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On the Laws o f Irreversible Phenomena. By Dr. L a d is l a s

N a t a n s o n , Professor o f Natural Philosophy in the Uni-
versity o f Cracow *.

IT can scarcely be doubted that the theory of dissipation of 
energy is still in its infancy. Reversible phenomena 

are well understood, but tbey do not involve dissipation at 
all ; and what is known about irreversible phenomena is 
merely the qualitative aspect of tbeir generał laws. In fact, 
of the generał quantitative laws of irreversible phenomena 
we are as yet utterly ignorant. No w I venture to think 
there is a generał principle underlying irreversible phenomena 
wbich is easily seen to be consistent with fact in yarious cases 
well inyestigated : it is an extension of Hamilton’s Principle, 
and (with much diversity, of course, as to form and gene- 
rality) has been stated by Lord Rayleighf, by KirchhoffJ, 
by v. Helmholtz §, and by M. Duhem ||. It seems that propo-

* From the Bulletin International de l'Acadernie des Sciences de Cra- 
covie, Mars 1896.

t  Proceedinga of the London Mathematical Society, June 1873.
‘ The Theory of Sound,’ i. p. 78 (1877).

t Vorlesungen iiber Mafh.-Physik. Mechanik, 1876, Vorlesung xi.
§ Borchardt-Crelle’s Journal f .  Mathematik, Bd. c. (1886); Wissen- 

schaftliche Abhandlungen, Bd. iii. p. 203; ibid. Bd. ii. p. 958; Bd. iii. 
p. 119.
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386 Prof. L. Natanson on tlie

sitions equivalent to those indicated by these inyestigators 
could be enunciated in the form of a simple and very generał 
formuła ; we yenture to think that the fundamenta! principle 
which it embodies is worth attention. Besides, it seems to 
afford the proper foundation for an attempt to arriye at some 
deeper insight into the laws of dissipation of energy.

P a r t  I.
§ 1. Introduclory.— Conceive a system : it may be either 

finite or infinitely smali ; it may be an independent system, 
or it may be only a part of some other system. Let the state 
of the system, at time t, be determined by the values of 
certain yariable ąuantities, qP and of their first differential 
coefficients with respect to the time, s{ or dqjdt. We shall 
suppose that the energy of the system consists of two parts, 
the first of whicb, T, is a function of the qt and the s;) homo- 
geneous of the second degree with respeet to the s., and the 
second, say U, is a function of the qi only. Let $ denote the 
absolute temperaturo of the system : 3 may be an independent 
yariable, or otherwise it must be a definite function of the 
variables. Suppose that the quantities qv si received certain 
arbitrarily chosen infinitesimal increments Sqv Ss{ ; the energy 
T will then become T +  ST, and U will become U +  SU. Let 
then be the work done on the system reversibly,
during the transformation, by extraneous forces, and let SQ 
or SRAft be the quantity of heat simultaneously absorbed by 
the system from the exterior; P{ will then be the generalized 
or Lagrangian extraneous “  force ”  in the “  direction ”  of 
the yariable qi, and ]1( will be the “  caloric coefficient,”  as 
it is called by M. Duhem, or the generalized “ thermal 
capacity”  of the system with respect to the yariable q..

With respect to the quantity SQ we now make the following 
assumption, which we shall find is in accordance with fact. 
Let us suppose that every yariation 8q. takes the special value 
dq. or s d t ; then the values of the yariables qi will become 
qi +  dqi; the energies T and U will become T +  c/T, U +  rfU ; 
the work done by external forces will be £P idqi \ and the 
quantity of heat absorbed will be dQ or SR/Zr/.. I f  now the 
yariables be allowed to return to their primitive yalues qv T 
and U will resume their former yalues T, U, the external 
work — 2 Pjdqi will be done, but the quantity of heat absorbed 
will generally not be dQ but a different quantity, say dxQ.
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Laws o f Irreyersible Phenomena. 387
Write 2<fQ= +  c?Q — <?iQ, . . . . . (1)

and +  d°Q =  +  dQ —d'Q, ; • • ( 2)
therefore - d o Q - - ^ Q - ^ Q .  . . . • • (3)
We have +  dQ =  + d°Q + d'Q, . • • (4)
and —d1Q = —d°Q, +  d'Q,; .  . . • • (5)

thus d°Q is the reyersible, and d'Q, the irreyersible part of 
the heat absorbed. Now, if we assume that these ąuantities 
are of the form

d°Q =2R \dqti d'Ql=XR!slqi, . . • • (6)
we maj consider the new ąuantities

S<>Q=2RoSęti S'Q=tU%Iv . . .  (7)

80Q + 8'Q gives again SQ. Let us generally deflne SQ, S°Q, 
S'Q to represent the expressions which resalt if in the ex- 
pressions of the ąuantities dQ, d°Q, and d'Q (which we sup- 
pose to be empirically known*), yariations Sq. are substituted 
in place of the corresponding differentials dq{.

