O_os — Too D—co

(4.7) (v-Uy=—2=

Relation (4.7) is valid for any choice of the frame of reference, it should be satisfied for
any values of time and space coordinates, thus for infinities we obtain:

2 O_—0 — O Do

(e =8 = ;
(4.8) P
(Up(a = l/7)2 = O-0 ~0x 0-x

Qoo = P-00 Poo
The first remark, concerning relation (4.5), remains valid for Eqs. (4.8) as well. These
relations will be useful for the discussion of the limit behavior of the solution for vanishing
viscosity.

As a matter of fact, we have not solved Eq. (4.2), up to this point, nevertheless, we
were able to find the effective relation between the boundary values at infinities and the
propagation velocity. It turns out that also the total dissipation rate can be found at this
stage of considerations. To this end we use relation (4.3) and express inelastic part of
stress as follows:

dw

(4.9) Oinet = C + 0()”25 = Qn’d—c :
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Substituting the last expression into relation (3.8) and expressing dv/dx through ', in
the case of infinite region one obtains

o0

<

— 00

» - ) [ / - 2 |
(4.10) D =-U ] ((' + 0yU"¢ — Q;,%){’ dé¢ = -U (( '€ + ;g“("s‘ — 0y u')
o de 2

Expressing ' in terms of the boundary values in infinities (compare Eqs. (4.3) and (4.4))
as follows:

1 lw .
(4']) C = ;[Q()(% ) - Q(;[’JL(:A,;‘Q + Eng ):l :

and substituting this expressions into Eq. (4.10), we arrive at the following expression for
the total dissipation rate:
)(S,X - _x)} :
=hs

I
(4-12)1 D = U[’n{(“’\ﬂ = ”'f-‘,\;‘) = ;(
Equivalent expression in terms of densities assumes the following form:
((Tv".vc‘ =g U—:x‘)(@\. T Qw\;)] )

dw

oo e

dw dw

m

C

de de

oo

(4.12); D=Upy|(Wee — Weoo) +

20000
where stress values at infinities can be expressed in terms of densities only: o4, =
f(gzrlw/rlg)li_,x,. Expressions (4.12)y, (4.12); are valid in the particular frame of rel-
erence, for which the medium in the local reference configuration rests. Using relations
(4.5) one obtains frame-independent expressions for the dissipation rate, we quote them
for completeness:

(4.12); D =

| /dw dw
X I:(u‘,\. — W_r) ( +

de | de

1

x [(w% —w_s) (oo + T )00 — O ,\;)] -

20 00000

It is quite evident that also these relations do not include any inelastic terms. Therefore
the total viscous dissipation is determined entirely in terms of the boundary values at
infinities and the elastic properties of the material. The above result is valid of course
under the assumption of the asymptotically vanishing inelastic stresses in infinities.

5. Discussion of the results, some particular cases

5.1. Asymptotic behavior of the solution for decreasing viscosity

The first item which should be discussed here is the asymptotic behavior of the so-
lutions for vanishing viscosity. At the first glance the problem is trivial: if both: the
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propagation velocity and the total dissipation rate do not depend on the viscous proper-
ties, then the limit transition yields a nonsense — the presence of viscous dissipation in
inviscid material. As a matter of fact, the problem is not so simple: the point is that,
in the nonlinear elasticity, as a rule, the continuous solution for constant velocity wave
does not exist. Starting with a purely mechanical model and using the standard con-
sideration of the shock propagation theory, we can easily obtain (see Appendix 1) the
following expressions for the discontinuity propagation velocity and the total dissipation
rate:

ry2 og_ — (T+ +
)_ _( L — :_.._.‘
5.0 ‘ N 0+ — 0- O-
oe
]
(5.2) D = ==l ) (sl )
0_0

where subscripts “plus” and “minus” denote limit values taken at the right and left-hand
sides of the discontinuity surface.

We had obtained previously essentially the same expressions for the quantities un-
der consideration for the viscous wave case, the only difference consisting in replacing
the values at infinity with the values at interface. Moreover, we were able, like in the
previous case, to find an effective expression for the dissipation rate, despite the fact
that even the dissipation mechanism at the shock front was not specified. One can
see that there is no contradiction and the limit transition is correct. For complete-
ness one should show, how the slope of the density (strain) profile changes with de-
creasing viscosity, tending to infinity for inviscid material. We shall discuss this problem
later.

5.2. Restrictions imposed by demanding the positive dissipation

The problem of positiveness of the total dissipation rate and the restrictions imposed
by this condition on the existence and direction of propagation of the kink-shaped quasi-
stationary wave has obviously exactly the same solution, as that derived for the case of
shock wave propagation in inviscid materials. It is not clear, however, (at least to the
author) if the local (i.e. required to be fulfilled for any finite interval) condition of the
positiveness of the dissipation rate imposes some additional restrictions.

The detailed discussion of the restrictions imposed by the local and total dissipation
rate seems to be worthwhile, we shall however omit this topic in the present paper. We
shall only point out some geometric interpretation of the expression which can be obtained
from Eq. (4.12),, namely:

1/dw 1

@l T E
Deriving Ea. (5.3) from Eq. (4.12), we have assumed that U is positive i.e. we are con-
sidering the wave propagating into the right-hand direction. Assuming that elastic stress
vanishes in the reference configuration, and that, in agreement with Eq. (4.5);, ¢ is an
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potential

FiG. 1. Examples of thermodynamically admissible (left) and forbidden (right) wave-propagation schemes.
Elastic potential was assumed in the form: w(s) = 1‘553/2(5 + 1).

increasing function of £, and remembering also that for ¢ tending to —1 the density tends
to infinity, we can qualitatively plot the potential as the function of strain ¢ as in Fig. L.
We can rewrite now inequality (5.3) in a following form:

I dw 1 dw

oy Eoo — €—oo) K Weo — =
] 2 de __:‘;‘( ' ‘) o & 2 de -

el

n

(€0 —

(5.4) w_

Let us consider e.g. the propagation of the compression wave across the pre-compres-
sed material: ¢_. < £.. < 0, and dw/ds < 0 for both values of . Let us draw
now the vertical line ¢ = (s_., + £.,)/2 and two other lines tangent to the graph
of the function w(g) at the points £ _.. and ¢, (compare Fig. ). Let us denote the
point of intersection of the vertical line ¢ = (¢_~ + £..)/2 and the tangent line drawn
through the point £€_., by /A_, and the other point of intersection by A,. It is not
difficult to notice now that the value of the left-hand side term of inequality (5.4) is
equal to the vertical coordinate of the point A_, while the right-hand side describes
the position of the point ;. One can see that inequality (5.4) claims, that the point
A, should lie above the point A_; it is exactly what we indeed observe. Thus the
condition of positive value of the total dissipation rate does not exclude the considered
case.

Let us consider now another example — rarefaction wave propagating over the initially
unstressed material: ¢_., > 0,¢c,, = 0, dw/ds > 0forc = ¢_., and dw/ds = 0 for
€ = c.. In this case (5.4) reduces to the following form:

1 dw
(5.5) W_ e — T e 0.

2de|_o
In terms of geometry it means that vertical coordinate of the point /A _ should be negative,
which is not the case; as a consequence, the considered wave-propagation scheme is
forbidden.
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For certain situations, simple analytic wave propagation conditions can be specified.
Let us represent, for example, the elastic potential density w(p) in a following form:

(5.6) w(p) = %(S(% - l)_f<f—]> .
AN 0

Using relation (4.12); one can easily prove, that propagation of compression wave of
arbitrary amplitude across the unstressed material does not contradict the condition of
positive value of the total dissipation rate, provided the first derivative of the product
0* [(0/00) is positive.

5.3. Problem solution in quadratures

If the expression for inelastic stress is linear with respect to the velocity gradient

_ _dv
(5.7 Tinel = F(€) 5~
da

oOr, 1IN Our case,
(57)1 Tinel = _['7/_1(5)51 i

then the solution for strain profile can be obtained in quadratures.
Substituting Eqs. (5.7) into Eq. (4.3) one obtains

o dw(e) - ) AbtE, o
(.\h) 0y = Q“" i = G = 1',”(5)5
de
or
173 Uti(s
(5.9) & Ale) _
de dw(e) - =
) == Qn( e —(
(c
The denominator of the right-hand side term is equal to zero both for ¢ = ¢_ ., and for
¢ = ., thus il it tends to zero quickly enough to provide the divergence of the integral

at both ends of the interval (¢_..,<..) and, moreover, is not equal to zero at any point
inside the interval, then the function £(<) exists, is monotonic and assumes all values from
the interval (—oc. o). Thus the inverse function £(£) = <(x — (/1) exists, is monotonic
and assumes proper values at infinities. A particular case of analytic solution is shown in
Appendix 2.

Let us notice at last, that in the expression (5.9) the denominator depends only on the
boundary conditions and on the elastic properties of the material, thus with decreasing
viscosity the slope of the function £(¢) tends to zero, which means that the slope of the
inverse function £(&) tends to infinity and the wave profile tends to the inviscid shock front.

This completes our present considerations, some topics being left for the future in-
vestigations. At conclusion, the author would like to present very simple consideration
which, as a matter of fact, proves in a few lines the main results of the present paper, i.e.
the independence of the propagation velocity and the total dissipation rate of the inelastic
properties of the material.

