MATRIX PADÉ BOUNDS ON EFFECTIVE TRANSPORT COEFFICIENTS OF ANISOTROPIC TWO-PHASE MEDIA

S. Tokarzewski¹, J. Gilewicz²

¹Institute of Fundamental Technological Research, Warsaw, Poland ²Centre de Physique Théorique, CNRS, Luminy Case 907, 13288 Marseille Cedex 09, France

The prediction of macroscopic coefficients Υ of two-phase composites, if properties γ_1 and γ_2 and microstructures of their constituents are known, is one of the most important problems of mechanics of inhomogeneous media. Due to the difficulty of calculating of effective material constants Υ exactly, there has been much of interest in obtaining bounds on Υ .

It is well known that effective transport coefficients Υ of two-phase composites such as thermal and electrical conductivities, dielectric constants, magnetic permeabilities and diffusion coefficients have a matrix Stieltjes function representation $\mathbf{f}(z)$

(1)
$$\mathbf{f}(z) = \frac{(\mathbf{\Upsilon} - \mathbf{I})}{z} = \int_0^1 \frac{d\gamma(u)}{1 + zu}, \quad z \in \mathbb{C} \setminus (-\infty, -1), \quad d\gamma(u) \ge 0, \quad \mathbf{f}(-1) \le \mathbf{I},$$

where \mathbf{I} and $z = \frac{\gamma_1}{\gamma_2} - 1$ denote the unit matrix and the isotropic non-dimensional charakteristic of constituents. We assume that we know matrix coefficients $\mathbf{f}_j^{(k)}$ up to p_j order in matrix Taylor expansions at $z_j, z = z_j \in \mathbb{C} \setminus (-\infty, -1), j = 1 \dots N$, i.e.

(2)
$$\mathbf{f}_{j}^{(k)}, \ j = 1, \dots, N, k = 1, \dots, p_{j},$$

where

(3)
$$\mathbf{f}(z_j) = \mathbf{f}_j^{(0)}, \ \frac{\partial \mathbf{f}(z_j)}{\partial z} \bigg|_{z=z_j} = \mathbf{f}_j^{(1)}, \ \cdots, \ \frac{\partial^{(p_j)} \mathbf{f}(z_j)}{\partial z^{(p_j)}} \bigg|_{z=z_j} = \mathbf{f}_j^{(p_j)}.$$

We seek the matrix function $\mathbf{F}_{n+2}(z; \alpha, \beta)$ estimating $\mathbf{f}(z)$ in the form a sum of simple matrix fractions given by:

(4)
$$\mathbf{F}_{n+2}(z;\alpha,\beta) = \sum_{k=1}^{K} \mathbf{A}_{k}^{\frac{1}{2}}(\alpha,\beta) (\mathbf{I}+z\mathbf{B}_{k}(\alpha,\beta))^{-1} \mathbf{A}_{k}^{\frac{1}{2}}(\alpha,\beta) + \alpha^{\frac{1}{2}} (\mathbf{I}+z\beta)^{-1} \alpha^{\frac{1}{2}},$$

where

(5)
$$K = E((n+1)/2)$$
 and if n even $\mathbf{B}_{n/2}(\alpha,\beta) > \mathbf{0}$ or if n odd $\mathbf{B}_{n/2}(\alpha,\beta) = \mathbf{0}$

Here $\mathbf{A}_k(\alpha,\beta)$, α , $\mathbf{B}_k(\alpha,\beta)$, β are two-dimensional matrices satisfying matrices inequalities

(6)
$$\mathbf{A}_k(\alpha,\beta) > \mathbf{0}, \ \alpha > \mathbf{0}, \ \mathbf{B}_k(\alpha,\beta) > \mathbf{0}, \ \beta > \mathbf{0},$$

while *n* denotes the number of independent input data given by (3). The coefficients $\mathbf{A}_k(\alpha, \beta)$ and $\mathbf{B}_k(\alpha, \beta)$ are determined by the assumption that $\mathbf{F}_{n+2}(z; \alpha, \beta)$ (matrix multipoint Padé approximant) and $\mathbf{f}(z)$ (matrix Stieltjes function) have matrix Taylor expansions coinciding up to p_j order at z_j , j = 1, ..., N. The main results of this paper present the following matrix relations. By $\phi_{n+1}(z_0)$, n = 1, 2, ..., we denote the matrix bounds on $\mathbf{f}(z_0)$.

