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On the Laws of Irreversible Phenomena. By Dr. LADISLAS

NATANSON, Professor of Natural Philosophy in the Uni-
versity of Cracow *.

IT can scarcely be doubted that the theory of dissipation of

energy is still in its infancy. Reversible phenomena
are well understood, but they do not involve dissipation at
all ; and what is known n{out. irreversible phenomena is
merely the qualitative aspect of their general laws. In fact,
of the general quantitative laws of irreversible phenomena
we are as yet utterly ignorant. Now I venture to think
there is a general principle underlying irreversible phenomena
which is easily seen to be consistent with fact in various cases
well investigated : it is an extension of Hamilton’s Principle,
and (with much diversity, of course, as to form and gene-
rality) has been stated by Lord Rayleight, by Kirchhoff §,
by v. Helmholtz §, and by M. Dubem ||. It seems that propo-

* From the Bulletin International de I Académie des Sciences de Cra-
covie, Mars 1896.

t Proceedings of the London Mathematical Society, June 1873.
¢ The Theory of Sound, i. p. 78 (1877).

1 Vorlesungen iiber Math.-Physik. Mechanik, 1876, Vorlesung xi.

§ Borchardt-Crelle's Journal f. Mathematik, Bd. c. (1886); Wissen-
schig{?)h’che Abhandlungen, Bd. iii. p. 203; ibid. Bd. ii. p. 958; Bd. iii.
. || Journal de Mathématigues de Liowville-Jordan (4) vol. viii. p. 269
(1892): vol. ix. p. 203 (1893); vol. x. p. 207 (1894). See further,
Prof. J. J. Thomson's ¢ Applications of Dynamics to Physics and Che-
mistry, London, 1888, where the fundamental standpoint is a very
similar one, the chief object of investigation being, however, the theory of
reversible phenomena.
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386 Prof. L. Natanson on the

sitions equivalent to those indicated by these investigators
could be enunciated in the form of a simple and very general
formula ; we venture to think that the fundamental principle
which it embodies is worth attention. Besides, it seems to
afford the proper foundation for an attempt to arrive at some
deeper insight into the laws of dissipation of energy.

Pagrr I

§ 1. Introductory.—Conceive a system : it may be either
finite or infinitely small ; it may be an independent system,
or it may be only a part of some other system. Let the state
of the system, at time ¢, be determined by the values of
certain variable quantities, ¢;, and of their first differential
coefficients with respect to the time, s, or dg/dt. We shall
suppose that the energy of the system consists of two parts,
the first of which, T, is a function of the ¢; and the s, homo-
geneous of the second degree with respect to the s, and the
second, say U, is a function of the ¢, only. Let 3 denote the
absolute temperature of the system : $ may be an independent
variable, or otherwise it must be a definite function of the
variables. Suppose that the quantities ¢, s; received certain
arbitrarily chosen infinitesimal increments 8¢,, 8s, ; the energy
T will then become T 48T, and U will become U+8U. Let
then %P28¢, be the work done on the system reversibly,
during the transformation, by extraneous forces, and let 8Q
or ZR 3¢, be the quantity of heat simultaneously absorbed by
the system from the exterior; P, will then be the generalized
or Lagrangian extraneous “force™ in the ‘“direction” of
the variable ¢, and R, will be the “caloric coefficient,” as
it is called by M. Duhem, or the generalized “thermal
capacity ” of the system with respect to the variable ¢,

With respect to the quantity 8Q we now make the following
assumption, which we shall find is in accordance with fact.
Let us suppose that every variation 8¢, takes the special value
dq; or sdt ; then the values of the variables g, will become
¢;+dqg;; the energies T and U will become T+dT. U+dU ;
the work done by external forces will be ZPdg,; and the
quantity of heat absorbed will be dQ or ZRdg,. If now the
variables be allowed to return to their primitive values ¢,, T
and U will resume their former values T, U, the external
work —2P g, will be done, but the quantity of heat absorbed
will generally not be dQ but a different quantity, say &,Q.
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Laws of Irreversible Phenomena. 387

Write 2dQ=+4+dQ -d,Q, . . . . . (1)
and +d'Q=+dQ —-d'Q; . . . . (2
therefore —dQ=—d\Q—=d'Q. . . . . . (3)
We have +dQ=+dQ+d'Q, . . . . . (4
and - Q=—-dQ+dQ;. . . . . (5)

thus d°Q is the reversible, and @’Q the irreversible part of
the heat absorbed. Now, if we assume that these quantities
are of the form

d’Q=3Ryg,; d'Q=3Rdg,. . . . (6)

we may consider the new quantities
dQ=3Rg; ¥Q=2R3q, . . . (7)
3'Q+8'Q gives again 8Q. Let us generally define 8Q, 8°Q,

8Q to represent the expressions which result if in the ex-
pressions of the quantities dQ, @°Q, and d'Q (which we sup-
pose to be empirically known *), variations 8¢, are substituted
in place of the corresponding differentials dg,.