§ 2. Statement of the Principle.— Let us consider a given 
period of time, from  ̂=  ̂ 0 to t= tv Let Sqv S.s., ST, SU, 
SPfSę1., as usual, represent yariations which, between the 
limits t =  t0 and t —tX) are functions of the time susceptible of 
being differentiated, and which vanish at these limits them- 
selves; finally, let SQ, S°Q, S'Q be the corresponding in- 
finitesimal expressions calculated as above stated. The 
following principle seems then to hołd in physical phenomena: 
between t =  t0 and t =  t1 eyents which occur in the system 
must be such that the eąuation

r 1̂ { S T - 8 U + 2 P i82j +  S Q } = 0  . . . (I.) 
%)

is satisfied. For breyity, this, when necessary, will be re- 
ferred to as the Thermokinetic Principle.

* To write down the expressions of dQ and d'Q, a much greater 
number of variables would evidently be required in most cases than to 
write dGQ ; thus in most cases many of the coefficients R° will be equal 
to zero. A  similar remark applies to the coefficients P., dT/gyj, dT/d,tj, 
and dU/Qyt.

2 E 2
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388 Prof. L. Natanson on the

§ 3. Lagrangian Eąuations.— From (I.), remembering the 
definitions laid down, we obtain by a well-known calculation

These equations, a thermokinetic extension of Lagrange’ s 
well-known dynamical eąuations, have been given implicitly 
by Helmboltz and explicitly by M. Duhem ; the form they 
take in an important particular case had been previously ex- 
plained by Lord Rayleigh.

§ 4. Ćonsewation o f Energy.— Considering a real trans- 
formation dqv ds{, multiply each of these eąuations by s.dt 
respeetively, and add ; we find

The principle of conservation of energy in its generał form is 
thus seen to follow from the thermokinetic principle. That 
inversely the thermokinetic principle cannot be deduced from 
conservation of energy is an obvious proposition which scarcely 
requires special mention.

§ 5. Free Energy.— We shall suppose in the following 
(except when the contrary is expressly stated) that one inde
pendent yai iable is the temperature ; and accordingly we 
shall use q( to indicate all the other variables. That work is 
not reąuired for merely changing the temperature of a system 
is an experimental fact ; hence, when the variables •&, qv and 
s. receive increments 8 ,̂ &{, the work done on the system 
will be still (in our present modified notation) and no
term including Sd will appear. Yariables with such properties 
attributed to them have been employed by Lord Kelvin as 
long ago as 1855 ; they have been often adopted in generał 
thermodynamical iirvestigations. M. Duhem calls them 
“  normal ”  variables.

Let us suppose that ■&, qi represent a system of “  normal ”  
yariables. Write

The function Y, if it exists, will be called the free energy of 
the system, because, as we shall find hereafter, Y  defined by 
equation ( l )  will agree in the case of Reversible Thermo-

• • (II-)

rfT +  r f U - S P ^ - r f Q = 0, (1)

2 | ^ % - S R t% = 2  ̂ S q ,  . . . (1)
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Laws o f Irreversible Phenomena. 389
dynamics with what, from Helmholtz, received that designa- 
tion. Equation (I.) accordingły becomes

£ dt {  6T -  2  Sq{ +  2 P & ,-  - R » ) »  + S'Q } = 0 . (2)

No w let us further assume that the following equations are 
true :—

d T - o -  I I - o -  m° ’ ^ _ 0 ......................... (3)

they are found to hołd good in all cases of which we have 
precise knowledge ; lastły, let us suppose that there is 110 
term containing Bi) in the expression for 8/Q. (With respect 
to this point compare § 12.) Equation (2) may now be 
divided into

........w
and

J ^ S T - S l I ^  + S P ^  + S ^ ^ O .  . (III.)

This equation expresses the principle in a form si mi lar to 
that of equafion (I.). It is a useful equation, owing to the 
readiness with which it admits of application in various cases, 
but its abstract generality is of course much more restricted 
than that of the fundamental equation.

§ 6. Reversible Dynamics.— In Dynamics properly so-called, 
i. e. in Reversible Dynamics, ideał phenomena of motion are 
dealt with, and the notion of temperaturo is not taken into 
account. Therefore, in Reversible Dynamics a function Y  can 
be considered, depending on the remaining variables q. only, 
which does not differ, except by a constant, from the “  poten- 
tial energy ”  U ; this is a remark already madę by M. Duhem. 
Of course it must be restricted to the Dynamics of points and 
of rigid bodies, sińce, for instance, in Hydrodynamics and 
Aerodynamics the difference between the quantities V  and U 
is yariable and depends on the compressibiiity of the fluid.

From (III.) we obtain, leaying out the irreversible term 
S'Q, the fundamental principle of Reversible Dynamics.