() Taking w and o equal to zero at plus infinity and substituting potential function (5.6) into Eq. (4.12)
one obtains at minus infinity (i.c. for any ¢ > gy) the following inequality: 2f + odf /do > 0; multiplying this
expression by ¢ we obtain at once d(o” f)/do > 0.
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5.4. Similarity considerations

For simplicity we confine our considerations to the case of constant viscosity (which is,
however, not necessary at all). Let us expand for better explanation the elastic potential
into the power series

1 0 g = o\"
5.10 w(p) = —cz(“— — 1) [1 + Y E, (“—) } :
( ) (0) 2\ n2=:| B

It is evident that all coeflicients F/,, are dimensionless, thus if one prescribes the boundary
conditions in infinities in terms of strains or dimensionless densities Q/Qn, then the whole
problem contains only three dimensional parameters:

: m
sound velocity [co] = {—],
S
W . kg
tial d sit =i ==1
initial density [o0] [n1~"]
ke
viscosity [] = [—2’]
ms

This system of dimensional quantities is independent and complete, thus we can built the
following characteristic quantities:

I

characteristic length ly = ;
00€y
—— f
characteristic time ty = 3
D)€
. i’
characteristic mass my = —53-
20

For the total dissipation rate (per unit cross-section) and for the propagation velocity we
have following dimensional relations:

ke m
e 01= 2] = | %] = taw.
i 0

Thus, according to m-theorem (c.f. [5]), any formulae for [J and U/ should assume the
following form:

(5.13) B = 0 (e s 5 Tnds
(5.14) U=cyg(my,...,Tn),

(5.12) (U] = [T]

S

where f(-), g(+) are some functions and m; (i = I,...,n) are dimensionless parameters
of the problem. Since the set of dimensional quantities is independent, one cannot built
any dimensionless parameter including j7, and therefore both {7 and D) cannot depend

on ji.
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Appendix 1

We shall start from the following form of Rankine-Hugoniot conditions
(I.1) o_(U—=v_)—p0s(U—=v4) =0,
(1.2) o_v_(U=v)—pyve(U—-vy)=04p —0_,
(compare [1, 2]). Multiplying the first expression by {/ and subtracting the second one
we arrive at the following equation:
(1.3) o-(U—v_) =0, (U—-vy)=0_—0,.
From Eq. (I.1) one obtains:
(1.4) AU —v )= A (U—-vy) =0,

Solving Egs. (1.3) and (1.4) with respect to (U — v_)? and (U — v,4)* one arrives at
Eq. (5.1).

To determine the total dissipation rate for the medium contained between two material
planes: = = a(A,t) < y(t) and @ = b(B,t) > y(t), where A and B are material
coordinates, y(t) denoting the current position of the discontinuity, we write:

(l y(!) l A b(f‘_:[) l
(1.5) D = —0c,v, + apvp — m[ ] (gu' + Egzv‘) dr + l (qu - ;L)z")(l.'lr].

a(A,t) y(t) -

Differentiating with respect to time and remembering that d(odz)/dt = 0, we arrive at
the following expression:

1 : | .
(1.6) D =—o,v,+avy,—Ulo_w_ + =p_v" | + v, 0w + 0,7,
2 2

l bl l >
—p (Qbu‘b + 591)?*5) +U (Q+IU+ + Eewl)

u(t) b(A,1)
—[ ] (o + pvi)dr + j (ot + gz,‘fr':)(lﬂ:} ,
a(A,t) y(t)
where v, = a(A,t), v, = b( 3. 1) are velocities in @ and b, U = dy(t)/dt. Substituting
do /dx for pi, —a /o for pdw/dp and —pdv/dx for p, we obtain:
d
(1.7) 0w+ pvd = —(ov).
dx

Performing integration and the limit transitions: @ — y, b — y (no dissipation at the
continuity regions!) we obtain the following almost evident expression, which we probably
had to propose at once without derivation:

1
(199 D=-0_v_+o,vy — (U - v_)(g_w_ + ;g_-vz_)

1 5
+(U - -U+)(g+ur+ + §Q+‘U:_) .

Now, to complete the derivation we have to eliminate unknown values of v_ and
vy, to this end we should (a) add Eq. (1.2), multiplied by U, to Eq. (1.9) (side by side),
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(b) make use of relation (I.1) and (c¢) recall the [ollowing identity:

(1.10) o U — v, U — 02 /24 03)2=[(U - v) = (U —v_)]/2.
If we do this, we shall obtain the following expression:
l ? ) l 2 - =
(L11) D=(U-v4)0s (-(1;' R L) QT S ”—*) .
2 2 0- D+

where, instead of double sign, either plus or minus can be taken. Substitution of relations
(5.1); and (5.1); into Eq. (I.11) readily produces Eq. (5.2).

Appendix 2

EXAMPLE
Relation (5.9) can be rewritten in the following form

U filo
(L) &)= Uy [ —— L2
o' ==+ Cho" + Ulgje
do

do+ (5,

where (' can be expressed in terms of the boundary conditions at infinities:

3 dw

™o

5 dw

T o |
(11.2) O = —

Ooo — O—co

fos)

Probably the simplest form of potential described by Eq. (5.6) can be obtained by
taking oy/o for f(o/0y). If we also assume fi = const, then we obtain the following
expression for £ as the function of dimensionless density o = 0/ 0y

(IL3) &) =

(/?

x |
. ?(? o ?—\)(ﬁ o ?\)(? * ?\ + ?—“,\')

+ (5.

Fixing the frame of reference by taking (', = 0, we finally obtain the following implicit
expression for wave profile £(0):

(I1.4) exp(3) = 0 (0o — 0)"HO0 — 0u) (@ + 0e + P_c)™
where
opc
B = /B Boo(Tos + Boo)s
% e
(1L.5) ' :
. sy == —n — ) . Oy = — — = = = 5
0~‘_\:w0‘x-(0—s,\;‘ + 0\) Q—'}G(Q—‘-'X“ Y 0()@)(9@3 + 20—\)
1
3= = — - — — 5
{)\(0\ — 0 \)(Q—x. En 29\:)
—1
wy =

(Do + 20— )(.ﬁ\ F Zﬁ_m)(i_’—m & 2?%) -

() This is the same potential as that depicted in terms of strain in the Fig. 1. Possible pathological behavior
of such a potential in the vicinity of zero density is far out of the scope of the present considerations.
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N
=
g o
Q
U
— L
400

x~coordinate

FIG. 2. An example of wave profile (mass density versus coordinate) tfor the constant viscosity
3

coetlicient and the elastic potential density w(g) = c“g[.(g/g(, — 1)20.

Density profile described by the implicit relation (I1.4) is shown in Fig. 2.
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Hodograph method in plane MHD non-Newtonian fluid flows

I. ADLURI (WHEELING)

Eouvations of steady flow of a conducting non-Newtonian fluid of finite electrical conductivity are
transtormed to the hodograph plane by using the Legendre transtorm function of the stream-function
when the velocity field is orthogonal to the magnetic field everywhere in the plane ot flow. Three
theorems are stated, some flow problems of physical importance are investigated and exact solutions
are obtained in each case.

1. Introduction

TRANSFORMATION techniques are some of the powerful methods of solving systems of
nonlinear partial differential equations governing the steady plane flows. One of these
techniques is a hodograph transformation which has been widely used in continuum me-
chanics.  AMES [1] presented an excellent survey of this method and its applications
in various other fields. CHANDNA et al. [2-8] applied the hodograph and Legendre
transformations to investigate steady plane viscous flows, non-Newtonian flows and con-
stantly inclined, aligned, transverse and orthogonal MHD non-Newtonian flows. In recent
years, the interest in problems ol non-Newtonian fluid flows has grown considerably be-
cause of an extensive use of these fluids in chemical processes in industries, food and
construction engineering, petroleum production, power engineering and commercial ap-
plications. Since electrical conductivity is finite for most liquid metals and for many
electrically conducting non-Newtonian as well as many other second grade fluids to which
single fluid model can be applied, accounting for finite electrical conductivity makes the
flow problem realistic and attractive both from a mathematical and a physical point of
view. .

The present paper deals with application of the hodograph transformation to obtain
exact solutions of the nonlinear partial differential equations governing the steady plane
flow of a power-law non-Newtonian fluid of finite electrical conductivity in the presence
of an orthogonal magnetic field.

First, equations governing the flow are transformed to the hodograph plane inter-
changing the role of independent variables x, y and the components of the velocity vector
field u, »; then, by introducing a Legendre transform function of the streamfunction, all
equations in the hodograph plane are expressed in terms of this transform function. Re-
sults are summarized in the form of theorems and finally, the following flow problems are
studied as applications of these theorems:

a) vortex flows,

b) radial flows,

c) spiral flows.

Exact solutions are obtained for vortex and radial flows and it is proved that a spiral
flow cannot exist in an orthogonal non-Newtonian power-law fluid of finite electrical
conductivity.
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2. Equations of motion

The flow of a steady plane electrically conducting non-Newtonian fluid of finite elec-
trical conductivity which obeys the Ostwaald-de Waele power-law model

rij = 2K[2D D"~ V2D,;

D = l(f’)uf " 0_“_,) !
: 2 ().i'_l' ().l’i

du o
(2.1) ;—’I' 3 % =0 (continuity),

JF 20 ( du 0 du  do
— =g + I l— |+ — [ — + — — g s
dr g { dr ( dx ) dy { ((’)‘z/ (')J)] } feJ 2

where

is governed by

(2.2) ,
JdIr ouw + I { J [[(i)u i i)l')} N 20 (It)r‘)} N i
— = —puw \ — 4 — o l
dy e dy  dx dy \ dy pet
(linear momentum),
1
ully — vl = —j3+ A, (diffusion),
oo
ol, olf, ,
— 4+ — = Q, (solenoidal) ,
o y
(2.3)
o, OH, )
j = ——— ——. (current density),
Jdr dy
dv  Jdu e
w = — — — (vorticity) .
dae Jy

Here 7;; denotes the strain rate tensor, u(x, y), v, y) are the components of the velocity
vector V, Hy(x, y), H:(x. y) are the components of the magnetic field H, p is the pressure,
o is the fluid density, . is the magnetic permeability, o is the electrical conductivity, i is
the consistency index coeflicient, /1 is an arbitrary constant obtained from the integration
of the diffusion equation

VXx(VxH- —V XxH)=0,
,u,.cr

[ (ou)ﬂ (m ) ((')u ap)z}‘“—”/l
du dy dy  Ox
is the Ostwaald-de Waele parameter and

o(u’ + v+ p.

l\J:l—-

(2.5) F(z,y)

Equations (2.1)-(2.3) form a system of seven partial differential equations in seven
unknown functions u, v, I1,, 1>, 7, w and I