§ 2. Statement of the Principle—Let us consider a given
period of time, from ¢t=t¢, to t=t;. Let 8, 8s, 8T, 8U,
3P2g, as usual, represent variations which, between the
limits ¢=¢, and ¢=t¢,, are functions of the time susceptible of
being differentiated, and which vanish at these limits them-
selves; finally, let 8Q, 8°Q, &Q be the corresponding in-
finitesimal expressions calculated as above stated. ~The
following principle seems then to hold in physical phenomenaz:
between ¢=¢, and {=¢, events which occur in the system
must be such that the equation

J?'dt{ST—SU+2P‘8q‘+8Q}=O. S 0 1)

is satisfied. For brevity, this, when necessary, will be re-
ferred to as the Thermokinetic Principle.

* To write down the expressions of dQ and d'Q, a much ater
number of variables would evidently be required in most cases than to

write d°Q ; thus in most cases many of the coefficients R{ will be equal
to zero. A similar remark applies to the coefficients P, 9T/3¢, 9T/0

and 3U/9dg,.
2E 2
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388 Prof. L. Natanson on the

§ 8. Lagrangian Equations.—From (I.), remembering the
definitions laid down, we obtain by a well-known calculation

d T_@E a_l’__]’_  TaE
dt 8}') aq‘+aq’ Pi R,'—O- o . (IL)

These equations, a thermokinetic extension of Lagrange’s
well-known dynamical equations, have been given implicitly
by Helmholtz and explicitly by M. Duhem ; the form they
take in an important particular case had been previously ex-
plained by Lord Rayleigh.

§ 4. Conservation of Energy.—Considering a real trans-
formation dg;, ds;, multiply each of these equations by sdt
respectively, and add ; we find

dT+dU—3Pdg,—dQ=0. . . . . (1)

The principle of conservation of energy in its general form is
thus seen to follow from the thermokinetic principle. That
inversely the thermokinetic principle cannot be deduced from
conservation of energy is an obvious proposition which scarcely
requires special mention.

§ 5. Free Energy.—We shall suppose in the following
(except when the contrary is expressly stated) that one inde-
pendent variable is the temperature; and accordingly we
shall use ¢, to indicate all the other variables. That work is
not required for merely changing the temperature of a system
is an experimental fact ; hence, when the variables 3, ¢,, and
s; receive increments 89, 8¢,, ds;, the work done on the system
will be still ZP,8¢; (in our present modified notation) and no
term including 8% will appear. Variables with such properties
attributed to them have been employed by Lord Kelvin as
long ago as 1855 ; they have been often adopted in general
thermodynamical investigations. M. Duhem calls them
“normal ” variables.

Let us suppose that 3, ¢; represent a system of ““ normal ”
variables. Write
v

oU
— 8¢, —2R%Wq=>—8q,. . . .
aq‘ ql . Qo an. Sqo (1)

The function V, if it exists, will be called the free energy of
the system, because, as we shall find hereafter, V deﬁnedy by
equation (1) will agree in the case of Reversible Thermo-

p>

http://rcin.org.pl



Laws of Irreversible Phenomena. 389

dynamics with what, from Helmholtz, received that designa-
tion. Equation (I.) accordingly becomes

f dt {5T—2§—;—:8qi+2f"89‘—(aa—g —R§)8s+8Q } =0. 2

Now let us further assume that the following equations are

true :— T
oL . 0Lk .
-a—s-=0' B"d—s—os . e fheat i (3)
dt

they are found to hold good in all cases of which we have
precise knowled%e; lastly, let us suppose that there is no
term containing 89 in the expression for 8'Q. (With respect

to this point compare § 12.) Equation (2) may now be
divided 1into
oU

$‘33=°" e el e

and

Nl s ﬂ / —
LdtIS’I‘ ani&]‘+2P‘Sq'.+8Q}—O.. (IIL)

This equation expresses the principle in a form similar to
that of equation (L.). It is a useful equation, owing to the
readiness with which it admits of application in various cases,
but its abstract generality is of course much more restricted
than that of the fundamental equation.

§ 6. Reversible Dynamics.—In Dynamies properly so-called,
i.e. in Reversible Dynamics, ideal phenomena of motion are
dealt with, and the notion of temperature is not taken into
account. Therefore, in Reversible Bynamics a function V can
be considered, depending on the remaining variables ¢, only,
which does not differ, except by a constant, from the “ poten-
tial energy U ; this is a remark already made by M. Duhem.
Of course it must be restricted to the Dynamics of points and
of rigid bodies, since, for instance, in Hydrodynamics and
Aerogynamics the difference between the quantities V and U
is variable and depends on the compressibility of the fluid.

From (IIL.) we obtain, leaving out the irreversible term
8'Q, the fundamental principle of Reversible Dynamics.

§ 7. Electromagnetic irreversible phenomena.—Energy stored
in the @ther can be transferred to matter and converted into
heat ; this phenomenon, when it occurs, is a thoroughly ir-
reversible one.
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390 Prof. L. Natanson on the

Here, therefore, we may put R;=0 and 3U/d¢,=3V/dy; ;
and the equation will be

4
f A{ST—3U +3P,80,+8Q}=0. . . (1)
10

We shall return to this case in § 13 below.