§ 7. Electromagneticirreversible phenomena.— Energy stored 
in the setlier can be transferred to matter and converted into 
heat; this phenomenon, when it occurs, is a thoroughly ir- 
reversible one.

http://rcin.org.pl



390 Prof. L. Natanson on the

Here, therefore, we may put R °=0  and ;
and the equation will be

I * {S T -S U  +  2P i8yi + 8 'Q }= 0 . . . (1)

We shall return to this case in § 13 belo w.
§ 8. Reversible Thermodynamics.— At present the imme- 

diate object of the science called Thermodynamics is the study 
of states of equilibrium. The modifications assumed in Ther
modynamics to occur in a system are, for that reason, virtual 
reyersible transformations which lead from one state of equi- 
librium to another one. Let us admit the following assump- 
tions:— first, that that part of the energy which we cali T is 
a constant ąuantity; secondly, that the variables are “  normal ” 
yariables; thirdly, if a function of the variables 3 and qv called 
the entropy, be denoted by S, that the term S°Q is of the 
form

+ ........(1)
and, lastly, that the supposed transformation being reversible, 
the term S'Q is equal to zero. Hence the laws of ordinary 
Thermodynamics must be contained in

p-9i=0'.....<2>
p . A i - x g % ,  +  S P ,% .}= 0 , . . .  (3)

b v _ b u  a s  , , ,
H .......................... W

Since the adopted variables •&, qi are “  normal ”  ones, we are 
at liberty to define the quantity U —SS as representing what 
in § 5 has been called the free energy of the system; hence

“ H + P ‘ = 0 :  S3 ' +  S = 0 ’ • • • W
and thus we are led to that well-known form of thermo- 
dynamical equations which we have learned from MM. 
Massieu, Gibbs, Duhem, Helrnholtz, and others.

§ 9. Irreversible Dynamics.— Let us now proceed to con- 
sider cases of motion bearing perfect analogy with ordinary

and

where
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dynamical phenomena, except that, being irreyersible, they 
do not satisfy the condition d'Cl — 0. Lord Rayleigh has shown 
how in many cases we can put

d 'Q = - 2 F < f t , .......................... (1)
employing F to indicate a function of the variables g. (sup- 
posed to be “  normal ” ones) and .si; homogeneous of the second 
degree with respect to the s., which he calls the Dissipation 
Function. The assumption we make is therefore that

=  . . .  (2)

and that

=  ............................................<3>

following the rule laid down in § 1 we put
, BF 
'B i:

and from (III.) we obtain

Laws o f Irreversible Phenomena. 391

.......................... (4)

hence
| I _ p +  M = 0. . . (6)

These aro Lord Eayleigh’s eę[uations, with Y  written in the 
place of U.

§ 10. Irreversible Hydrodynamics.— Let us now proceed to 
consider a viscous fluid ; we shall cali /i its coefficient of 
yiscosity. Owing to the viscosity of the fluid its motion is 
accompanied by irreyersible production of heat; owing to its 
compressibility, there is reyersible production or destruction 
of heat. We słiall suppose that every such loss or gain in 
every element of the fluid is being immediately and exactly 
compensated, so that the temperaturo of the element remains 
constant. At the interior of a large ąuantity of fluid we 
take a portion, of mass JjJ d.rdydzp, p being the density at the 
point (x, y, z). Let p  be the ordinary mean pressure ; u, v, w 
the components of the yelocity, X , Y, Z the components of 
the extraneous acceleration, at the point (x, y, z) and time t. 
The equations of motion, as given by Nayier, Poisson, Stokes, 
and Maxwell, are as follows :—
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392 Prof. L. Natanson on the

-4>x-S^v’“+i4!=°-• • (i>
with the usual signification of V 2 and 0. Write

PxdS, Pyd S, p . d B ..................... (2)

for the pressures, parallel to the co-ordinate axes, on the 
element dS of the boundary of the portion we are considering. 
I f the direction of the inwardly directed normal be denoted 
by n, we shall have :—

p x= [ p - 2 / ^  - i # ) ]  cos M  -m (| ^  +  |“ ) C09 {ny)

_Kli+S)cos(,,"); • • (3)
py= “KS + ly) cos ̂  + 008 (nj/)

' " t e  s ) CM("*, i  - (4)
/dw  ę)w\ , ,, / d u > , d v \  ,  . p .=  + ^ ;) c o s  cos (ny)

+  [> -2 /^ | ^ -£ 0 ) ]c o s ( 'ł t ó ) .  . (5)

If now a system Sx, By, Sz of infinitesimal virtual displace- 
ments be imposed upon the fluid, the temperature being kept 
constant, then the work 2 P .Sq. done by extraneous forces 
will be

jJdS^Sar +pyBy + p h z)  +  jjjcfo; dy dz p(X.8x +  YSy 4- ZSe);(6)

the variation of the energy T will be

ST =JjJ dx dy dz p(u8u +  v$v +  toSto); . . . (7)

the variation of the energy Y, which in Hydrodynamics it is 
usual * to cali “  intrinsic ”  energy, will be

* See, for example, that otherwise excellent treatise ‘ Hydrodynamics ’ 
by Prof. Lamb, ed. 1895, pp. 11-12, 469, 507. It is not with the true 
intrinsic energy U, but with the free  energy V  that we are here con- 
cerned; the custoniary use of the word “  intrinsic ”  seems, therefore, to 
involve a serious error.
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8V= - j j j^ dy d* p (1 ? + 3 7 + W)’ • • <8)
and, lastly, the ąuantity of heat which must be “  absorbed ”  
in order to compensate the effects of viscosity will be