We consider a plunc flow in which the velocity vector is orthogonal to magnetic field
everywhere in the plane of flow, that is

http://rcin.org.pl



HODOGRAPH METHOD IN PLANE MHD NON-NEWTONIAN FLUID FLOWS 123

(2.6) H =k x Az.y)V

where k is the unit vector normal to the plane of flow and A(x. y) is a scalar function.
Using Eq. (2.6), Equations (2.2) and (2.3) can be expressed as follows:

ar w ()[ [Jw dudl  dudl
2.7 — = prw+ I + 2 + —— |y — p.JAu,
(2.7) o o \{ dy (')y (()1 dr Jy 01/)} Felg
AN s ) . ..
(2.8) ();f I [\“{ u.()/ B ].c W, (()1 Jdl - ()_r()_l)} = . .
' Ay dw e dr v dy dy
) 3 | &
(2.9) AMu*+v)=—j+ 4,
T
udA  vdA
2.10 —Aw+ - — =
( ) : Ay dx
CoudA pdA
2.11 - 5 gl
( ) ) dr dy

3. Equations in the hodograph plane
Let the flow variables u(x. y), v(x, y) be such that, in the region of flow, the Jacobian
(.)(-u, ) 40
d(r,y)
Considering «, y as functions of u and v, we can derive the following relations:
G ')l _ .l()y. ﬂ _ _1(?_1 dv . Joy v _ Jox
de dv dy v dr Qu Dy ou’
d(u, v Ne, )1~ =
(3.2) J(x,y) = r. ,l/; = ar, ‘;] = J(u,v),
dg _ 0.y _ 1@y _59@.9)
dr d(r,y)  I(u,v) Iu,v)’
dg _ (g, ) _ J dx.g) _ 7()(:1-,(7)
dy da,y) Nu, vy O(u,v)
where ¢ = g(r.y) = g(x(u,v).y(u,v)) = F(u,v) is any continuously differentiable
function.

Using these relations in Eqs. (2.1)-(2.4) and (2.7)-(2.11), we obtain the following
system of partial differential equations in the (u, v)-plane:

J(x.y) =

(3.3)

dae, Oy o

e TR

—O(F, ) 4 e
as) 7Y _ma kT {u O, - TP + 91((3 i Y s ')} — pej

d(u, v)

_(7( I)__ B TP a ( ’ ()1)}_ L

(3.6) 0(” e ouw — KN.J {u Q:— 1P, +2J( Q= 2.0? e AV,
~ 3 5 |

(3.7) AMu +v°) = 7+ A,

O
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= ol X - A -
(3.8) — AW + J{” d(u,v) . i'(')(u :')} e

- _ = AN, ) O, /\)}
3:2) i 'l{”(‘)(u,u) ol T
__=f0z Oy
(3.10) u —/(()—1—()7>
N K ay\* dr dy =l
(n=1) =J
(0 =) { (du) +2(Ur') " (i)l ()u) } '
where
- [0,y N O@wy (@, y)
(3.12) s [(’)(u,r)] i G ElE d(u,v)’ Palu, v) = Au,v)’
. NER/CND (. )
@i(u, ) = e, v)’ Qal, ()(u )’

Equations (3.4)-(3.11) are a system of eight equations in seven unknown functions
r(u, v), y(u, v), W, v), Mu, v), j(u, v), F(u, v) and I(u,v). Once these functions are
determined, we can find u(x,y), v(x,y), w(r,y), A(x,y), j(x,y) and I'(x,y) which are
solutions of Eqgs. (2.1)-(2.3).

4. Equations in Legendre transformation function and X(u. )

The equation of continuity (2.1) implies the existence of a streamfunction (., 1), sO
that
di i

(4.1) dy = —vdr + udy, — =-v, — =u,
du dy

and Eq. (3.4) implies the existence of a function £ (u. v) called the Legendre transforma-
tion function of the streamfunction (., y), such that
oL JL

(4.2) dL = —ydu + zdv, — =-y, —— =u=.
du Jv

Functions L(u, v) and (2, y) are related by
(4.3) L(u,v) =vae —uy + ¥(x,y).

Using Eq. (4.3), equations (3.5)—(3.12) can be rewritten in terms of L(u, v) as follows:

()((j[ 1)
(4.4) T 7 _ oo+ KJ(@Q, — TP, — 2TRy) — pie] Au,
d(u,v)
d(%L.T> )
(4.5) J—— L= —ou® — KJ(@Q; — TPy, — 2T Ry) — pej Av,
d(u,v)
(4.6) A +vH) = i 7+ A,
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() _ 25

(4.7) — AW+ J{ B } =0
D(u,v) ' 0(u v) '
o(w7) , A5)

(4.8) g { du dv’ }

: d(u, v) MNu,v)y |’
14 =5 DPL
(49) S J((')nl (')ul)'
where

~|

NLZTALY
T av? dul dudv

— . 021, AN 2L \? (n—=1/2
4.11 T=1] (”—”{(‘——— : ) +4( ) } :
( ) /) dur  Ov? dudv

JL oL
()(()1 ) . ()(E m)

(4.10)

[)21) yU) = 5 7=1)1.’
1= Al = — 2= B, = =)
) o(221)
- N — v B o e __“—
(4.12) QI = QI(H.I) ] o l‘) 5 (2 QA(U,I) ()(“’1 oy
) L
Ry = Ry(u.v) = Q,‘ =R W LD 24
dudv’
oL Fizh )
R- = | = Sl
f2 fw,0) = igss dudv Q‘(’)u?

To eliminate ['(u, v) from Eqs. (4.4) and (4.5), we use the integrability condition

N A
(/ PL OGP )(‘7‘)(&7’ I))

Toudvdv T vl du (i, v)

9 8L, F
_(r)zLi“Tc‘)ng)(j ()_l)

du? dv dudv du du,v)
and get

@.13)  o(vPy + uPy) + K{TW, + T(PQ1 + PxQq) — TWy = TW3 — 20 W, — 4TWs)

RL 9 10((())[! A ]) llf)(i;—f.X})
€ ’\ . - . = ; } = .
i { /(()n‘ ()1'2> v d(u, v) d(u,v) .

where
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(()I _QI> ) ()(((){/; 70, )

Wy =W (u,v) =

d(u,v) d(u, v)
)(‘())—’ /P) 0(?.7/5)
. o o A
” y = ” 2(”,1) (”_1) + (.)(u (‘) 5

()((‘))l’jj) ()((;[ [)
: v + p_du '

Wi = Wi(u,v) =1 s —
3 (%, 2) ; d(u, v) o d(u, )

e)(f”’./z]) )((”’ 1?)
dv - du ~

d(u,v) d(u, v)

o(23) a2
Ws = Ws(u,v) = R, gv + R du .

d(u, v) . Jd(u, v)

(4.14)

Wy =Wy(u,v) =

Using Eqs. (4.6) and (4.7), equation (4.13) can be simplified to

(4.15)  o(0 P+ uPy) + K{wW, + J(PQ + PaQ3) — Wy — TWs— 27 W, — 415 )

(')((,)—]'.X(M2 + 1'2)> ()( e AU+ ))
{ du dv’ } 3
(0] -u = (.

+pio)
He® d(u, v) d(u, )

Eliminating j from Eqs. (4.6) and (4.8), we get

o(25)  o(2L3)
Jgu I & anv }

d(u, v) d(u, v)

(4.16) pea{A(u? + v¥) — A} = 7{;;

From Eq. (4.7), (4.15) and (4.16), we obtain the following theorem:

THEOREM L. If L(u, v)is the Legendre transform function of a streamfunction of a steady
plane orthogonal flow of a power-law non-Newtonian fluid of finite electrical conductivity and
Mu. v) is the transformed proportionality function, then L(u,v)y and A(u, v) must satisfy
equations (4,7), (4.15) and (4.16) where W, 1, J, j, Pi, P2, Q1. Qo Ry, Ry and W are
given by Eqgs. (4.8)-(4.12) and (4.14).

We determine L(u, v) and A(u, v), the velocity components, .JJ and T by solving Eqs.
(4.8)—(4.12), (4.15) and (4.16), and wu(x,y), v(x,y) to obtain A(z,y) and other flow
variables in the physical plane.

To find L(u,v) and A(u, v), we write Eqs. (4.8)-(4.12), (4.15) and (4.16) in polar
coordinates (¢, ) in the hodograph plane.

Let

u=gcost, v =gsinb,
¢ =ut+0v), 0 =1an""(v/u).
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Using the chain rule of partial differentiation, we can derive the following relations:
Jdf Jdf  sinfdf Jdf i Micosd af
— = cosfl— — —, = =sinf— + —,
du g q b dv dq q 08
IS0y O by O(q.8) 10T
.0y 0q.0)  D(u.v) g D(q.0)
where f(u,v) = [*(q.0), h(u,v) = h=(q,#) are any continuously differentiable func-
Lions.
Using these relations, Eqs. (4.15), (4.7), (4.16), (4.14) and (4.8)—(4.12) can be trans-
formed, respectively, into the following form:

(4.17)  oq(P;sin® + Prcos®) + N {w™ W+ J(P7Qy + PrQ7) — "W — J"W7

, JL*  sinf OL* 5

i)(cosHOUL ol d(,)() ./\'G’L)
2rp0 S 2N 4 si 4 !
—2Wi — 4IWS) + g0 {S'“H 0

a(sine‘)_l’ el ~'\*"2>
(}(I q ()9 }
—cost ; =4
(g, 0)

z)(sinﬂ‘,] L .,\*)
dq q 08 /
d(q.0)

(4.18)  Aw” = .]‘{Cnsﬁ

Jq q 0

94.9)
) dL* sinfOLT
()(m.s 77 - . 08 A )

—sinf

= ( [Jl 3 9 ( ,/*
(')(00590 _sin al ‘/\,)}

(4.19)  p.a(\qf = A) = J'{ cosf

J(q.0)
f)(sine‘)," pleney \)
+ sin# y q 0 )
' d(q.0) '

L™  cos@dlL”
9 sind JO*
e = l{( (sm g - g 00 Ql)
. (g, 0)

dL*  sinfdL”
: st - Y g0
‘)(Cm o7 " g o8’ Q*)}
(g, ) )

-+

(4.20)

oL cosB L™
| sinf by o
| { ()(sm 90 + PR, J™ P )

Wr ==
Sy d(q. )

) JL*  sinf oL
( s — W il 2
()(COQ dq q 08 “ ) }

+
d(q,0)
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(')(sin()d_L o cos d] . [‘)
(4.20) Wy = l{ P dq q 09
fronc] T g (g, 6)

(,)(COSH()‘L 0 sm(f(.)'l,“l )
+P5 dq q 6o }
: (q.6) d
dL*  cosfBOL™
el R
1{()(smb’ 94 + . 00 ?])