§ 8. Reversible Thermodynamics—At present the imme-
diate object of the science called Thermodynamics is the study
of states of equilibrium. The modifications assumed in Ther-
modynamies to occur in a system are, for that reason, virtual
reversible transformations which lead from one state of equi-
librium to another one. Let us admit the following assump-
tions :—first, that that part of the energy which we call T is
a constant quantity; secondly, that the variables are “ normal”
variables ; thirdly, if a function of the variables 3 and ¢,, called
the entropy, be denoted by S, that the term &°Q is of the

form

09 0

and, lastly, that the supposed transformation being reversible,
the term &'Q is equal to zero. Hence the laws of ordinary
Thermodynamics must be contained in

alsss+sz‘a_§sg‘; TR ¢
i

oU oS
35_3'53=0, . . . . . (2)
and
t
dt{—Ea—YSqﬁEP‘Sq‘}:O, )
= 04
where SV 2T .
— = —d—. . . . . . (4
07; 0¢;  0g ®

Since the adopted variables 9, ¢, are “ normal > ones, we are
at liberty to define the quantity U—$8 as representing what
in § 5 has been called the free energy of the system; hence

v i O
_a—g'i +P‘—O, aT
and thus we are led to that well-known form of thermo-
dynamical equations which we have learned from MM.
Massieu, Gibbs, Duhem, Helmholtz, and others.

§ 9. Irreversible Dynamics—Let us now proceed to con-

sider cases of motion bearing perfect analogy with ordinary

+8=0, . . . (9)
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Laws of Irreversible Phenomena. 391

dynamical phenomena, except that, being irreversible, they
do not satisfy the condition @Q=0. Lord ﬁayleigh has shown

how in many cases we can put
dQ=—2Fat, . . . . . . (1)

employing I to indicate a function of the variables ¢, (sup-
posed to be “normal “ones) and s;, homogeneous of the second
degree with respect to the s, which he calls the Dissipation
Function. The assumption we make is therefore that

d’Q:—ths‘aF——EaTqu‘; dd o i(2)
i

5 =3
and that
oF
R,".= e a;‘ Sille ntey S bl g iigy (3)
following the rule laid down in § 1 we put

TR R )

9
05
and from (III.) we obtain

4
j dt{ST—Eg—Vsq‘+2P..89_.—2§E8q‘}=0; . )
t i 0s;
hence ; : v o
g faty, ol OV i D8
. as'_) SatsuBte =0 - - ©
These are Lord Rayleigh’s equations, with V written in the
place of U.

§ 10. Irreversible Hydrodynamics.—Let us now proceed to
consider a viscous fluid ; we shall call p its coefficient of
viscosity. Owing to the viscosity of the fluid its motion is
accompanied by irreversible production of heat ; owing to its
compressibility, there is reversible production or destruction
of heat. We shall suppose that every such loss or gain in
every element of the fluid is being immediately and exactly
compensated, so that the temperature of the element remains
constant. At the interior of a large quantity of fluid we
take a portion, of mass ‘m dxdydzp, p being the density at the
point (2,y,2). Let p be the ordinary mean pressure ; u, v,w
the components of the velocity, X, Y, Z the components of
the extraneous acceleration, at the point (z,y, 2) and time t.
The equations of motion, as given by Navier, Poisson, Stokes,
and Maxwell, are as follows :—
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392 Prof. L. Natanson on the

du

" ;
—pE+pX—g?;+MV’u+§p%z=0,- - (D)

----------

with the usual signification of ¥* and §. Write
48, pdS, pdS . . . . . (2

for the pressures, parallel to the co-ordinate axes, on the
element dS of the boundary of the portion we are considering.
If the direction of the inwardly directed normal be denoted
by n, we shall have :—

u ov  Qu
P.=[p—20(5; —46)] cos (n) —p( 53 + ) cos ()
—;u(g—: + g%) cos(nz); . . (3)
p,= —,;(-g—; + %‘) cos (na) + [p—2[4(%—; - gﬂ)] cos (ny)

" /‘(g—; it g—:) cos(n); . (4)

b= —'u(g—: + g—j) cos (m:)—;t(g—; ik g—g) cos (ny)
+ [p—2,u.(g—:7 —-§~€)] cos(nz). . ()

If now a system 8z, 8y, 8z of infinitesimal virtual displace-
ments be imposed upon the fluid, the temperature being kept
constant, then the work ZPgJg, done by extraneous forces
will be

ﬁdS(p,Sa: +p,8y +p.82) +m‘dz dy dz p(Xdz + Yoy + Z3z);(6)
the variation of the energy T will be
8T=md.z dydz p(ubu4vdv+wdw); . . . (7)

the variation of the energy V, which in Hydrodynamics it is
usual * to call “intrinsic ” energy, will be