Laws of Irreversible Phenomena. 393

d! Q =  — ffjdat dy dz2p.dt ■
+

(SHIHIO’-**’
i/Btf , , d u,Y! _i_x/du Bu\s
2(b?/ Br/ 2\3* 3 # /  2\Ba' Bi//

=  — jjĵ  dx dy dz 2fi-

v 3 ^  , / 3 » . 
3 «  \3,y - ł 0)

3 %
By 'J r - K

r------------------------------------------------
Jol'0

<
+  2( | " + S9< ^1

 a
* 

 ̂
1 §

■ 
+ 3<y\

3 « / 1

+ 2
/3 m , 3w v 3 dx 3 * \ (

B*/\, 3 7  + 3 * /

_ +  2( S +
Bu u
3«/A B*e

3<fa\
B y / -

In order, therefore, to comply with the rule respecting 
S'Q we have to write

8'Q =  — Jjj dx dy dz 2/i\
+

B 8y 
3y

j/Bm Bw\ /3&* B&\
Bz ^  ~dx) V Bz ' ~dx )2V 

, /3 «  3 »  v 3 fy  B8f\ 
2\B« Bj/AB# 3*/ /

KIO)

Let ns now venfy whether in the present case our generał 
principle applies. From (1) we find

I, [-<’S+'>x-sS+'*vl“+i'‘S]Si 
+ t ............... ] « ? + [ ............ . j &

3 p 3 0
= 0 ; (11)d t$ j dx dy dz < 

now
,30  ^ 3 /'Bw ia\ B /B m ,  3«>\, B / 3 «  , 3»A / m  

v " + J S = 2 s ( s - i 9) + S 'A Si +  S i J + » ’ ■ (I2)
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394 Prof. L. Natanson on the

so that from ( 8), (10), (12), and again from (3), (4), (5) we 
obtain

jj j  dxdydz$y[ — + + ]&» + [. • • •]&/+ [• • •

=  -  SV +  S'Q -  jj j dx dy dz j ~  (pSx) +  ~  (pSy) +  (pSz) j

+ f  i ,  d , l . : f . • | [ ( j “  +  | f ) s * ]  + 1 ,; [(| ‘ +  g ) & ]

i [ ( r > g > K [ ( | - > g K I
=  -  SV + S'Q + jjdS (px Sx +py hy+P'hz)................................... (13)

Further, we see that

+sKs-*)]
+

+

_  f 'dt SSSdx dy dz p( j i Sx + j t Sy+ d̂ Bz) ~  f  ' ^ ST> (14)J  to '  J t o

hecause dx dy dzp does not vary ; and collecting our results 
we see that (11) reduces to

fJto
<fc{ST -  8V + 2P, 8q, + 8'Q }=0, (14)

with eąuations (7), (8), (6), (10) to define the terms within 
brackets.

§ 11. Diffusion. — We next take two gases which are 
diffusing into one another. Let the masses of the portions
considered be j j j  dx1 dyl dz1 p1 and j j j  dx2 dy2 dz2 p2; and Sx 
and S2 their respectiye boundaries. When the motion óf the 
gases is going on, three irreversible phenomena will occur, viz., 
internal friction in the first gas, internal friction in the second, 
and mutual interdiffusion of both ; in the following both the 
first and the second are neglected. Let again uh vu wh 
u2, v2) w2 denote the yelocity components, X x, Y „ Zu X 2, Y2, Z2 
those of extraneons acceleration, pi,p2 the mean pressnre, at 
the time t and a given point of space, where at that time both 
the elements dxt dyx ds1 and dx2 dy3 dz2 of the gases happen to 
be momentarily situated. The quantities i/j and u2, and v2,
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Laws of lrreversible Phenomena. 395
w>i and w2 being, however, quite different, the elements will, 
of course, separate after a time infinitely short; likewise 8.«j 
and Sx2, Syx and Sy2, and Sz2 must be understood to be 
quite independent yariations. Let us write

fjfo
dt{8 T -  8 V  + 2P  + S'Q } =  0, ( 1)

and let us adopt, as a definition of the terrns, the following 
equations:—

8T =  8T1 +  8T2,

8V = 8V1 + 8V 2,

•  ( 2 )

•  ( 3 )

« i s + * V ) ,  • •  ( 4 )

v ł  +  W ) ,  • •  ( 5 )

1  +
+  B ^ i / '  •

•  ( 6 )

2  , B 8 ^ s \

•  ( 7 )0 V 2— _ JJJ ^  f  ^y,

fP S g . =  JJJdxl dyx dzx px (X j +  Yi hyx +  Zx Szj)

+ JJJ dx2 dy2 dz2 p2 (X 2 Sx2 +  Y 2 8̂  +  Z2 Sz2) 
+JJJrfSxpi{cos [nxx) Sxx +  cos (n^) 8^ + cos (nxz) 8zx} 

+JJJ c?S3p3{cos (n2x) 8^  + cos (n^y) Sy2 +  cos (n2z) &z2}.

