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1. Introduction

In many practical industrial applications it is very important to predict the form of wear shape, 

contact stresses. Usually, the contact shape evolution is simulated numerically by integrating the 

wear rate expressed in terms of relative slip velocity and contact pressure. A steady state is then 

predicted by the incremental integration procedure with account for contact shape and pressure 

variation. However, much more effective procedure can be developed by postulating minimization 

of the contact response functional. It was shown in the previous our papers [1-2] that the total wear 

dissipation power at the contact interface provides the steady wear regimes by applying the 

stationary conditions. In the later case the stationary of the functional gives the contact stress 

distribution and the rate of the rigid body movement.  

In the work by Páczelt and Mróz [1-2] the optimal shapes generated by wear process were 

analyzed by postulating minimization of the wear dissipation power. It was shown that the contact 

shape evolution tends to a steady state satisfying the minimum principle of the wear dissipation rate.

The specific modified Archard wear rule is assumed for wear rate in normal direction on 

contact surface. Very important, that in general contact conditions the vector of wear rate is not 

normal to the contact surface and has tangential component. A fundamental assumption is now 

introduced, namely, at the steady state the wear rate vector is collinear with the rigid body wear 

velocity of  body which has rigid body like displacement. It is demonstrated that the wear dissipation 

power at the contact surface is minimal in the steady state of the wear process and in many cases 

corresponds to the uniform wear rate. In the normal direction the Signorini contact conditions are 

valid. The Coulomb dry friction models are investigated. The temperature effects and heat 

generated at the frictional interface in our investigation is considered. 

It is assumed that the displacements and deformations are small, the material of the contacting 

bodies are elastic. The discretization of the contacting bodies was performed by the displacement 

based on p-version of finite elements [2] assuring fast convergence of the numerical process and 

accurate specification of geometry for shape optimization.

2. Contact optimizations problems

Without the restriction of generality, let us consider the contact problem of two elastic bodies 

)2,1(, =α
α

B with the usual boundary and loading conditions. The boundary portion ( )α

cS  will be 

called the potential zone of contact. In this part of the bodies the shape may be modified. In the 

normal direction the Signorini contact conditions are valid. The Coulomb dry friction models are 

investigated. In the analysis of wear problem, usually the elastic portion of relative tangent velocity 

is much smaller than the rigid body motion induced velocity, thus the effect of elastic component of 

tangent relative velocity can be neglected in the wear analysis. The temperature effects and heat 

generated at the frictional interface in our investigation is considered [3]. The contact conditions are 

checked at the Lobatto integration points of the contact elements during the solution process.  

Assume the isotropic wear rule in the form [1] 

2,1,
~

)()()( ===== ivpvppw iiiiiiii a

r

b

ni

a

r

b

ni

ab

ni

ab

nii βµβµβτβ
ττ

uu ���   

http://rcin.org.pl



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 75

The material parameters iii ba ,,β  specify the wear rates of two contacting bodies and 
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 is the relative velocity between two bodies, µ  is the coefficient of friction. 

In general contact conditions the vector of wear rate is not normal to the contact surface and has 

tangential components. This vector specifies the shape transformation and tangential motion of the 

worn material. To analyze this transformation, let us define first the contact stress of interaction of 

bodies 1B  and 2B , thus 
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where µ is the friction coefficient specifying the shear stress in sliding direction and dµ  is the 

friction coefficient associated with transverse wear velocity. The unit vectors cnee ,, 21 ττ
 constitute 

the local reference triad on cS . Here cn  is the unit normal to the contact surface of body 1B , 1τ
e  is 

the tangent unit vector coaxial with the sliding velocity and 2τ
e  is the transverse tangent unit vector.  

A fundamental assumption is now introduced, namely, at the steady state the wear rate vector 

is collinear with the rigid body wear velocity of 1B , so that
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The generalized wear dissipation power for the case of wear of two bodies 
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where q is the control parameter , usually .0≥q  Assume that the contact pressure )(xnp  and the 

friction induced shear stress =nτ )(xnpµ  satisfy the global equilibrium conditions for the body 

1B , so we have  0m0f == , . The Lagrangian functional at 21 bbb ==  is  
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and satisfying the stationary condition of the Lagrange functional, the contact pressure distribution 

has the next form 
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where χ  is the angle between cn  and Re . The given non-linear equations can be solved by 

applying Newton-Raphson technique. Minimization of this functional with equilibrium constraints 

for body 1B  at q=1 gives results for steady state wear process of arbitrary shape of contact surface 

Some specific examples will be presented. It is shown that the thermal distortion effects 

essentially the optimal contact shape associated with the steady state 
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