#* See, for example, that otherwise excellent treatise ¢ Hydrodynamics’
by Prof. Lamb, ed. 1895, pp. 11-12, 469, 507. It is not with the true
intrinsic energy U, but with the free energy V that we are here con-
cerned ; the customary use of the word “intrinsic” seems, therefore, to
involve a serious error.
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Laws of Irreversib'le Phenomena. 393

5z . ddy . Db
8V=—mdzdydzp(ax+a;+—a—f), 4 B

and, lastly, the quantity of heat which must be “absorbed ”
in order to compensate the effects of viscosity will be

dQ= —i{fdxdydﬂudt% ) 16 ) = )}

_*_%(Bw ‘) +§( u g:) +*( g;

S5+ G 05 G5
. P
=—ﬁ\dmdyde2pj +§(g—'f+%:)(%‘?+%if) 5% (9)
. GG S

In order, therefore, to comply with the rule respecting
&Q we have to write
Qu BS.z o )ab‘y
( -3 > (by =3 oy

33~ B 00z , 98

(aw —16 +§ ay é’)(a—;+a—: I
) )

HE+ 3G+ )

L +§(a" L aaiy+a;;)

Let us now verify whether in the present case our general
principle applies. From (1) we find

9 3
I atfjaedyazd 1 P +oX =30 +uvut S 1o }:o; (11)
Pt £ S

8Q=— mdx dyde 2/1.4

now

verid=e2@-u)+ LE )+ G F) - W
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394 Prof. L. Natanson on the
so that from (8), (10), (12),and again from (3), (4), (5) we

obtain A
Sﬂd.zdydz{[———+p.V’u+§p.a—]8.z+[ .]8y+[....]8:}
= =8V +8Q—{J dudy d: { . (230) + £ (pa ( 82)

%’IOI T

+ Mda'dydﬂp{a [(a“ ge)a] ( )8y]+ [a"’ )82}
| o[+ S2)ee] + a‘[(_ ] ]

+£D’dwdydz”»<.a%[(—+ Sope] + 5[5 +3 N*f
2R 23 )

=—8V+3Q+([aS(p, 8z +p,8y+p,8). . . . -+ (1)

Further, we see that

4
f dtgggdxdydz;;(ua + 5 8+ tSz =f &dT; (14)

because dadydzp does not vary; and collecting our results
we see that (11) reduces to

f (ST -8V +3P,8q, +5Q}=0, . . . (14)
ty

+

with equations (7), (8), (6), (10) to define the terms within
brackets.

§ 11. Diffusion.— We next take two gases which are
diffusing into one another. Let the masses of the portions

considered be Sﬁdzl dy, dz; p, and S‘B daydy,dzape; and S

and S, their respective boundaries. When the motion of the
gases is going on, three irreversible phenomena will occur, viz.,
internal friction in the first gas, internal friction in the second,
and mutual interdiffusion of both ; in the following both the
first and the second are neglected. Let again uy, v, w,
g, vy, wy denote the velocity components X, Y, 7, X, Y, Zs
those of extraneous acceleration, p;, p; the mean pressure, at
the time # and a given point of space, where at that time both
the elements da, dy, dz, and da, dy, dz, of the gases happen to
be momentarily situated. The quantities u; and ug, v; and vy,
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Laws of Irreversible Phenomena. 395

w; and w, being, however, quite different, the elements will,
of course, separate after a time infinitely short ; likewise 8z,
and dzy, 8y, and 8y, 8z, and 8z, must ﬂe understood to be
quite independent variations. Let us write

fldz{ST—SV+2P‘8q‘+8’Q}=O,. ANy

and let us adopt, as a definition of the terms, the following
equations :—

SP=0 460 < o i v ow (B

3V= 8V1 + 8Vg, . . . . . . (3)

T,= QSH day dyy dz, py(ul + o’ +wi?), . . (4)

T,= *SSS dzy dyy dzg ps(ug +v* +wid), . . (5)

oV, = "5“ da, dy, dzx.}’l(%%l + %ilnl e %87?), . « (6)
S )

8V, =—(\{ daydys dzs p %—;’ + %%+ aa—;’), el

3Pdq, = SSSda:l dyy dz py (X 82, + Y, Syy + Z, 8zy)
+sﬁ‘ day dyy dzg py (Xg 2y + Y 8yy + 7y 82)
+SSSdSl p1{cos (m,@) Bzy + cos (n,y) 8y, + cos (n,2) 82}
+5ﬁ' dSS, py{cos (ngz) 82y + o8 (ngy) Syy + cos (ng2) 825}.  (8)

The quantity of heat generated in time d¢ by diffusion may
be written

(§§ daz dy dz Apy pof (ua—w)(dity —dity) + (va—v1) (dys—dyy)

+ (wy—wy) (d2g—dz)},  (9)
the expression dz dy dz being understood to mean indifferently
di, dy, dz, or dagdyy dz;, and A being a constant coefficient
intimately connected with the ¢ coefficient of diffusion”” of

the gases. If the temperature is to remain constant, the
quantity (9) must be taken away ; hence