W* = - ,
Yy J(q.0)

st = N o
cos 7 PRTREE

d(q.0) ) }

0( JdL*  sinfdL*

(')(C()sf)().llt 2 sch)I// ../‘)
R dq q o0 }
: d(q.0) ‘

"= o (Mg A),

e o Qb 10k L

(N
|

“ o + - . + —w I ’) )'
¢t q dq ¢ 08?

4{ 2(')21,-< oL, (’)%‘) (i)l,‘ UZL*)Z}"
N ( ( ( = s ———k= y
(4.21) "¢ \Toq ~ o8 o0 Toq08

~
x
Il

* ®y\11— 1 (‘)2L* _ 1(’)]1* _ l(‘):ﬂ]l*)z
A {( dqr  q dq ¢ 067
4 (0L  PL N\ "V
’ F(T)Bf r "e)(,z)e)) } ’
(')(sin ()().L + il ()_L . m"‘)
Pr=.= ()(j q 0
'y (4, 0)
(,)(C( 4L sinf 01 w*)
S - = = N
(4.22) pr = 1 dq q 00
i d(q, )
U(sinb‘()_,L !, cos ()1 ,1”‘)
(2* - J_ ()q q ()9
1 ]

q d(q,9)
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| )(me)d()[( » oG ())([; [‘)
(4.22) Q3 = - L7t
feont]” Sy I(q.0)
O*L™ 2 costl OL* _ sin2¢ ¥ N sin26 0° L~
Jq* q q ¢ 06 q dqdb

cos? B ) L* L= sinfcosf OL*

) + Q;<sinf)cos() _

Ry = Qf(sm 0

gt 062 dq? q dq
cos20 DL~ L s 20 0°L*  sinflcos® )°L* )
qr  0b q dq0b q* 62
(4.23)

2L sinfcos# OL*  cos28 JL*  cos26 97 L*

= CJT(sianosH(), Iw ~ sinf cos (; B u)sj (‘ | cos (') !
- Jq’ q Jq ¢ 00 q dqib
sinfl cos 6 L~ . DL sinf@oL”

)+ Q3| cos’8 + -
e 04’ dq? q dq

i sin26 JL*  sin2f Vi o 3 sin?§ §*L* )
Il q dqob gt 06°
Once L™(q.0) and \*(q.6) are found, we can use the relations
0L cosfIL”

ket A
(4.24) I dq * qg a8’
sinfl J L~ dL”
y= q 0f L dq

1o find the velocity components, A(.r, y) and other flow variables in the physical plane.

5. Applications

In this section we investigate the vortex, radial, and spiral flow problems as applications
of Theorem 1 stated in the previous section.

5.1. Vortex flow
Let
(5.1) L7(q.8) = G(g), G'(@) #0. G"(q) #0

be the Legendre transformation, where prime denotes differentiation with respect to ¢.
Using Eq. (5.1) in Eqs. (4.17)-(4.24), we get

I b e w* \']  2J*%2
) all i * 1" R o | 12 g
(5.2) z {u [1 + G ((:’”) ] ! [u + G (( ”) ] 7 (3G G

4G3 T Jx g~ D)

e Gl e s T . }+p§aG’A* iy
2 q
ON G" 1
53 + A" Z) =o,
G dq (( )
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ar* : A
5.4 — = .0G [ gA" = =),
o g = (=)
. ohe
dialere
e+ G
5:5) ST
f/(l'” = (l” (ni”
- ()
GG
Solving Eq. (5.3), we obtain
V= a(f)
N q(i""

where a(#) is an arbitrary function of 4.

Since J*, w™, [* and their derivatives are functions of ¢, from Eq. (5.2) it follows
that a(f) is an arbitrary constant and A is a function of ¢ only.

Letting a(#) = aj, we can express A™ as

(5.6) =
20 / = ==
(](:"
where «v) is an arbitrary constant.
Employing Eqs. (5.6) in (5.4), we obtain
A
(57) AT = g’
-
From Eqs. (5.6) and (5.7) it follows that
o 831
(5.8) 7(q) = Tr/
which on integration yields
[AE T
5.9 G(g) = —q° + ay,
(5.9) @)= = 0

where o, is an arbitrary constant.
Substituting Eq. (5.9) in Eq. (5.5), we get
AR oL 2H .
(5.10) JT = , Ww=—, I"=0.

2‘
[ (881

Using Egs. (5.9) and (5.10), we find that Eq. (5.2) is satisfied identically. Therefore

o) 5
(5.11) L*(g,0) = G(g) = 7~llr,~ +a;, A#O0
is a Legendre transform function of the streamfunction in polar coordinates in the hodo-
eraph plane and can be written in the u, v-coordinates as
Gy | 5

(5.12) L(u,v)= Tl‘(u“ + %) + as.

Using Eq. (5.12) in Eq. (4.2), we obtain the velocity components in the following
form:

Ay Az

(5.13) u(@,y) = ——, oz, y) = —.
ay g
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Substituting these in Eq. (5.7), we get
ol
Az + y?)
Employing Eqs. (5.13) and (5.14) in Eq. (2.5) to Eq. (2.8), we obtain

(5.14) N, y) =

(5.15) H(r,y) = (- —— o

5.1 x,y) = (- ,— .
Y gE gt gt s

(5.16) ple,y) = l‘: (2 + %) + 7y,

)
I
where 7 is an arbitrary constant.
As a result, we can formulate the following theorem:

THEOREM 2. If L™(q.0) = (/(q) is the Legendre transforn function of a streamnfunction
for a steady p!mze orthogonal flow of a non-Newtonian power-law fluid of finite electrical
conductivity, then the flow in the physical plane is a vortex flow given by Lq. (5.13) to Lq.
(5.16).

5.2. Radial flow
Let
(5.17) L*(4,0) = A8 + B,

where /1| # 0, and I3} are arbitrary constants.
In this case we get

J* = mpTh w™ =0, Pr=0, Py =0,
o Al
(S]h) ) 2(11—])(1201—1) =] e " S

] =_'1_(”_l)_, Wy=Wwy=Ww;=Ws=0.

Ay
Using Eqs. (5.17) and (5.18) in Eqs. (4.18) and (4.19), we obtain
- oA
= 6
3 /\‘ _;’l e A‘ .‘l!" €

(5.20) T L

dq q ¢

Equation (5.19) implies that A* is a function of ¢ alone. Solving the linear equation
(5.20), we get

AA 1 2
7( | e n?)— + (l}([_A”ie” if :‘11 ?é N
* _ e O — q- He@
(5.21) N = ! 2
——lnq e if Ay = ——,
o ([‘ HeOT

where a3 and ay are arbitrary constants.
As in the previous application, Eq. (4.17) is satisfied identically. Proceeding as before,
we obtain the flow variables in the following form
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Ayx Avy
= ?,—, l'(.l,’. Jj) = Fia S
(x* + y°) (x2 +y°)

AAp b " A A o
H(z,y) = (_Lq-u + ”3‘1_"‘1“'”) (_ : 1y ks 1‘11 i )
("1h“r0 - 2) (.1," + ys) (J" + ,l/‘)

u(r, y)

2410

i (Aypieo —2) + Loyt e
A, 2
T ¢l 1) P Acdti o™ )
p(z,y) = 2" ')!\L— —0q° — A l,-{—-#—-(_‘
i w280 T AR g0 — 222!
—"'l“.‘(—'llﬂ'ﬁn + 2)(17,\“;,‘(7 e llf{T“_% ([—Z(,»l]y,_n-—l)} + s,
.rll(/l“ll,—,(T = 2) Z(:l]/l;_(f = ])
where
-
5.22 ‘= .
(5.22) R v
2
(i) A, =
feo
2z 23
u(e.y) = o, y) = 4

preo(e + y?)’ o+ )]

24 -2y 2x '
H(z,y) = { —Inq + p1.00y = = . S
q° pea(e? + y?) peo(e? + y°)

Ja,sy)y = ApeoIng — 1) + jrooay,

5
&

-1 1 , A2y, )

plx,y) =200V R (i_} — —0q° — Ay, { 4 ﬁ[z(lnq)‘ +2Ing + 1]

n 2 q
5 y  MeOC

+2Ap.0(A — a)[(Ing)* + 2Ing + 2] + Apea(A — ag)(Ing)? — ”M;”(A-\ — )} + 73

where

, 4
(5.23) ¢

pad(xl + y?)
and 7, and 73 are arbitrary constants.

THEOREM 3. If L=(q,8) = A0+ By is the Legendre transform function of a streamfunc-
tion of a steady plane orthogonal flow of a non-Newtonian power-law fluid of finite electrical
conductivity, then the flow in the physical plane is a radial flow and flow variables are given
by Eq. (5.21) to (5.23).