The quantity of lieat generated in time dt by diffusion may 
be written

JJJ dx dy dz Apx p2{(a 2 — u1)(dxi —dxx) +  («2—«i) (dy3 — dyx)
+  {w3—wl){dz3—dz1) } ,  (9)

the expression dx dy dz being understood to mean indifferently 
dxx dyx dzx or dx2 dy2 dz2, and A  being a constant coefficient 
intimately connected with the “  coefficient of diffusion ”  of 
the gases. I f  the temperature is to remain constant, the 
quantity (9) must be taken away ; hence

8'Q =  — JJ j  dx dy dz A pxp2{ (m2 — ux) (8xa—Bx1)
+  (v3- v i)(Pys-B y l)+ {w i- w 1)(Sz3-S z 1) } .  (10)
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396 Prof. L. Natanson on the

dt f jj  dx dy d,■z< > 
X3

Substituting (2), (3), . . . .  (8), and (10) in (1), we find

[ _ ~ P i^ ~  +/>1X 1 + A/>lPs(«3~«l)]^l

+  [ ------- j f y i + [ ---------J ^ i

+ L ~p2lti + /,2Xj + AW i(m1-m 3) JSj 

+  [ ------- ]Sy3 +  [ -------- ]&

which shows at once that

P ^  +  ^ = PlXl + AP ^ ui ~ u • (12)

Pî t +  = ftX j + A w ‘ (,‘ l~ u^ ’ &c' • ,1:i)
These equations have been established long ago by Maxwell 
and Stefan.

§ 12. Conduction of Heat.—Fourier’s equation of conduc- 
tion of heat appears to belong to the class of conservation of 
energy eąuations. At first let us avoid employing “  normal ”  
variables. Since the motion of the medium and the inter- 
vention of extraneous forces are immaterial for conduction of 
heat, we may put ST =  0, 2  l\Sqi =  0, and c/°Q =  0 ; therefore 
m = S Y , and

| —5U + S'Q} =  0 , ..................... (1)
' ł0

- | | + r ; = o .............................(2)

Hence, in any real transformation, we have
_dJJ <VQ

dt + dt ’ .........................
that is to say, in “ normal ”  yariables:—

j. d3  rA\
dt ^q. dt d t ................. '  '

This is the generał form of Fourier^ equation ; usually 
BU/B^is assumed to be of the form dw dy dzpcv in an element 
dx dy dz, p being the density and cv the well-known thermal 
capacity; and the remaining BU/3 are usually neglected. 
We shall reconsider the present case from a different stand- 
point in § 19.

=  C
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Laws of lrreversible Phenomena. 397
§ 13. Electromagnetic Dissipation. —  In HelmholtzJs 

memoir “  Das Princip der kleinsten Wirkung in der Elektro
dynamik ”  *, it is shown in great generality that the thermo- 
kinetic principle holds for electromagnetic phenomena ; 
nevertheless we beg leave to consider here the simplest (but for 
our purpose most important) case, to which in the second part 
of the paper we shall have again to refer. Consider isotropic 
conducting substances, at rest. Let us suppose that energy- 
dissipation of the simplest or Joulean type isthe only possible 
irreyersible phenomenon. Let the components of electro- 
inotive intensity at the point (x, y, z) be Ez, E , Ez; those of 
extraneous electric forces, Fz, Fy, F2 ; and the components 
of magnetic force -IIz, IIy, Hj5. Let C be the electric con- 
ductivity, K the dielectric inductive capacity, and fi the 
magnetic permeability. If

then the vector A, wbose components A x, Ay, Az are, may be 
taken to represent the “  electromagnetic momentum ”  at 
{w,y, z). We assume that

Mr. Heaviside and H. Hertz, it is well known, have con- 
structed the whole of Maxwell’s Theory upon two systems of 
equations, one of which is the system (2) above, whilst the 
second follows at once from (1) and (3). We shall take 
A^ Ay, At to be the independent yariables ; that is the choice

* Sitz. Beri. Akad. 12 Mai 1892; Wiss. Abh. Bd. iii. p. 476. See 
also Boltzmann, Yorlesungen iiber M ai weWs Theorie, -yol. ii. p. 7.

• (2)

(3)
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which ŁordKelvin, Prof. Boltzmann, and other writers adopted 
when endeayouring to find dynamical analogies for electro- 
magnetic phenomena. The part of the energy, called T, 
which depends on the ąuantities dAJdt, dAJdt, dAJdt, will 
be then the electric energy

T =  gTrilf dx dz K (E- + Ey +  E') 5 • • W
the other U, connected with the collocation of the variables 
A , A , A, themselves, will bex' y' z *

. . (5)

Supposing SAX, SAy, SAz to be yariations as usual and 
K, C, ju, and dx dy dz not to be subject to yariation, we shall 
have

» [Kt  -  ( t f  - ^ )  - 4-CF.+4’'CE-] 8A<1
i + [ . . . .  ] S V [ . . . . ] S A , .