Q= —Sjjdw dy dz A pypa{ (0 —wy) (dg—8y)
+ (vg —,)(8ys—8y1) + (ws—wl)(&:—szl)}- (10)
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396 Prof. L. Natanson on the
Substituting (2), (3), . ... (8), and (10) in (1), we find"

d
[—'Pl '(;—:1 = g—f: +p,.X + Apips(uy—uy) ]8-’«'1

j"dtm‘dxdydz L STEREL7E] SRR LY
246

d
+ [_pr‘% L) g_z_: + pa Xy + Apgp, (1 —uy) ]S.z',J
+[....]8y9+[. ...]82'2

which shows at once that

d
Pljdf:‘l + g‘g‘: =p Xy +Apipy(tg—m), &e. . (12)
By OB X K i), . . (ID)
P2 37, Palg T BPgpy Uy —1Uy), &C. .
These equations have been established long ago by Maxwell

and Stefan.

§ 12. Conduction of Heat.—Fourier’s equation of conduc-
tion of heat appears to belong to the class of conservation of
energy equations. At first let us avoid employing “ normal ”
variables. Since the motion of the medium an§ the inter-
vention of extraneous forces are immaterial for conduction of
heat, we may put 8T=0, XP8¢,=0, and d°Q=0 ; therefore

8U=4V, and
4
[dt(—8U+8'Q}=0,. i oy GE)
b
oU
ap = Rl=0. . . ..
Bq;+R‘ 0 (2)
Hence, in any real transformation, we have
U . dQ_
m"l‘w—o, SHe N L me o (3

that is to say, in “normal ”* variables :—

oUdd _  9Udg , d'Q
-a—s—az—-z‘a_q'a_['*' Zt.. . . . (4)

This is the general form of Fourier’s equation ; usually
0U/0d%is assumed to be of the form dz dy dzpe, in an element
dazdy dz, p being the density and ¢, the well-known thermal
capacity; and the remaining 9U/d¢, are usually neglected.
We shall reconsider the present case from a different stand-
point in § 19.

http://rcin.org.pl



Laws of Irreversible Phenomena. 397

13. Electromagnetic Dissipation. — In Helmholtz’s
memoir “ Das Princip der kleinsten Wirkung in der Elektro-
dynamik ™ *, it is shown in great generality that the thermo-
kinetic principle holds for electromagnetic phenomena ;
nevertheﬁass we beg leave to consider here the simplest (but for
our purpose most important) case, to which in the second part
of the paper we shall have again to refer. Consider isotropic
conducting substances, at rest. Let us suppose that energy-
dissipation of the simplest or Joulean type is the only possible
irreversible phenomenon. Let the components of electro-
motive intensity at the point (z,y,2) be E,, E , E,; those of
extraneous electric forces, F,, F,, F',; and the components
of magnetic force .H, H, H,. Let C be the electric con-
ductivity, K the dielectric inductive capacity, and w the
magnetic permeability. If

dA dA dA
Y = — y s
E, =5 Hg=——, &, i,

then the vector A, whose components A, A, A, are, may be
taken to represent the * electromagnetic momentum ™ at
(@,y,2). e assume that

47C(E,-F)) +K(LP2-_' _oH, oH,

dat ~ oy o0z’
oy .8, ?H, ?H,
1nC(B,~F)+K Ly 95 L. . (o

4n0(B,~F) +K & _0H, 0H,,
dt oz Oy

A 00 B

oy 02
_0A, DA,
04, 04,

H =
Ae=2e oy’

Mr. Heaviside and H. Hertz, it is well known, have con-
structed the whole of Maxwell’s Theory upon two systems of
equations, one of which is the system (2) above, whilst the
second follows at once from (1) and (3). We shall take
A, A, A, tobe the independent variables ; that is the choice

® Sitz. Berl. Akad. 12 Mai 1892; Wiss. Abk. Bd. iii. p. 476. See
also Boltzmann, Vorlesungen tiber Maxwell's Theorie, vol. ii. p. 7.
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398 Prof. L. Natanson on the

which Lord Kelvin, Prof. Boltzmann,and other writers adopted
when endeavouring to find dynamical analogies for electro-
magnetic phenomena. The part of the energy, called T,
which depends on the quantities dA /dt, dA /dt, dA /dt, will
be then the electric energy

T= o ([fdrdydeR(E24B21ED); . . (4)

the other U, connected with the collocation of the variables
A, A, A, themselves, will be

U_—_Slwyjjd.»dydzp(H:+H;+Hg). )

Supposing 8A,, 8A,, 8A, to be variations as usual and
K, C, p and de dy dz not to be subject to variation, we shall

have
dE oH, ?H
: K%% _ (92 _ 9% _4xCF +47CE.|5A
é,j'dtsssdwdydz{[ i~y g TR
& +[.. . J8A,+[.... ]84, (6)

This equation is readily transformed. First :

1 tl » dE: (lE dEz tr
4—7—'_":0 dl&BdE dy dz K(m— 8A1+ -‘—_IE'!SA,-I- 7[ SA,) =J:. dlST, (7)
and

) 1
_ﬁ at{{§de dy dz C(F,SA,+Fy8Ay+F,8Az)=j' dsPRg. . (8)
o t

.