5.3. Spiral flow

In this case let
(5.24) L*(q,0) = ¢c;Inqg+ ¢, ¢ #0,¢c; #0,

where ¢ and ¢, are arbitrary constants.
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Proceeding as in the previous applications, we get

x _ i =3
((,% e (.g)(n—l)/l ?
4
(
./" — _"'T/_‘—-v" w* = 0, I)lx = O, [)-:‘ = 0,
) (e + c3) .
(5.25) I I
Q7 = ——(cicos8 — cysinf), Q5 = —(cysinf + cyc0s0),
q* q°
- ]K, b ) * ]*I 2 2 :
R} = ——4(('1 + ¢3) cosé, n; = T(('l + ¢3)sinf,
q q ’

Wr=0 W;y=0 W;=0,
’ G b o) " 51* - 2 + E / 7
Wy, = —i((ﬁ+c:)(1‘ = ) wg =—cl((—'-—c“—)]* s
q ’ q q°
Employing Eq. (5.24) and (5.25) in Eq. (4.17), (4.18), we obtain

@ o,\*}
59 [

2K (n = 1)(n — 8)

5.2¢ ok s
(5.26) CETAGRE

gt = ;150,\*{2('11\‘ + ¢} )
dq

O\ N
5.27 ) —— Y ———
(5-27) ek PR T
(14 {Cl ()/\* Cz ()/\*}

(i + )

=0,

5.28 (NG — A) = : = —
(5-28) e ) ¢ 08 q Jq

From the above system of equations it follows that
(5.29) AT =0,

which is a trivial solution. Therefore, in a steady plane flow of an orthogonal non-
Newtonian power-law fluid of finite electrical conductivity the spiral is not possible. How-
ever, the spiral flow can exist in a nonconducting steady plane flow of an incompressible
viscous fluid or a non-Newtonian power-law fluid for which n = 8.
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Thermomechanical behavior of polycrystalline shape memory

alloys Cu-Zn-Al

CH. LEXCELLENT and P. VACHER (BESANCON)

IN A WIDE TEMPERATURE interval, on either side of transformation temperature, tension-unloading
49¢) enable the separation of the pseudoelastic and plastic strains. During these me-
chanical tests, resistivity measurements allow the evolution of the martensite fraction x to be followed
(at loading and unloading). This measurement is complemented by acoustic emission recordings. The
seems to be proportional to r used as an internal variable. In order to be operational,
the model should be completed by the introduction of an orientation parameter which accounts for

tests (1% . ..

A O
strain &Pt

the nature ot the martensite formed.

Notations

austenite,
martensite,

uniaxial strain of phase (o),

uniaxial total strain,

uniaxial pseudoelastic strain,
uniaxial classical elastic strain,

uniaxial plastic strain,

weight fraction of martensite,

weight fraction of austenite,

specific internal energy of phase (o),
specific internal entropy of phase (a),
specific configurational energy,
specific configurational entropy,

uniaxial Kirchhoff stress,

uniaxial Kirchhoff stress of phase (o),

uniaxial Cauchy stress,

uniaxial Cauchy stress of phase (),

mass density,

martensite Young modulus,

austenite Young modulus,

martensite start (finish) temperature at stress-free state,
austenite start (finish) temperature at stress-tree state,

specific entropy,
temperature,

specific heat at constant volume,
pseudoclastic strain obtained in tensile test after complete phase transtormation

(A & M),

thermal expansion coefficient,

resistivity,

training stress (at cycle '),

it x>0,
it r < 0.
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1. Introduction

GIVEN THE NUMEROUS possible technological applications, the interest in studying the
thermomechanical properties of shape memory alloys and their modelization, no longer,
needs to be justified. It is primarily a matter of introducing the effect of a martensite
transformation, induced under stress, into the elastoplastic behavior laws.

Here, the mechanical behavior of polycrystalline Cu-Zn-Al alloys is studied in the
neighbourhood of the transformation temperatures (under zero external stress), that is to
say, initially in a martensitic phase (1" < M) or in a austenitic phase (7" > A ;). When
an alloy, at a temperature 7, is subjected to a stress field o, several strain modes can be
activated.

a. If 7" < M the phase is always martensitic. Following the classical elastic strain,
a pseudoplastic strain occurs corresponding to the orientation of the martensite variants
due to the effect of o.

b. If 1" is slightly greater than M (0 < (T — M) < 30°), then it is the case of the
pure transformation associated with a thermoelastic martensitic transformation (at least
in this case where ¢ < 2%) [1] (¢ represents the total strain).

¢. As the difference (7" — Aly) increases, the stress necessary to induce the martensitic
transformation approaches that which is necessary to initiate plastic strain by gliding in
the /3-phase and an interference between the transformation and the plastic strain can
occur.

d. At temperatures much higher than M (7" — M) of the order of 200°C for the
alloy in question), only a plastic strain of the 3-phase occurs [2].

Taking simultaneously into account the cases b, ¢ and d, we obtain the complex problem
of coupled transformation plasticity. Work in this field has been done by ONODERA
and TAMURA [3] and ROMERO and AHLERS [4] for shape memory alloys and DENIS,
SJIOSTROM and SIMON 5] and LEBLOND, MOTTET and DEVAUX [6] for steels.

In order to analyze the coupled transformation plasticity in a wide temperature in-
terval (—100° < (1" = M) < 220°C), tension-unloading tests (systematic unloading
at 19%,2%. ...,4%) have been performed by assuming the classical separation: (classi-
cal elasticity and pseudoelasticity) + (plasticity). During these tests, electrical resistivity
measurements are used to indicate the volume fraction @ of martensite which is present.
Finally, acoustic emission recordings allow the evolution of z to be followed as a function
of the applied stress.

The present study includes:

i. A description of the experimental procedure of the tensile tests and, in particular,
the measurements of resistivity under stress and acoustic emission.

ii. An evaluation of the obtained experimental results.

2. Experimental procedure and results

2.1. Experimental procedure

2.1.1. Material — thermal treatment — mechanical tests. The two shape memory alloys, fabricated
by the company “Trefimétaux”, have the following weight composition and transformation
points (resistivity measurements under zero stress):
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% weight | Cu Zn | Al Zr Mg Fe P Mp°C | Mg Ag Afp
R205 | Al'| 67.93 | 28.07 | 4.00 [ 275PPM | 231PPM | 60PPM | < 20PPM | —110.5 | —98 | —94 | —91
RI50 | A2 ] 67.56 | 28.45 | 3.99 & " " i —148 —137 [ —136.| —133

For I" > Ap, the desired metallurgical state is the F-monophase austenitic state. In
order to obtain this condition, a standard heat treatment has been chosen of 10 min. at
850°C in air, followed by a water quench. Note that the amount of aluminium in the alloy
is sufficient to produce a fine layer of impermeable alumina which protects the sample
[rom rapid corrosion or from dezincification [7]. Following the treatment, a metallurgical
examination indicates a single phase (austenitic J-phase) with an average grain size of
& = 300 p. The machined samples have a gauge length of 25 mm and a total length of
75 mm. The rectangular cross-section is 10 mm wide and 0.6 mm thick for Al and 3 mm
thick for A2.

The tests are performed on an “Instron” tensile machine. It consists in uniaxial tension-
unloading tests, with systematic reloading at 1%, 2%, .. ., Yo:

i) an imposed strain rate of Al = ki,

i) an imposed force rate of I' = (.

2.1.2. Measurement of electrical resistance. The use of this technique is based on the simple idea
which says that every change of phase inside a material leads to a variation of its physical
properties. For shape memory alloys, the variation of electrical resistivity of a sample,
during the transformation, is one of the physical variables which is easily measurable;
moreover, this variable shows well the change of the structure.

The total transformation from austenite into martensite of a copper SMA leads to an
increase of resistivity by 25%.

From the resistivity values of austenite and martensite, and il we use the mixture law
in case of two mixed phases, we are able to determine:

i) the four transformation temperatures, which are characteristics for the material
(Mp. Ms, As. Ap) and the associated hysteresis loop (free stress, variable temperature),

ii) the volume fraction of martensite which exists at any time, during an isothermal
loading-unloading tensile test.

A test steady current 7 is applied to the sample (here: ¢ = 4.4). We have to measure
the voltage [/ applied to the sample, so we can determine the resistance 2.

The resistivity measurement is not easy in our case, and it is almost zero (r = 107'Qm
for a copper SMA).

The measuring instruments have to be very sensitive and without parasites. Therefore,
we use the “four wires” method. The current goes between two welded wires (Laser weld),
which are situated at both ends of the sample. We measure the voltage between the two
wires at the intermediate positions. This method enables us to suppress the error due to
the resistance of the wires.

During a tensile test, the resistance varies like:

(2.1) R(t) = 1'(1,)[,(—[).

S(1)
If we suppose to have small strains and the volume variation of an austenite domain giving
martensite is less than 0.5%, we can find the resistivity » of the alloy from the formula
(form the voltage U)
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r U )
(2.2) — =~ —(1 = (1 +2r)s), withr =0.5.

Fa 0
Poq (o) 18 the resistance of an austenite (martensite) domain without strain. If we
consider a linear mixture law, we can write
r(z)/roa — 1
(23) 7’(3) = T'[)”(l = :) T "Hm(:) =z = —-,’—“.
l'nm/"lm -1

2.1.3. Measurement of acoustic emission

a. Introduction

Acoustic emission (A.E) (more exactly stress waves emission) is a phenomenon of
creation of transient elastic waves due to local microdisplacements inside the material.

The ultrasound A.E. results from a rough and very localized energy relieving, which
is produced, inside the material, after a quick microstructural change.

When we obtain this A.E. by means of appropriate sensors, we can determine the
mechanism which lead to this energy relieving.

The emitted ultrasound wave gives us workable information, and moreover, the signal
contains a lot of dynamic information on the mechanism of the emission. Therefore, an
analysis of the signal seems to be a very attractive tool to study dynamics of the physical
phenomena which provide A.E. These phenomena are very varied: plastic deformation,
cleavage and fracture inside the materials fracture produced by thermal shock, twinning,
displacement of domain walls, martensite transformation.

In the case of thermoelastic martensite transformation of SMA, the observed A E. is
“discrete”.

It is difficult to give an accurate analysis of this A.E., which is observed as an electric
signal by a piezoelectric transducer, followed by amplificators and filters. It is usually
analyzed by counting the number of times the electric signal furnished by the transducer
crosses a pre-established threshold level (ring-down counting technique).