For n = 0

(7)
$$\phi_1(z_0) = \left\{ \alpha^{\frac{1}{2}} (\mathbf{I} + z_0 \beta)^{-1} \alpha^{\frac{1}{2}}; \ \alpha = (\mathbf{I} - \beta), \ \mathbf{0} \le \beta \le \mathbf{I} \right\}, \ (\mathbf{0} \le \alpha \le \mathbf{I}, \ \beta = \mathbf{0}) \right\}.$$

http://rcin.org.pl

For n = 1, 2, 3...

$$\phi_{n+1}(z_0) = \{ \mathbf{F}_{n+2}(z_0, \alpha, \beta); \ \alpha = \alpha_n(\beta) \}$$

where

(9)
$$\alpha_n(\beta) = \begin{cases} \alpha_{\mathbf{A}_n}(\beta), & \mathbf{0} \le \beta \le \beta_1^{(n)}, \\ \alpha_{\mathbf{F}_{n+2}}(\beta), & \beta_1^{(n)} \le \beta \le \beta_2^{(n)}, \end{cases} \text{ if } n \text{ is odd}$$

or

(8)

(10)
$$\alpha_n(\beta) = \begin{cases} \alpha_{\mathbf{F}_{n+2}}(\beta), & \mathbf{0} \le \beta \le \beta_1^{(n)}, \\ \alpha_{\mathbf{A}_n}(\beta), & \beta_1^{(n)} \le \beta \le \beta_2^{(n)}, \end{cases} \text{ if } n \text{ is even.}$$

Here $\beta_1^{(n)}, \ \beta_2^{(n)}, \ ..., \ \beta_n^{(n)}$ are roots of the equation

(11) $\alpha_{\mathbf{F}_{n+2}}(\beta) - \alpha_{A_n}(\beta) = \mathbf{0}, \ n = 1, 2, 3, \ \mathbf{0} = \beta_0^{(n)} < \beta_1^{(n)} < \beta_2^{(n)} < \dots < \beta_n^{(n)} < \beta_{n+1}^{(n)} = \mathbf{I}.$ The matrix functions appearing in (9) and (10)

$$\alpha = \alpha_{\mathbf{A}_n}(\beta)$$
 and $\alpha = \alpha_{\mathbf{F}_{n+2}}(\beta)$

satisfy the matrix relations

(12)
$$\mathbf{A}_n(\alpha,\beta) = \mathbf{0} \text{ and } \mathbf{F}_{n+2}(-1, \ \alpha,\beta) = \mathbf{I},$$

respectively. Coefficients $\mathbf{A}_n(\alpha,\beta)$ are determined by the system of equations

(13)
$$\mathbf{f}(z) - \mathbf{F}_{n+2}(z, \alpha, \beta) = O((z - z_j)^{p_j}), \ j = 1, 2, ..., N, \ n = \sum_{j=1}^{N} p_j$$

The matrix Padé bounds $\phi_n(z_0), n = 0, 1, 2, \dots$ determined by relations (7)-(13) are new. For the scalar case they coincide with the relevant ones reported in literature [1, 2]. Zero order bounds $\phi_1(z_0)$ on $\mathbf{f}(z_0)$ determined by (7) are calculated and depicted in Fig. 1.

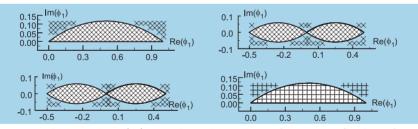


Fig. 1: Matric Padé bounds $\phi_1(z_0)$ on admissible values of a matrix Stieltjes function $\mathbf{f}(z_0)$, $z_0 = 1 - i$ representing the effective anisotropic transport coefficient Υ of two-phase medium. The bounds $\phi_1(z_0)$ are calculated from one information only, i.e. $\mathbf{f}(-1) \leq \mathbf{I}$.

As an example of applications the effective conductivity of a rectangular array of cylinders is solved by means of matrix Padé bounds. Results are presented in a number of tables and graphs.

Acknowledgment This work was supported by the Ministry of Science and Higher Education (Poland) through the Grant Nr 4 T07A 053 28.

- G.W. Milton, The Theory of Composite, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2002.
- [2] S. Tokarzewski, Multipoint continued fraction approach to the bounds on effective transport coefficients of two-phase media. IFTR Reports, 4: 3–171, 2005.

http://rcin.org.pl