This eąuation is readily transformed. First:

398 Prof. L. Natanson on the

=  0. (6)

l- ^ d t ^ d x d y d z K ^ A x+  ^ 8A ,+ — * SAZ)  =  j j47T
and

dtST, (7)

-  f 1 dtffid* dy dz 0(F,SA, f  F +  F,SA,) =  P' dt2?.Sq{. 
J ło J t 0

Then, from the well-known Maxwell-Helmholtz principle, 
on the continuity of properties oii surfaces of separation 
between different media, and from the eąuations (3), we 
obtain

(8)

/ b h ; i J*

\By 3z .
t +

/ B H * _ 3 H  
\ 3* 3

V 3^ 3,y

=  h t dt̂ dxdydz\'

=  — P  dt SU.....................................................................(9)
J  10

r _ b a ; \BSA, /BA X BA \BSA0
V d* B.v ’  By V 3 * 3* /  3^
/BA, 

i  + ( V -
3SAy _ (BAy BAxnBSAy

\3y 3^ V 3* dyJ 3^
_ b a ;

3#
\BSA 
’  B*

/B A ,
VB.y B ? '

\B«A 
1 ~dy J
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If, therefore, the generał principle is applicable here, the 
terms in ( 6) containing 47tCB;£, &c., should reduce to

+  P  dt 8'Q ................................(10)
J<0

Now the ąuantity of energy which becomes absorbed from the 
aether and converted into heat is, for the time dt and the 
volume JjJ dx dy dz,

- J l f dxdy d zm + E/ Ay+ ;  • ( i i )
hence

S'Q = J j j  dx dy dz C (EX8AI +  E /A y + E,SA,); . (12)

and thus the principle contained in (I.), or in (III.)) is again 
seen to hołd good.

P a r t  II.
§ 14. Introductory.— The foregoing naturally raises the 

ąuestion, Does a generał law exist concerning the infinitesimal 
expressions d/Q and S'Q, which have been found to charac- 
terize dissipation of energy in the varions particular cases 
discussed ? 1 yenture to answer this in the affirmative ; 
but the hypothesis I adyance does not profess to be morę 
than a conjecture and an approxiination.

Let us consider in every particular case the ąuantity

T = -2Fs»y..... w
In the case of irreyersible Dynamics, § 9, the function F is 
well known, and has been called by Lord Rayleigh the 
“  Dissipation Function ; ”  I should suggest that this term 
be extended to all cases covered by eąuation (IV.).

Let us imagine a materiał (or at any rate partly materiał) 
system. Suppose that it is not in equilibrium, and obserye, 
in a quantitative manner, the disturbances which its state 
involves. Let it be isolated so as not to be disturbed by ex- 
traneous action. We know from experience that under such 
circumstances the disturbances in the system must finally 
subside and tend to disappear. This generał behaviour may 
be called tlie coercion of disturbances, because of the contrast 
it offers with inertia. (See Phil. Mag. for June 1895, p. 509.) 
For definiteness let us consider a continuous body. Let 
dxdydzp  be the mass of an element dxdydz, and let 
dx dy dz p f  represent its dissipation function, so that F, the 
dissipation function for the portion ^ d x d y d z  of the body,

Laws of Irreversible Phenomena. 399
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be =JjJ dx dy dspf. Then, generally speaking, F is suscep-
tible of three kinds of variation, and dJ?/dt is the sum of three 
terms :— 1. A surface-integral relating to the action between 
the body and the exterior world through the boundary of the 
body; 2. A volume-integral expressing “  action at a distance ”  
between the body and the exterior world ; and 3. A yolume- 
integral representing “  coercion,”  i. e., that intimate action 
whose constant tendency it is to attenuate and finally to efface 
ineąualities and disturbances, if there is no extraneous action to 
maintain or to excite them ; and whose ultimate naturę is, of 
course, unknown to us. It would not be difficult to translate 
our statement into symbols. Let us adopt, for instance, that 
generał Molecular Theory due to Maxwell, which we have 
called (on a former occasion) “ Kinematical Molecular 
Theory.”  Let u +  g, v +  rj, w +  f  denote the components of 
the velocities of individual molecules, /  a function of the 
(m +  £)> + and (to+  5), f  the mean value o f /w ithin  an 
element, and D/D t the rate of “  coercion.”  Then

The three terms on the right-hand side refer to the three 
kinds of variation as above stated.

The assumption we propose to examine is that the third, or 
coercive term DF/D< is always proportional to the value 
of F. Thus, writing r for a constant period of time,

hence

=  JfJd$p{!;f cos (nx) +  t]f cos (ny) +  cos (nz)}

+JJJ dx dy dz P(X  ̂  )  + jj j  dxdydzPj f t. (2)

DF 2F 
D t T (V .)