This technique is very sensitive but provides only qualitative information: hence, the
physical origin of the A.E. source cannot be obtained from this kind of measurements.

b. Equipment and data processing
SOURCE — SENSOR

Ultrasonic waves, which carry the A.E. information, are changed into an electric volt-
age by means of a A.E. sensor which often uses the piezoelectric effect. This sensor is
indexed at the end of the sample. It resonates in a mechanical way because the ultra-
sonic wave is jammed between two interfaces: the entrance face and the exit face of the
piezoelectric element.

AMPLIFICATION — FILTERING
The signals coming from the sensor have usually a very small amplitude, so they have

to be amplified.
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RING DOWN COUNTING

The signals coming from the sensors, in response to the waves coming to the sensor,
seem 1o be random not only in amplitude but also in duration. So, we have first to
change them in measurable and registrable values, regarded with another parameter (time,
lemperature, strain, slre.ss).

In order to try to measure the martensitic transformation, the chosen measurable value
is the cumulated energy 1.

2.2. Elementary analysis of the tensile curves

. . N I . . Q
The tension-unloading curves for the Al composition will be examined first (¢=
10~* s~ with the hypothesis of small strains).

2.2.1. Strain in the martensitic phase. (]T < AU[) In the ltemperature interval from —196°C
to —97°C, the strain ¢ of the purely martensite phase, with the platelets oriented in an

o
[MPa] [
400

Al

300

200

100

G
[mPa] A1

500 /—

400 y
300 - /
200 + /

100 —

/
| | |} l 1

etf)

FiG. 1. Strain curve (o — €) in the pure martensitic state (A, e= 10-4~1, T = —115°C, —129°C).
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initially random fashion, can be divided into a reversible strain ¢/
o G
(2.4) o =
~ M

where [y is Young’s modulus of martensite of the order of 3.4 10* MPa and nearly
independent of the temperature, and an irreversible strain 5'{"‘” which is mainly produced
by the movements of the interface between the variants which orient themselves under the
effect of the external stress applied. In the case of extreme strain up to 17%, which is not
the case here, a transformation of this martensite into a new martensitic structure can be
obtained [8]. Figure 1 (1" = —115, —129°C) shows a very slight hysteresis corresponding
1o a partial reorientation of the martensitic variants at unloading (caoutchouc eflect).

Elfl’” can be found at unloading as

(2.5) ehM = anr(o + b(T - Ay)),

with ap; of the order of 1- 107*MPa~' and h around 2MPa°C~".

6
[MPa] Al
500 |

400
300
200 —

100 —

G
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Fi1G. 2. Coupled transformation plasticity curve (:'= 0~¢s~L AT = =73, 72, [ = —13°C).

http://rcin.org.pl



a = = G
[MPa] [MPa]
500 A1 500
400 400
300 300
200 200
00 100
1 1
0 a 3 4
£'[%]
G D ¢ d
[MPa] [MPa]
500 500
400 400
300 300
200 200
100 100
1 1 I
0 1 2 | 4 a & 4
e'[%] elf%]
Fi6. 3. Pure pscudoclasticity curve (= 10-4 51, A, T = —44°C,20°C, A3, T = —40°C, —70°C).
10 g
el ) m Al
et/ 2
) %
o 2
08 3%
u]
B 4%
06 \
04
0zt
| Me Mg A Ap
'
\\\ \\ // 7
0 AENN| \'qﬁlﬁﬂ gLt e TR R T S N 1w
-160 -120 -80 -40 0 40 a0 20 _ ., . 160
T(°c)
FIG. 4. Evolution of the ratio =<' /e 7" as a function of the temperature (at fixed e = 1%,2%, ...4%).
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2.2.2. Purely hyperelastic behavior (pure transformation plasticity). This behavior, which is charac-
teristic of the shape memory alloy, is produced at temperature slightly higher than the
phase transformation temperature (0 < (7'— A,) < 20°C). The material is initially in the
austenitic state. The application of an external stress o (which results in a shear compo-
nent in the habit plane) can favor the strain by microscopic shear and is observed once a
martensitic variant appears. For ¢ < 2%, the behavior associated with the transformation
is purely pseudoelastic (Fig. 2, £= 107%~1, A; : 7' = =73°Cand A, : T" = —130°C),
while for ¢ = 3%, a plastic strain appears.

2.2.3. Coupled transformation plasticity. In the temperature interval 30 < (7T — A,) < 200°C, a
purely hyperelastic domain no longer exists.

For a fixed total strain ¢, the proportion of pseudoelastic strain decreases with increas-
ing temperature (Fig. 3, A, : 17" = —44°C,20°C, A, : ' = —40°C, —70°C). Figure 4,
which presents the evolution of the ratio of elastic strain to the total strain with variable
temperature 7', shows the decrease of the potential of these alloys.

6
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FIiG. 5. Elastoplastic behaviour of pure austenite (€= 10"%"1 A, T = 100°C, A2, T = 80°C).
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2.2.4 Elasto-viscoplastic behavior of pure austenite. For a temperature (T = \5) of the order of
200°C, the pseudoplastic strain disappears completely; there exists a temperature My
(Martensite death) from which, regardless of the applied stress, martensite no longer
forms (Fig. 5, <1, : T = 100°C, A, : T = 80°C).

G
(MPg)
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400

300

200

% o

100 +—

0 1 L 1 | | I | 1 I I 1
~140 -100 - 60 20 20 60 100

Fic. 6. Fvolution of the applied stress with the temperature (at fixed ¢ I - 19%,2%,...4%).

2.2.5. Evolution of the applied stress with the temperature (at a fixed total strain). Figure 6 shows that
the stress o:

e attains a minimum nearly coinciding with the phase transformation temperature (the
energy necessary either to orient the platelets (1" < Mp), or to form oriented platelets
directly (1" > M), increases with the distance from the phase transition temperatures),

e passes by a maximum near the temperature My; from (T — A;) > 30°C, the
viscoplasticity of the austenite plays a more and more important role with increasing
temperature, and its evolution is the inverse of that of the energy necessary (0 the trans-
formation.

2.2.6. Simplified approach to the hyperelastic and plastic behavior. For uniaxial tensile tests, the total
strain ¢ can be partitioned in the classical fashion

(2.6) g = e+ ¢"E 4¢P
with the classical elastic strain defined by

(2.7) d= =

- 0 Tk

The obtained pseudoelastic strain can be approximated by a linear law (even though this
is not altogether the case at the beginning of the phase transformation)

(2.8) e'E = alo — oy)
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Fic. 8. Evolution of the plastic strain €P' with the applied stress.

with a(, yield stress for the phase transformation,

a=1.1-10"* MPa™!,
b = 3.45 MPa/°C  (Fig.7).

Note that the value of b obtained experimentally is higher than the value of 2 MPa/°C
usually obtained on these Cu-Zn-Al alloys.

(2.9) oo(Ty = (T = M) with {
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The plastic strain is represented in Fig. 8. As a first approximation, a viscous hardening
law 1s chosen,

(2.10) (0 —on(1) = N () E)! M D),

This partition of the strain allows for a simple modelling. But is does not take into
account the particular character of the martensite transformation.

2.3. Determination of the volume fraction 1 of the martensite lormed

As we explain in Sec. 2.1.2, the resistivity measurements are used in a classical way as
an indication of the fraction of martensite that has formed during the mechanical test.

If the effect of the martensitic transformation induced under stress on the elasto-plastic
behavior of the material is to be modelized, it is necessary to measure the fraction z of
the martensite formed.

During the tension tests, at imposed & (- o= 0.55 MPa/s the variation of the
voltage at the sample boundaries has been measured by the four points method.

In the pure martensitic state (. —115°C = 1" < AMp), the strain due to the ori-
entation of the martensite platelets under the influence of o has the property of slightly
increasing the resistivity ol the sample (Fig. 9). The variation of this resistivity ra(1)
with the axial strain £;; has been taken into account. At those temperature values where
no more martensite is induced under stress (1, 7" = 101°C, Fig. 10), the measurements
show that even significant plastic strains (up to around 10%) barely modify the resistivity
of the austenite (variation less than 5%).

The volume fraction of the formed martensite is given by a slight modification of Eq.
(2.3) by taking into account the low variation of ryy with &yy:

i)
(2.11) AR VI

where the resistivity of pure austenite is g4 = r,4(<q1), and the resistivity of the martensite
at strain <y is ray = rag(eyy) and rong = rag(ey = 0).

2.3.1. Evolutionary law of the transformation austenite = martensite. The evolution of x. with the
applied stress o is nonlinear (A, Fig. 11). The threshold value for the beginning of
transformation obtained from resistivity measurements is nearly the same as that which
governs the pseudoelastic strain equation (relation (2.8)). This observation is logical.

A classical formulation is chosen for the kinetics of the phase transformation. It was
expressed by KOISTINEN and MARBURGER [9] and applied to shape memory alloys by
TANAKA et al. [10],

(2.12) ro=1=—exp(—a. <o—a,>),

with

ay = b(T = Mg).
The plot of In(1 = x..) allows a. of the order of 7 107 MPa to be obtained (Fig. 12),
which gives a rather slow kinetic effect as compared to that which could be obtained by
the effect of only the temperature (austenite = martensite by cooling of the sample of
Mgto Mg,o =0).
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FiG. 13, Determination of the equation of evolution of the restituted martensite at unloading.

For simple thermal effects, the term «.b can be calculated using the metallurgical
hypothesis that the transformation is complete when = = 0.99

2Ln 10 , .
b= ———— = a.—0.184 MPa™".
Meg — Mp
In fact, when self-accomodating variants are formed by purely temperature effects and
preferentially oriented variants by an external stress, it 1s logical that the rates of the
processes are not the same.

2.3.2. The law governing evolution of the fraction of residual martensite r; (at unloading). It mighl be
supposed that just after the sign inversion of the stress (do > 0 = do < (), the resistivity
decreases slightly due to the partial reorientation of the martensitic variants previously
polarized under the eflect of the external stress during loading.

This means that @, = »y (19%.2%...) should not change. When o decreases to
altain the threshold value oy, = (1 — A¢) then the inverse transformation martensite
= austenite can begin. This analysis is confirmed by examination of the Fig. 13.