Then, from the well-known Maxwell-Helmholtz principle,
on the continuity of properties on surfaces of separation
between different media, and from the equations (3), we
obtain

— ﬂ atf(§dedydz {(aal} = %E—”)SA,+ (%_Ez - aa_lzf)aA,
+ (a H,_ aH’)‘o‘A, }

dz Jy
(%_aﬁ, aSA,_(aAz aA,)aSA,]
o oy’ ¥y \dz ox/ oz
1 (4 1 DA, DA\I8A, (DA, DA,\ddA
=5Ldzj§jdxdydz; + > a‘z’)ﬁz_(ﬁy_a_y) Y ¢

dz
§ (R 2020, (2, 2hyoia, J
92 oz/ d¢ \dy 0:/ oy

=—J:"d18U...............(9)

0
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Laws of Irreversible Phenomena. 399

If, therefore, the general principle is applicable here, the
terms in (6) containing 4wCE,_, &e., should reduce to

'l
+j HIQy & ¢ . o i w (10)
'0

Now the quantity of energy which becomes absorbed from the
wther and converted into heat is, for the time dt and the

volume Sﬁdm dy dz,
—(\fdedydz C(B,dA,+BdA, +BdA) ; . (11)

hence
§Q=((fdadydz C(E,3A,+ESA +EJSA):. (12)

and thus the principle contained in (L), or in (IIL.), is again
seen to hold good.

Parr I1.

§ 14. Introductory.—The foregoing naturally raises the
question, Does a general law exist concerning the infinitesimal
expressions d'Q and &’Q, which have been found to charac-
terize dissipation of energy in the various particular cases
discussed ? 1 venture to answer this in the affirmative ;
but the hypothesis I advance does not profess to be more
than a conjecture and an approximation.

Let us consider in every particular case the quantity

d’
7?:—2F BRY: « o~ « o o (IVa)

In the case of irreversible Dynamics, § 9, the function F is
well known, and has been called by Lord Rayleigh the
“ Dissipation Function ;”” I should suggest that this term
be extended to all cases covered by equation (IV.).

Let us imagine a material (or at any rate partly material)
system. Suppose that it is not in equilibrium, and observe,
in a quantitative manner, the disturbances which its state
involves. Let it be isolated so as not to be disturbed by ex-
traneous action. We know from experience that under such
circumstances the disturbances in the system must finally
subside and tend to disappear. This general behaviour may
be called the coercion of disturbances, because of the contrast
it offers with inertia. (See Phil. Mag. for June 1895, p- 509.)
For definiteness let us consider a continuous body. Let
dedydzp be the mass of an element dadydz, and let
dxdydzpf represent its dissipation function, so that F, the

dissipation function for the portion Sﬂdz dydz of the body,
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400 Prof. L. Natanson on the

be =Sfﬁd.1: dydzpf. Then, generally speaking, F is suscep-
tible of three kinds of variation, and dF/dt is the sum of three
terms :—1. A surface-integral relating to the action between
the body and the exterior world through the boundary of the
body; 2. A volume-integral expressing * action at a distance "
between the body and the exterior world ; and 3. A volume-
integral representing ‘ coercion,” i. e., that intimate action
whose constant tendency it is to attenuate and finally to efface
inequalities and disturbances, if there is no extraneous action to
maintain or to excite them ; and whose ultimate nature is, of
course, unknown to us. 1t would not be difficult to translate
our statement into symbols. Let us adopt, for instance, that
general Molecular Theory due to Maxwell, which we have
called (on a former occasion) “Kinematical Molecular
Theory.” Let u+§, v+n, w+ ¢ denote the components of
the velocities of individual molecules, /' a function of the
(u+8), (v+9), and (w+E), f the mean value of f within an
element, and D/Dt the rate of ““ coercion.” Then

df _ 0 (FA 4 O (o Fy 4 O (77
P == Las PN+ 5 onF) + 52 (0E) }
¥ vy L ¥, D

X R e - - @

hence

% =Z—t fj_fdwdydzpf_

= Sﬁ dSp{Ef cos (nx) +7f cos (ny) + % cos (nz)}

of , vof  ,Of Dy
+§f§ dadydzp( XS+ YL+ 23" ) + §ff dwdydep . (2)
The three terms on the right-hand side refer to the three
kinds of variation as above stated.

The assumption we propose to examine is that the third, or
coercive term DF/D¢ is always proportional to the value
of F. Thus, writing r for a constant period of time,

DF 2F

D= c o0 osowoe (V)
This equation, we shall find, is general ; in the neighbour-
hood of states of equilibrium at least it is exactly fulfilled.
The period of time 7 was first considered by Clerk-Maxwell ;
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in an important case it received the name of the modulus of
the time of relaxation® and may, without inconvenience, be
called so in other similar cases.

Equation (V.) may be verified in various cases, which we
shall take in order.