This eąuation, we shall find, is generał; in the neighbour- 
hood of states of equilibrium at least it is exactly fulfilled. 
The period of time r was first considered by Clerk-Maxwell ;
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in an important case it received the name of the modulus o f 
the time o f relaxation* and may, without inconvenience, be 
called so in other similar cases.

Eąuation (V.) may be verifled in yarious cases, which we 
shall take in order.

§ 15. Irreversible Hydrodynamics.— From § 10 we have

Laws o f Irreversible Phenomena. 401

F — j" dx dy dz fi ■

(~dw

/Bw d v\2 t i ( ^ u , 2 , ,
\~dy +  2 + w .l + *

Writing pxx>.........pjy for the usual components, we have

;̂ =_Kly+S)’ ■ (2)
and four other equations of the same form. These eąuations, 
it is well known, must be fulfilled if the dynamical eąuations 
of Navier, Poisson, Stokes, and Maxwell are to be true ; they 
may be described, therefore, as being in agreement with ex- 
perience, and so also may be eąuation (1). Hence

P  ^  ;  1 I ^ ~ P y + ^ - P ^  +  ^ - ^ 2X
+ 2 r f + 2 ? > + 2 ? i . } •  <3> 

Again, if the disturbance is not a very yiolent one, we have 
the eąuations f

Di 3 / ’ Dt ~ P \-dy+ -dJ’ ' W
and four other eąuations, to be written down from symmetry; 
it may be well to point out that they are “  kinematical ”  
eąuations, therefore independent of any particular molecular 
hypothesis. Now, if we put

-P = T> ......................W
we obtain from (2) and (4)

D( p x x ~ p ) _  P m — P . DPyz_  f z 
Dt T  ’  Dt T  ’ (6)

* I’hilosophical Transactions, 1867, p. 82. See also ‘ Treatise on 
[ectricity and Magnetism,’ third edition, vol. i. p. 451. 
t  Philosophical Transactions, 1867, p. 81.
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and fonr similar eąuations ; and from (3) and (6)

(*.-*) 5^ ' + ( , * - , )  5! ^  

F = - SSSd‘ : d + ( p . . - p )  {- %  -

I 0V 4 . 2n  +  2 «

whence, by (3), we infer that D F/D <=—2F/t, as stated 
above.

The value of r in air, at the temperature 0° C. and normal 
pressure, is approximately 2.10” 10 of a second (Maxwell, Phil. 
Trans. 1867, p. 83). We may also compare the relatiye 
values of t  in two fluids. In doing so we may assume, in 
accordance with Prof. Yan der Waals’ leading idea, that the 
yalues of t  would bear a constant proportion if they were 
calculated for “  corresponding ”  states of the fluids *. Hence 
the coefEcients of viscosity will likewise, in corresponding 
states of two fluids, bear a constant numerical ratio f.

§ 16. Diffusion.—The signification of the symbols being 
the same as in § 11, we find the dissipation function of diffu- 
sion to be
F =  i  j j j  dx dy dz Apxp2 { (w2 -  «i)2 + (vs -  «,)2 +  (w2— w1)12}. (1)
The theory of diffusion can be deduced, in the case of two 
gases, from “  kinematical ”  eąuations and from the following 
eąuations “ of coercion,”  in which D/Dt refers to the total 
coercive action of both gases :

^  =A /32(h3-w 1) ; ^  = A p 1(u1- v i), . (2)

and four other eąuations of similar form. If' the dynamical 
eąuations of Maxwell and Stefan are true, eąuations (2) must 
likewise be fulfilled ; they may be said therefore to agree 
with experience. Let us now pass to the usual case of slow 
and ąuiet diffusion (Maxwell, Phil. Trans. 1867, pp. 73-74).
If we write ■& for the temperature, R for the gaseous con
stant, we shall find the value of the coefficient of diffusion, 
or h say, to be RS/A(pj + p2) ; and, if p = p l +  pi , the charac-

* See Kamerlingh Onnes, Algemeene Theorie der Vloeistoffen, Tweede 
Stuk, p. 8,1881.

f  See Kamerlingh Onnes, ‘ Communications from the Laboratory of 
Physics at the University of Leiden,’ no. 12, p. 11, 1894.
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teristic period r for the coercion of the disturbance will be 

___  1 (Pi +  Pa)h
A(pi +  p2) V

(3)

In a system composed of nitrogen and oxygen, at 0° 0. and 
normal pressure, the value of r (from v. Obermayer’s experi- 
mental results) is about 4-5 x 10~10 of a second. Eeturning 
to ( 2) we obtain

D(m3 — Uj) _  m3— /)S 
Dt -  t  ’ ..................... 1 '

and two other eąuations which may be written down from 
symmetry ; hence (1) reduces to

V = - i ^ d : c d y d z A Plp2rf{

. n-D(«2— /  ,D {w2—wl)')
+  f a -n i ) — ■ +  K - W i ) —^ — - j ,  • • (5)

and this gives

(6)DF 2F 
D< T

Let us verify that, as stated above, 2F is the rate at which, 
owing to diffusion, heat is being irreversibly generated. First, 
from conservation of energy, we have

a “ | + f t ( « ; + ^ + w J + g + i ; ; + ę «)3

Then, from (2) we obtain

SSdx ty  dz *Pi(ui +  ui +  wi) — JjJdx dy dz ^P\Pi
X {w,(w2 — u ^  +  vy(v2 - v 1)  +  w1(węt— w {) } ,  . (8)  