Experimentally, the kinetics of the fraction of residual martensite is obtained,

(2.13) g = ag(n%yexp(—ad < oy — o >),
with @, decreasing with the temperature, a, can be modelled by

14

— S P,
T—A, ¢

Qg =

For pure temperature test, we obtain
2Ln 10

tgb = ——— = a, = 0.92.
Arp — Ag
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As the temperature moves farther and farther away from the transformation tem-
perature :lg, the restitution of the martensite becomes more and more diflicult, appar-
ently blocked by the plastic strain (which also increases with ¢ = 1% ...4%) in tension-
unloading. In any case, the reversed kinetics (martensite = austenite) is always slower
than that obtained under the eflect of only the temperature (1" varying from Ag to Ap,
a=10).

2.4. Acoustic emission data [[1]

As we have explained in Sec. 2.1.3, in order o try to quantify the martensitic trans-
formation, the cumulated energy /2, has been calculated at the instant /.

15 |- o gPe
- + “x"%x97
- o (Energie "E-A")/A%g7

05

a 300 G(MPa)

FiG. 14, Evolution of the fraction & of martensite and the cumulated energy (measured by acoustic emission).

In reference to a thermodynamic formulation of the energy associated with the trans-
formation [ 1], the following hypothesis is made:
(2.14) I’y = Az,
and the parameter | chosen such that

(2.15) i s
(Loc)

where (/74)n — maximal cumulated energy obtained by acoustic emission at the end of
loading, (ry.) — volume fraction (. measured by resistivity at the end of loading.

The results show that the plot of the normalized cumulated energy [, /A as a function
of the stress a, coincides with the evolution of x with o (Fig. 14).

Even if the numerical value of the measured cumulated energy 7, is not assumed to
be accurate, its evolution seems to coincide with that of the fraction of the martensite

formed.
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FiG. 13. Determination of the equation of evolution of the restituted martensite at unloading.

For simple thermal effects, the term a.b can be calculated using the metallurgical
hypothesis that the transformation is complete when r = 0.99
2Ln10
In fact, when self-accomodating variants are formed by purely temperature effects and

preferentially oriented variants by an external stress, it is logical that the rates of the
processes are not the same.

ab = a. —0.184 MPa™',

2.3.2. The law governing evolution of the fraction of residual martensite 1, (at unloading). It mi_uht be
supposed that just after the sign inversion of the stress (do > 0 = do < 0), the resistivity
decreases slightly due to the partial reorientation of the martensitic variants previously
polarized under the eflect of the external stress during loading.

This means that xy = x4 (1%,2%...) should not change. When o decreases to
attain the threshold value ooy = b(T — Ag) then the inverse transformation martensite
= austenite can begin. This analysis is confirmed by examination of the Fig. 13.

Experimentally, the Kinetics of the fraction of residual martensite is obtained,

(2.13) vy = ry(n%)exp(—ad < oy — 0 >),
with a,; decreasing with the temperature, a4 can be modelled by
18]

—1
AQq = 4/ MPa™ .
© T-A4,
For pure temperature test, we obtain
2Ln10
b= —--—=0a,=092
-'ll“ s l‘,
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As the temperature moves farther and farther away from the transformation tem-
perature /g, the restitution of the martensite becomes more and more difficult, appar-
ently blocked by the plastic strain (which also increases with ¢ = 1% ...4%) in tension-
unloading. In any case, the reversed kinetics (martensite = austenite) is always slower
than that obtained under the eflect of only the temperature (1" varying from As to A p,
a=0).

2.4. Acoustic emission data [11]

As we have explained in Sec. 2.1.3, in order to try to quantify the martensitic trans-
formation, the cumulated energy F; has been calculated at the instant {.

———

15 o g€

|l L “x"xg7
- o (Energie "E-A")/A%a7
10
a5
o 300 G(MPa)

FiG. 14. Evolution of the fraction . of martensite and the cumulated energy (measured by acoustic emission).

In reference to a thermodynamic formulation of the energy associated with the trans-
formation [1], the following hypothesis is made:

(2.14) E, = Az,
and the parameter : chosen such that

- (I‘jt)mux

("ll)c) .
where (/7;)n — maximal cumulated energy obtained by acoustic emission at the end of
loading, (2.) — volume fraction (. measured by resistivity at the end of loading.

The results show that the plot of the normalized cumulated energy £, /A as a function
of the stress o, coincides with the evolution of » with o (Fig. 14).

Even if the numerical value of the measured cumulated energy [, is not assumed to
be accurate, its evolution seems to coincide with that of the fraction of the martensite
formed.

(2.15)
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3. Brief thermodynamic analysis and comparison with other models

3.1. Associated thermodynamic model for pseudoelastic behaviour

In the conditions of pure hyperelastic behaviour (A;,T = —80, —70°C, ¢ < 2%,
(e} . fs . = -
o= 0.55 MPa/s). Fig. 15 shows that correlation between the pseudoelastic strain "

ePE(%) o
20+ A1 "
4B
= + NX”*_?,Z
16 —
12 - o
/ﬂ
- D/
sl /#
0 /+
4+ &
Wﬂﬁ/“’/
gt o=t
0 0
Epﬁ(o/n) =
B Al
-Lsi O “X"%x41 /;V“/pr/:?
L &
12
osf
a4}
e
T 11
4 200
o(MPa)

FiG. 15. Proportional evolution between £ and 2 with the stress
(A, =T = =80°C, =70°C, T < 2%, 6= (.55 MPa/s).

and the martensite fraction z is possible (in loading as well as in unloading). This yields
@1

. 01 o
with 7'= 0, o= const.
For a one-dimensional approach, we consider the extended specific free energy of
two-phase system (see [or instance MULLER [12])

(3.2) [#=(1—2)p" + 200 + P

y

where @(®) is the specific free energy of the parent phase (« = 1, austenite) and product
phase («v = 2, martensite).
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The term of configurational energy @,y represents the hysteresis. According to
MULLER and XU [13], the main term of &, is the interfacial energy, but hysteresis
may also be due to lattice defects such as dislocations, elastic misfits of the phases and
elastic interaction of the neighbouring domains.

RANIECKI, LEXCELLENT, TANAKA [14] write the expression of @, in the form

(3.3) Beont = (1 — 20y (1),
with
(34) (1)“("]') = Uy — ’J‘Z().

MULLER [12] shows that we can approximate §, at 0 for single crystals, but not for the
case of polycrystals.
A common expression of the specific [ree energy @(*) in non-equilibrium state is
written in the form
, : : Iy
(@) = =@} _ p () e o Y2
(3.5) 'V =uy " = Tsy " + T(:(u) ~ €a))

—ay(T = Ty)Ey(eay — s(f“)) + ¢ [(T' = Ty) = T Lan(T/Ty)]

with — 2y = [ /o (/' — Young’s modulus, p — mass density).
In the first approximation, suppose that

o = p@ _

BN = O = E.
Here H,’;("), .wf,(”) — specific internal energy (entropy) of each phase at stress-free state,
and at a chosen reference temperature 7Ty, o, — thermal expansion coefficient, ¢, —
specific heat at constant volume.
The austenitic and martensitic strains purely associated with the phase transformation,
are
el v P I gy
(3.6) € =0 and €5 =7.

Thus, we assume that the austenite strain is elastic and equal to the elastic strain of
martensite

(3.7) Em) = Eiy— 7+

The intrinsic Cauchy stress a(,) corresponding to total strain ¢, is defined by
bl

(3.8 Tia) = 0= .

3.8) GOt # o

With the expression for ¢(*) Eq. (3.5) and hypothesis (3.7), we obtain with Eq. (3.8)
(3()) U(l) = (T(;'_) = 4.

Properties at constrained thermodynamic equilibritn

RANIECKI et al. [14] adopt at thermodynamic equilibrium the concept of KESTIN and
RICE [15] of “constrained equilibrium”.
Using the expression of the total strain ¢

(3.10) €= (1—-a)qn +xeq
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with
(3“) 5(|)=5(2)—'),
we can determine ;) and £y
(3.12) E=€E—2y, Efm=¢c+(1-2),
which implies
P . e
(3.13) o=y i E(e —ay — ay(T = 1y)).
ge

By substituting Eqgs. (3.12), into Eq. (3.5) and the result obtained into Eq. (3.2), we
obtain the following form of the free energy function at constrained equilibrium:

- 1 5 s T gt
‘I),-(;"..I‘.‘I ) = 5['.[)(5 = J"})“ - (ln([ - ‘l,()) I'.(j(f — I‘;)
(3.14) + &[(T = Ty) = T Ln(T/Ty)} + *(z, T),
P = u;“) = "!‘.sf;m - ‘1'7“.{(‘1‘) + &g, 1),

with
. _ =) =(2)
(3.15) Wl)f(T) o At — TS Au* = ty 1 ty "
As* = &.-*( ) qw(")
. S Sy

F{{(Y.) represents the “driving force” for temperature-induced martensitic transformation
at the stress-free state.
It can be verified that the pseudoelastic part of the total strain is
p p
2PE_th
(3.16) £ = .

The specific entropy s can be defined in a classical manner and thus the driving force of
the phase transformation 7/ is given by

b, od.
3.17 s=——2 wf=-==
) or: " D
and the Clausius—Duhem inequality by
(3.18) dD = 7fdx > 0.

The Clausius-Duhem inequality preludes the parent-martensite transformation at states
where 7/ < 0 and prevents the reverse transformation when mf > 0. 7/ = 0 corresponds
1o a line of unstable equilibrium separating two domains (the one where A — M(xf > 0)
and the other where M — A (7 < 0)).

To specify the flow rules, we assume, as in “plasticity”, that there exist two functions
O (xd ) (a = 1,2) such that an active process of parent phase decomposition, (d.r > 0,
the forward transformation) can proceed only when ¢»(!) = const(d¢:(") = 0), and an active
process of martensite decomposition, (da < 0, the reverse transformation) can occur only
if @ = const (d¢'®) = 0)

(3.19) pO = 7/ — k@), @ = —nf + £D(2).