§ 15. Irreversible Hydrodynamics.—From § 10 we have

2 \
F= [{f da dy ds J %:-10) +(3—10) +(3o—16)

2 s g ¢+ (1)
L+§ a_‘."+—1”) +§(g—:+g—f) +§(g—”+a") .

oy ' 0z &£ Xy
Writing peg vaias Pay for the usnal components, we have
ou 0w  ov
Paz—p=— 6.—'6—§0) s Pye=— 'a'y—'*' a)) . (2)

and four other equations of the same form. These equations,
it is well known, must be fulfilled if the dynamical equations
of Navier, Poisson, Stokes, and Maxwell are to be true ; they
may be described, therefore, as being in agreement with ex-
perience, and so also may be equation (1). Hence

3 1 (Pez=p)*+ (Py—p) + (Pec—p)?
F= da dy dz— o (8
§iy deay dz4/t{ +2pge + 2p5+ 2paye @

Again, if the disturbance is not a very violent one, we have
the equations t

D(p=—p) _ (au . Dpy.__ (Ow Bv)
Di =2p ﬁ_%e Dt —'P(‘a_y‘ + ) (4)
and four other equations, to be written down from symmetry ;
it may be well to point out that they are kinematica{”
equations, therefore independent of any particular molecular
hypothesis. Now, if we put

ol & s o wox o oo I8
p ) ( )
we obtain from (2) and (4)

D(pz=p) _ _Peu—p Dpp_ _p" (6)
Dt C G 5] SR

* Philosophical Transactions, 1867, p. 82. See also ‘Treatise on
Electricity and Magnetism,’ third edition, vol. i. p. 451.
t Philosophical Transactions, 1867, p. 81.
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and four similar equations ; and from (3) and (6)
D( pre— D( pyy—
(pu—p) 22 4 (p,,— p) D)

N c D(pec—p)
F= —ﬁS dx dyd:f}-" + (pes—p) De , (T

Dp.. Dp.y
= Dt ¥ Dt

whence, by (3), we infer that DF/Dt=—2F/r, as stated
above.

The value of 7 in air, at the temperature 0° C. and normal
pressure, is approximately 2.107" of a second (Maxwell, Phil.
Trans. 1867, p. 83). We may also compare the relative
values of 7in two fluids. In doing so we may assume, in
accordance with Prof. Van der Waaﬁs’ leading idea, that the
values of T would bear a constant proportion if they were
calculated for “ corresponding ” states of the fluids *. Hence
the coefficients of viscosity will likewise, in corresponding
states of two fluids, bear a constant numerical ratio 1.

§ 16. Diffusion.—The signification of the symbols being
the same as in § 11, we ﬁng the dissipation function of diffu-
sion to be

F= %SSS da dydz Apypsf (ug —uy)? + (vg—u1)? + (we—10y)*}. (1) 7

The theory of diffusion can be deduced, in the case of two
gases, from “ kinematical  equations and from the followin
equations “of coercion,” in which D/Dt refers to the tota
coercive action of both gases :

D D
vutl =Apy(ug—uy) ; ﬁ=AP1(ul-"e), - (2)

Dpye
+ 2ppe 2" +2p

+2p

and four other equations of similar form. If the dynamical
equations of Maxwell and Stefan are true, equations (2) must
likewise be fulfilled ; they may be said therefore to agree
with experience. Let us now pass to the usual case of slow
and quiet diffusion (Maxwell, Phil. Trans. 1867, pp. 73-74).
If we write & for the temperature, R for the gaseous con-
stant, we shall find the value of the coefficient of diffusion,
or h say, to be R9/A(p;+pe) 5 and, if p=p, +p,, the charac-

# See Kamerlingh Onnes, Algemeene Theorie der Vioeistoffen, Tweede
Stuk, p. 8, 1881.

1 See Kamerlingh Onnes, ‘Communications from the Laboratory of
Physics at the University of Leiden,’ no. 12, p. 11, 1894.

http://rcin.org.pl



Laws of Irreversible Phenomena. 403

teristic period 7 for the coercion of the disturbance will be

- 1 (Pl+p2)h B - (3)
(P|+P2) p

In a system composed of nitrogen and oxygen, at 0°C. and
normal pressure, the value of 7 (from v. Obermayer’s experi-

mental results) is about 45 x 107" of a second. Returning
to (2) we obtain

D (uy— ul) Uy— Uy

3 =, .. @

and two other equations which may be written down from
symmetry ; hence (1) reduces to

=—1} (| dedyd: Aplpz'r{ (uy—=t)—p5;—
D(v,

D(“q ul)

=) 2 4 )ﬂ%} ;o B

and this gives

DF 2F
Dt———:.. e @ & et Ta e (6)

