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A POWER-LAW MEDIUM
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1. Introduction

Solutions for crack-tip fields are very important in understanding the mechanisms of crack
initiation and propagation in elastic-plastic and creeping materials. The stressfield in the vicinity of
the crack tip in power-law materials (power-law hardening materials, power-law creeping materials)
iswidely discussed in literature. Thestress singularity for a crack in ahomogeneouspower-hardening
material with hardening exponent n was first studied by Hutchinson [1], Rice and Rosengren [2]. In
[1] the problem of plastic stress singularity is reduced to a nonlinear eigenvalue problem and the
shooting method is used to solve the homogeneous differential equation obtained in the analysis. It
should benoted that for sometimemulti -termasymptoticsolutionswith thewell -knownHRR-field as
theleading order term of the asymptotic expansionaroused considerableinterest of many researchers.
Nowadays the whole eigenspectrum and orders of stress singularity at the crack tip for a power-law
medium are of prevaili ng interest. Thepresent study offers a techniquedeveloped in theperturbation
theory for analysisof nonlinear eigenvalueproblemsarising from fracture mechanics.

2. Mode I crack. Basic equations

Let usconsider eigenspectra and orders of singularity of thestressfield near a modeI crack tip
in a power-law material. The power-law constitutiverelations εij = (3/2)Bσn−1

e sij, where εij is the
strain, sij is the stressdeviator, σe is the Mises equivalent stress, B, n are material constants, for the
plane strain condition are described by εrr = −εθθ = 3Bσn−1

e (σrr − σθθ) /4, εrθ = 3Bσn−1
e σrθ/2,

where the equivalent stressisexpressed byσ2
e = 3 (σrr − σθθ)

2 /4 + 3σ2
rθ.

In analyzing the asymptotic behaviour of the stressfield near the crack tip the Airy stresspo-
tential can be presented in the following form F (r, θ) = rλ+1f(θ). Using the constitutive equations
and the compatibilit y equation onefinds
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The fourth order nonlinear ordinary differential equation (1) with the boundary conditions
f(θ = ±π) = 0, f ′(θ = ±π) = 0 defines a nonlinear eigenvalue problem in which the constant
λ is the eigenvalue and f(θ) is the corresponding eigenfunction. The direct integration of the differ-
ential equation (1) is generally realized by theRunge-Kuttamethodin conjunctionwith theshooting
method. Obviously, the eigenvalue λ and the initial value f ′′(θ = −π) are coupled with each other
in general, and they have to besearched simultaneously. Only in somespecial cases one can assigna
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certain λ aprior throughadditional physical presumptions. Now thewhole eigenspectrum and orders
of stress singularity at the crack tip are of interest. The whole eigenspectrum stipulates the possible
stressdistributions in the neighbourhood of the crack tip. The purpose of this study is to obtain the
whole eigenspectrum for thestressfield near amode I crack in apower-law material.

3. The perturbation theory approach

The underlying idea of the method is to consider the expansion representing the eigenvalue
λ of the nonlinear eigenvalue problem formulated for an arbitrary exponent n to be a sum of the
eigenvalue λ0 corresponding to the ”undisturbed” linear problem (n = 1) and a small parameter ε
which quantitatively describes the nearnessof the eigenvalues: λ = λ0 + ε. The exponent n and the
stressfunction f(θ) can be presented as formal series with respect to ε : n = 1 + εn1 + ε2n2 + ... ,
f(θ) = f0(θ)+εf1(θ)+ε2f2(θ)+ ... , wheref0(θ) denotesthesolution of thelinear problem (n = 1).
Introducing the asymptotic expansionsfor λ, n andf(θ) into (1) andcollecting termsof equal power
in ε, the set of linear differential equations is obtained. Thus, the boundary value problems for the
nonhomogeneous fourth order linear differential equations with respect to fi(θ) are formulated. It is
known that if theboundary valueproblem for thehomogeneousdifferential equation has anontrivial
solution then there can exist no solution of the corresponding nonhomogeneousdifferential equation
unlessthesolvabilit y condition is realized.

Analysis of the solvabilit y condition for the boundary value problems obtained results in the
three-term asymptotic expansions of the exponent n : n = 1 − 2ε/(λ0 − 1) + ε2n2 + O(ε3), where
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For λ0 = 1/2 corresponding to the classical HRR-problem the followingclosed form solution
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is found. Hence, thewell -known formula(2) connectingthehardeningexponent n andthe eigenvalue
λ for theHRR-problem isderived.

4. Conclusions

Using the perturbation methodthe whole set of eigenvalues for a mode I crack tip in a power-
law material isdetermined. The three-term asymptotic expansion for the exponent n allowing to find
the eigenvalueviaλ = λ0 + ε for thenonlinear eigenvalueproblem isobtained.

The relative error of the three-term asymptotic expansion for a crack in thepower-law material
with n = 2 to the exact HRR-solution is 2%. The results obtained for λ0 = −1/2 were compared
with those foundfor the same problem by the Runge-Kutta method in conjunction with the shoot-
ing method. The comparison of the eigenvalues for n = 2 calculated by the three-term asymptotic
expansion and by the numerical scheme λ = −0.9801 and λ = −1.000 shows the goodagreement.
The eigenvalues for n = 3 given by the four-term asymptotic expansion for λ0 = −1/2 and by the
Runge-Kuttamethodareλ = −0.7716 andλ = −0.7755. Consequently, aquitesatisfactory solution
is obtained by taking the asymptotic expansionachieved.
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