D/ jjj dx dy dz \p̂ [u\ + i>£ + wij) =jjj dx dy dz Apipi
x {u 2(u1—u2) + v 2(v] — v2)+ ic 2(w1 — w2)}, . (9) 

whence by (7) it follows :—

j j ź j j j  dx dy dz +  v\ +  ??) +  p3(H + V22 + Ę ) }
=  jjj dx dy dz Ap ,p2 \ («2 -  w,)2 +  (v2 -  j>i)2 +  (w2—il\) 2}

=  2 F .................................................................... (10)
and this proves the proposition.
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§17. Electromagnetic Dissipation.— The electromagnetic dis- 
sipation function is

the symbols being defined as in § 13. The disturbance settles 
down obeying the well-known eąuations

they are therefore the electromagnetic “  coercion ”  eąuations. 
I f  we take t  =  K j\m O, as has been done by Maxwell and 
many others, we see that

Prof. J. J. Thomson has shown* that for water with 
8'3 per cent. of H2S04, t  cannot differ much from 2.10-11 of 
a second ; and for glass at 200° O. from about 10“ s of a 
second.

§ 18. Irrerersible Dynamics.— In the case of § 17 the energy 
we have called T is proportional to the dissipation function P ; 
the same holds in § 16 if we have plu1+  p2u2 =  () (see Maxwell, 
Phil. Trans. 1867, pp. 73-74). Hence, in such cases equa- 
tion (V.) becomes DT/Di =  — 2T/r. Again, in the Irreversible 
Dynamics of § 9, if the additional dissipative forces — R / be 
proportional to the corresponding components of momentum, 
the same proportionality holds. For example, let

represent the additional dissipative force acting in the ^-direc- 
tion; then T =  r F ; and sińce from (5), § 9, it is easily shown 
that

F=ifjj<fc<ty<feC(E ’ + E ’ -rE ’ ), . . . (1)

and
DF 2F (4)

(2)

* ‘ Notes on Recent Eesearches in Blectricity and Magnetism,’ 1893, 
5 32.
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D/D t being the ratę of yariation of the kinetic energy arising 
from the dissipative forces, we see that, in this case,

D F /D <=—2F/t and D T /D « = -2T/r. . (3)
Cf. Lord Rayleigh, ‘ The Theory of Sound/ vol. i. p. 78.

§ 19. Dissipation Function o f Conduction.— In the Philo- 
sophical Magazine for June 1895, p. 506, it was shown that 
in conduction of heat the dissipation function is of the form

2F=-%$dxdydĄpr*^ +prM +prM}> • (1)
the symbol 6 being employed to denote $(f;2+»72 +  ę3). From 
(12) and (39) in the paper referred to, we have

T>Prx _ n r  d * . BPrV-K ^  M .  Vpr, _ _ K„  W .  (9\

D t k 9 * ’ Dt ~T y D< k

eąuations (2) are the “  kinematical/’ and equations (3) the 
“  coercive ”  eąuations of the problem. They must be fulfilled 
in order to make the eąuations hołd :

or = —k —  o r = —k ^  o r ------k—  . (4)9 • -bx'pry -by’ 9 K )
and, therefore, to secure applicability for Fourier’s eąuation. 
The time of relaxation we define as

r =  k l 5 p , ............................... (5)
neglecting differences p —pxx, &c. From (1) and (4) we 
obtain

2 F = tJ jJ  dxdyd z\ {(p rxY +  {prtY-\-{prtY } ,  . (6) 

and from ( 1) and (2) we have :

2F=- mSSdxdydzrP {W +  H )*+W }, (?)
whence, by (5), we find again

DF 2F15*— T.......w
§ 20. Connexion between the periods r .— Let be the
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characteristic period t  for conduction of heat in a given gas, 
and let rM denote the period relating, for the same gas, to 
internal friction. The coefficient of conductivity in Fourier’s 
eąuation, as usually written, is $ cjk , k denoting the same 
ąuantity as in § 19. Now in the Kinetic Theory of Gases it is 
shown that this coefficient is equal to

( 7 - l ) v , ................................ (1)

if 7 be written for the ratio ejcv of specific heats, and /j, for 
the coefficient of yiscosity [for example, see Prof. Boltzmann’ s 
Vorlesungen ilber Gastheorie, eąuations (238), (54), and (57)]. 
Hence

=  or = | tm, . . .  (2)

sińce, strictly speaking, our calculation requires the gas to 
be monatomic. In a similar manner may all the periods of 
relaxation, corresponding to the various powers of coercion 
of a given body, be mutually connected ; and every such 
simple eąuation, if it holds, is equivalent to a definite physical 
law.

406 On the Lawa o f Irreversible Phenomena.

http://rcin.org.pl