In order to model the external loops (corresponding to complete phase transformations),
the direct transformation is governed by 7/ = k((x) (i.e. 1 = 0) and the reverse
transformation by 7/ = k@ (2) (ie. v® = 0).
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For internal loops, if T is the extreme point attained before inversion of stress, there
is a slight modification

A-M W
M—-A @

—kN(@) = cte < 0,

3.20
(3-20) +k@(T) = cte < 0.

To be in accordance with the phase transformation kinetic laws suggested by expressions
(2.12), (2.13) [10], we assume
(3.21) EM(2) = —=(A; + Biz)Ln(l — 2) + Cz,
o k@(z) = (A; — By(1 — 2))Lnz — Cy(1 — ),
with
Cy = 2‘pi1(“1'[£))~ C; = 2@;1(51(5'),

(322) (11/‘1 = A.‘;* e EU« (L;!r‘lz = ,;\S* + .?(),

”IBI = (!2[}2 = E[).

Note that the pseudoelastic strain is bounded by the value v(1"), which is logical from the
physical point of view.

3.2. Introduction of a training variable X',

The models developed in pure pseudoelasticity can be used to model a training pro-
cessing by slight modification to introduce an internal auxiliary variable X, [16]. A cyclic
tension-unloading test (/\,,(5)= 1073 s71, 0 « 2%, T = —70°C) has been performed.
These thermomechanical conditions correspond to a purely hyperelastic behavior.
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FI1G. 16. Purely mechanical education curve Aj (cycle O — 2%) T = =70°C, e=10"3s" L
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The stress threshold of the transformation diminishes with the number of increasing
cycles (Fig. 16). At the first loading, the equation of the surface criteria is written,

(3.23) oa—b( - My)=0—-0,=0;
at the n-th loading
(3.24) o+ X, - 0T - Ms)=0.

In uniaxial tests, X', constitutes the measure of decrease of the transformation threshold
with the number of cycles.

160 —W
o
&(MPa) L%s A,
L X,
120 |- 2x(T-Ms)
=}
‘KD i
B -0 _d
— o - = -
80 -
L
0 +
1 | 1 | | 1 | 1 | 1 l L Il | 1 ) SN I S N
i 2 4 6 8 10 12 14 16 18 20

FiG. 17. Evolution of the internal variable X', with the number of cycles.

As the cycle (o, ¢) tends to close in a stabilized form, X, stabilizes after 15 cycles
(Fig. 17).

(3.25) x.=1—exp(—a. < a+ X, — 0T - Mg) >), P8 — ol
with X, = X (V), N — number of cycles.
4. Conclusion
The tension-unloading tests (19%. 2%, ...4%) enable the separation of the hyperelas-

tic and plastic strains. Resistivity measurements constitute an important indicator of the
volume fraction » of the martensite formed. These observations are complemented by
the information provided by acoustic emission recordings. However, a problem of dis-
continuity in the classical formulation [9, 10] of the evolutionary law for the martensite
fraction (in loading and unloading) is observed, depending on whether the transformation
is made under the eflect of applied stress (at constant temperature) or at variable tem-
perature (and zero stress). In other words, if 2 is a necessary internal variable to describe
the hyperelastic behavior, it is not a sufficient one. An orientation parameter must be
introduced to indicate the nature of the formed martensite, which is different under the
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effect of a uniaxial loading on a polycristalline sample than by isotropic cooling. This is
apparently the reason why certain models [17] are constructed using a local approach.
Then, a homogenization method allows to obtain more realistic behavior laws.

Finally, the modelling of the general behavior, where pseudoelasticity is coupled with

plasticity, constitutes a difficult subject of research.
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BOOK REVIEWS

M. KLEIBER and T.D. HIEN, The stochastic finite element method. Basic perturba-
tion technique and computer implementation, J. Wiley, Chichester-New York—Brisbane—
Toronto-Singapore 1992, pp. 322.

THE BOOK containing 322 pages has been divided into two parts. Its principal contents is presented in Part
IT FEM in Stochastic Analysis; Part I. Preliminaries represents a general introduction enabling the reader to
understand and utilize the information presented in Part I1.

Part I consists of two chapters. Chapter 1 is devoted to the foundations of the probability theory and to
the discrete data representation, first of all the discrete Fourier transform. Chapter 2 deals with a deterministic
description of the Finite Element Method in the range of linear elasticity theory, with a brief presentation of
nonlinear phenomena. Statical and dynamical problems are discussed.

Part 11 is divided into seven chapters 3-9, two appendices, bibliography, index and glossary of the symbols
used in the book. Stochastic approach and the perturbation method are used to analyze the following particular
problems:

e Variational principles of linear mechanics (Chapter 3);

e Stochastic finite element analysis (Chapter 4);

e Theory of sensitivity in static problems (Chapter 5);

e Computer program SFESTA for the analysis of deterministic and stochastic problems of spatial 3D trusses
(Chapter 6);

e Problems of the sensitivity theory in structural dynamics (Chapter 7);

e Computer program SPEDYN for the analysis of deterministic and stochastic problems of dynamics and
sensitivity theory of 3D frames (Chapter 8);

e Elements of the stochastic Finite Element Method FEM used in nonlinear mechanics (Chapter 9).

Two appendices A and B represent user’s manuals for two SFESTA and SPEDYN computer programs. The
corresponding IBM PC modules are available trom the Publisher. The bibliography contains 126 reterences.

To the best knowledge of the reviewer, the book reviewed is the second monograph dealing with the
problems of stochastic FEM. The first one was the book by E. Ghanem and P.D. Spanos, ,Stochastic finite
clements: a spectral approach, Springer Verlag, 1991. The stochastic Finite Element Method is concerned, first
of all, with linear problems of structural mechanics characterized by random properties. The randomness of
the material and geometric characteristics of structural elements leads to nonlinearity of the stochastic type,
thus making it impossible to obtain accurate solutions. The most popular method of solving such problems
is the perturbation method which, together with the FEM, constitutes a certain variant of the stochastic finite
elements. The authors of the book apply consistently the second-order perturbation approach to the expected
values, and the first-order approach to the covariance matrices.

It is generally known that the stochastic FEM may be used in the cases when the range of variability of the
random parameters or functions is small enough.

According to reviewer’s opinion, the principal advantages of the book are the following:

Part T of the book, which enables the unprepared reader to follow the considerations presented in Part II.

Formulation of the mathematical foundations of the stochastic FEM.

Analysis of a wide range of stochastic problems of mechanics of structures, such as the static and dynamic
problems, sensitivity of structures, and inclusion of the computer programs enabling the readers to perform the
numerical analysis of the problems discussed in the book.

The scope of the book is very close to the needs of modern design engineers, since the mechanical properties
and dimensions of real structural elements usually exhibit a random character, and the sensitivity analysis is
tightly connected with the optimization of structures.

To conclude the remarks concerning the valuable and interesting monograph, the question may be posed
whether the theoretical considerations and the computer programs presented in the book will be actually used not
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only by the research statf members of scientific institutes, but also by professional engineers active in structural
design practice? In my opinion, the actual level of theoretical preparedness of civil and mechanical engineers
is still insufficient to enable them to comprehend and implement in practice all the results derived in the book.
However, modern development of technology proves that certain theoretical approaches and solutions may be
well ahead of the actual level of design methods used in technology. The book may also have a considerable
impact on the teams active in standardization of the engineering design.

L. Bielewicz
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The 30th Polish Solid Mechanics Conference will be held in Zakopane, a renowned
resort at the foot of the Tatra Mountains.

Following a long tradition going back to the Ist Polish Solid Mechanics Conference in
1953, the objective of the 30th Conference is to bring together researchers engaged in all
major areas of contemporary mechanics of solids and structures.

The program of the conference will include a number of general (invited) lectures and
contributed papers. The contributed papers will be presented either in oral form or at
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will be held at

Shizuoka University, Hamamatsu, Japan
June 5-7, 1995

The Symposium will be comprised of invited lectures and of the presentation and dis-

cussion of contributed papers. Ladies Program will be arranged. A post-symposium tour

of Kyoto and Nara will be organized. Group flights from the United States to Japan
will be planned.

Write for the First Announcement brochure to:

Richard B. Hetnarski, Chairman Naotake Noda, Chairman
International Organizing Commitlee International Organizing Committee
James E. Gleason Professor Dept. of Mechanical Engineering
of Mechanical Engineering Shizuoka University
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11th Aachen Colloquium on Fluid Power Technology
“call for papers”

The Aachen Colloquium on Fluid Power Technology (AFK) has been established as one
of the eminent international conferences for current topics from the fields of hydraulics
and pneumatics during the previous two decades. The colloquium has been met with
an extraordinarily good response from producers and users of fluid power technology, as
well as other interested parties. Besides reports and discussions, the three-day colloquium
includes an exhibition and poster-session where exhibits from the fields of equipment,
measuring systems and soltware are presented. At the same time, those guests who are
interested in the Department of Fluid Power Transmission and Control of the University
of Technology Aachen, can take the opportunity to view the laboratories and to inform
themselves on current research projects and new developments.

The main topics of the 11th AFK, which lasts from March 8th, 1994, until March 10th,
1994, will deal with the field of hydraulics during the first two days and with pneumatics
at the final day. The main topics of the 11th AFK are as follows:

Improvement of the Competitiveness of Fluid Power
Energy Saving Measures

New Concepts in Mobile Hydraulics

Hydraulics in the Plastics Industry and Metal Forming
Economical and Environmental Use of Pneumatics

6. New Developments of Pneumatic Components and Systems

el

o b

On each of the main conference topics several lectures, which last for maximally 15
minutes, will be held. Anyone interested in contributing a paper to the conference is
requested to forward an abstract (maximal two letter-size pages) of his article to the
following address by May 31, 1993, at the latest.

nstitut fiir Hydraulische und Pneumatische Antriebe und Steuerungen der RWTH Aachen,
Steinbachstrasse 53, W-5100 Aachen, Germany
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