Let us verify that, as stated above, 2F is the rate at which,
owing to diffusion, heat is being irreversibly generated. First,
from conservation of energy, we have

pr(ui+ v+ wi +E 47T+ 8)
—\Wdadyd _ o D=0, (7
D‘m = d{+P2(“§+v§+w§+f‘;+n§+€3) v
Then, from (2) we obtain
%ng da dy dz yp,(ud + v} +w?) =\ de dy dz Ap,p
X {u, (ug—uy) + v, (vg—vy) + w0y (wy—wy)}, . (8)
1% §\f de dy dz %y (ug+v3+w2) =\ de dy dz Apyp,
x {ug(uy—ug) +va(vy—vs) +wy(wy—wy)}, . (9)
whence by (7) it follows :—
D . 2 e
D W de dy dz ${pu B+ +T) + B+ B+ 1)

= ﬁ‘f dx dy dz APIP:{ (43 =u;)+ (va—vy)* + (wy—10y)?}
S BB 5 W TR AT leavs Tan vy o B )
and this proves the proposition.
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§17. Electromagnetic Dissipation.—The electromagnetic dis-
sipation function 1s

F=}(\|dzdyd: C(B2+E2+E?), . . . (1)

the symbols being defined as in § 13. The disturbance settles
down obeying the well-known equations

DE, _ N T LR,

K e 47wCE,; K—]jt_— wOlly By ™ wCE_; (2)
they are therefore the electromagnetic “ coercion ™ equations.
If we take 7=K/4nC, as has been done by Maxwell and
many others, we see that

DEZ' +B 2% 4 g DE-)

F=—§mdxdyder(Ez e +B, 1 +B, ), . (3)

and

DF 2F. 4

Prof. J. J. Thomson has shown* that for water with
8:3 per cent. of H;80,, 7 cannot differ much from 2.10~"! of
a second ; and for glass at 200° C. from about 10-% of a
second.

§ 18. Irreversible Dynamics.—In the case of § 17 the energy
we have called T is proportional to the dissipation function %‘;
the same holds in § 16if we have p,u; + pous=0 (see Maxwell,
Phil. Trans. 1867, pp. 73-74). Hence, in such cases equa-
tion (V.) becomes l)'F/Dt: —2T/r. Again,in the Irreversible
Dynamies of § 9, if the additional dissipative forces —R/ be
proportional to the corresll;onding components of momentum,
the same proportionality holds. For example, let
19T

-B/=1§ - - - O

represent the additional dissipative force acting in the ¢,-direc-
tion ; then T=7F; and since from (5), § 9, it is easily shown
that

DT

ﬁ=—2F, oo ol e e (2)

# (Notes on Recent Researches in Electricity and Magnetism,’ 1893,
§ 82,
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D/Dt being the rate of variation of the kinetic energy arising
from the dissipative forces, we see that, in this case,

DF/Dt=—2F/r and DI/Di=—2T/r. . (3)

Cf. Lord Rayleigh, ¢ The Theory of Sound,’ vol. i. p. 78.

§ 19. Dissipation Function of Conduction.—In the Philo-
sophical Magazine for June 1895, p. 506, it was shown that
in conduction of heat the dissipation function is of the form

(/) 6 (7] .
2F =—3(\Vdedy dz{P".%;. +P",g—y’ '*'P";%‘z}, . (D

the symbol 6 being employed to denote (E+7'+¢). From
(12) and (39) in the paper referred to, we have
Dpr 90 Dpr 90 Dpr o0
S — = ~3; —e=bp_ —;. (2
De ~ Pedet Di o Pw oy} D Pmoet @)

Dpr _-_5p.rx . Dpr,_ 5p_yy . Dprz_ 5pzz . 3
Dt T G )
equations (2) are the “kinematical,” and equations (3) the

“ coercive ”” equations of the problem. They must be fulfilled
in order to make the equations hold :

0 0 4
pr,=—kg—m,pr,=—kg—y,lﬂ,=—kg—z-’ )

and, therefore, to secure applicability for Fourier’s equation.
The time of relaxation we define as

T=k5p, . . . . . (5)

neglecting differences p—p,_, &e. From (1) and (4) we
obtain

2F =3 (] de dydz %{(prz)’+ (or)t+ (or)%, . (6)
and from (1) and (2) we have :
2= 1 Waedyde i (ort+ or)*+ Gr), (D)

whence, by (5), we find again

DF
W=—2TF.......(8)

§ 20. Connexion between the periods T.—Let T, be the
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characteristic period 7 for conduction of heat in a given gas,
and let 7y denote the period relating, for the same gas, to
internal friction. The coefficient of conductivity in Fourier’s
equation, as usually written, is ick, & denoting the same
quantity asin § 19. Now in the Kinetic Theory of Gases it is
shown that this coefficient is equal to

%('y—l)c,p,, LN R &)

if  be written for the ratio ¢ /e, of specific heats, and u for
the coefficient of viscosity [for example, see Prof. Boltzmann’s

Vorlesungen aber Gastheorie, equations (238), (54), and (57)].
Hence

re=Hy—1)7y or =frL. « « (2

siice, strictly speaking, our calculation requires the gas to

be monatomic. In a similar manner may all the periods of

relaxation, corresponding to the various powers of coercion

of a given body, be mutually connected ; and every such

ii‘mple equation, if it holds, is equivalent to a definite physical
w.
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